CN111665721A - 用于脉冲功率负载调节的飞轮储能控制系统设计方法 - Google Patents

用于脉冲功率负载调节的飞轮储能控制系统设计方法 Download PDF

Info

Publication number
CN111665721A
CN111665721A CN202010555095.9A CN202010555095A CN111665721A CN 111665721 A CN111665721 A CN 111665721A CN 202010555095 A CN202010555095 A CN 202010555095A CN 111665721 A CN111665721 A CN 111665721A
Authority
CN
China
Prior art keywords
control system
sps
energy storage
flywheel energy
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010555095.9A
Other languages
English (en)
Inventor
王世谦
刘万勋
汪诚
于琳琳
蒋小亮
苗福丰
邵红博
贾鹏
王洋
张丽华
司瑞华
李甜甜
程昱明
袁鹏
王圆圆
邢鹏翔
刘军会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
State Grid Corp of China SGCC
Economic and Technological Research Institute of State Grid Henan Electric Power Co Ltd
Original Assignee
Nanjing University of Science and Technology
State Grid Corp of China SGCC
Economic and Technological Research Institute of State Grid Henan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology, State Grid Corp of China SGCC, Economic and Technological Research Institute of State Grid Henan Electric Power Co Ltd filed Critical Nanjing University of Science and Technology
Priority to CN202010555095.9A priority Critical patent/CN111665721A/zh
Publication of CN111665721A publication Critical patent/CN111665721A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/30Arrangements for balancing of the load in a network by storage of energy using dynamo-electric machines coupled to flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Mathematical Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Operations Research (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种用于脉冲功率负载调节的飞轮储能控制系统设计方法,包括以下步骤:①、将原始的非线性舰船电源系统SPS转换为无约束的等效模型,转换后的等效模型的系统稳定性等同于原始非线性舰船电源系统SPS的瞬态稳定性和瞬态性能;②、利用反推的方法,分别针对等效模型中的发电控制系统和充电控制系统设定相应的自适应控制器;③、借助标准的Lyapunov方法,证明所有闭环信号都是有界的。采用本发明的设计方法使得舰船电源系统SPS的总体控制问题被建模为约束控制问题,通过模型转换和高级控制设计,可以在飞轮储能系统FESS的快速充电的同时将其对系统频率的干扰降至最低,从而确保飞轮储能系统FESS的瞬态响应保持在用户定义的时变范围内。

Description

用于脉冲功率负载调节的飞轮储能控制系统设计方法
技术领域
本发明涉及飞轮储能控制系统技术领域,确切地说是涉及一种用于脉冲功率负载调节的飞轮储能控制系统设计方法。
背景技术
现如今的军用舰船上安装了许多先进的设施,包括轨道炮、飞机发射器和其他一些脉冲功率负载PPL。在使用PPL的过程中,在很短的时间内就需要大量的能量。与地面电源系统不同,一旦触发PPL,舰船的电源系统SPS就无法保持恒定的频率和电压输出。由于发电功率和斜坡率的限制,同步发电机SG无法提供足够的电能来满足PPL的瞬时能量需求。因此,如果将PPL直接连接到SPS,则可能会发生SPS的系统范围的不稳定性。
为了保证PPL直接连接到SPS时,SPS的系统的稳定性。作为储能系统ESS的重要类别,飞轮储能系统FESS是PPL容纳的理想来源。通过足够充电的FESS为PPL供电,可以避免PPL对SPS的负面影响,但目前尚缺乏用飞轮储能系统FESS为脉冲功率负载PPL稳定供电的控制方法。
发明内容
本发明的目的是:针对现有技术的不足,提供一种用于脉冲功率负载调节的飞轮储能控制系统设计方法,以实现FESS的快速充电并同时将其对系统频率的干扰降至最低,确保瞬态响应保持在用户定义的时变范围内。
本发明的技术方案是:一种用于脉冲功率负载调节的飞轮储能控制系统设计方法,包括以下步骤:
①、将原始的非线性舰船电源系统SPS转换为无约束的等效模型,转换后的等效模型的系统稳定性等同于原始非线性舰船电源系统SPS的瞬态稳定性和瞬态性能;
②、利用反推的方法,分别针对等效模型中的发电控制系统和充电控制系统设定相应的自适应控制器,使得变换后的系统稳定性得到保证;
③、借助标准的Lyapunov方法,证明所有闭环信号都是有界的。
进一步的,所述的步骤①中,SPS等效模型包含发电控制系统和充电控制系统,其中,发电控制系统的简单SG模型为:
Figure BDA0002543944450000021
充电控制系统中的SPM永磁电机和飞轮建立动力学模型为:
Figure BDA0002543944450000026
Figure BDA0002543944450000022
式中:f是系统频率;PM是机械输入功率;PL为剩余总负载和有功功率损耗;PFESS是馈入电流的电能;Vpm和Ipm分别是定子电压和电流的矢量;Λpm是SPM电机磁链的向量;L为SPM电机定子电感;TL为负载转矩,充电过程中为0;B是位置阻尼系数;k为未知常数
Figure BDA0002543944450000023
在所述步骤②中,发电控制系统的Lyapunov函数为:
Figure BDA0002543944450000024
充电控制系统中对转速控制的Lyapunov函数为:
Figure BDA0002543944450000025
对d轴电流id控制的Lyapunov函数为:
Figure BDA0002543944450000031
式(5)-(7)中,θ1,θ2,θ3,θ4,θ5均为自适应调优变量;
在所述的步骤③中,整体的Lyapunov函数为:
V=V12+V24+V32 (8)
其时间导数为:
Figure BDA0002543944450000032
设定在式(8)中Lyapunov函数是正定的,且其对时间的导函数为正半定,进而可以进一步的推导得出所有闭环信号都是有界的,从而可以始终保证原始的非线性舰船电源系统SPS的时变输出受约束。
本发明的有益效果是:采用本发明的设计方法使得总体控制问题被建模为约束控制问题,通过模型转换和高级控制设计,其设计出的飞轮储能控制系统可以克服现有控制方法的不足,在飞轮储能系统FESS的快速充电的同时将其对系统频率的干扰降至最低,从而确保飞轮储能系统FESS的瞬态响应保持在用户定义的时变范围内,本发明实用性强,易于实现。
附图说明
图1为使用飞轮储能系统FESS简化了的非线性舰船电源系统SPS拓扑示意图;
图2为图1中发电控制系统的控制原理框图;
图3为图1中充电控制系统的控制原理框图。
具体实施方式
本发明提供了一种用于脉冲功率负载调节的飞轮储能控制系统设计方法,其包括以下步骤:
①、将原始的非线性舰船电源系统SPS转换为无约束的等效模型,转换后的等效模型的系统稳定性等同于原始非线性舰船电源系统SPS的瞬态稳定性和瞬态性能;
②、利用反推的方法,分别针对等效模型中的发电控制系统和充电控制系统设定相应的自适应控制器,使得变换后的系统稳定性得到保证;
③、借助标准的Lyapunov方法,证明所有闭环信号都是有界的。
下面结合附图对本发明作更进一步的说明。
在步骤①中,将原始的非线性舰船电源系统SPS转换为无约束的等效模型,其使用飞轮储能系统FESS简化了的非线性舰船电源系统SPS拓扑图如图1所示,为建立发电控制系统,简单SG模型为:
Figure BDA0002543944450000041
充电控制系统中的SPM永磁电机和飞轮建立动力学模型为:
Figure BDA0002543944450000042
Figure BDA0002543944450000043
式中:f是系统频率;PM是机械输入功率;PL为剩余总负载和有功功率损耗;PFESS是馈入电流的电能;Vpm和Ipm分别是定子电压和电流的矢量;Λpm是SPM电机磁链的向量;L为SPM电机定子电感;TL为负载转矩,充电过程中为0;B是位置阻尼系数;k为未知常数
Figure BDA0002543944450000044
在步骤②中,其利用反推的方法,分别针对等效模型中的发电控制系统和充电控制系统设定相应的自适应控制器,其中,发电控制系统的控制原理框图如图2所示,该发电控制系统的Lyapunov函数为:
Figure BDA0002543944450000045
Figure BDA0002543944450000051
充电控制系统的控制原理框图如图3所示,该充电控制系统对转速控制的Lyapunov函数为:
Figure BDA0002543944450000052
对d轴电流id控制的Lyapunov函数为:
Figure BDA0002543944450000053
式(5)-(7)中,θ1,θ2,θ3,θ4,θ5均为自适应调优变量;
在所述的步骤③中,需借助标准的Lyapunov方法,证明所有闭环信号都是有界的,这可以始终保证原始系统的时变输出约束,包括发电机惯性常数和飞轮参数在内的未知系统参数也可通过在线自适应定律进行补偿,而无需离线训练阶段。其整体的Lyapunov函数为:
V=V12+V24+V32 (8)
其时间导数为:
Figure BDA0002543944450000054
设定在式(8)中Lyapunov函数是正定的,且其对时间的导函数为正半定,进而可以进一步的推导得出所有闭环信号都是有界的,从而可以始终保证原始的非线性舰船电源系统SPS的时变输出受约束。
采用本发明的设计方法使得舰船电源系统SPS的总体控制问题被建模为约束控制问题,通过模型转换和高级控制设计,其设计出的飞轮储能控制系统可以克服现有控制方法的不足,在飞轮储能系统FESS的快速充电的同时将其对系统频率的干扰降至最低,从而确保飞轮储能系统FESS的瞬态响应保持在用户定义的时变范围内,本发明实用性强,易于实现。
应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (2)

1.一种用于脉冲功率负载调节的飞轮储能控制系统设计方法,其特征在于,包括以下步骤:
①、将原始的非线性舰船电源系统SPS转换为无约束的等效模型,转换后的等效模型的系统稳定性等同于原始非线性舰船电源系统SPS的瞬态稳定性和瞬态性能;
②、利用反推的方法,分别针对等效模型中的发电控制系统和充电控制系统设定相应的自适应控制器,使得变换后的系统稳定性得到保证;
③、借助标准的Lyapunov方法,证明所有闭环信号都是有界的。
2.根据权利要求1所述的用于脉冲功率负载调节的飞轮储能控制系统设计方法,其特征在于,所述的步骤①中,SPS等效模型包含发电控制系统和充电控制系统,其中,发电控制系统的简单SG模型为:
Figure FDA0002543944440000011
充电控制系统中的SPM永磁电机和飞轮建立动力学模型为:
Figure FDA0002543944440000012
Figure FDA0002543944440000013
式中:f是系统频率;PM是机械输入功率;PL为剩余总负载和有功功率损耗;PFESS是馈入电流的电能;Vpm和Ipm分别是定子电压和电流的矢量;Λpm是SPM电机磁链的向量;L为SPM电机定子电感;TL为负载转矩,充电过程中为0;B是位置阻尼系数;k为未知常数
Figure FDA0002543944440000014
在所述步骤②中,发电控制系统的Lyapunov函数为:
Figure FDA0002543944440000021
充电控制系统中对转速控制的Lyapunov函数为:
Figure FDA0002543944440000022
对d轴电流id控制的Lyapunov函数为:
Figure FDA0002543944440000023
式(5)-(7)中,θ1,θ2,θ3,θ4,θ5均为自适应调优变量;
在所述的步骤③中,整体的Lyapunov函数为:
V=V12+V24+V32 (8)
其时间导数为:
Figure FDA0002543944440000024
设定在式(8)中Lyapunov函数是正定的,且其对时间的导函数为正半定,进而可以进一步的推导得出所有闭环信号都是有界的,从而可以始终保证原始的非线性舰船电源系统SPS的时变输出受约束。
CN202010555095.9A 2020-06-17 2020-06-17 用于脉冲功率负载调节的飞轮储能控制系统设计方法 Pending CN111665721A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010555095.9A CN111665721A (zh) 2020-06-17 2020-06-17 用于脉冲功率负载调节的飞轮储能控制系统设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010555095.9A CN111665721A (zh) 2020-06-17 2020-06-17 用于脉冲功率负载调节的飞轮储能控制系统设计方法

Publications (1)

Publication Number Publication Date
CN111665721A true CN111665721A (zh) 2020-09-15

Family

ID=72388382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010555095.9A Pending CN111665721A (zh) 2020-06-17 2020-06-17 用于脉冲功率负载调节的飞轮储能控制系统设计方法

Country Status (1)

Country Link
CN (1) CN111665721A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112363393A (zh) * 2020-10-27 2021-02-12 华中科技大学 无人艇动力定位的无模型自适应预设性能控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017003681A1 (en) * 2015-06-30 2017-01-05 Microsoft Technology Licensing, Llc Power regulator having current and voltage modes
CN106444368A (zh) * 2015-11-18 2017-02-22 南京航空航天大学 具有输入非线性的近空间飞行器预设性能姿态跟踪控制方法
CN108809189A (zh) * 2018-06-11 2018-11-13 华北电力大学 一种并网调频型飞轮储能系统充电过程中的转速控制方法
CN109510235A (zh) * 2018-10-29 2019-03-22 北方工业大学 考虑储能系统与恒功率负载动态性能的交流微电网系统大信号稳定性分析方法
CN110347044A (zh) * 2019-07-15 2019-10-18 贵州大学 一种考虑输出约束的pmsm混沌系统神经网络动态面控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017003681A1 (en) * 2015-06-30 2017-01-05 Microsoft Technology Licensing, Llc Power regulator having current and voltage modes
CN106444368A (zh) * 2015-11-18 2017-02-22 南京航空航天大学 具有输入非线性的近空间飞行器预设性能姿态跟踪控制方法
CN108809189A (zh) * 2018-06-11 2018-11-13 华北电力大学 一种并网调频型飞轮储能系统充电过程中的转速控制方法
CN109510235A (zh) * 2018-10-29 2019-03-22 北方工业大学 考虑储能系统与恒功率负载动态性能的交流微电网系统大信号稳定性分析方法
CN110347044A (zh) * 2019-07-15 2019-10-18 贵州大学 一种考虑输出约束的pmsm混沌系统神经网络动态面控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BO FAN.ETAL: "Performance Guaranteed Control of Flywheel Energy Storage System for Pulsed Power Load Accommodation", 《IEEE TRANSACTIONS ON POWER SYSTEM》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112363393A (zh) * 2020-10-27 2021-02-12 华中科技大学 无人艇动力定位的无模型自适应预设性能控制方法

Similar Documents

Publication Publication Date Title
Errouissi et al. A novel design of PI current controller for PMSG-based wind turbine considering transient performance specifications and control saturation
Yang et al. Impedance shaping of the grid-connected inverter with LCL filter to improve its adaptability to the weak grid condition
Pradhan et al. A composite sliding mode controller for wind power extraction in remotely located solar PV–wind hybrid system
US8498752B2 (en) Decoupling controller for power systems
Goya et al. Frequency control in isolated island by using parallel operated battery systems applying H∞ control theory based on droop characteristics
Sebastian Modelling and simulation of a high penetration wind diesel system with battery energy storage
Guan et al. Coordinated secondary control for balanced discharge rate of energy storage system in islanded AC microgrids
Sebastián et al. Effective active power control of a high penetration wind diesel system with a Ni–Cd battery energy storage
Fan et al. Performance guaranteed control of flywheel energy storage system for pulsed power load accommodation
Xu et al. A robust droop-based autonomous controller for decentralized power sharing in DC microgrid considering large-signal stability
Rodríguez-Amenedo et al. Black-start capability of DFIG wind turbines through a grid-forming control based on the rotor flux orientation
Nair et al. Emulation of wind turbine system using vector controlled induction motor drive
Rodríguez-Cabero et al. Full-state feedback control of back-to-back converters based on differential and common power concepts
Lee et al. A distributed control method based on a voltage sensitivity matrix in DC microgrids with low-speed communication
WO2021110171A1 (zh) 一种基于p-u下垂特性的虚拟直流电机控制方法
JP2014023421A (ja) 風力発電システム及びその励磁同期発電機の制御方法
Chen et al. Coordination control between excitation and hydraulic system during mode conversion of variable speed pumped storage unit
Thakur et al. Control of a PMSG wind-turbine under asymmetrical voltage sags using sliding mode approach
Roy et al. Direct power controller design for improving FRT capabilities of dfig-based wind farms using a nonlinear backstepping approach
CN115764987A (zh) 一种控制方法、新能源变换器和并网电力系统
Gil-González et al. Supervisory LMI-based state-feedback control for current source power conditioning of SMES
Keshavarzi et al. Disturbance resilience enhancement of islanded hybrid microgrid under high penetration of renewable energy resources by BESS
Zhou et al. Control strategies for tidal stream turbine systems-a comparative study of ADRC, PI, and high-order sliding mode controls
CN111665721A (zh) 用于脉冲功率负载调节的飞轮储能控制系统设计方法
CN111555677B (zh) 一种航空交流三级式发电系统电压稳定控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200915