CN101115546B - 制备具有增强的化学稳定性的辐射接枝燃料电池膜的方法和膜电极组件 - Google Patents

制备具有增强的化学稳定性的辐射接枝燃料电池膜的方法和膜电极组件 Download PDF

Info

Publication number
CN101115546B
CN101115546B CN2006800045805A CN200680004580A CN101115546B CN 101115546 B CN101115546 B CN 101115546B CN 2006800045805 A CN2006800045805 A CN 2006800045805A CN 200680004580 A CN200680004580 A CN 200680004580A CN 101115546 B CN101115546 B CN 101115546B
Authority
CN
China
Prior art keywords
film
ams
membrane
methacrylonitrile
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800045805A
Other languages
English (en)
Other versions
CN101115546A (zh
Inventor
G·G·谢勒
L·古布勒
M·斯拉斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scherrer Paul Institut
Original Assignee
Scherrer Paul Institut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scherrer Paul Institut filed Critical Scherrer Paul Institut
Publication of CN101115546A publication Critical patent/CN101115546A/zh
Application granted granted Critical
Publication of CN101115546B publication Critical patent/CN101115546B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups
    • C08F8/36Sulfonation; Sulfation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • C08J5/225Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/38Graft polymerization
    • B01D2323/385Graft polymerization involving radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Energy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Transplantation (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明的目的是提供一种用于制备待装配在膜电极组件中的膜的方法以及一种膜电极组件,其均具有显著的机械稳定性和合适的燃料电池特性。这些目的根据本发明通过一种用于制备待装配在膜电极组件、例如聚合物电解质燃料电池中的膜的方法来实现,所述方法包括以下步骤:a)用电磁和/或粒子辐射来辐照基础聚合物薄膜,以便在所述聚合物薄膜内形成反应中心、即自由基;b)使被辐照的薄膜暴露于易于自由基聚合的单体混合物中,以便在所述被辐照的薄膜中实现接枝共聚物的形成,其中所述单体混合物包含α-甲基苯乙烯、甲基丙烯腈和任选地作为交联剂的二乙烯基苯或者二异丙烯基苯;c)磺化接枝薄膜以便引入磺酸位点,从而提供材料的离子导电性。

Description

制备具有增强的化学稳定性的辐射接枝燃料电池膜的方法和膜电极组件
本发明涉及用于一种制备待装配在膜电极组件中的膜的方法。此外,本发明涉及一种膜电极组件。
固体聚合物电解质被用于电化学电池中,以在阳极和阴极之间交换离子,并且在阳极和阴极之间用作电子和反应物的分隔器。大约40年以前,由Grubb(通用电气,美国),即在美国专利2,913,511中首先描述了将离子交换膜用作电解质。固体聚合物电解质被广泛应用于电化学装置、例如电解槽、超级电容器、臭氧发生器、燃料电池等的范围内。
在燃料电池中离子交换膜的使用是特别令人感兴趣的,因为其导致电池结构和系统设计的简化,因为可以避免腐蚀性液体电解质的使用。质子交换膜(PEM)应用于聚合物电解质燃料电池(PEFC)组中。这些材料包含连接于聚合物的高分子上的酸根。酸的解离导致形成移动的质子和固定的阴离子。
主要地,全氟膜材料、例如
Figure G2006800045805D00011
(DuPont,USA)、(AsahiGlass,Japan)、
Figure G2006800045805D00013
(Asahi Kasei,Japan)被用于PEFC中。然而,精心的制造过程使这些膜变成昂贵的部件。替代地,成本有效的膜和过程因此与能够开发和制造有成本竞争力的燃料电池材料有着相当大的关联。一种这样的有吸引力的方法是预先辐照诱发的接枝共聚,由此使预成型的商品聚合物薄膜改性以引入所期望的功能、例如质子导电性。对于燃料电池应用来说,许多公司和集团已经使用了这种方法。该过程包括辐照基础聚合物薄膜以生成自由基,随后是接枝步骤,由此被活化的薄膜与含单体的溶液接触,这导致自由基聚合反应以及因此连接于基础薄膜的聚合物链上的聚合物侧链的生长。随后的反应步骤可以进行,以引入质子导电性。辐射接枝的通用单体是苯乙烯,因为其显示出快速的自由基聚合,并且因此在适当短的数小时的时间内获得实用的接枝度。接枝的聚苯乙烯随后被磺化以将磺酸位点引入到苯乙烯环中。
在燃料电池中,已经将磺化的聚苯乙烯用作质子交换膜材料。然而早已认识到,燃料电池内的腐蚀性条件、即还原以及氧化条件、和过氧化物中间体将相当大的化学应力施加到膜材料上。在过氧化物和自由基中间体的环境中,由于朝向氧化侵蚀的α-氢位置的敏感性,聚苯乙烯特别易于受到化学侵蚀。
因此,具有较高的固有化学稳定性的替代接枝单体的使用是有利的。接枝单体来源于各种各样的自由基可共聚单体。单体的非限制性实例包括丙烯酸、甲基丙烯酸、马来酸酐、马来酰亚胺、N-苯基马来酰亚胺、丙烯酸酯、甲基丙烯酸酯;乙烯基磺酸、乙烯基膦酸;α-甲基苯乙烯、α-氟苯乙烯、α,β,β-三氟苯乙烯、三氟-α-甲基苯乙烯;2-丙烯酰氨基-2-甲基-1-丙烷磺酸、2-丙烯酰氨基-1-乙烷磺酸。所述单体可以已经携带阳离子交换功能(例如,乙烯基磺酸),或者该阳离子交换功能可以在随后的步骤中被引入(例如,苯乙烯单元的磺化)。这些单体的自由基诱发的接枝共聚动力学可能是弱的。在这种情况下,仅仅获得了小的接枝水平或者必须使用长的接枝时间。为了改进接枝动力学,可以使用额外的单体、即共聚单体,以便在合理的接枝时间内获得实用的接枝水平。基础单体M1和共聚单体M2的选择是这样的,使得杂聚合,即-M1-M2-M1-M2-序列的形成在动力学上是有利的,从而导致与只有基础单体M1的时候相比M1全部较快地结合到接枝聚合物中。直接地或者在后处理以后,共聚单体可以、但不是必须有助于阳离子交换功能。因此,共聚单体可以是任何易于自由基共聚合的单体,例如氯乙烯、氟乙烯、偏二氟乙烯、四氟乙烯、六氟丙烯;乙烯醚、氟化乙烯醚、乙烯基酯、氟化乙烯基酯;丙烯酰胺、丙烯腈、甲基丙烯腈;N-乙烯基吡咯烷酮、或者上面作为基础单体所列出的单体中的任一种。
除了基础单体和共聚单体以外,可以将担当交联剂的第三单体添加到接枝溶液中。交联剂具有两个或更多个双键,以在不同的聚合物链之间提供必要的连接,例如二乙烯基苯、双(乙烯基苯基)乙烷、二异丙烯基苯、氰脲酸三烯丙酯(triallylcyanurate)、N,N′-亚甲基双丙烯酰胺、马来酸二烯丙酯(diallylmaleinate)。
如上所述,考虑到聚合物电解质燃料电池中的苯乙烯接枝和磺化膜的降解机理,具有受保护的α-位置的苯乙烯衍生的单体被认为是用于获得具有固有较高化学稳定性的接枝膜的有希望的候选物。在现有技术中,已经提出过α,β,γ-三氟苯乙烯(TFS)和α-甲基苯乙烯(AMS)。作为一种氟化化合物,TFS的缺点在于比苯乙烯或者AMS明显更昂贵。此外,接枝动力学是不良的;磺化是困难的,并且所得到的膜的机械性能是普通的。另一方面,AMS的缺点在于,自由基聚合动力学是不良的,上限温度低(61℃),存在发生逆向链转移反应的趋势,伴随有不良的接枝产率,该接枝产率已经在我们自己的试验中得到了证实。然而,已经显示表明,如果丙烯腈(AN)被用作共聚单体,可以获得AMS接枝的薄膜,因为丙烯腈使增长接枝聚合物链上的端自由基(terminal radical)稳定。已表明,相比于纯的苯乙烯接枝的膜或者苯乙烯-AN接枝的膜,使用FEP和ETFE作为基础聚合物,AMS:AN混合物的接枝共聚,随后磺化,获得具有更高化学稳定性的质子交换膜。然而,没有报道燃料电池试验,并且在实际环境中这些膜的电化学特性仍然有待被确定。
因此,本发明的目的是提供一种用于制备待装配在膜电极组件中的膜的方法以及一种膜电极组件,其均具有显著的机械稳定性和合适的燃料电池特性。
这些目的根据本发明是通过一种用于制备待装配在膜电极组件、例如聚合物电解质膜燃料电池中的膜的方法来实现的,所述方法包括以下步骤:
a)用电磁和/或粒子辐射来辐照基础聚合物薄膜,以便在所述聚合物薄膜内形成反应中心、即自由基;
b)使被辐照的薄膜暴露于易于自由基聚合的单体混合物中,以便在所述被辐照的薄膜中实现接枝共聚物的形成,其中所述单体混合物包含α-甲基苯乙烯(AMS)和甲基丙烯腈(MAN)和任选地,例如二乙烯基苯(DVB)或者二异丙烯基苯(DIPB)的交联剂;
c)磺化接枝薄膜以便引入磺酸位点,从而提供材料的离子导电性。
就膜电极组件而言,这些目的根据本发明通过一种膜电极组件来实现,所述膜电极组件包括聚合物电解质层,该聚合物电解质层被夹在阴极层和阳极层之间,由此所述聚合物电解质层是接枝共聚物膜,该接枝共聚物膜包括作为共聚单体的α-甲基苯乙烯(AMS)和甲基丙烯腈(MAN)。其它可能的单体组合可以是α-甲基苯乙烯的衍生物,例如α-甲基苯乙烯磺酸钠、甲基-α-甲基苯乙烯、甲氧基-α-甲基苯乙烯。基础聚合物可以选自氟化、部分氟化或者非氟化薄膜的范围,包括聚四氟乙烯、聚(四氟乙烯-共-全氟丙基乙烯基醚)、聚(四氟乙烯-共-六氟丙烯)、聚(偏二氟乙烯)、聚(偏二氟乙烯-共-六氟丙烯)、乙烯-四氟乙烯交替共聚物(poly(ethylene-alt-tetrafluoroethylene))、聚氟乙烯、聚乙烯、聚丙烯。
在本发明优选的实施方案中,α-甲基苯乙烯/甲基丙烯腈的摩尔比可以在50/50-90/10的范围内,优选地在60/40-80/20的范围内。单体混合物可以包括额外的单体,以便获得特定的增加的膜功能、例如交联。在交联的膜的优选的实施方案中,就总单体含量而言,交联剂的摩尔分数可以在1-20%的范围内,优选地在5-10%的范围内。纯的单体混合物可用被用于接枝反应,或者溶剂或者溶剂混合物、例如异丙醇和水可以被添加到单体混合物中。
在总结本发明时,已发现,对于AMS到基础薄膜、例如FEP和ETFE上的辐射诱发的接枝聚合来说,甲基丙烯腈(MAN)是合适的共聚单体,以便防止单独的AMS的不良的聚合动力学并且在合理的接枝时间内获得实用的接枝水平。进行了下述试验观察:
·当MAN被用作共聚单体代替AN时,AMS与结合到基础薄膜中的总接枝组分的比值是较高的。
·包含基础薄膜和接枝的AMS/MAN的接枝薄膜被磺化,以获得1mmol/g左右的离子交换容量。
·在所用的磺化过程期间在AMS存在时MAN的腈基不在接枝共聚物中水解。
·在接枝薄膜中AMS∶MAN的摩尔比约为1∶1。
·所获得的磺化度约为100%,对应于每个AMS单元一个磺酸基。
·通过将作为第三单体的交联剂、即二乙烯基苯(DVB)或者二异丙烯基苯(DIPB)引入到接枝溶液中而制备了交联薄膜。
·基于FEP-25的AMS/MAN(/DVB或者DIPB)接枝和磺化膜在次级(sub-scale)燃料电池中成功地被测试。类似于标准苯乙烯/二乙烯基苯接枝膜和商业膜、例如Nafion 112的电化学特性被测量。
·相比于未交联的基于苯乙烯的膜,基于AMS/MAN的膜在燃料电池中显示出优良的温度稳定性和耐用性。
·相比于未交联的AMS/MAN膜,交联的AMS/MAN/DVB膜在燃料电池中显示出优良的性能和耐用性。
相对于源于现有技术的教导,这些观察结果显示出多个显著的优势:
·相对于基于苯乙烯的膜,使用AMS作为单体的辐射接枝膜提供具有固有优良耐用性的燃料电池膜的前景。
·在AMS的接枝中使用MAN作为共聚单体,使用合理的接枝条件可以获得实用的接枝水平。通过使用共聚单体,可以克服纯AMS单体的不良的接枝动力学的问题。
·AMS/MAN膜中的MAN单元不对随后的工序(例如磺化)或者膜的机械性能产生不利的影响。
·MAN单元不会不利地妨碍磺化的AMS单元所提供的质子导电性。
·有迹象表明:与AN相比,MAN对健康的危害更小。
使用下面的图和表格来介绍本发明的优选的实施方案。表格1显示基于FEP-25的辐射接枝的和磺化的膜的性能。
Figure G2006800045805D00051
表格1:与
Figure G2006800045805D00061
112(商业膜)相比,基于FEP-25的辐射接枝的和磺化的膜的性能
膜1是标准苯乙烯接枝的和二乙烯基苯(DVB)交联的膜,其被用于H2/空气燃料电池中。膜2是不具有DVB交联剂的比较实例。这类膜在燃料电池中非常不稳定并且导致膜电极组件的快速失效(参考表格2)。膜3、4和5是本发明类型的,分别使用AMS/MAN(膜3)、AMS/MAN/DVB(膜4)和AMS/MAN/DIPB(膜5)作为单体。表明了获得了类似于苯乙烯接枝的膜和商业膜(
Figure G2006800045805D00062
112)的离子交换容量和导电性。
表格2显示在单个电池中基于FEP-25的未交联的辐射接枝的和磺化的膜的使用期限。
  试验   系统   使用期限   最高温度
  [h]   [℃]
  1   FEP-g-PS   49   80
  2   FEP-g-PS   169   60
  试验   系统   使用期限   最高温度
3   FEP-g-(AMS-co-MAN) 533 80
4   FEP-g-(AMS-co-MAN) 524 80
表格2:在单个电池中基于FEP-25的辐射接枝的和磺化的膜的使用期限。
相比于本发明类型的膜,纯苯乙烯接枝的膜在单个电池中显示出差的温度稳定性和使用期限。
Figure G2006800045805D00071
图1示出使用苯乙烯接枝的膜、本发明类型的膜(包括未交联的和DVB交联的样品)、和商业膜(
Figure G2006800045805D00072
112)的单个电池的极化曲线。电池温度为60℃;燃料:H2,氧化剂:O2,两种气体在60℃时湿润,压力为1bara
单个电池的极化曲线(图1)表明,两种基于AMS的接枝膜相比于苯乙烯接枝的膜具有优良的性能。相比于未交联的膜,具有较高接枝水平的DVB交联的膜获得较高的性能。所有的三种膜都显示类似的原位欧姆电阻。
Figure G2006800045805D00073
图2示出使用苯乙烯接枝膜、本发明类型的膜(包括未交联的和DVB交联的样品)、和商业膜(
Figure G2006800045805D00074
112)的单个电池的极化曲线。电池温度为80℃;燃料:H2,氧化剂:O2,两种气体在80℃时湿润,压力为1bara
图3示出在80℃的电池温度下单个电池的耐用性和离子交换容量(IEC)损失速率,该损失速率根据测试前后IEC的差值除以MEA使用期限来确定。
相比于苯乙烯接枝的和DVB交联的膜,AMS/MAN接枝的膜显示出与图1中的曲线类似的单个电池性能(图2)。AMS/MAN接枝的和DVB交联的膜显示出类似于
Figure G2006800045805D00082
112商业膜的优良的性能。
以下部分说明用于生成具有前述增强性能的辐射接枝的燃料电池膜的方法的两种实施方案。因此,用于PEFC的AMS/MAN和AMS/MAN/DVB膜的合成包含接枝和磺化这两个已知步骤。
FEP-g-(AMS-co-MAN)的合成
在空气气氛中用电子束以25kGy的剂量辐照25μm厚的FEP薄膜。将一片1g的预辐照的FEP薄膜置于装备有两个旋塞阀的阱型反应管中。所述反应管充满60ml的反应混合物,该反应混合物是通过混合12.7cm3的AMS、5.3cm3的MAN、12cm3的水和30cm3的异丙醇来制备的。将所述反应管关闭。借助与底部管连接的阀,使氮气以流速12Nl/h通过。在1小时的吹洗(purge)后,将管密封并且转移到水浴中。水浴的温度被维持在60℃。在反应22小时后,从所述管中去除溶液,用丙酮来洗涤具有产物的所述管3次(每次洗涤60mL)。将产物从所述管中移出,并且让产物在真空炉中在50℃下干燥3小时。
FEP-g-(AMS-co-MAN-co-DVB)的合成
该过程与前述部分中所述的过程相同,唯一的差别是将0.5vol%(0.3cm3)DVB添加到接枝溶液中。
磺化
将650cm3的干燥二氯甲烷和30cm3的氯磺酸置于烧杯形玻璃容器中,所述烧杯形玻璃容器装备有磁力搅拌器、气体出口和封盖。5g(约五片)FEP-g-(AMS-co-MAN)薄膜被放在反应容器中。搅拌该混合物6小时。6小时后,将产物转移到充满水的烧杯中。12小时后,将产物放入具有500cm3的氢氧化钠水溶液(4g/dm3)的烧杯中,并且搅拌6小时。随后,用水来洗涤产物并且用500cm3的2M H2SO4处理6小时。为了去除硫酸,在80℃下在水中处理该产物6小时。水发生变化,直到pH为中性。
单位和缩写:
MAN-甲基丙烯腈
AMS-α-甲基苯乙烯
FEP-聚(四氟乙烯-co-六氟丙烯)
Nl/h-标准升/小时
FEP-g-(AMS-co-MAN)-用AMS和MAN接枝的FEP
kGy-千戈瑞
材料:
如所收到的那样使用单体(MMT Aldrich 19541-3,AMS AldrichM8,090-3)。(DVB)水使用Serapur Pro 90CN系统来软化(导电性<0.5μS/cm)。氯磺酸是纯净级的,购自Fluka(26388)。氢氧化钠、硫酸和异丙醇是分析级的。FEP薄膜购自DuPont,并且在-80℃下在辐照和接枝之间存储大约2个月。

Claims (9)

1.一种用于制备待装配在膜电极组件中的膜的方法,所述方法包括以下步骤:
a)用电磁和/或粒子辐射来辐照基础聚合物薄膜,以便在所述聚合物薄膜内形成反应中心;
b)使被辐照的薄膜暴露于易于自由基聚合的单体混合物中,以便在所述被辐照的薄膜中实现接枝共聚物的形成,其中所述单体混合物包含α-甲基苯乙烯、甲基丙烯腈;以及
c)磺化接枝薄膜以便引入磺酸位点,从而提供材料的离子导电性。
2.根据权利要求1的方法,其中在步骤b)中加入二乙烯基苯或者二异丙烯基苯作为交联剂。
3.根据权利要求1的方法,其中α-甲基苯乙烯/甲基丙烯腈的比率在50/50-90/10的范围内。
4.根据权利要求3的方法,其中α-甲基苯乙烯/甲基丙烯腈的比率在80/20的范围内。
5.根据权利要求1或2的方法,其中所述混合物包含10-40vol%的α-甲基苯乙烯和2-20vol%的甲基丙烯腈。
6.根据权利要求5的方法,其中所述混合物包含其它的单体或者溶剂或溶剂混合物。
7.根据权利要求6的方法,其中交联剂是二乙烯基苯或者二异丙烯基苯,其中就总单体含量而言,交联剂的摩尔分数在1-20%的范围内。
8.根据权利要求7的方法,其中交联剂的摩尔分数在5-10%的范围内。
9.一种膜电极组件,包含夹在阴极层和阳极层之间的聚合物电解质层,其特征在于,所述聚合物电解质层是接枝共聚物膜,所述接枝共聚物膜包含α-甲基苯乙烯和甲基丙烯腈。
CN2006800045805A 2005-02-11 2006-01-28 制备具有增强的化学稳定性的辐射接枝燃料电池膜的方法和膜电极组件 Expired - Fee Related CN101115546B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05002875A EP1693101A1 (en) 2005-02-11 2005-02-11 A method for preparing a radiation grafted fuel cell membrane with enhanced chemical stability and a membrane electrode assembly
EP05002875.2 2005-02-11
PCT/EP2006/000752 WO2006084591A1 (en) 2005-02-11 2006-01-28 A method for preparing a radiation grafted fuel cell membrane with enhanced chemical stability and a membrane electrode assembly

Publications (2)

Publication Number Publication Date
CN101115546A CN101115546A (zh) 2008-01-30
CN101115546B true CN101115546B (zh) 2010-06-23

Family

ID=34933688

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800045805A Expired - Fee Related CN101115546B (zh) 2005-02-11 2006-01-28 制备具有增强的化学稳定性的辐射接枝燃料电池膜的方法和膜电极组件

Country Status (6)

Country Link
US (1) US20080199754A1 (zh)
EP (2) EP1693101A1 (zh)
CN (1) CN101115546B (zh)
AT (1) ATE503562T1 (zh)
DE (1) DE602006021018D1 (zh)
WO (1) WO2006084591A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102216354A (zh) 2008-09-17 2011-10-12 贝伦诺斯清洁电力控股有限公司 用于制备辐射接枝聚合物的方法
EP2228403A1 (en) * 2009-02-05 2010-09-15 Paul Scherrer Institut Method for preparing an enhanced proton exchange membrane and enhanced proton exchange membrane
CN102321266B (zh) * 2011-07-13 2012-08-15 上海大学 燃料电池用质子交换膜的制备方法
CN102477163B (zh) * 2011-07-29 2014-04-16 深圳光启高等理工研究院 一种基于高分子材料的微结构的制备方法
CN104736235B (zh) * 2012-06-05 2017-10-13 3M创新有限公司 接枝共聚物官能化制品
CN103447089B (zh) * 2013-09-18 2015-06-10 凯瑞环保科技股份有限公司 一种低碳烯烃叠合催化剂及其制备方法
CN103537320B (zh) * 2013-10-17 2016-04-13 凯瑞环保科技股份有限公司 一种用于苯酚羟基化的树脂催化剂及其制备方法
CN103551061A (zh) * 2013-11-15 2014-02-05 天津工业大学 一种用于去除水中Cr(VI)的高负电荷密度中空纤维纳滤膜的制备方法
EP2996184A1 (en) * 2014-09-09 2016-03-16 Paul Scherrer Institut A method to produce a gas diffusion layer and a fuel cell comprising a gas diffusion layer
JP6896642B2 (ja) * 2014-12-24 2021-06-30 ハイドロオクシス ホールディングス リミテッドHydroxsys Holdings Limited 非対称複合膜および供給流から水を除去する方法
CN104779404A (zh) * 2015-04-09 2015-07-15 深圳市万越新能源科技有限公司 一种采用射线辐照接枝法制备全钒电池均相离子交换膜的方法
EP3576201A1 (en) 2018-05-31 2019-12-04 Paul Scherrer Institut Amphoteric electrolyte membrane and a redox flow battery comprising an electrolyte membrane
CN110391440B (zh) * 2019-07-17 2021-03-30 深圳质子航新能源科技有限公司 聚合物质子交换膜及其制备方法
CN112909277B (zh) * 2020-12-31 2022-02-11 大连融科储能技术发展有限公司 一种离子交换膜及其制备方法和应用
CN114763314B (zh) * 2021-01-11 2024-09-27 中国石油天然气股份有限公司 混合c4烃叠合反应工艺及叠合树脂催化剂
FR3123508A1 (fr) * 2021-05-31 2022-12-02 Arkema France Membrane echangeuse de protons
FR3123507A1 (fr) * 2021-05-31 2022-12-02 Arkema France Membrane echangeuse de protons
CN114832652B (zh) * 2022-04-25 2024-05-31 上海师范大学 一种功能聚合物纳滤膜材料及其制备方法
FR3142609A1 (fr) * 2022-11-29 2024-05-31 Arkema France Membrane echangeuse de protons a base de pvdf sous forme de granules cryobroyes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103078A (en) * 1997-06-03 2000-08-15 Lynntech, Inc. Methods for preparing membranes with fluid distribution passages

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2802809A (en) * 1953-11-30 1957-08-13 Firestone Tire & Rubber Co Compositions of vinyl chloride resins and graft copolymers of acrylonitrile-type monomer compositions upon diene polymers and articles formed therefrom
US2913511A (en) * 1955-06-29 1959-11-17 Gen Electric Fuel cell
US5216062A (en) * 1989-02-18 1993-06-01 Basf Aktiengesellschaft Thermoplastic polyurethane molding composition
JPH09102322A (ja) * 1995-07-31 1997-04-15 Imura Zairyo Kaihatsu Kenkyusho:Kk 燃料電池用の固体高分子電解質膜およびその製造方法
WO1998039808A1 (en) * 1997-03-04 1998-09-11 Nippon Zeon Co., Ltd. Binder for cell, slurry for cell electrode, electrode for lithium secondary cell, and lithium secondary cell
JP4103975B2 (ja) * 1998-09-10 2008-06-18 富士フイルム株式会社 電解質、光電気化学電池、及び電解質層を形成する方法
JP2002198068A (ja) * 2000-12-26 2002-07-12 Aisin Seiki Co Ltd 固体高分子電解質膜及びその製造方法
US20040009305A1 (en) * 2002-07-12 2004-01-15 Ballard Power Systems Inc. Process for preparing graft copolymer membranes
CN102216354A (zh) * 2008-09-17 2011-10-12 贝伦诺斯清洁电力控股有限公司 用于制备辐射接枝聚合物的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103078A (en) * 1997-06-03 2000-08-15 Lynntech, Inc. Methods for preparing membranes with fluid distribution passages

Also Published As

Publication number Publication date
US20080199754A1 (en) 2008-08-21
DE602006021018D1 (de) 2011-05-12
EP1893323A1 (en) 2008-03-05
ATE503562T1 (de) 2011-04-15
EP1893323B1 (en) 2011-03-30
EP1693101A1 (en) 2006-08-23
CN101115546A (zh) 2008-01-30
WO2006084591A1 (en) 2006-08-17

Similar Documents

Publication Publication Date Title
CN101115546B (zh) 制备具有增强的化学稳定性的辐射接枝燃料电池膜的方法和膜电极组件
Chen et al. Chemical and radiation crosslinked polymer electrolyte membranes prepared from radiation-grafted ETFE films for DMFC applications
US8283088B2 (en) Silane crosslinked structure-introduced fuel-cell polymer electrolyte membrane and fuel-cell electrode assembly having the same
Fu et al. Sulfonated polystyrene/polyvinyl chloride composite membranes for PEMFC applications
JP5004178B2 (ja) 機械的強度に優れる高プロトン伝導性高分子電解質膜及びその製造方法
US9382367B2 (en) Polymer electrolyte membrane composed of aromatic polymer membrane base and method for producing the same
JP4532812B2 (ja) 架橋フッ素樹脂基材からなる燃料電池用電解質膜
Chen et al. Effect of crosslinkers on the preparation and properties of ETFE‐based radiation‐grafted polymer electrolyte membranes
US20060105216A1 (en) Polymer electrolyte membrane having improved oxidation resistance
JP4986219B2 (ja) 電解質膜
CN102333815A (zh) 制备增强的质子交换膜的方法及增强的质子交换膜
US7714027B2 (en) Crosslinked aromatic polymer electrolyte membrane and method for producing same
Chen et al. Comparative study on the preparation and properties of radiation‐grafted polymer electrolyte membranes based on fluoropolymer films
JP4219656B2 (ja) 燃料電池用電解質膜
KR20080019284A (ko) 고체 고분자 전해질막 및 그 제조 방법, 및 연료 전지
Nasef Fuel cell membranes by radiation-induced graft copolymerization: current status, challenges, and future directions
JP5326288B2 (ja) 固体高分子電解質膜、その製造方法、燃料電池用膜電極接合体、及び燃料電池
JP2008127534A (ja) 機能性膜の製造方法、及び燃料電池用電解質膜の製造方法
Gubler Radiation Grafted Membranes for Polymer Electrolyte Fuel Cells
EP2202832B1 (en) Solid polymer electrolyte membrane, method for producing the same, membrane-electrode assembly for fuel cell, and fuel cell
JP2009144067A (ja) 機能性膜の製造方法、及び燃料電池用電解質膜の製造方法
JP4814860B2 (ja) 架橋フッ素樹脂基材からなる燃料電池用電解質膜の製造方法
US20080044710A1 (en) Electrolyte Membrane Having Excellent Adhesion To Electrodes
JP2008243393A (ja) 固体高分子電解質膜の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100623

Termination date: 20180128

CF01 Termination of patent right due to non-payment of annual fee