CN101119094A - 基于频域测试的非线性电力系统稳定器参数整定方法 - Google Patents

基于频域测试的非线性电力系统稳定器参数整定方法 Download PDF

Info

Publication number
CN101119094A
CN101119094A CNA2007101192653A CN200710119265A CN101119094A CN 101119094 A CN101119094 A CN 101119094A CN A2007101192653 A CNA2007101192653 A CN A2007101192653A CN 200710119265 A CN200710119265 A CN 200710119265A CN 101119094 A CN101119094 A CN 101119094A
Authority
CN
China
Prior art keywords
pss
frequency
signal
output
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101192653A
Other languages
English (en)
Other versions
CN100492871C (zh
Inventor
卢强
王钢
郑少明
邵广惠
梅生伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB2007101192653A priority Critical patent/CN100492871C/zh
Publication of CN101119094A publication Critical patent/CN101119094A/zh
Application granted granted Critical
Publication of CN100492871C publication Critical patent/CN100492871C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

基于频域测试的非线性电力系统稳定器参数整定方法属于电力系统稳定控制技术领域,其特征在于,在设定被实验机组工况后,测量该稳定器输出输出点到发电机机端电压的在0.2~2.0Hz的低频振荡范围内无补偿频率特性曲线及计算不同频率点下的相位角;再计算在不同频率下该稳定器输出信号的线性部分相对于Δω轴的超前滞后角α1,再加上频率特性相应的相位角,判断是否超出国家标准规定的相对于Δω轴的超前滞后范围;若未超出,便可计算处该线性部分的反馈系数k1、k2和k3;然后再用临界放大倍数法和负载阶跃法确定阻尼系数C1和增益系数C2。本发明易于为现场调试人员掌握,易于推广使用。

Description

基于频域测试的非线性电力系统稳定器参数整定方法
技术领域
本技术发明属于电力系统稳定与控制技术领域。
背景技术
大型发电机组的励磁控制是改善电力系统的动态品质、提高暂态稳定性最有效、最经济的技术手段之一。当前发电机励磁调节器主要采用的是包括PID(比例积分微分控制)、PSS(电力系统稳定器)以及LOEC(线性最优励磁控制),三者均基于系统运行平衡点附近的近似线性化模型,从而忽略了系统固有的非线性特性。而基于电力系统非线性数学模型设计的NOEC(非线性最优励磁控制)虽然能够有效地改善电力系统的稳定性,但是与上述三中控制方式一样,均在建模时采用具有固定结构和参数的数学模型,即没有考虑系统所受到的不确定性。
为了克服上述局限,非线性电力系统稳定器NR-PSS基于电力系统非线性数学模型,并考虑了系统中的各种外部扰动和内部未建模动态的干扰,得到的控制律能够有效地抑制各种干扰,并且对于网络参数和系统结构具有鲁棒性。NR-PSS的设计建立在非线性鲁棒控制理论的基础上,涉及微分几何、微分对策和H∞控制等诸多学科,数学基础严密,条理清晰,工程意义明确,但由于其基于状态空间的控制律使得NR-PSS不利于现场运行人员的参数调节和使用,一定程度上限制了其推广应用。为了大规模地推广应用NR-PSS,本发明基于频域测试方法,提出了一套易为运行调试人员操作和掌握的NR-PSS参数整定方法,以保证NR-PSS具有优良的综合性能。
发明内容
本发明的目的在于为现场调试人员提供一种易于掌握的基于频域测试的非线性电力系统稳定器参数整定方法。
本发明的特征在于其依次含有以下步骤:
步骤(1).调整被试验发电机组的工况
被试验机组有功功率大于0.9额定功率,无功工况为0~0.2额定无功;调频和自动发电机控制功能暂时退出;试验机组在机端有并列运行机组时,宜在并列机组停运下进行,也可在其运行下进行试验,但要求并列机组的无功调差率设为运行值。记录试验机组运行数据、同厂其他机组的出力、各高压母线电压和各出线有功功率;
步骤(2.)采用频谱分析仪测量非线性电力系统稳定器NR-PSS输出点到发电机机端电压无补偿频率特性曲线。所述无补偿频率特性曲线是指在NR-PSS不投入的情况下,用所述频谱分析仪代替NR-PSS,测量频谱分析仪输出信号产生的发电机附加力矩对于该频谱分析仪输出信号的相频特性,按以下步骤进行所述无补偿频率特性曲线的测量;
步骤(2.1).设定N是频谱分析仪输出的噪声信号,当选用随机信号时使用均与uniform滤波窗;当选用周期性调频信号时使用汉宁hannning滤波窗,频率范围选为0.2~2.0Hz。
步骤(2.2).把频谱分析仪的输出信号N与自动调压器AVR的输出相叠加,同时把频谱分析仪的输出信号N送到所述频谱分析仪的第1输入端,发电机机端电压Vg经过一个电压变送器送入所述频谱分析仪的第2输入端;
步骤(2.3)逐步增大频谱分析仪输出信号N的幅值至发电机机端电压Vg开始出现摆动后,测量0.2~2.0Hz的频率特性,观察频率特性曲线形状是否光滑;如果曲线不光滑,如果曲线不光滑,调整信号大小再进行测量。记录下频率特性曲线的数据,即为0.2~2.0Hz的NR-PSS输出点到机端电压无补偿频率特性曲线。
步骤(3).按以下步骤计算非线性电力系统稳定器线性部分的反馈系数k1、k2和k3
步骤(3.1)在原动机机械功率变化量标幺值ΔPm等于0,可以计算出对于不同频率的输入信号,NR-PSS的线性部分
Figure A20071011926500061
相对于Δω轴的超前滞后角度αl,其中:Δω=(ω-ω0),ω0=314.159,为额定转速;Δδ为转子运行角度变化量, Δδ = ∫ 0 t Δωdτ ; ΔPe电磁功率变化量标幺值。 α l = arctan ( - L 1 ω 0 - 4 π 2 f 2 T j L 3 2 πf L 2 + 2 πfD L 3 ) , f为输入干扰信号的频率,ω0为额定转速314.1529(弧度/秒);Tj为发电机转动惯量,设定值;D是机组阻尼系数,设定值。L1、L2和L3为调整参数,取值范围为[0,300];
步骤(3.2).用步骤(3.1)得到不同频率下的超前滞后角度αl加上步骤(2)测得的相应频率下无补偿频率特性的角度,得到每个频率下NR-PSS输出力矩相对于Δω轴的角度;
步骤(3.3).判断步骤(3.2)得到的在0.2~2.0Hz的低频振荡区输出的力矩向量在Δω轴超前10度~滞后45度以内;
若不满足要求,则调整参数L1、L2和L3使所述超前滞后角满足上述要求;然后再按一下计算NR-PSS的参数k1、k2和k3
k 1 = L 1 ω 0 i q T j T d 0 ′ , k 2 = L 1 ω 0 i q T j T d 0 ′ , k 3 = - L 3 i q T d 0 ′
其中:Tj是发电机转动惯量,单位秒;Td0′为定子开路时励磁绕组时间常数,单位秒;iq为电枢电流的q轴分量,iq=Itcos(δ+φ),It为电枢电流标幺值,为已知量;δ为转子运行角度,已知量;φ为功率因数角,已知量;
步骤(4)确定NR-PSS输出信号VNR-PSS中的阻尼系数C1和NR-PSS增益系数C2,其中:
V NR - PSS = { E q - T d 0 ′ i q [ E q ′ i · q + ( x q - x d ′ ) ( i q i · d + i d i · q ) ] C 1 T j T d 0 ′ ω 0 i q ( k 1 Δδ + k 2 Δω - k 3 ω 0 T j ΔP e ) } C 2 - - - ( 1 )
其中:
id为电枢电流的d轴分量;
Eq′、Eq为同步机暂态电势和空载电势,标幺值;
xd,xq,xd′分别为d轴同步电抗、q轴同步电抗和d轴暂态电抗,标幺值;
NR-PSS与自动调压器AVR的配合采用并联方式,即NR-PSS的输出与自动调压器AVR输出叠加后输入到励磁机以控制发电机机端电压;
步骤(4.1).用下述临界放大倍数发确定系数C1
在投入NR-PSS后逐步增大所述系数C1,当励磁电压开始出现5次连续的振荡时立即退出NR-PSS。此时的放大倍数即为所述系数C1的临界增益;C1取临界增益的1/2~1/3;
步骤(4.2).用下述电压阶跃法确定所述系数C2
投入NR-PSS,在自动调压器AVR输入端设置阶跃量为1%~4%额定发电机电压,正向阶跃后6s左右即反向阶跃回原值。逐步增大NR-PSS的增益系数C2,观察其电压动态响应和有功的稳定性。当有NR-PSS进行阶跃后出现5次有功概率振荡,则此时的放大倍数即为临界增益,所述系数C2取临界增益的1/2~1/3;
2.根据权利要求1所述的基于频域测试的非线性电力系统稳定器参数整定方法,其特征在于,在所述的步骤(2)中频谱分析仪输出信号N加到自动调压器AVR的输入端,同时在测量时把自动调压器AVR的微分环节和积分环节退出,把自动调压器AVR的比例系数降低到10,避免引起振荡;
3.根据权利要求1所述的基于频域测试的非线性电力系统稳定器参数整定方法,其特征在于,在所述步骤(2)中用一个低频正弦信号发生器和一个波形记录仪代替频谱分析仪,该低频正弦信号发生器输出信号S加入到自动调压器AVR的输出端,同时将所述低频正弦信号发生器输出信号S输入至波形记录仪做为第1路输入信号,发电机机端电压经过电压变换器后输入波形记录仪的第2输入端;在0.2~2.0Hz间每隔0.1Hz选一个频点且逐步增大信号S的幅值直到发电机机端电压Vg开始出现摆动。波形稳定后,记录波形,所述波形是接近正弦的、光滑的;每个频点测量结束,把信号调节到零,另一个频点的信号再从零开始调起;频率不同,信号大小不同。根据记录的波形比较各个频率下波形记录仪两路输入信号的相位差,并记录数据,从而得到0.2~2.0Hz的NR-PSS输出点到机端电压无补偿频率特性曲线;
4.根据权利要求3所述的基于频域测试的非线性电力系统稳定器参数整定方法,其特征在于,所述低频正弦信号发生器的输出信号S输入到自动调压器AVR的输入端,同时在测量时把自动调压器AVR的微分环节和积分环节退出,把自动调压器AVR的比例系数降低到10,避免引起振荡;从而测得0.2~2.0Hz的NR-PSS输出点到机端电压无补偿频率特性曲线。
本发明基于NR-PSS控制律,结合常规的频域测试方法,提出了一套NR-PSS的参数整定方法,具有以下优点:
1)本发明基于NR-PSS控制律,提出的参数整定方法使得基于状态空间设计的NR-PSS满足相应的行业测试标准。
2)本发明基于频域测试的方法提出的NR-PSS参数整定方法思路清晰,步骤简单,无需进行复杂的数学运算,有效地克服了基于非线性控制理论设计的控制器参数不易整定的困难。
3)本发明充分利用现有的测试仪器和设备,易为工程运行人员操作和掌握,有利于NR-PSS的进一步推广和使用。
附图说明
图1NR-PSS无补偿频率特性测量方法1。
图2NR-PSS无补偿频率特性测量方法2。
图3NR-PSS无补偿频率特性测量方法3。
图4NR-PSS无补偿特性频率测量方法4。
图5NR-PSS参数整定方法流程图。
具体实施方式
NR-PSS的非线性模型基于多机励磁系统,该模型考虑瞬态凸极效应,并计及了系统中存在的各种不确定性因素的影响;在此基础上将微分几何控制理论与线性H∞方法有机结合,即采用反馈线性化方法将非线性系统精确线性化,然后应用线性H控制理论设计其鲁棒控制律,最后代回到所设计的非线性预反馈律中得到原系统的NR-PSS控制律,考虑与自动调压器AVR的配合,最终的控制律如式(1):
V NR - PSS = { E q - T d 0 ′ i q [ E q ′ i · q + ( x q - x d ′ ) ( i q i · d + i d i · q ) ] C 1 T j T d 0 ′ ω 0 i q ( k 1 Δδ + k 2 Δω - k 3 ω 0 T j ΔP e ) } C 2 - - - ( 1 )
其中id和iq分别为电枢电流的d轴和q轴分量;δ是转子运行角(弧度);ω是角速度(弧度/秒);ω0=314.159(弧度/秒)为稳态时频率基值;Pe是电磁功率(标幺值);Eq′、Eq为同步机暂态电势和空载电势(标幺值);xd,xq,xd′分别为d轴同步电抗、q轴同步电抗和d轴暂态电抗(标幺值);Td0′为定子开路时励磁绕组时间常数(秒);Tj是发电机转动惯量(秒);k1、k2和k3分别为反馈系数;C1为阻尼调节系数;C2为NR-PSS与自动调压器AVR的配合系数。NR-PSS与自动调压器AVR的配合采用并联方式,即NR-PSS的输出与自动调压器AVR输出叠加后得到励磁控制电压Vf
本发明其基于常规的频域测试方法,提出并制定了NR-PSS的参数整定方法,其主要步骤如下:
步骤1:试验准备以及调整试验工况。
进行NR-PSS的参数整定前需要进行如下的准备:试验通道退出运行,对数字式自动调压器AVR须设置A/D变换器参数、设置加入点和外部信号的投切控制,检查外部信号的正确输入。设置的A/D变换器参数应有利于提高信噪比。
试验的工况为(以下各项试验均在此工况下进行):被试验机组有功功率大于0.9额定功率,无功工况为0~0.2额定无功;调频和AGC(自动发电机控制)功能暂时退出;试验机组在机端有并列运行机组时,宜在并列机组停运下进行,也可在其运行下进行试验,但要求并列机组的无功调差率设为运行值。记录试验机组运行数据(包括机端电压、励磁电压、有功功率、无功功率以及原动机出力)、同厂其他机组的出力、各高压母线电压和各出线有功功率。
步骤2:测量NR-PSS输出点到机端电压无补偿频率特性曲线。
无补偿频率特性是指在不投入NR-PSS的情况下,输入外加干扰信号,测量发电机机端电压Vg对于外加信号的相频特性,又称励磁系统的滞后特性。测量NR-PSS输出点到机端电压无补偿频率特性曲线要求自动调压器AVR具有外加信号入口,具备频谱分析仪或低频正弦信号发生器和波形记录仪,以及测量时间常数小于20ms的发电机电压变送器。
测量无补偿频率特性曲线试验的方法有以下4种:
·测量方法1
选择频谱分析仪输出的噪声信号N为外加干扰信号,N可设置为随机信号或者周期性调频信号,前者使用均匀uniform滤波窗,后者使用汉宁hanning滤波窗。频谱分析仪输出的噪声信号频率范围可设置为0.2~2.0Hz。
试验接线如图1所示。发电机电压Vg减去电压给定值Vref得到电压偏差后输入到自动调压器AVR。而自动调压器AVR的输出与频谱分析仪的噪声信号输出N叠加,同时又把频谱分析仪的噪声信号输出N作为频谱分析仪的第1路输入端信号,发电机机端电压Vg经过一个电压变送器送入频谱分析仪的第2路输入端。
接线完成后,逐步增大噪声信号输出N直至发电机机端电压Vg开始出现摆动。测量0.2~2.0Hz的频率特性,观察频率特性曲线形状是否光滑;如果曲线不光滑,调整信号大小再进行测量。记录频率特性曲线的数据,即为0.2~2.0Hz的NR-PSS输出点到机端电压无补偿频率特性曲线。
·测量方法2
选择低频正弦信号发生器输出的正弦信号S为外加干扰信号,试验接线如图2所示。发电机电压Vg减去电压给定值Vref得到电压偏差后输入到自动调压器AVR。而自动调压器AVR的输出与低频正弦信号发生器输出的正弦信号S叠加,同时又把低频正弦信号发生器输出的正弦信号S作为波形记录仪的第1路输入端信号,发电机机端电压Vg经过一个电压变送器送入波形记录仪的第2路输入端。
接线完成后,在0.2~2.0Hz之间每隔0.1Hz取一个频点,逐个频率点地进行测量。每选定一个频点后,逐步增大信号输出直至发电机机端电压Vg开始出现摆动。波形稳定后用波形记录仪记录波形,记录的波形应当接近正弦、光滑。每个频率点完成测量并记录后应将信号调到零,另一点频率信号从零起调;频率不同,信号大小不同。根据记录的波形比较各个频率下波形记录仪两路输入信号的相位差,并记录数据,从而得到0.2~2.0Hz的NR-PSS输出点到机端电压无补偿频率特性曲线。
·测试方法3
选择频谱分析仪输出的噪声信号N为外加干扰信号,N可设置为随机信号或者周期性调频信号,前者使用均匀uniform滤波窗,后者使用汉宁hanning滤波窗。频谱分析仪输出的噪声信号频率范围可设置为0.2~2.0Hz。
试验接线如图3所示。由于需要测量的是NR-PSS输出点到机端电压的机组无补偿滞后特性曲线,因而试验前需要将自动调压器AVR中的微分环节和积分环节退出,并将自动调压器AVR中电压比例系数降低为10左右(避免引起振荡)。发电机电压Vg减去电压给定值Vref得到电压偏差后再加上频谱分析仪输出的噪声信号N输入到自动调压器AVR。同时把频谱分析仪的噪声信号输出N作为频谱分析仪的第1路输入端信号,发电机机端电压Vg经过一个电压变送器送入频谱分析仪的第2路输入端。
接线完成后,逐步增大噪声信号输出N直至发电机机端电压Vg开始出现摆动。测量0.2~2.0Hz的频率特性,观察频率特性曲线形状是否光滑;如果曲线不光滑,调整信号大小再进行测量。记录频率特性曲线的数据,即为0.2~2.0Hz的NR-PSS输出点到机端电压无补偿频率特性曲线。
·测试方法4
选择低频正弦信号发生器输出的正弦信号S为外加干扰信号,试验接线如图4所示。由于需要测量的是NR-PSS的输出点到机端电压的机组无补偿滞后特性曲线,因而试验前需要将自动调压器AVR中的微分环节和积分环节退出,并将自动调压器AVR中电压比例系数降低为10左右(避免引起振荡)。发电机电压Vg减去电压给定值Vref得到电压偏差后输入到自动调压器AVR。而自动调压器AVR的输出与低频正弦信号发生器输出的正弦信号S叠加,同时又把低频正弦信号发生器输出的正弦信号S作为波形记录仪的第1路输入端信号,发电机机端电压Vg经过一个电压变送器送入波形记录仪的第2路输入端。
完成接线后,在0.2~2.0Hz之间每隔0.1Hz取一个频点,逐个频率点地进行测量。每选定一个频点后,逐步增大信号输出直至发电机机端电压Vg开始出现摆动。波形稳定后用波形记录仪记录波形,记录的波形应当接近正弦、光滑。每个频率点完成测量并记录后应将信号调到零,另一点频率信号从零起调;频率不同,信号大小不同。根据记录的波形比较各个频率下波形记录仪两路输入信号的相位差,并记录数据,从而得到0.2~2.0Hz的NR-PSS输出点到机端电压无补偿频率特性曲线。
步骤3:计算NR-PSS线性部分的反馈系数。
NR-PSS线性部分可以提取出来为Vl=L1Δδ+L2Δω+L3ΔPe。按照《DL/T650-1998大型汽轮发电机自并励静止励磁系统技术条件》附录B2.1和《DL/T843-2003大型汽轮发电机自交流励磁机静止励磁系统技术条件》附录A2.1中要求:在0.2~2Hz低频振荡区应使PSS输出的力矩向量在Δω轴超前10度~滞后45度以内,并使本机振荡频率点的力矩向量在Δω轴超前10度~滞后30度间。因此,根据步骤一测量得到的无补偿滞后特性曲线可以计算NR-PSS需要补偿的角度。
根据发电机的经典二阶模型,考虑原动机机械功率变化量ΔPm等于0,可以计算出对于不同频率的输入信号,NR-PSS的线性部分相对于Δω轴的超前滞后角度如式(2)
α l = arctan ( - L 1 ω 0 - 4 π 2 f 2 T j L 3 2 πf L 2 + 2 πfD L 3 ) - - - ( 2 )
其中f为输入信号的频率,ω0为额定转速314.1529(弧度/秒);Tj为发电机转动惯量,设定值;D是机组阻尼系数,设定值。
将式(2)计算得到的NR-PSS每个频率点的超前滞后角度αl加上步骤1测量的无补偿频率特性的角度,可以得到每个频率点下NR-PSS输出的力矩相对于Δω轴的角度。通过调整参数L1、L2和L3,可使得机组在NR-PSS线性部分补偿后的超前滞后角度满足上述标准要求。参数L1、L2和L3的取值范围为[0,300]。
在验证NR-PSS的线性部分提供的力矩满足要求后,根据参数L1、L2和L3以及机组参数,进一步求解相应的NR-PSS的参数k1、k2和k3;即 k 1 = L 1 ω 0 i q T j T d 0 ′ , k 2 = L 1 ω 0 i q T j T d 0 ′ k 3 = - L 3 i q T d 0 ′ , iq为电枢电流的q轴分量,iq=Itcos(δ+φ),It为电枢电流标幺值,为已知测量量量;δ为转子运行角度,已知量;φ为功率因数角,已知量;式中其他符号的意义如前所述。
所求得到的k1、k2和k3即可构成黎卡第Ricatti方程的解P矩阵;通过黎卡第Ricatti方程即可得到相应的Q矩阵和R矩阵;可以证明参数k1、k2和k3即为Q矩阵和R矩阵所对应的二次型性能指标下的最优解。
步骤4:确定NR-PSS的临界增益。
确定NR-PSS的参数k1、k2和k3之后,需要确定进一步NR-PSS的阻尼系数C1和NR-PSS增益系数C2,使闭环系统拥有优良的阻尼特性同时保证电压的稳定运行。确定C1和C2两个系数的方法包括临界放大倍数法和负载阶跃实验法。
临界放大倍数法是在投入NR-PSS后,逐步增大NR-PSS的阻尼调节系数C1,仔细观察发电机励磁电压,当励磁电压开始出现5次以上连续的振荡时立即退出NR-PSS。此时的放大倍数即为临界增益;而使用增益可取临界增益的1/2~1/3;从而确定NR-PSS阻尼调节系数C1的值。
负载阶跃法是在自动调压器AVR输入端设置阶跃量为1%~4%额定发电机电压,阶跃后6s左右即反向阶跃回原值。逐步增大NR-PSS的增益系数C2,并进行有无NR-PSS的负载阶跃实验,观察其电压动态响应和有功的稳定性。当有NR-PSS进行阶跃后出现5次连续的有功概率振荡,,则此时的放大倍数即临界增益。使用增益可取临界增益的1/2~1/3;从而确定NR-PSS反馈C2的值。
在完成上述NR-PSS整定步骤以后,即可确定NR-PSS的各项参数。

Claims (4)

1.基于频域测试的非线性电力系统稳定器参数整定方法,其特征在于,依次含有以下步骤:
步骤(1).调整被试验发电机组的工况
被试验机组有功功率大于0.9额定功率,无功工况为0~0.2额定无功;调频和自动发电机控制功能暂时退出;试验机组在机端有并列运行机组时,宜在并列机组停运下进行,也可在其运行下进行试验,但要求并列机组的无功调差率设为运行值;记录试验机组运行数据、同厂其他机组的出力、各高压母线电压和各出线有功功率;
步骤(2).采用频谱分析仪测量非线性电力系统稳定器NR-PSS输出点到发电机机端电压无补偿频率特性曲线;所述无补偿频率特性曲线是指在NR-PSS不投入的情况下,用所述频谱分析仪代替NR-PSS,测量频谱分析仪输出信号产生的发电机附加力矩对于该频谱分析仪输出信号的相频特性,按以下步骤进行所述无补偿频率特性曲线的测量;
步骤(2.1).设定N是频谱分析仪输出的噪声信号,当选用随机信号时使用均与uniform滤波窗;当选用周期性调频信号时使用汉宁hannning滤波窗,频率范围选为0.2~2.0Hz;
步骤(2.2).把频谱分析仪的输出信号N与自动调压器AVR的输出相叠加,同时把频谱分析仪的输出信号N送到所述频谱分析仪的第1输入端,发电机机端电压Vg经过一个电压变送器送入所述频谱分析仪的第2输入端;
步骤(2.3)逐步增大频谱分析仪输出信号N的幅值至发电机机端电压Vg开始出现摆动后,测量0.2~2.0Hz的频率特性,观察频率特性曲线形状是否光滑;如果曲线不光滑,如果曲线不光滑,调整信号大小再进行测量;记录下频率特性曲线的数据,即为0.2~2.0Hz的NR-PSS输出点到机端电压无补偿频率特性曲线;
步骤(3).按以下步骤计算非线性电力系统稳定器线性部分的反馈系数k1、k2和k3
步骤(3.1)在原动机机械功率变化量标幺值ΔPm等于0,可以计算出对于不同频率的输入信号,NR-PSS的线性部分
Figure A2007101192650002C1
相对于Δω轴的超前滞后角度αl,其中:Δω=(ω-ω0),ω0=314.159,为额定转速;Δδ为转子运行角度变化量, Δδ = ∫ 0 t Δωdτ ; ΔPe电磁功率变化量标幺值; α l = arctan ( - L 1 ω 0 - 4 π 2 f 2 T j L 3 2 π fL 2 + 2 π fDL 3 ) , f为输入干扰信号的频率,ω0为额定转速314.1529,单位是弧度/秒;Tj为发电机转动惯量,设定值;D是机组阻尼系数,设定值;L1、L2和L3为调整参数,取值范围为[0,300];
步骤(3.2).用步骤(3.1)得到不同频率下的超前滞后角度αl加上步骤(2)测得的相应频率下无补偿频率特性的角度,得到每个频率下NR-PSS输出力矩相对于Δω轴的角度;
步骤(3.3).判断步骤(3.2)得到的在0.2~2.0Hz的低频振荡区输出的力矩向量在Δω轴超前10度~滞后45度以内;
若不满足要求,则调整参数L1、L2和L3使所述超前滞后角满足上述要求;然后再按一下计算NR-PSS的参数k1、k2和k3
k 1 = L 1 ω 0 i q T j T d 0 ′ , k 2 = L 1 ω 0 i q T j T d 0 ′ , k 3 = - L 3 i q T d 0 ′
其中:Tj是发电机转动惯量,单位秒;Td0′为定子开路时励磁绕组时间常数,单位秒;iq为电枢电流的q轴分量,iq=Itcos(δ+φ),It为电枢电流标幺值,为已知量;δ为转子运行角度,已知量;φ为功率因数角,已知量;
步骤(4).确定NR-PSS输出信号VNR-PSS中的阻尼系数C1和NR-PSS增益系数C2,其中:
V NR - PSS = { E q - T d 0 ′ i q [ E q ′ i . q + ( x q - x d ′ ) ( i q i . d + i d i . q ) ] + C 1 T j T d 0 ′ ω 0 i q ( k 1 Δδ + k 2 Δω - k 3 ω 0 T j Δ P e ) } C 2 - - - ( 1 )
其中:
id为电枢电流的d轴分量;
Eq′、Eq为同步机暂态电势和空载电势,标幺值;
xd,xq,xd′分别为d轴同步电抗、q轴同步电抗和d轴暂态电抗,标幺值;
NR-PSS与自动调压器AVR的配合采用并联方式,即NR-PSS的输出与自动调压器AVR输出叠加后输入到励磁机以控制发电机机端电压;
步骤(4.1).用下述临界放大倍数发确定系数C1
在投入NR-PSS后逐步增大所述系数C1,当励磁电压开始出现5次连续的振荡时立即退出NR-PSS;此时的放大倍数即为所述系数C1的临界增益;C1取临界增益的1/2~1/3;
步骤(4.2).用下述负载阶跃法确定所述系数C2
投入NR-PSS,在自动调压器AVR输入端设置阶跃量为1%~4%额定发电机电压,正向阶跃后6s左右即反向阶跃回原值;逐步增大NR-PSS的增益系数C2,观察其电压动态响应和有功的稳定性;当有NR-PSS进行阶跃后出现5次有功功率振荡,则此时的放大倍数即为临界增益,所述系数C2取临界增益的1/2~1/3;
2.根据权利要求1所述的基于频域测试的非线性电力系统稳定器参数整定方法,其特征在于,在所述的步骤(2)中频谱分析仪输出信号N加到自动调压器AVR的输入端,同时在测量时把自动调压器AVR的微分环节和积分环节退出,把自动调压器AVR的比例系数降低到10,避免引起振荡;
3.根据权利要求1所述的基于频域测试的非线性电力系统稳定器参数整定方法,其特征在于,在所述步骤(2)中用一个低频正弦信号发生器和一个波形记录仪代替频谱分析仪,该低频正弦信号发生器输出信号S加入到自动调压器AVR的输出端,同时将所述低频正弦信号发生器输出信号S输入至波形记录仪做为第1路输入信号,发电机机端电压经过电压变换器后输入波形记录仪的第2输入端;在0.2~2.0Hz间每隔0.1Hz选一个频点且逐步增大信号S的幅值直到发电机机端电压Vg开始出现摆动;波形稳定后,记录波形,所述波形是接近正弦的、光滑的;每个频点测量结束,把信号调节到零,另一个频点的信号再从零开始调起;频率不同,信号大小不同;根据记录的波形比较各个频率下波形记录仪两路输入信号的相位差,并记录数据,从而得到0.2~2.0Hz的NR-PSS输出点到机端电压无补偿频率特性曲线;
4.根据权利要求3所述的基于频域测试的非线性电力系统稳定器参数整定方法,其特征在于,所述低频正弦信号发生器的输出信号S输入到自动调压器AVR的输入端,同时在测量时把自动调压器AVR的微分环节和积分环节退出,把自动调压器AVR的比例系数降低到10,避免引起振荡;从而测得0.2~2.0Hz的NR-PSS输出点到机端电压无补偿频率特性曲线。
CNB2007101192653A 2007-07-19 2007-07-19 基于频域测试的非线性电力系统稳定器参数整定方法 Active CN100492871C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007101192653A CN100492871C (zh) 2007-07-19 2007-07-19 基于频域测试的非线性电力系统稳定器参数整定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007101192653A CN100492871C (zh) 2007-07-19 2007-07-19 基于频域测试的非线性电力系统稳定器参数整定方法

Publications (2)

Publication Number Publication Date
CN101119094A true CN101119094A (zh) 2008-02-06
CN100492871C CN100492871C (zh) 2009-05-27

Family

ID=39055066

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007101192653A Active CN100492871C (zh) 2007-07-19 2007-07-19 基于频域测试的非线性电力系统稳定器参数整定方法

Country Status (1)

Country Link
CN (1) CN100492871C (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975903A (zh) * 2010-10-19 2011-02-16 河北省电力研究院 基于有功功率与pss输出相位差的pss投运效果的评价方法
CN101369004B (zh) * 2008-09-19 2011-04-06 中国电力科学研究院 一种用于励磁系统频谱分析的微相移快速变换方法
CN102075135A (zh) * 2010-11-24 2011-05-25 中国电力科学研究院 以发电机内电势频率作为输入信号的稳定器的实现方法
CN102147438A (zh) * 2011-01-18 2011-08-10 广东电网公司电力科学研究院 基于低频振荡阻尼灵敏度和等效交流增益的pss放大倍数优化试验方法
CN102147439A (zh) * 2011-01-18 2011-08-10 广东电网公司电力科学研究院 基于低频振荡阻尼灵敏度和等效交流增益的pss时间常数优化试验方法
CN102175972A (zh) * 2011-01-25 2011-09-07 北京四方继保自动化股份有限公司 基于pmu数据的发电机agc功率调节线性特性的分析方法
CN102226826A (zh) * 2011-03-25 2011-10-26 国电南瑞科技股份有限公司 双输入pss的实验方法
CN103187732A (zh) * 2013-02-28 2013-07-03 河北省电力公司电力科学研究院 一种电力系统稳定器参数优化方法
CN103532130A (zh) * 2013-09-06 2014-01-22 国家电网公司 一种ⅲ型pss参数整定方法
CN103560507A (zh) * 2013-09-26 2014-02-05 广东电网公司电力科学研究院 调速系统的电力系统稳定器参数整定方法与系统
CN103678930A (zh) * 2013-12-23 2014-03-26 清华大学 基于非线性阻尼的汽轮发电机模型建立方法
CN104767174A (zh) * 2015-04-03 2015-07-08 邹中宝 一种微型变压测频器
CN104849661A (zh) * 2015-05-21 2015-08-19 中国大唐集团科学技术研究院有限公司华东分公司 同步发电机调整主变压器高压侧母线电压能力的测试方法
CN107086589A (zh) * 2017-06-23 2017-08-22 云南电网有限责任公司 一种基于临界参数抑制水电机组超低频振荡的调速器参数优化方法
CN108196121A (zh) * 2018-01-16 2018-06-22 天津瑞能电气有限公司 一种智能微电网动态频率检测方法
CN108259276A (zh) * 2016-12-28 2018-07-06 中兴通讯股份有限公司 一种控制超宽带铜线接入技术g.fast端口的方法及装置
CN108267689A (zh) * 2017-12-19 2018-07-10 中国神华能源股份有限公司 发电机组的调速系统的阻尼极性判别方法、系统
CN109564410A (zh) * 2016-06-10 2019-04-02 Abb瑞士股份有限公司 用于识别机械负载的物理参数的半自动、交互式工具
CN109683037A (zh) * 2018-12-08 2019-04-26 国网辽宁省电力有限公司电力科学研究院 一种基于CoCo-80的电力系统稳定器试验方法
CN110032074A (zh) * 2019-05-22 2019-07-19 中国科学院光电技术研究所 一种双路前馈扰动观测器的双补偿器设计方法
CN111063065A (zh) * 2019-12-17 2020-04-24 万晖五金(深圳)有限公司 一种磁场锁系统和磁场锁控制方法
CN112383252A (zh) * 2020-10-30 2021-02-19 华北电力科学研究院有限责任公司 双馈发电机组励磁控制系统标幺方法及装置
CN114362135A (zh) * 2021-11-08 2022-04-15 国网山东省电力公司电力科学研究院 一种电力系统稳定器的参数整定方法及系统
CN114725957A (zh) * 2022-04-22 2022-07-08 南方电网科学研究院有限责任公司 一种电力系统稳定器参数整定方法及装置

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369004B (zh) * 2008-09-19 2011-04-06 中国电力科学研究院 一种用于励磁系统频谱分析的微相移快速变换方法
CN101975903A (zh) * 2010-10-19 2011-02-16 河北省电力研究院 基于有功功率与pss输出相位差的pss投运效果的评价方法
CN102075135A (zh) * 2010-11-24 2011-05-25 中国电力科学研究院 以发电机内电势频率作为输入信号的稳定器的实现方法
CN102075135B (zh) * 2010-11-24 2014-03-12 中国电力科学研究院 以发电机内电势频率作为输入信号的稳定器的实现方法
CN102147438B (zh) * 2011-01-18 2013-11-20 广东电网公司电力科学研究院 基于低频振荡阻尼灵敏度和等效交流增益的pss放大倍数优化试验方法
CN102147438A (zh) * 2011-01-18 2011-08-10 广东电网公司电力科学研究院 基于低频振荡阻尼灵敏度和等效交流增益的pss放大倍数优化试验方法
CN102147439A (zh) * 2011-01-18 2011-08-10 广东电网公司电力科学研究院 基于低频振荡阻尼灵敏度和等效交流增益的pss时间常数优化试验方法
CN102147439B (zh) * 2011-01-18 2013-05-15 广东电网公司电力科学研究院 基于低频振荡阻尼灵敏度和等效交流增益的pss时间常数优化试验方法
CN102175972A (zh) * 2011-01-25 2011-09-07 北京四方继保自动化股份有限公司 基于pmu数据的发电机agc功率调节线性特性的分析方法
CN102175972B (zh) * 2011-01-25 2013-03-13 北京四方继保自动化股份有限公司 基于pmu数据的发电机agc功率调节线性特性的分析方法
CN102226826A (zh) * 2011-03-25 2011-10-26 国电南瑞科技股份有限公司 双输入pss的实验方法
CN103187732B (zh) * 2013-02-28 2016-08-31 河北省电力公司电力科学研究院 一种电力系统稳定器参数优化方法
CN103187732A (zh) * 2013-02-28 2013-07-03 河北省电力公司电力科学研究院 一种电力系统稳定器参数优化方法
CN103532130B (zh) * 2013-09-06 2016-04-13 国家电网公司 一种ⅲ型pss参数整定方法
CN103532130A (zh) * 2013-09-06 2014-01-22 国家电网公司 一种ⅲ型pss参数整定方法
CN103560507B (zh) * 2013-09-26 2016-01-06 广东电网公司电力科学研究院 调速系统的电力系统稳定器参数整定方法与系统
CN103560507A (zh) * 2013-09-26 2014-02-05 广东电网公司电力科学研究院 调速系统的电力系统稳定器参数整定方法与系统
CN103678930A (zh) * 2013-12-23 2014-03-26 清华大学 基于非线性阻尼的汽轮发电机模型建立方法
CN104767174A (zh) * 2015-04-03 2015-07-08 邹中宝 一种微型变压测频器
CN104849661A (zh) * 2015-05-21 2015-08-19 中国大唐集团科学技术研究院有限公司华东分公司 同步发电机调整主变压器高压侧母线电压能力的测试方法
CN104849661B (zh) * 2015-05-21 2018-01-05 中国大唐集团科学技术研究院有限公司华东分公司 同步发电机调整主变压器高压侧母线电压能力的测试方法
CN109564410A (zh) * 2016-06-10 2019-04-02 Abb瑞士股份有限公司 用于识别机械负载的物理参数的半自动、交互式工具
CN108259276A (zh) * 2016-12-28 2018-07-06 中兴通讯股份有限公司 一种控制超宽带铜线接入技术g.fast端口的方法及装置
CN108259276B (zh) * 2016-12-28 2021-12-14 中兴通讯股份有限公司 一种控制超宽带铜线接入技术g.fast端口的方法及装置
CN107086589A (zh) * 2017-06-23 2017-08-22 云南电网有限责任公司 一种基于临界参数抑制水电机组超低频振荡的调速器参数优化方法
CN107086589B (zh) * 2017-06-23 2019-11-19 云南电网有限责任公司 一种基于临界参数抑制水电机组超低频振荡的调速器参数优化方法
CN108267689A (zh) * 2017-12-19 2018-07-10 中国神华能源股份有限公司 发电机组的调速系统的阻尼极性判别方法、系统
CN108196121B (zh) * 2018-01-16 2020-05-19 天津瑞能电气有限公司 一种智能微电网动态频率检测方法
CN108196121A (zh) * 2018-01-16 2018-06-22 天津瑞能电气有限公司 一种智能微电网动态频率检测方法
CN109683037A (zh) * 2018-12-08 2019-04-26 国网辽宁省电力有限公司电力科学研究院 一种基于CoCo-80的电力系统稳定器试验方法
CN110032074A (zh) * 2019-05-22 2019-07-19 中国科学院光电技术研究所 一种双路前馈扰动观测器的双补偿器设计方法
CN110032074B (zh) * 2019-05-22 2022-04-19 中国科学院光电技术研究所 一种双路前馈扰动观测器的双补偿器设计方法
CN111063065A (zh) * 2019-12-17 2020-04-24 万晖五金(深圳)有限公司 一种磁场锁系统和磁场锁控制方法
CN111063065B (zh) * 2019-12-17 2021-03-12 万晖五金(深圳)有限公司 一种磁场锁系统和磁场锁控制方法
CN112383252A (zh) * 2020-10-30 2021-02-19 华北电力科学研究院有限责任公司 双馈发电机组励磁控制系统标幺方法及装置
CN112383252B (zh) * 2020-10-30 2022-05-06 华北电力科学研究院有限责任公司 双馈发电机组励磁控制系统标幺方法及装置
CN114362135A (zh) * 2021-11-08 2022-04-15 国网山东省电力公司电力科学研究院 一种电力系统稳定器的参数整定方法及系统
CN114362135B (zh) * 2021-11-08 2023-07-07 国网山东省电力公司电力科学研究院 一种电力系统稳定器的参数整定方法及系统
CN114725957A (zh) * 2022-04-22 2022-07-08 南方电网科学研究院有限责任公司 一种电力系统稳定器参数整定方法及装置

Also Published As

Publication number Publication date
CN100492871C (zh) 2009-05-27

Similar Documents

Publication Publication Date Title
CN101119094A (zh) 基于频域测试的非线性电力系统稳定器参数整定方法
CN108551287B (zh) 车用内置式永磁同步电机驱动系统转矩闭环控制方法
CN101119095A (zh) 基于非线性鲁棒电力系统稳定器的大扰动实时仿真系统
US9300142B2 (en) Method for emulation of synchronous machine
US8115441B2 (en) On-line measurement of an induction machine's rotor time constant by small signal d-axis current injection
CN106911274B (zh) 一种原动机调速系统附加阻尼器控制方法
CN103187919B (zh) 一种永磁同步电机弱磁调速的系统和方法
Marques et al. Air-gap-power-vector-based sensorless method for DFIG control without flux estimator
US9948221B2 (en) Method and system for eliminating low frequency oscillation between generators
CN108809189B (zh) 一种并网调频型飞轮储能系统充电过程中的转速控制方法
DK2754889T3 (en) METHOD AND CONTROL UNIT FOR DIMENSION VIBRATIONS IN A WINDOW SYSTEM
CN107104448B (zh) 电力系统稳定器及方法
KR20170028147A (ko) 특성 시험 데이터를 활용한 발전기-제어시스템의 모델 파라미터 산정 장치 및 그 방법
CN106786666A (zh) 一种超前相位自适应型电力系统稳定器的参数整定方法
CN106533289B (zh) 一种非线性电压控制方法及系统
CN109861296B (zh) 一种孤岛虚拟同步发电机系统的惯性和阻尼辨识方法
CN105259414A (zh) 一种基于逆变器的电网阻抗在线检测方法
CN109066756A (zh) 一种改善系统暂态稳定的vsc-hvdc线性自抗扰控制方法
CN107742894B (zh) 一种次同步振荡抑制系统移相控制参数在线自整定系统
CN110784144B (zh) 内置式永磁同步电机的改进控制方法
CN109066793A (zh) 一种微网逆变器的虚拟柴油发电机组控制方法
CN104579090B (zh) 一种永磁同步电机功率补偿控制系统及方法
CN112448633A (zh) 一种基于改进adrc的飞轮储能机侧控制系统及方法
Thomsen et al. Online parameter identification methods for doubly fed induction generators
CN110994642A (zh) 励磁增益对凸极发电机同步转矩影响的量化方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant