CN108809189B - 一种并网调频型飞轮储能系统充电过程中的转速控制方法 - Google Patents

一种并网调频型飞轮储能系统充电过程中的转速控制方法 Download PDF

Info

Publication number
CN108809189B
CN108809189B CN201810596905.8A CN201810596905A CN108809189B CN 108809189 B CN108809189 B CN 108809189B CN 201810596905 A CN201810596905 A CN 201810596905A CN 108809189 B CN108809189 B CN 108809189B
Authority
CN
China
Prior art keywords
rotating speed
control
rotor
current
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810596905.8A
Other languages
English (en)
Other versions
CN108809189A (zh
Inventor
武鑫
柳亦兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201810596905.8A priority Critical patent/CN108809189B/zh
Publication of CN108809189A publication Critical patent/CN108809189A/zh
Application granted granted Critical
Publication of CN108809189B publication Critical patent/CN108809189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/30Arrangements for balancing of the load in a network by storage of energy using dynamo-electric machines coupled to flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Abstract

本发明提出了一种并网调频型飞轮储能系统充电过程中的转速控制方法,采用连续参考转速曲线减小系统充电过程中转子承受的振动和冲击;对于轴上安装有飞轮转子的永磁同步电机,在外环转速控制中,通过自适应补偿方法,对内部参数和外部负载进行估算;随后将估算结果与鲁棒控制器的输出结果叠加,作为q轴参考电流提供给内环电流控制,然后获得q轴控制输入电流,精确控制转子转速。本发明将连续参考转速曲线、鲁棒控制、自适应补偿、线性控制相结合,能够有效提高调频型飞轮储能系统充电过程中的系统性能,改善转速跟踪误差。

Description

一种并网调频型飞轮储能系统充电过程中的转速控制方法
技术领域
本发明涉及应用于电网调频的飞轮储能系统,具体涉及一种并网调频型飞轮储能系统充电过程中的转速控制方法。
背景技术
随着风力、光伏等新能源发电大规模接入我国电网,其间歇性、不确定性及波动性均会对电网频率的稳定性产生不容忽视的影响。为了保证电网可靠、稳定运行,需要调节控制电网频率,即电网调频。现阶段国内的调频机组主要为火电机组,但由于其响应速度慢、爬坡速率低的缺点,调频质量与灵活性难以满足要求。
一个典型的飞轮储能系统(FESS)主要由飞轮转子、轴承支撑系统、双向能量变换器、飞轮电机和真空室组成。飞轮储能系统的调频效果远优于火电机组,能够有效提高电网频率稳定性,从而保证电网运行的可靠性和安全性。然而电网调频以秒级计算调整时间,同时飞轮储能系统具有大惯性、时变、非线性等特点,系统稳定性易受扰动(如电网波动)和系统参数变化的影响。因此,亟需提高上述条件下FESS系统充电过程的系统性能和转速跟踪精度,并减小飞轮转子的振动和冲击。
对于采用永磁同步电机(PMSM)的飞轮储能系统的充电控制,即转子转速控制,现有技术中或将改进型滑模观测器应用于基于PI控制器的速度外环、电流内环的充电控制方式,以实现无速度传感器控制;或应用外环转速内环电流的双闭环控制策略,通过神经网络算法来对控制器中的PID参数进行调整;或应用转速外环滑模控制,电流内环PI控制;然而,其均未考虑FESS系统在并网充电过程中电机的动力学参数变化和电网波动对系统性能和转速跟踪误差产生的影响。因此,亟待设计一种并网调频型飞轮储能系统充电过程中的转速控制方法,解决充电过程中转子承受较大的振动和冲击以及电机的动力学参数变化和电网波动对系统性能和转速跟踪误差的影响。
发明内容
基于现有技术的不足之处,本发明提供了一种并网调频型飞轮储能系统充电过程中的转速控制方法。对轴上安装有飞轮转子的永磁同步电机采用连续参考转速曲线来减小系统充电过程中的转子承受的振动和冲击;然后应用外环转速鲁棒控制和自适应补偿方法,内环电流线性控制的闭环控制方法;在外环转速控制中,通过自适应补偿方法,对内部参数和外部负载进行估算;随后将估算结果与鲁棒控制器的输出结果叠加后,作为参考电流提供给内环电流控制,进而通过q轴控制输入电流,控制永磁同步电机输出转速,实现转子转速的最小输出误差;从而解决系统充电过程中的转子承受较大振动和冲击以及电机的动力学参数变化和电网波动对系统性能和转速跟踪误差影响和技术难题,为并网调频型飞轮储能系统充电过程中精确的转速控制提供技术支持。
本发明解决上述问题的技术方案包括以下步骤:
1)为减小飞轮储能系统在充电过程中转子承受的振动和冲击,根据转子初始转速和最终期望转速,设定达到最终期望转速过程中转子转速、角加速度、角加加速度均连续,起始和结束的角加速度与角加加速度均为0,进而获得连续转速曲线,作为转速控制的参考输入曲线;
2)针对电机轴上安装有飞轮转子的永磁同步电机,应用转速-电流双闭环控制,外环为转速环,采用自适应补偿器和鲁棒控制器进行控制;内环为电流环,应用线性控制器进行控制;
外环转速控制中,连续参考转速曲线与实际转速反馈相减后的误差值,输入鲁棒控制器,获得输出结果;通过自适应补偿器对内部参数和外部负载进行估算;将估算结果与鲁棒控制器的输出结果叠加后,作为q轴参考电流提供给内环电流控制;在内环电流控制中,q轴参考电流与实际q轴反馈电流相减后的误差值,输入线性控制器,获得q轴控制输入电流;q轴控制输入电流输入永磁同步电机,进而控制永磁同步电机输出转速,从而实现对安装在电机轴上的飞轮转子转速的精确控制。
进一步地,所述连续参考转速曲线如下:
ω(t)=ω0+(ωf0)·[6·(t/Td)5-15·(t/Td)4+10·(t/Td)3] (1)
其中:ω0为转子初始转速,ωf为转子最终期望转速,Td为时间周期,t∈[0 Td]。
进一步地,针对电机轴上安装有飞轮转子的永磁同步电机,在同步旋转坐标d-q轴下,设定d轴的等效电流为零,系统动力学模型如下:
Figure BDA0001691936200000031
式中:J为电机和负载折算的转动惯量,B为电机的黏性摩擦系数,ωm代表转子当前转速,Te代表电机转矩,TL为负载转矩或扰动集合,p代表电动机的极对数,ψf为电动机的磁通,iq为q轴电流。
进一步地,将式(2)中第二个公式中的Te代入第一个公式,并考虑系统动力学模型的不确定项,获得下述公式:
Figure BDA0001691936200000041
式中:kt为力矩系数,
Figure BDA0001691936200000042
为转子转速对时间的导数,d代表模型的有界的非线性不确定项。
进一步地,考虑通过q轴电流来控制转子转速的控制方法,式(3)改写为下述形式:
Figure BDA0001691936200000043
式中:u为控制方法,x1=ωm,θ1=J,θ2=B,θ3=TL
进一步地,设定未知参数向量θ=[θ1 θ2 θ3]T=[J B TL]T
使未知参数向量θ和非线性不确定项d的范围满足如下条件:
Figure BDA0001691936200000044
式(5)中,非线性不确定项d的范围为δd,未知参数向量θ的最大值为θmax=[θ1maxθ2max θ3max]T,最小值为θmin=[θ1min θ2min θ3min]T皆已知;
分别定义未知参数向量θ的估算值和估算误差为
Figure BDA0001691936200000045
Figure BDA0001691936200000046
向量θ通过如下参数投影自适应算法估算:
Figure BDA0001691936200000047
式(6)中τ为自适应函数,Γ为用于未知参数向量辨识的正定对角矩阵;
式(6)中的投影定位为(i=1,2,3):
Figure BDA0001691936200000048
式(7)中的投影定位满足下述条件:
Figure BDA0001691936200000051
进一步地,设定x1为转子当前转速,设计如下控制方法u,获得系统内部参数和外部负载变化下的q轴参考电流,进而通过内环电流控制,得到q轴控制输入电流,控制永磁同步电机输出转速,实现转子转速的最小输出误差,
Figure BDA0001691936200000052
式中ua为自适应补偿方法,us为鲁棒控制方法,iq*为q轴参考电流。
设定:
Figure BDA0001691936200000053
式中转子的理想转速为x1d(t)=ω(t),
Figure BDA0001691936200000054
定义反馈控制函数us1,鲁棒控制函数us2如下:
Figure BDA0001691936200000055
式中z1=x1-x1d,k1为正增益,h为平滑函数并满足
Figure BDA0001691936200000056
θM=θmaxmin,ε为正的设定参数;
设定自适应补偿函数
Figure BDA0001691936200000057
结合式(6),获得系统内部参数和外部负载变化下的自适应补偿方法ua;通过自适应补偿方法ua和鲁棒控制方法us,获得q轴的参考电流。
本发明的技术效果在于:首先对轴上安装有飞轮转子的永磁同步电机,采用连续参考转速曲线来减小系统充电过程中的转子承受的振动和冲击;然后应用外环转速鲁棒控制和自适应补偿方法,内环电流线性控制的闭环控制方法;在外环转速控制中,通过自适应补偿方法,对内部参数和外部负载进行估算;随后将估算结果与鲁棒控制器的输出结果叠加,作为q轴参考电流提供给内环电流控制;通过内环电流控制,获得q轴控制输入电流,控制永磁同步电机输出转速,实现转子转速的最小输出误差。在FESS系统充电过程中,通过本发明方法对轴上安装有飞轮转子的永磁同步电机系统进行连续参考转速曲线、转速鲁棒控制、电机动力学参数变化和外部电网波动的自适应补偿,其实时性强,补偿效果明显,进而获得准确的内环q轴控制输入电流,精确控制永磁同步电机输出转速,有效解决了并网调频型飞轮储能系统充电过程中转子承受较大的振动和冲击以及电机的动力学参数变化和电网波动对系统性能和转速跟踪误差影响的技术难题。
附图说明
图1所示为并网调频型飞轮储能系统充电过程中的转速控制方法流程图;
图2所示为连续参考转速曲线下转速鲁棒控制和自适应补偿方法与PID方法的转子转速;
图3所示为连续参考转速曲线下转速鲁棒控制和自适应补偿方法与PID方法的转子角加速度;
图4所示为等加速度参考转速曲线下PID控制方法的转子转速;
图5所示为等加速度参考转速曲线下PID控制方法的转子角加速度。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例中的仿真设备为国家重点研发计划(2017YFC0805905)资助项目提供。
如图1所示,一种并网调频型飞轮储能系统充电过程中的转速控制方法,包括以下步骤:
1)根据转子初始转速和最终期望转速,设定达到最终期望转速过程中转子转速、角加速度、角加加速度均连续,起始和结束的角加速度与角加加速度均为0,进而获得连续转速曲线,作为转速控制的参考输入曲线;
ω(t)=ω0+(ωf0)·[6·(t/Td)5-15·(t/Td)4+10·(t/Td)3]
其中:ω0为转子初始转速,ωf为转子最终期望转速,Td为时间周期,t∈[0 Td]。
2)针对电机轴上安装有飞轮转子的永磁同步电机,应用转速-电流双闭环控制,外环为转速环,采用鲁棒控制和自适应补偿方法,电流环作为内环,应用线性控制方法。在同步旋转坐标d-q轴下,设定d轴的等效电流为零,系统动力学模型描述如下:
Figure BDA0001691936200000071
式中:J为电机和负载折算的转动惯量,B为电机的黏性摩擦系数,ωm代表转子当前转速,Te代表电机转矩,TL为负载转矩或扰动集合,p代表电动机的极对数,ψf为电动机的磁通,iq为q轴电流。
将上式中第二个公式中的Te代入第一个公式,并考虑系统动力学模型的不确定项,获得下述公式:
Figure BDA0001691936200000081
其中
Figure BDA0001691936200000082
Te=ktiq
式中kt为力矩系数,
Figure BDA0001691936200000083
为转子转速对时间的导数,d代表模型的有界的非线性不确定项。
考虑通过q轴电流来控制转子转速的控制方法,上式改写为下述形式:
Figure BDA0001691936200000084
式中u为控制方法,x1=ωm,θ1=J,θ2=B,θ3=TL
3)设定未知参数向量θ=[θ1 θ2 θ3]T=[J B TL]T
使未知参数向量θ和非线性不确定项d的范围满足如下条件:
θ∈Ωθ={θ:θmin≤θ≤θmax}
d∈Ωd={d:|d|≤δd}
式中,非线性不确定项d的范围为δd,未知参数向量θ的最大值为θmax=[θ1max θ2maxθ3max]T,最小值为θmin=[θ1min θ2min θ3min]T皆已知。
分别定义向量θ的估算值和估算误差为
Figure BDA0001691936200000085
Figure BDA0001691936200000086
向量θ可通过如下参数投影自适应算法估算:
Figure BDA0001691936200000087
式中τ为自适应函数,Γ为用于未知参数向量辨识的正定对角矩阵,式中的投影定位为:
Figure BDA0001691936200000088
式中投影定位满足下述条件:
Figure BDA0001691936200000089
Figure BDA00016919362000000810
设定x1为转子当前转速,设计如下控制方法u,通过获得系统内部参数和外部负载变化下的q轴参考电流,进而通过内环电流控制,获得q轴控制输入电流,控制永磁同步电机输出转速,实现转子转速的最小输出误差,
Figure BDA0001691936200000091
式中ua为自适应补偿方法,us为鲁棒控制方法,,iq*为q轴参考电流。
设定:
Figure BDA0001691936200000092
式中电机的理想转速为x1d(t)=ω(t),
Figure BDA0001691936200000093
定义比例反馈控制函数us1,鲁棒控制函数us2如下:
Figure BDA0001691936200000094
其中
Figure BDA0001691936200000095
式中z1=x1-x1d,k1为正增益,ε为正的设定参数,h为平滑函数并满足
Figure BDA0001691936200000096
及θM=θmaxmin
设定自适应补偿函数
Figure BDA0001691936200000097
结合上述
Figure BDA0001691936200000098
获得系统内部参数和外部负载变化下的自适应补偿方法ua;通过自适应补偿方法ua和鲁棒控制方法us,获得q轴的参考电流。
为了验证连续参考转速曲线、转速鲁棒控制方法、电机动力学参数变化和外部电网波动的转子转速自适应补偿方法,建立了FESS充电过程的仿真模型,其中永磁同步电机额定转速为5000rpm,额定转矩为14Nm。电机采用外环转速鲁棒控制和自适应补偿方法,内环电流线性比例控制的闭环控制方法。设定电机的黏性摩擦系数变化范围为±1%。设定负载扰动为幅值0.3Nm的白噪声,占电机额定转矩的2.1%,来等效模拟电网的小幅波动。
FESS系统充电过程中,应用本发明的控制方法,获得转子转速连续参考曲线、鲁棒控制器和自适应扰动补偿器,仿真结果如图2、3所示,其中参考转速从0加速至5000rpm,转速稳态误差为0.03%,角加速度最大误差为1.2%。进一步地,基于根轨迹法设计转速PID控制器,仍然采用连续参考转速曲线,仿真结果如图2、3所示,系统的转速稳态误差为0.05%,角加速度最大误差为2.9%。
进一步地,设定转子转速为加速度恒定,进而获得等加速度的转子转速参考转速曲线,采用转速PID控制器,仿真结果如图4-5所示,其中转速稳态误差为0.07%,角加速度最大误差为3.3%。
由此可见,本发明的FESS系统充电控制方法,有效减小了转子承受的振动和冲击,解决了电机的动力学参数和电网波动对系统性能和转速跟踪误差的影响,尤其适用于并网调频型FESS系统在充电过程中的精确转速控制。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅限制于本文所示的实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干修改和润饰也应视为本发明的保护范围。

Claims (4)

1.一种并网调频型飞轮储能系统充电过程中的转速控制方法,其特征在于,包括如下步骤:
1)为减小飞轮储能系统在充电过程中转子承受的振动和冲击,根据转子初始转速和最终期望转速,设定达到最终期望转速过程中转子转速、角加速度、角加加速度均连续,起始和结束的角加速度与角加加速度均为0,进而获得连续转速曲线,作为转子转速控制的参考输入曲线;
所述连续转速曲线如下:
ω(t)=ω0+(ωf0)·[6·(t/Td)5-15·(t/Td)4+10·(t/Td)3] (1)
其中:ω0为转子初始转速,ωf为转子最终期望转速,Td为时间周期,t∈[0 Td];2)针对电机轴上安装有飞轮转子的永磁同步电机,应用转速-电流双闭环控制,外环为转速环,采用自适应补偿器和鲁棒控制器进行控制;内环为电流环,应用线性控制器进行控制;
外环转速控制中,连续转速曲线与实际转速反馈相减后的误差值,输入鲁棒控制器,获得输出结果;通过自适应补偿器对内部参数和外部负载进行估算;将估算结果与鲁棒控制器的输出结果叠加后,作为q轴参考电流提供给内环电流控制;在内环电流控制中,q轴参考电流与实际q轴反馈电流相减后的误差值,输入线性控制器,获得q轴控制输入电流;q轴控制输入电流输入永磁同步电机,进而控制永磁同步电机输出转速,从而实现对安装在电机轴上的飞轮转子转速的精确控制。
2.根据权利要求1所述的一种并网调频型飞轮储能系统充电过程中的转速控制方法,其特征在于,
针对电机轴上安装有飞轮转子的永磁同步电机,在同步旋转坐标d-q轴下,设定d轴的等效电流为零,系统动力学模型如下:
Figure FDA0003101484700000021
式中:J为电机和负载折算的转动惯量,B为电机的黏性摩擦系数,ωm代表转子当前转速,Te代表电机转矩,TL为负载转矩或扰动集合,p代表电动机的极对数,ψf为电动机的磁通,iq为q轴电流。
3.根据权利要求2所述的一种并网调频型飞轮储能系统充电过程中的转速控制方法,其特征在于,
将式(2)中第二个公式中的Te代入第一个公式,并考虑系统动力学模型的不确定项,获得下述公式:
Figure FDA0003101484700000022
其中
Figure FDA0003101484700000023
式中:kt为力矩系数,
Figure FDA0003101484700000024
为转子转速对时间的导数,d代表模型的有界的非线性不确定项。
4.根据权利要求3所述的一种并网调频型飞轮储能系统充电过程中的转速控制方法,其特征在于,
考虑通过q轴电流来控制转速的控制方法,式(3)改写为下述形式:
Figure FDA0003101484700000025
式中:u为控制变量,x1=ωm,θ1=J,θ2=B,θ3=TL
设定未知参数向量θ=[θ1 θ2 θ3]T=[J B TL]T
使未知参数向量θ和非线性不确定项d的范围满足如下条件:
Figure FDA0003101484700000026
式(5)中,非线性不确定项d的范围为δd,未知参数向量θ的最大值为θmax=[θ1max θ2maxθ3max]T,最小值为θmin=[θ1min θ2min θ3min]T皆已知;
分别定义未知参数向量θ的估算值和估算误差为
Figure FDA0003101484700000031
Figure FDA0003101484700000032
向量θ通过如下参数投影自适应算法估算:
Figure FDA0003101484700000033
式(6)中τ为自适应函数,Γ为用于未知参数向量辨识的正定对角矩阵;
式(6)中的投影定位为(i=1,2,3):
Figure FDA0003101484700000034
式(7)中的投影定位满足下述条件:
Figure FDA0003101484700000035
设定x1为转子当前转速,设计如下控制变量u,通过获得系统内部参数和外部负载变化下的q轴参考电流,进而通过内环电流控制,获得q轴控制输入电流,控制永磁同步电机输出转速,实现转子转速的最小输出误差,
Figure FDA0003101484700000036
式中ua为自适应补偿变量,us为鲁棒控制变量,iq*为q轴参考电流;
设定:
Figure FDA0003101484700000037
式中转子的理想转速x1d(t)=ω(t),
Figure FDA0003101484700000038
定义反馈控制函数us1,鲁棒控制函数us2如下:
Figure FDA0003101484700000041
其中
Figure FDA0003101484700000042
式中z1=x1-x1d,k1为正增益,h为平滑函数并满足
Figure FDA0003101484700000043
θM=θmaxmin,ε为正的设定参数;
设定自适应补偿函数
Figure FDA0003101484700000044
结合式(6),获得系统内部参数和外部负载变化下的自适应补偿变量ua;通过自适应补偿变量ua和鲁棒控制变量us,获得q轴的参考电流。
CN201810596905.8A 2018-06-11 2018-06-11 一种并网调频型飞轮储能系统充电过程中的转速控制方法 Active CN108809189B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810596905.8A CN108809189B (zh) 2018-06-11 2018-06-11 一种并网调频型飞轮储能系统充电过程中的转速控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810596905.8A CN108809189B (zh) 2018-06-11 2018-06-11 一种并网调频型飞轮储能系统充电过程中的转速控制方法

Publications (2)

Publication Number Publication Date
CN108809189A CN108809189A (zh) 2018-11-13
CN108809189B true CN108809189B (zh) 2021-08-20

Family

ID=64088399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810596905.8A Active CN108809189B (zh) 2018-06-11 2018-06-11 一种并网调频型飞轮储能系统充电过程中的转速控制方法

Country Status (1)

Country Link
CN (1) CN108809189B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109654005A (zh) * 2018-12-12 2019-04-19 江西江铃集团新能源汽车有限公司 电动压缩机的启停控制方法、控制器、存储介质及终端
CN110824920B (zh) * 2019-11-12 2023-06-02 深圳供电局有限公司 家用储能电源调频控制方法及系统
CN111665721A (zh) * 2020-06-17 2020-09-15 国网河南省电力公司经济技术研究院 用于脉冲功率负载调节的飞轮储能控制系统设计方法
CN114421452B (zh) * 2022-03-28 2022-06-17 国网天津市电力公司电力科学研究院 一种适用于直流充电站的非线性控制系统及方法
CN116526515B (zh) * 2023-07-03 2023-09-19 南方电网科学研究院有限责任公司 电网频率调控方法及控制器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846975A (zh) * 2010-05-28 2010-09-29 北京理工大学 带有动态摩擦补偿的伺服系统自适应鲁棒控制器
CN103312255A (zh) * 2013-06-18 2013-09-18 山东大学(威海) 一种永磁同步电机速度控制方法和装置
CN103490684A (zh) * 2012-06-11 2014-01-01 无锡艾柯威科技有限公司 一种电池供电的永磁同步电机刹车控制方法
CN107070342A (zh) * 2017-02-20 2017-08-18 哈尔滨理工大学 一种带负载状态观测器的永磁同步电机控制系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2926896B2 (ja) * 1990-05-30 1999-07-28 ソニー株式会社 モータ駆動回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846975A (zh) * 2010-05-28 2010-09-29 北京理工大学 带有动态摩擦补偿的伺服系统自适应鲁棒控制器
CN103490684A (zh) * 2012-06-11 2014-01-01 无锡艾柯威科技有限公司 一种电池供电的永磁同步电机刹车控制方法
CN103312255A (zh) * 2013-06-18 2013-09-18 山东大学(威海) 一种永磁同步电机速度控制方法和装置
CN107070342A (zh) * 2017-02-20 2017-08-18 哈尔滨理工大学 一种带负载状态观测器的永磁同步电机控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
永磁同步电机伺服系统高精度自适应鲁棒控制;杜仁慧 等;《信息与控制》;20130215;第42卷(第1期);第132-144页 *

Also Published As

Publication number Publication date
CN108809189A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
CN108809189B (zh) 一种并网调频型飞轮储能系统充电过程中的转速控制方法
CN106911274B (zh) 一种原动机调速系统附加阻尼器控制方法
Bhattarai et al. Parametrically robust dynamic speed estimation based control for doubly fed induction generator
CN108493984B (zh) 适用于光伏并网系统的虚拟同步发电机控制方法
CN107679769B (zh) 含风电的电力系统频率响应模型建立方法和频率特性指标计算方法
Lu et al. Model reference adaptive back-electromotive-force estimators for sensorless control of grid-connected DFIGs
CN101119094A (zh) 基于频域测试的非线性电力系统稳定器参数整定方法
CN109038649B (zh) 一种基于虚拟惯量控制的dfig轴系振荡的控制方法
CN106786768B (zh) 一种电力系统负荷频率主动干扰抑制方法及系统
CN108988391B (zh) 基于转速控制的双馈风机转子侧变换器的稳定性分析方法
CN115313524B (zh) 一种基于构网型变流器的光伏发电并网控制方法及系统
CN104795837B (zh) 一种双馈风机等效虚拟惯性时间常数计算方法
CN103895832A (zh) 一种船舶电伺服鳍、翼鳍减横摇智能矢量控制方法
CN108377117A (zh) 基于预测控制的永磁同步电机复合电流控制系统及方法
Li et al. Dynamic modeling and controller design for a novel front-end speed regulation (FESR) wind turbine
CN111082443B (zh) 一种并网调频型飞轮储能系统放电过程中电机侧控制方法
CN104579090B (zh) 一种永磁同步电机功率补偿控制系统及方法
Chatri et al. Improved high-order integral fast terminal sliding mode-based disturbance-observer for the tracking problem of PMSG in WECS
CN109599889B (zh) 基于模糊自抗扰的不平衡电压下的穿越控制方法、系统
CN108429501B (zh) 一种永磁同步电机负载扰动的观测方法
CN112436558B (zh) 双馈风机虚拟同步励磁磁场控制方法及系统
Muhando et al. Nonlinear ${\cal H} _ {\infty} $ Constrained Feedback Control for Grid-Interactive WECS Under High Stochasticity
CN112953328A (zh) 一种电动汽车永磁同步电机自抗扰控制方法
Ai et al. Research on quasi-synchronous grid-connected control of hydraulic wind turbine
CN115566954B (zh) 嵌入式电机调速控制补偿方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant