CN102333815A - 制备增强的质子交换膜的方法及增强的质子交换膜 - Google Patents

制备增强的质子交换膜的方法及增强的质子交换膜 Download PDF

Info

Publication number
CN102333815A
CN102333815A CN2010800069168A CN201080006916A CN102333815A CN 102333815 A CN102333815 A CN 102333815A CN 2010800069168 A CN2010800069168 A CN 2010800069168A CN 201080006916 A CN201080006916 A CN 201080006916A CN 102333815 A CN102333815 A CN 102333815A
Authority
CN
China
Prior art keywords
man
vinylbenzene
film
styrene
methacrylonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800069168A
Other languages
English (en)
Other versions
CN102333815B (zh
Inventor
H·本-尤塞夫
L·古布勒
D·亨肯斯梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scherrer Paul Institut
Original Assignee
Scherrer Paul Institut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scherrer Paul Institut filed Critical Scherrer Paul Institut
Publication of CN102333815A publication Critical patent/CN102333815A/zh
Application granted granted Critical
Publication of CN102333815B publication Critical patent/CN102333815B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/18Homopolymers or copolymers of nitriles
    • C08J2333/20Homopolymers or copolymers of acrylonitrile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

公开了一种基于增强非交联膜固有氧化稳定性的新型方法。由此,公开了苯乙烯与甲基丙烯腈(MAN)共接枝于25μm ETFE基膜上,其中甲基丙烯腈具有受到保护的α位和强偶极腈基侧基。比较了苯乙烯/MAN共接枝膜和基于苯乙烯的膜在H2/O2单燃料电池中的耐久性试验。结果表明,MAN的结合使用显著地改善了化学稳定性。基于共聚合苯乙烯和MAN制备的膜表现出令人鼓舞的结果,且提供了通过调节MAN和交联剂用量而增强所得的燃料电池膜的氧化稳定性的机会。

Description

制备增强的质子交换膜的方法及增强的质子交换膜
本发明涉及一种制备质子交换膜的方法。本发明进一步涉及所述的膜本身。
在燃料电池中的质子交换膜的稳定性和可靠性是将这项技术从原型发展到商业层面的重要问题之一。类似地,开发性能价格比高的质子交换膜替代现有技术的昂贵全氟化膜(例如Nafion
Figure BPA00001421636200011
)是另一个主要挑战。辐射引发的接枝技术结合低成本的材料(氟化或部分氟化的基体聚合物)提供了若干优点。辐射引发的接枝是一项通用的技术,其允许基体材料的功能化和引入所需的性能(质子导电性)。该项技术吸引人的地方是基于其可以便于在宽范围内调整和控制一些参数以达到所需性能。
Paul Scherrer研究所致力于低成本聚合物电解质膜的开发,且做了大量工作以改善机械和化学稳定性。在80℃的温度且稳态条件下使用寿命超过4000小时是用基于接枝在四氟乙烯/六氟丙烯共聚物(FEP)上的苯乙烯/二乙烯基苯(DVB:交联剂)的辐射接枝交联膜实现的。交联和接枝水平(GL)被指出为关键参数,其可经调节以在辐射接枝膜中找到在导电性和稳定性之间的平衡。因此,FEP基的膜在其性能和耐久性上得到优化。
为了增强基体聚合物的固有性质,部分氟化的乙烯/四氟乙烯交替共聚物(ETFE)被选用,其中与FEP基膜相比证明其具有一些优势。因此,开展了关于在ETFE接枝苯乙烯时接枝参数和反应动力学的影响的详细研究。此外,研究了接枝密度的影响,且针对燃料电池建立了DVB用量和原位及异位相关性能的相互关系。对优化的ETFE基膜(5%DVB)进行了耐久性测试,该测试进行了超过2180小时,在活性区域中未发生明显的降解。
众所周知,接枝膜中的苯乙烯磺酸基团在α-氢位置上具有弱点,在燃料电池环境下,该位置易于受到自由基攻击。做了大量的工作通过使用具有低成本影响的新的单体组合改善了辐射接枝膜的稳定性。一些作者报道了苯乙烯/丙烯腈,α-甲基苯乙烯/苯乙烯和对甲基苯乙烯/叔丁基苯乙烯。目前,还没有公开燃料电池试验,而是只报道了在H2O2中的异位化学稳定性。然而,在燃料电池工作条件下出现的真正的应力是复杂的(水合作用/脱水作用,机械应力,攻击性的物质(HO·,HOO·)),且需要进行单独电池测试以评估所述膜。最近,报道和测试了替代的单体,且获得了更多的关于α,β,β-三氟苯乙烯衍生物和α-甲基苯乙烯/甲基丙烯腈的数据,其显示出更好的稳定性,但遭受慢的接枝动力学。
因此本发明的目的在于提供一种制备在燃料电池工作条件下具有长期稳定性的质子交换膜的方法。
根据本发明,所述目标通过一种用于制备将组装在膜电极组例如聚合物电解质膜燃料电池中的膜的方法实现,该方法包括下列步骤:
a)用电磁辐射和/或粒子辐射辐照基体聚合物膜,以在所述的基体聚合物膜中形成反应中心,即自由基;
b)将辐照后的基体聚合物膜暴露于将经受辐射引发的接枝聚合的、包含苯乙烯和甲基丙烯腈的单体混合物,以实现在所述辐照后的基体聚合物膜中形成接枝共聚物;和
c)磺化接枝的基体聚合物膜以引入磺酸位点,提供材料的离子电导性。
就膜电极组而言,这些目标根据本发明通过膜电极组实现,该膜电极组包含夹于阴极层和阳极层之间的聚合物电解质层,从而所述的聚合物电解质层为包含苯乙烯和甲基丙烯腈作为共聚单体的接枝共聚物膜。
本发明优选实施方式中,苯乙烯/甲基丙烯腈摩尔比可以在10/90至90/10的范围内,优选至50/50的范围内,或特别为1/2。单体混合物可以包含其他单体以获得特定的增加的膜功能性,例如使用交联剂例如DVB、DIPB和BVPE进行交联。用于接枝反应的可以是纯净的单体混合物,或者可将溶剂或溶剂混合物,例如异丙醇和水,加入该单体混合物中。
在进一步优选的实施方式中,混合物可以包含5-20vol%的苯乙烯和5-20vol%的甲基丙烯腈。混合物的一个优选的实例可以包含10-40vol%单体,50-90vol%的异丙醇和5-20vol%的水。
为了实现有利的接枝反应,接枝步骤(上述的步骤(b))必须在氮气气氛下进行至少一个小时,优选5至10小时。
在总结本发明时,发现对于辐射引发的接枝共聚反应,苯乙烯和甲基丙烯腈(MAN)的混合物接枝到基体聚合物膜例如FEP和ETFE上相对其他共聚物混合物例如α-甲基苯乙烯(AMS)和甲基丙烯腈(MAN)提供了明显的优势。进行了如下试验观察:
—在磺化过程中,含苯乙烯的接枝共聚物中的MAN的腈基团不发生水解。
—使用MAN作为共聚单体,导致燃料电池膜相对基于苯乙烯的膜具有固有的较好的耐久性。
—苯乙烯:MAN的接枝动力学比AMS:MAN的接枝动力学快。
—使用MAN作为接枝苯乙烯时的共聚物,可以获得实用的接枝水平。
—在优化的接枝水平时,可以容易地调节MAN的量以获得所需的性能。
—在苯乙烯/MAN膜中,MAN单元不会对接下来的工艺步骤(例如磺化)或膜的机械性能产生不利影响。
—MAN单元不会对由磺化的苯乙烯单元提供的质子导电性产生不利干扰。
—极性MAN单元对膜的水管理性能具有积极影响。
—MAN中的甲基基团减少了苯乙烯/MAN体系中氢的脱离提取。
—极性MAN单元对膜电极组(MEA)的界面性能具有积极影响。
—MAN的使用导致了水量的减少,同时导致了尺寸稳定性的增加。
本发明的优选实例随后参照如下附图进行描述。由此其被描绘于:
图1苯乙烯和MAN共接枝到ETFE中的推测结构的示意性概图;
图2基于ETFE的磺化苯乙烯/MAN共接枝膜及基于ETFE的纯的苯乙烯接枝膜的FTIR光谱图;
图3基于ETFE-g-苯乙烯/MAN(ETFE和苯乙烯/MAN的接枝共聚物)膜与纯苯乙烯基ETFE膜对比的MEA的历程图;
图4原始膜与测试的苯乙烯/MAN共接枝膜的FTIR光谱图;
图5使用具有两种不同MAN含量的ETFE-g-苯乙烯/MAN膜(表3中的样品#1和#2)的单电池极化曲线;和
图6使用ETFE-g-苯乙烯/MAN膜与Nafion
Figure BPA00001421636200031
112膜对比的单电池极化曲线。
以下描述通过共接枝苯乙烯和MAN制备具有增强的稳定性的辐射接枝膜的新型方式。所选择的在同样的条件下制备的膜的特征在于其异位相关燃料电池性能(IEC、水分吸收、导电性),且评估了燃料电池的性能和MEA的耐久性,并与基于苯乙烯的膜进行比较。据我们所知,这是在应用于燃料电池的质子交换膜中首次将所述两种单体组合。苯乙烯和MAN共接枝于ETFE基体聚合物膜中的推设结构示于图1。
购自DuPont(Circleville,USA)的25μm厚的ETFE(Tefzel
Figure BPA00001421636200032
100LZ)膜用作基体聚合物。ETFE膜在乙醇中清洗并在60℃真空干燥。该膜在瑞士
Figure BPA00001421636200041
的Leoni Studer AG经过1.5kGy剂量的电子束辐照。然后,该膜保存于-80℃下直至使用。接枝反应在氮气气氛下在玻璃反应器中进行。接枝溶液由20%(v/v)单体(苯乙烯/MAN以1/1(mol/mol)的混合物)、70%(v/v)异丙醇和10%(v/v)水组成。接枝反应和磺化反应按现有技术(例如欧洲专利申请EP05002875.2)所述进行。各膜的接枝水平(GL)由辐照过的膜的重量(Wi)和接枝膜的重量(Wg)测定:
GL ( % ) = W g - W i W i × 100 %
接枝膜的组成使用Perkin Elmer FTIR System 2000光谱仪通过FTIR光谱法测定。峰值拟合通过使用Galactic Industries的GRAMS/386软件(3.02版)完成。
在室温下完全溶胀状态下的异位膜性质、离子交换量(IEC)、质子导电性、水分吸收和水合数通过内部开发的程序测定。
基于ETFE的膜与ELAT
Figure BPA00001421636200043
电极(LT140EWSI型,E-TEK/BASF Fuel Cell,Inc.)一起以0.5mg Pt cm-2的铂担量进行热压(110℃/15kN/180s)。电化学特性表征(极化曲线,阻抗,氢气渗透)和使用的程序的全部描述为本领域的现有工艺。在完成测试和将膜从MEA拆下后,其转变为盐的形式(K+),然后在60℃下干燥过夜。在测试膜的活性区通过使用金属缝隙掩模(矩形缝隙0.5cm×1.9cm)利用FTIR进行事后分析。
在已知的条件下(H.BEN youcef,A.Gürsel,A.Wokaun,G.G.Scherer,J.Membr.Sci.311(2008)208),苯乙烯/MAN接枝于ETFE膜中进行6和8个小时的反应。为了测定膜中的MAN与苯乙烯的摩尔比,利用出现在1494cm-1(C=C)和2234cm-1(C≡N)的峰分别测定苯乙烯和MAN结构部分的含量,示于图2。FTIR光谱明显表明,腈基基团没有受到膜制备过程中磺化步骤的影响。
对所选膜表征了他们的异位燃料电池相关性能(GL,组成,IEC,水分吸收和导电性)(参见表1)。苯乙烯/MAN膜的接枝水平(~26和27%)比基于苯乙烯的膜(~21%)高,同时IEC值稍微有所不同,主要由于MAN含量并不对IEC产生贡献。基于苯乙烯/MAN的膜的导电率值相比纯苯乙烯接枝膜高。据认为腈基基团的亲水性和其与水形成氢键的能力在其中起到了重要作用。
比较两种苯乙烯/MAN膜的异位性能,样品#1的较低水分吸收、水合数和导电率值归因于低苯乙烯含量(较少磺酸基团)。有趣的是,水分吸收和水合数相比导电率受到了更大影响。
异位表征的苯乙烯/MAN基膜#1和#2和苯乙烯膜被装配进燃料电池中,且MEA在500mA·cm-2的恒定电流密度下工作(参见图3)。在测试期间对电流脉冲、氢气渗透和电化学阻抗间歇进行测试,以对电池进行原位表征,如表2所描述。首先观察到的是基于Nafion
Figure BPA00001421636200051
112的MEA相比于具有接枝ETFE膜的MEA表现出较低的欧姆电阻和极化电阻,同时氢气渗透较高。基于ETFE的膜的较差界面相容性(高极化电阻)主要是由于这些接枝膜对在催化剂层中使用的Nafion
Figure BPA00001421636200052
离子型聚合物具有较低的相容性。
令人惊奇的是,对测试的电池的事后分析表明,在~1700cm-1有新的宽峰存在,其归属于C=O振动(参见图4)。观察到的C=O基团被认为是在燃料电池工作条件下腈基基团水解的结果。磺化反应并未影响腈基基团,且在已制备的膜中并未观察到该基团的水解。对MAN中腈基和α-甲基的峰值拟合被用于测定所测试膜中的水解程度,其被估算为13%,大部分位于O2入口附近。
由于高的气体交换(>10ml·min-1)和在测试膜活跃区域内针孔的形成,纯苯乙烯接枝膜的单电池测试在160个小时后停止。在图5中,同样为了对比的目的,对没有DVB交联剂的未交联的苯乙烯接枝膜(ETFE-g-苯乙烯(ETFE/苯乙烯接枝共聚物))和Nafion
Figure BPA00001421636200053
112进行描述。该种接枝膜在燃料电池中非常不稳定,且会导致膜电极组的所述快速失效(在MEA的活跃区域中形成针孔)(也参见表4)。膜ETFE-g-苯乙烯-co-MAN#1和#2为权利要求所述类型,使用苯乙烯和MAN作为共聚单体,具有固定的接枝水平(27%),可工作超过1000小时而不会出现任何失效(参见图5)。图5表示了相比于Nafion
Figure BPA00001421636200054
112膜在不同时间段中使用具有两种不同MAN含量(表3中的样品#1和#2)的权利要求类型膜(ETFE-g-苯乙烯/MAN)的单电池的极化曲线。电池温度80℃;燃料:氢气,氧化剂:氧气,两种气体在80℃增湿,压力1巴。
接枝了苯乙烯的膜在单电池中相比于权利要求类型的膜表现出较差的稳定性和寿命,其也可从图5看出。图5中的单电池极化曲线表明两种苯乙烯/MAN接枝膜在燃料电池条件下工作1000小时后,性能并未表现出明显改变,而苯乙烯接枝膜在160小时后表现出性能降低。具有较低MAN含量的苯乙烯/MAN膜产生较低的欧姆电池电阻和在介质中更好的性能和高的电流密度。
相比本领域中目前使用的Nafion
Figure BPA00001421636200055
112膜,苯乙烯/MAN接枝膜表现出相似的单电池性能和略低的欧姆电阻,如图6所示。图6表示了使用权利要求类型(ETFE-g-/苯乙烯MAN)的膜相比Nafion
Figure BPA00001421636200061
112膜的单电池在496小时工作时间后的极化曲线。电池温度80℃;燃料:氢气,氧化剂:氧气,两种气体在80℃增湿,压力巴。
表1
基于ETFE的苯乙烯/MAN共接枝膜和纯苯乙烯接枝膜相比Nafion112的异位性能(GL=接枝水平)
Figure BPA00001421636200063
*在室温下完全溶胀状态下进行测试。
表2
来自苯乙烯/MAN共接枝膜、纯苯乙烯接枝膜和Nafion
Figure BPA00001421636200064
112的燃料电池测试数据的MEA性能特征,在165小时工作时间后利用交流阻抗测试和氢气渗透进行测定
Figure BPA00001421636200065
表3:基于ETFE的膜的IEC,水分吸收,水合数和导电率测试值与FEP-g-苯乙烯和Nafion
Figure BPA00001421636200071
112测试值的比较
Figure BPA00001421636200072
*在室温下完全溶胀状态下进行测试。
表4:使用ETFE-g-苯乙烯-co-MAN,ETFE-g-苯乙烯,FEP-g-苯乙烯和Nafion112进行的燃料电池的耐久性测试
Figure BPA00001421636200074

Claims (7)

1.制备待装配于膜电极组例如聚合物电解质膜燃料电池中的膜的方法,其包括下列步骤:
a)用电磁辐射和/或粒子辐射辐照基体聚合物膜,以在所述的基体聚合物膜中形成反应中心,即自由基;
b)将辐照后的基体聚合物膜暴露于经受辐射引发的接枝聚合的、包含苯乙烯和甲基丙烯腈的单体混合物,以实现在所述辐照后的基体聚合物膜中形成接枝共聚物;和
c)磺化接枝的基体聚合物膜以引入磺酸位点,提供材料的离子电导性。
2.根据权利要求1所述的方法,其中苯乙烯/甲基丙烯腈之比在10/90至90/10的范围内,优选在50/50的范围内,特别为1/2。
3.根据权利要求1或2所述的方法,其中混合物包含5-20vol%的苯乙烯和5-20vol%的甲基丙烯腈。
4.根据权利要求3所述的方法,其中混合物包含其他单体,例如交联剂如DVB、DIPB和/或BVPE,或溶剂或溶剂混合物,例如异丙醇和水。
5.根据权利要求3或4所述的方法,其中混合物包含10-40vol%单体,50-90vol%的异丙醇和5-20vol%的水。
6.根据上述任一权利要求所述的方法,其中步骤(b)在惰性气氛下进行至少一个小时。
7.膜电极组,其包含夹于阴极层和阳极层之间的聚合物电解质层,其特征在于所述的聚合物电解质层为至少包含苯乙烯和甲基丙烯腈且优选包含交联剂如DVB、DIPB和BVPE的接枝共聚物膜。
CN2010800069168A 2009-02-05 2010-02-01 制备增强的质子交换膜的方法及增强的质子交换膜 Expired - Fee Related CN102333815B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09100098A EP2228403A1 (en) 2009-02-05 2009-02-05 Method for preparing an enhanced proton exchange membrane and enhanced proton exchange membrane
EP09100098.4 2009-02-05
PCT/EP2010/051176 WO2010089274A1 (en) 2009-02-05 2010-02-01 Method fpr preparing an enhanced proton exchange membrane and enhanced proton exchange membrane

Publications (2)

Publication Number Publication Date
CN102333815A true CN102333815A (zh) 2012-01-25
CN102333815B CN102333815B (zh) 2013-11-06

Family

ID=40756866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800069168A Expired - Fee Related CN102333815B (zh) 2009-02-05 2010-02-01 制备增强的质子交换膜的方法及增强的质子交换膜

Country Status (4)

Country Link
US (1) US8951694B2 (zh)
EP (2) EP2228403A1 (zh)
CN (1) CN102333815B (zh)
WO (1) WO2010089274A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201402A (zh) * 2014-09-05 2014-12-10 成都新柯力化工科技有限公司 一种燃料电池质子交换膜材料及其应用
CN110391440A (zh) * 2019-07-17 2019-10-29 深圳质子航新能源科技有限公司 聚合物质子交换膜及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2996184A1 (en) * 2014-09-09 2016-03-16 Paul Scherrer Institut A method to produce a gas diffusion layer and a fuel cell comprising a gas diffusion layer
US10218031B2 (en) * 2017-03-20 2019-02-26 Millibatt, Inc. Battery system and production method
JP6978102B2 (ja) 2017-05-15 2021-12-08 ミリバット, インコーポレイテッドMillibatt, Inc. 電解質の製造方法
EP4193400A4 (en) * 2020-08-19 2024-10-23 Millibatt Inc THREE-DIMENSIONAL FOLDED BATTERY UNIT AND METHODS OF MANUFACTURING THE SAME

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198068A (ja) * 2000-12-26 2002-07-12 Aisin Seiki Co Ltd 固体高分子電解質膜及びその製造方法
EP1693101A1 (en) * 2005-02-11 2006-08-23 Paul Scherrer Institut A method for preparing a radiation grafted fuel cell membrane with enhanced chemical stability and a membrane electrode assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUBLER ET AL.: "Advanced monomer cobinations for radiation grafted fuel cell membranes", 《ELECTROCHEMISTRY COMMUNICATIONS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201402A (zh) * 2014-09-05 2014-12-10 成都新柯力化工科技有限公司 一种燃料电池质子交换膜材料及其应用
CN104201402B (zh) * 2014-09-05 2017-12-12 张力 一种燃料电池质子交换膜材料及其应用
CN110391440A (zh) * 2019-07-17 2019-10-29 深圳质子航新能源科技有限公司 聚合物质子交换膜及其制备方法

Also Published As

Publication number Publication date
EP2393873B1 (en) 2013-01-30
US20110294035A1 (en) 2011-12-01
WO2010089274A1 (en) 2010-08-12
CN102333815B (zh) 2013-11-06
EP2393873A1 (en) 2011-12-14
EP2228403A1 (en) 2010-09-15
US8951694B2 (en) 2015-02-10

Similar Documents

Publication Publication Date Title
Chen et al. Chemical and radiation crosslinked polymer electrolyte membranes prepared from radiation-grafted ETFE films for DMFC applications
Tazi et al. Parameters of PEM fuel-cells based on new membranes fabricated from Nafion®, silicotungstic acid and thiophene
Gubler et al. Performance and durability of membrane electrode assemblies based on radiation‐grafted FEP‐g‐polystyrene membranes
Büchi et al. Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells
CN101115546B (zh) 制备具有增强的化学稳定性的辐射接枝燃料电池膜的方法和膜电极组件
EP1085051B1 (en) Composite polymer membrane and method for producing the same
US6242123B1 (en) Solid polyelectrolyte membrane for fuel cells, and method for producing it
Chen et al. Double crosslinked polyetheretherketone-based polymer electrolyte membranes prepared by radiation and thermal crosslinking techniques
CN102333815B (zh) 制备增强的质子交换膜的方法及增强的质子交换膜
Gubler et al. Advanced monomer combinations for radiation grafted fuel cell membranes
Ebenezer et al. Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H2–O2 proton exchange membrane fuel cells
von Kraemer et al. Gas diffusion electrodes and membrane electrode assemblies based on a sulfonated polysulfone for high-temperature PEMFC
Jetsrisuparb et al. Radiation grafted membranes for fuel cells containing styrene sulfonic acid and nitrile comonomers
Gubler et al. Novel ETFE based radiation grafted poly (styrene sulfonic acid-co-methacrylonitrile) proton conducting membranes with increased stability
Güler et al. Characterization and fuel cell performance of divinylbenzene crosslinked phosphoric acid doped membranes based on 4-vinylpyridine grafting onto poly (ethylene-co-tetrafluoroethylene) films
JP4532494B2 (ja) 膜−電極アッセンブリー、その製造方法および膜−電極アッセンブリーにおいて組み合わせるべき膜の製造方法
JP5326288B2 (ja) 固体高分子電解質膜、その製造方法、燃料電池用膜電極接合体、及び燃料電池
US20060183809A1 (en) Polymer composite membrane and method of making the same
AU2002356654B2 (en) Fuel cell and membrane-electrode assembly thereof
Ahn et al. Performance and durability of sulfonated poly (arylene ether sulfone) membrane-based membrane electrode assemblies fabricated by decal method for polymer electrolyte fuel cells
Gubler et al. Crosslinker effect on fuel cell performance characteristics of ETFE based radiation grafted membranes
Wokaun et al. Cross-Linker Effect in ETFE-Based Radiation-Grafted Proton-Conducting Membranes
Yamaki et al. Fuel-cell performance of multiply-crosslinked polymer electrolyte membranes prepared by two-step radiation technique
Roger et al. Durable, Low-cost, Improved Fuel Cell Membranes
Lee et al. Development and Modification of a PEMFC Electrode by Using a Hydrocarbon Ionomer for High Utilization of Catalyst

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131106

Termination date: 20180201