CN101112135B - 改进的匹配阻抗表面贴装技术基底面 - Google Patents

改进的匹配阻抗表面贴装技术基底面 Download PDF

Info

Publication number
CN101112135B
CN101112135B CN2005800473019A CN200580047301A CN101112135B CN 101112135 B CN101112135 B CN 101112135B CN 2005800473019 A CN2005800473019 A CN 2005800473019A CN 200580047301 A CN200580047301 A CN 200580047301A CN 101112135 B CN101112135 B CN 101112135B
Authority
CN
China
Prior art keywords
pad
signal
via hole
circuit board
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005800473019A
Other languages
English (en)
Other versions
CN101112135A (zh
Inventor
D·莫利昂
S·H·J·塞尔屈
W·海伊维特
J·德格斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FCI SA
Original Assignee
FCI SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FCI SA filed Critical FCI SA
Publication of CN101112135A publication Critical patent/CN101112135A/zh
Application granted granted Critical
Publication of CN101112135B publication Critical patent/CN101112135B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/646Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00 specially adapted for high-frequency, e.g. structures providing an impedance match or phase match
    • H01R13/6461Means for preventing cross-talk
    • H01R13/6471Means for preventing cross-talk by special arrangement of ground and signal conductors, e.g. GSGS [Ground-Signal-Ground-Signal]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/646Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00 specially adapted for high-frequency, e.g. structures providing an impedance match or phase match
    • H01R13/6473Impedance matching
    • H01R13/6477Impedance matching by variation of dielectric properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3405Edge mounted components, e.g. terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/403Edge contacts; Windows or holes in the substrate having plural connections on the walls thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09145Edge details
    • H05K2201/09163Slotted edge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09145Edge details
    • H05K2201/0919Exposing inner circuit layers or metal planes at the side edge of the PCB or at the walls of large holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09845Stepped hole, via, edge, bump or conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10287Metal wires as connectors or conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/1034Edge terminals, i.e. separate pieces of metal attached to the edge of the PCB

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

公开了用于定义在基板上的匹配阻抗表面贴装技术基底面的方法,基板是诸如印刷电路板之类的,例如,其适于容纳具有终端引线排列的电组件。这种基底面可以包括导电焊盘(P)的排列和导电过孔(V)的排列。过孔排列可以与焊盘排列不同。可以排列过孔(V)以增加布线密度,同时限制串扰,并在组件与基板之间提供匹配的阻抗。可以改变过孔排列,以在板的一层上实现预期的布线密度。增加布线密度可以减少板的层数,有助于减小电容,并从而增大阻抗。接地过孔(G)和信号过孔(S)可以以影响阻抗的方式来彼此相对地排列。因此,可以改变过孔排列,以得到与组件阻抗相匹配的阻抗。还可以改变过孔排列,以限制在相邻信号导体中的串扰。因此,可以定义过孔排列,以平衡系统的阻抗、串扰和布线密度要求。

Description

改进的匹配阻抗表面贴装技术基底面
相关申请的交叉参考
根据35U.S.C.§119(e),本申请要求于2004年11月29日提交的临时美国专利申请no.60/631,545、于2004年11月29日提交的临时美国专利申请no.60/631,499、于2005年6月1日提交的临时美国专利申请no.60/686,514的优先权。
本申请涉及美国专利申请no.【代理人档案号FCI-2877(C3632)】,其与此同一日期提交,题为“High-Frequency,High-Signal-Density,Surface-Mount Technology Footprint Definitions”。
以上参考的各美国专利申请的内容合并于此作为参考。
发明领域
总体上,本发明涉及电连接器/电路板系统。更具体的,本发明涉及用于在这种电路板上形成表面贴装技术的基底面(footprint)的方法,其中,以与焊盘排列方式不同的过孔排列方式彼此相对的布置了过孔,并且过孔提供的在基板上布置的导电线路的布线密度大于在信号过孔排列与信号焊盘排列相同的情况下电路板具有的布线密度。
背景技术
通常,电组件,例如电连接器,可以包括多个导电触头,其端点部分例如可以以行和列的矩阵排列。触头L可以是信号导体或接地导体,并可以以信号-信号-接地的方式沿列排列。尽管信号触头可以是单端信号导体,但相邻的信号触头也可以构成差动信号对。这种组件可以包括差动信号对和单端信号导体的任何组合。
触头的端点部分可以被基板(例如底板或印刷电路板)接纳。在板末端级,触头引线可以在电镀通孔(PTH)处终止。PTH技术是一种PCB制造方法,从而在一层上的线路可以用电镀方法,通过预钻的通孔而电连接到另一层上的线路。当使用PTH技术时,基底面或通孔排列必须对准引线端点部分的排列,以便引线端点部分可以被基板上相应的通孔容纳。
然而,电镀通孔限制了布线密度(即,可以布置在板层的表面上的线路数)。因此电镀通孔往往会增加提供所需布线所必需的板层数。然而,增加层数增加了板厚度和制造成本。由于增加了地线层数,它还增大了电容。增大电容减小了阻抗。因此,会使得板阻抗低于组件阻抗,这在板阻抗与组件阻抗之间产生了不想要的不连续。希望的是组件阻抗与板阻抗尽可能的匹配,以避免由于阻抗不连续而出现的信号反射。这种反射产生了不必要的噪声,其会降低信号完整性。
可选的,可以用表面贴装技术(surface mount technology)(SMT)将电组件安装到电路板上。SMT包括通过将每个触头末端电连接到位于基板表面上相应的SMT焊盘上,来将触头末端电连接到基板表面。触头的末端可以包括导电焊球,其通常焊接到焊盘上。在多层板上,SMT焊盘通常电连接到过孔,过孔在板的层之间延伸,并将SMT焊盘或一个层上的线路电连接到另一层的线路。
图1示出了典型的SMT连接器基底面,包括排列在焊盘排列中的多个SMT焊盘P和排列在过孔排列中的多个过孔V。每个过孔V都电连接到相应的一个SMT焊盘P。如所示,SMT焊盘P和过孔V可以以所谓的“狗骨形(dog-bone)”方式排列。如在插入图中所示,该“狗骨形”可以包括SMT焊盘P、过孔V、过孔焊盘VP以及导电过孔线路VT,导电过孔线路VT电连接过孔焊盘与SMT焊盘。然而应明白,过孔和SMT焊盘不是必须以这种狗骨形方式排列。可选的,SMT焊盘可以与相应的过孔焊盘部分或全部重叠,从而使得在SMT焊盘与过孔焊盘之间直接连接。这种结构通常称为“焊盘内过孔(via-in-pad)”。
SMT焊盘和过孔可以排列为行和列。如图1所示,列沿水平方向延伸,与板边缘E垂直。行沿垂直方向延伸,与板边缘E平行。在相邻行中心线之间的间距可以称为行间距PR。在相邻列中心线之间的间距可以称为列间距PC
SMT焊盘P和过孔V可以是接地导体或信号导体。信号导体可以用于单端或差动信号传输。高速(即大于1GHz)连接器通常为信号传输使用差动信号对。在差动信号传输中,每个信号导体都可以与相邻信号导体配对。相应的接地导体可以布置在相邻的信号导体对之间。在一些连接器系统中,可以包含接地导体,以减小在信号导体之间的串扰,并改善阻抗匹配。
图1所示的焊盘排列可以与要表面贴装在板上的组件中的引线排列相同。例如,SMT焊盘可以排列为行和列,正如引线末端部分排列为行和列一样。此外,焊盘排列的行间距PR和列间距PC可以与引线排列的行间距与列间距相同。
类似的,过孔排列可以与焊盘排列相同。就是说,例如,过孔V可以排列为行和列,正如SMT焊盘P排列为行和列一样。此外,过孔排列的行间距PVR和列间距PVC可以与焊盘排列的行间距PR和列间距PC相同。
如上所述,可以期望减少板的层数,以尽力减少在连接器与板之间及板中不同层之间的电不连续性。实现该目的的一种方法是增加板的每个层上的布线密度。然而,将过孔排列连接到焊盘排列往往会限制板设计者改善布线密度的能力。
例如,在具有2mm列间距的典型连接器中,水平布线通道(即,在相邻列之间的板间距)的宽度仅可以包括一对线路。具有3mm列间距的典型连接器的宽度可以包括两对线路。类似的,在具有1.4mm行间距的典型连接器中,垂直布线通道(即,在相邻行之间的板间距)的宽度仅可以包括单独一条线路。因此,为了使信号对“垂直”连接出连接器,第一线路必须布置在第一对行之间,第二线路必须布置在不同的一对行之间。然而,通常希望彼此尽可能接近地布置与信号对相关联的线路。
发明内容
说明了一种方法,用于为例如诸如印刷电路板之类的基板规定表面贴装技术(SMT)连接器基底面。基板可以是任何基板,其适于容纳具有末端引线部分(即引线末端部分)排列的电组件。这种基底面可以包括导电SMT焊盘的排列。相应的SMT焊盘可以与每个末端引线部分相连。SMT焊盘可以排列在与引线排列(即末端引线部分的排列)相对应的排列中。基底面还可以包括导电过孔的排列。每个过孔可以电连接到相应的一个SMT焊盘。过孔可以排列在与焊盘排列不同的排列中(并因此与引线排列不同)。可以用增加了基板上的线路的布线密度的多种方法中的任何一种来排列过孔,同时限制在信号导体中的串扰,并在连接器与基板之间提供匹配阻抗。
可以改变过孔排列,即,过孔可以彼此相对移动,以在板的一层上获得预期的布线密度。增加布线密度会减少板层数,由此减小电容并增大阻抗。此外,可以用能影响阻抗和串扰的方式彼此相对的来排列接地过孔和信号过孔。在成对的信号导体之间的距离可以影响在其之间的阻抗。在该对与相关接地导体之间的距离也会影响阻抗。还可以改变过孔排列,以获得相邻信号导体之间可接受程度的串扰。因此,根据本发明,可以改变过孔排列,以实现在布线密度、阻抗匹配和串扰之间所希望的平衡。
相邻SMT焊盘的行可以是信号-信号-接地结构。例如,这种排列适于边缘插卡(edge card)的应用。焊盘可以耦接到以列排列的相应的过孔或电镀通孔。然而,过孔或电镀通孔的相邻列可以是交错的,从而使得一个列的接地过孔或通孔与相邻列的信号过孔或电镀通孔相邻。以这种方式,例如SMT焊盘的未交错的水平行会隔离出过孔或电镀通孔的交错的垂直列。
因此,电路板可以包括基板、成行布置在基板上的多个导电焊盘、排列在第一列中的第一接地过孔和第一信号过孔,及排列在第二列中的第二接地过孔和第二信号过孔,第二列与第一列相邻。第一和第二列的每个过孔都可以电连接到行中多个焊盘中相应的一个。第一接地过孔可以与第二信号过孔相邻。
第一和第二接地过孔中的每一个都可以是电镀通孔。第一和第二信号过孔中的每一个都可以是电镀通孔。所述多个焊盘都可以用重复的信号、信号、地的三焊盘单元来排列。第一接地触头和第二接地触头可以相对于第一和第二列中的至少一个构成第一对角线。第一信号触头和第二信号触头可以相对于第一和第二列中的至少一个构成第二对角线。第一对角线可以与第二对角线相邻。
SMT连接器基底面的电性能(即,阻抗、串扰和插入损耗)能够通过改变基底面的某些参数来优化。此类参数的实例包括信号和接地过孔开孔的相对位置、钻孔的尺寸、焊盘的尺寸等。所公开的是用于相对于SMT焊盘定位过孔开孔的各种选项,以便优化电性能。布线密度也可以被优化,以去除PCB中的层(来改善阻抗匹配并减少制造成本)。减小过孔开孔尺寸增加了可利用的布线通道带宽,其可以用于布更多的或更宽的线路。
SMT连接器基底面可以设计为用于使用高速、高密度SMT连接器(例如,SATA、SAS、DDR、PCI-Express、底板等)的任何应用。一旦选择了连接器,并确定了孔直径和信号/接地结构,多个参数就保持被优化,以使基底面性能达到最佳。这些参数包括过孔焊盘尺寸、过孔反焊盘(anti-pad)尺寸和形状、以及过孔存根(via stub)长度。
附图说明
图1示出了具有布置在其上的、典型SMT连接器基底面的基板;
图2A和2B说明了根据本发明可以对图1的基底面所做的修改;
图3A和3B说明了根据本发明可以对图1的基底面所做的修改;
图4A示出了现有技术SMT连接器基底面的示范实施例的局部视图;
图4B-4D示出了根据本发明的SMT连接器基底面的示范实施例的局部视图,以显示列间距和相邻行的过孔之间的距离,和在列中及列之间的过孔的旋转的最佳情况;
图5A和5B示出了连接器基底面的实例;
图6A和6B示出了一种基底面,其中图5A和5B所示的过孔排列在一列内被改变;
图7A和7B示出了一种基底面,其中来自不同焊盘列的焊盘耦接到在相同过孔列中的过孔;
图8A和8B示出了连接器基底面的实例;
图9A和9B示出了一种基底面,其中图8A和8B所示的过孔排列在一列内被改变;
图10A和10B示出了一种基底面,其中图8A和8B所示的过孔排列被改变,以使过孔列间距减半;
图11A和11B示出了一种基底面,其中来自不同焊盘列的焊盘耦接到相同过孔列中的过孔;
图12A和12B示出了一种基底面,其以分离信号对提供了双倍密度的布线;
图13A和13B示出了一种基底面,其提供了双倍密度的布线,而无需分离信号对;
图14A和14B示出了一种基底面,其中两列焊盘耦接到一列过孔;
图15A和15B示出了一种基底面,其中两列焊盘耦接到一列过孔,无需分离信号对;
图16A和16B示出了一种基底面,其提供了2.5倍布线密度;
图17-21说明了根据本发明的可以对过孔排列所做的修改实例;
图22A和22B示出了一种基底面的实例;
图23A-C示出了一种基底面,具有重定向到不同列中的过孔的信号对;
图24A和24B示出了一种基底面,其提供了两倍密度的布线;
图25A和25B示出了一种基底面,其提供了1.5倍布线密度;
图26A和26B示出了一种基底面,其提供了1.5倍布线密度;
图27A和27B示出了一种基底面,其提供了弯曲的布线;
图28A和28B示出了一种基底面,其提供了两倍密度的布线;
图28C示出了一种基底面,其提供了2.5倍布线密度;
图29示出了一个基底面实例,其中焊盘以行排列,相应的过孔以交错的列排列;
图30A和30B说明了用于信号导体过孔排列的各种接地过孔开孔尺寸;
图31A和31B说明了用于另一种信号导体过孔排列的各种接地过孔开孔尺寸;以及
图32A和32B为各种接地过孔开孔尺寸分别提供了差动阻抗和串扰的曲线图实例。
具体实施方式
图2A和2B示出了根据本发明一个方面的SMT连接器基底面的示范实施例的局部视图。图1中所示的过孔排列可以根据图2A和2B所示实施例来修改,以增加布线密度、匹配阻抗,并改善系统的电性能。
图2A示出了以线性排列(例如列或行)布置的第一和第二接地导体过孔G1和G2,及第一和第二信号导体过孔S1和S2。信号导体过孔S1和S2可以用于单端或差动信号传输。根据图2A所示的实施例,在相邻信号导体过孔S1和S2之间的间距A可以小于在信号导体过孔S1与和信号导体过孔S1相邻的接地导体过孔G1之间的间距A1。在相邻信号导体过孔S1和S2之间的间距A可以小于在信号导体过孔S2与和信号导体过孔S2相邻的接地导体过孔G2之间的间距A2。间距A1可以与间距A2相同,也可以不同。可以选择实际的距离A、A1和A2以通过更佳的阻抗匹配和串扰减小来实现预期的布线密度和/或优化信号传输性能。
图2B示出了以线性排列(例如列或行)布置的第一和第二信号导体过孔S1、S2及单一接地导体过孔G3。信号导体过孔S1、S2可以用于单端或差动信号传输。根据图2B所示的实施例,在相邻信号导体过孔S1和S2之间的间距A可以小于在信号导体过孔S1与和信号导体过孔S1相邻的接地导体过孔G3之间的间距A3。可以选择实际的距离A和A3以通过更佳的阻抗匹配和串扰减小来实现预期的布线密度,并同时优化信号传输性能。
图3A和3B示出了根据本发明一个方面的SMT连接器基底面的示范实施例的局部视图。图1中所示的过孔排列可以根据图3A和3B所示实施例来进行修改,以改善系统的布线密度和/或电性能。
图3A示出了第一和第二接地导体过孔G1和G2及第一和第二信号导体过孔S1和S2。信号导体过孔S1和S2可以用于单端或差动信号传输。如图3A所示,信号导体过孔S1和S2可以相对于中心线C被交错,其中过孔沿着中心线C布置。就是说,信号导体过孔S1可以在第一方向上相对于中心线C偏移距离B1,且信号导体过孔S2可以在第二方向上相对于中心线C偏移距离B2。第二方向可以与第一方向相反,如图3A所示,或者两个信号过孔可以在相同方向上相对于中心线C偏移。
偏移量B1可以与偏移量B2相同或不同。如所示,接地导体过孔G1和G2可以位于中心线C上。这样,信号导体过孔S1和S2可以以这样一种方式来彼此相对交错:相对于接地导体过孔G1和G2对称,接地导体过孔G1和G2分别与信号导体过孔S1和S2相邻。可以选择实际的距离B1和B2以通过更佳的阻抗匹配和串扰减小来实现预期的布线密度,并同时优化信号传输性能。
在相邻信号导体过孔S1和S2之间的间距D(沿中心线C取得)可以小于在信号导体过孔S1与和信号导体过孔S1相邻的接地导体过孔G1之间的间距D1。间距D可以小于在信号导体过孔S2与和信号导体过孔S2相邻的接地导体过孔G2之间的间距D2。间距D1可以与间距D2相同,也可以不同。可以选择实际的距离D、D1和D2以通过更佳的阻抗匹配和串扰减小来实现预期的布线密度,并同时优化信号传输性能。
图3B示出了第一和第二信号导体过孔S1、S2及单一接地导体过孔G3。如图3B所示,信号导体过孔S1可以在第一方向上相对于中心线C偏移距离B1,且信号导体过孔S2可以在第二方向上相对于中心线C偏移距离B2。第二方向可以与第一方向相反,如图3B所示,或者两个信号过孔可以在相同方向上相对于中心线C偏移。偏移量B1可以与偏移量B2相同或不同。如所示,接地导体过孔G3可以位于中心线C上。
在相邻信号导体过孔S1和S2之间的间距D(沿中心线C取得)可以小于在信号导体过孔S1与和信号导体过孔S1相邻的接地导体过孔G3之间的间距D3。可以选择实际的距离D和D3以通过更佳的阻抗匹配和串扰减小来实现预期的布线密度,并同时优化信号传输性能。
图4A示出了具有固定列间距y的过孔排列。就是说,相邻列以距离y互相间隔。每个列都包括以接地-信号-信号结构的线性阵列排列的多个过孔。过孔可以互相等距的间隔开。就是说,每个接地过孔可以与其相邻的信号过孔间隔距离d,且相邻的信号过孔也可以彼此间隔距离d。如所示,相邻列可以彼此相对交错。就是说,一列可以与相邻列相对偏移距离e。如所示,偏移距离e可以与距离d相同(即,一行间距)。然而应理解,偏移量可以大于或小于一行间距(即,偏移距离e无需与距离d相同)。
图4B示出了列间距距离与在相邻行的过孔之间的距离的最佳情况。应该理解,本发明的方法可以用于优化信号完整性和布线密度,即使二者没有一个总是最佳的。
通过将图4B所示的过孔排列与图4A所示的过孔排列相比较,可见信号导体过孔沿着中心线彼此相对移动(例如,如在以上结合图2A和2B的说明)。将过孔彼此移得更近提供了相邻行之间增加的布线密度。可以选择D1、D2和D3的值以最优化行间的布线密度,这些值可以彼此相同或不同。信号导体过孔还可以相对于其各自的中心线偏移(例如,如在以上结合图3A和3B的说明)。可以选择B1和B2的值以实现对串扰的预期限制,这些值可以彼此相同或不同。
相邻列可以一起移得更加接近。就是说,在图4B所示的列中心线之间的距离Y可以大于在图4A所示的列中心线之间的距离y。这通过加宽存在于过孔排列左侧和右侧(如图4B所示)的布线通道,提供了在相邻列之间布线密度的增大。就是说,图4A所示的距离Δ1可以大于图4B所示的距离Δ2。可以选择Y和Y1的值,以及在相邻列之间的相对偏移量E,以平衡系统的阻抗、串扰和布线密度要求。如图4B所示,例如,两个相邻接地过孔,如在周围画线的接地过孔,可以被位于该相邻接地过孔之间(例如,在中间点)的单一接地过孔(以虚线示出)代替。
图4C和4D示出了在列内和其之间的过孔的旋转。如图4C所示,每个信号导体过孔都可以相对于其各自的中心线偏移,偏移方向与图4B所示的排列中它的偏移方向相反。换另一种方式,与图4B所示的排列相比,每个信号对都可以围绕其中心点旋转90°。图4D示出了一种排列,其中只有一些对被相对于图4B所示的排列旋转。接地过孔的排列与图4A和4B所示的接地过孔的排列相同。
图5A和5B示出了连接器基底面的实例。图5A示出了顶层结构,包括两列狗骨形结构的过孔V和焊盘P。如所示,过孔排列的行间距PVR与SMT焊盘排列的行间距PR相同。过孔排列的列间距PVC与SMT焊盘排列的列间距PC相同。在过孔相邻列之间的相对偏移量QVC与在SMT焊盘相邻列之间的相对偏移量OC相同。在这种基底面中,列间距PC可以约为2mm。因此,过孔排列与焊盘排列相同。图5B示出了在内层上的过孔V的排列,包括过孔反焊盘AP的排列实例。如图5B所示,一对线路T可以沿在相邻列之间的布线通道进行布线。过孔反焊盘将被布置在接地层上,与该线路不在同一层上。
图6A和6B示出了一种基底面,其中以如上述结合图2A和2B的说明中的方式,在一列内改变了如图5A和5B所示的过孔排列。图6A所示的焊盘排列与图5A所示的焊盘排列相同。SMT焊盘的相邻列彼此以距离OC相对偏移。过孔列间距PVC与SMT焊盘列间距PC相同。然而,过孔排列被改变,从而使得在相邻信号导体过孔之间的间距A可以大于在信号导体过孔与相邻的接地导体过孔之间的间距A1、A2。即使布线密度没有改变,也期望如图6A和6B所示的排列会产生更高的阻抗,并因此得到比如图5A和5B所示的排列更佳的阻抗匹配。此外,在相邻过孔之间的距离A可以大于焊盘行间距PR。因此,由于一个或多个线路TV可以如所示的布置在相邻行之间,布线密度可以得到改善。
图7A和7B示出了一种基底面,其中,根据本发明的一个方面,改变了如图5A和5B所示的过孔排列。图7A所示的焊盘排列与图5A所示的焊盘排列相同。过孔列间距PVC与焊盘列间距PC相同。然而,基底面被改变,从而使得布置在不同列中的焊盘P耦接到沿着一个列布置的过孔V。例如,如图7A所示,在第一焊盘列(例如上面的焊盘列)中的一对信号导体焊盘P1、P2可以连接到在一个过孔列(例如,中间过孔列)中的第一对信号导体过孔V1、V2,同时在第二焊盘列(例如,下面的焊盘列)中的一对信号导体焊盘P3、P4可以连接到在相同过孔列中的第二对信号导体过孔V3、V4
即使布线密度没有改变,也期望如图7A和7B所示的排列比如图5A和5B所示的排列产生更低的串扰。众所周知,差动串扰是在相邻差动信号对之间的串扰之和的函数。还众所周知的,在相反符号的对之间的串扰可以小于在相同符号的对之间的串扰,其它所有的都相同。就是说,当相邻对中的一个是信号发射器对,而另一个相邻对是信号接收器对时,在相邻对之间的串扰可以较小。根据本发明的一个方面,可以选择相邻对,以通过将与具有相反符号的信号对相关联的焊盘布线到相邻过孔对,来将串扰降低到最小。
图8A和8B示出了一种连接器基底面实例。图8A示出了两列狗骨形结构的过孔V和焊盘P。图8B示出了在内层上的过孔V的排列,包括过孔反焊盘AP的排列实例。如所示,过孔排列的行间距PVR与SMT焊盘排列的行间距PR相同。过孔排列的列间距PVC与SMT焊盘排列的列间距PC相同。在过孔相邻列之间的交错量OVC与在SMT焊盘的相邻列之间的相对偏移量OC相同。因此,过孔排列与SMT焊盘排列相同。如图8B所示,两对线路T可以沿在相邻列之间的布线通道来布线。在这种基底面中,列间距PC可以约为3mm。
图9A和9B示出了一种基底面,其中,以如以上结合图2A和2B的说明中的方式,在一列中改变了如图8A和8B所示的过孔排列。如所示,在一列中的相邻信号导体过孔之间的间距A可以大于在信号导体过孔与相邻的接地导体过孔之间的间距A1、A2。注意在图8B、9B、10B和11B中所示的反焊盘可以小于在图5B、6B和7B中所示的反焊盘。因此,可以预期的是,使用如图9A和9B所示基底面的信号完整性不如使用如图6A和6B所示基底面的信号完整性好。然而,一对线路TV可以沿所示的每一个此种布线通道来布线。如上所述,增加布线密度会通过减小板的层数来增大阻抗。因此,图9A和9B所示的基底面提供了在信号完整性和阻抗匹配之间的折衷。
图10A和10B示出了一种基底面,其中如图9A和9B所示的过孔排列被进一步的改变以将过孔列间距减半。就是说,在图10A和10B所示的过孔列间距PVC约为图9A和9B所示的过孔列间距PVC的一半(因此,约为SMT焊盘列间距PC的一半)。因此,在相邻过孔列之间的布线通道的宽度也被减半。然而,由于有双倍的列,从而有双倍的布线通道,因此在布线密度上没有减小。然而,通过将过孔排列在四列中,而不是两列中,信号过孔可以彼此离得更远,这有助于改善信号完整性。
图11A和11B示出了一种基底面,其中以如上述结合图2A和2B的说明中的方式,改变了如图8A和8B所示的过孔排列,从而使得布置在不同列中的焊盘耦接到沿单一过孔列布置的过孔。图11A和11B所示的焊盘排列与图8A和8B所示的焊盘排列相同。图11A和11B所示的过孔列间距PVC与图8A和8B所示的过孔列间距PVC相同。
然而,如图11A所示,在一列中的相邻信号导体过孔之间的间距A可以大于在信号导体过孔与相邻的接地导体过孔之间的间距A1、A2。此外,在第一焊盘列(例如图11A所示的上面的焊盘列)中的一对信号导体SMT焊盘P可以连接到在一个过孔列(例如,中间过孔列)中的第一对信号导体过孔V,同时在第二焊盘列(例如下面的焊盘列)中的一对信号导体SMT焊盘P可以连接到在该过孔列中的第二对信号导体过孔V。如以上结合图7A和7B的说明,即使布线密度没有改变,也可以预期图11A和11B所示的排列会产生比图8A和8B所示的排列更低的串扰。注意,在图11A和11B所示的基底面中,在行之间的布线通道提供了相对直的线路TV,而不是图9A和9B所示的弯曲的线路。
图12A和12B示出了一种基底面,其中,改变了如图8A和8B所示的过孔排列,以在相邻行之间提供双倍密度的布线,同时在相邻列之间保持双倍密度的布线(例如,四对而不是两对)。尽管图12A中示出了四列焊盘,但图12A所示的焊盘排列与图8A所示的焊盘排列相同。如在图12B中非常清楚可见的,信号对可以被分开。例如,信号导体1和3可以构成第一对,同时信号导体2和4构成第二对。换句话说,过孔可以被排列为使得相邻信号导体过孔与不同的差动信号对相关联。例如,可以如所示的来排列过孔,从而使得过孔2位于过孔1和3之间。这样,由信号导体过孔1和3构成的差动信号对可以被“分开”。应理解,增加在构成一个对的导体之间的距离增大了阻抗。
另外,如上所述,相邻过孔可以彼此分开一个距离,该距离允许在构成对的过孔之间的线路的布线。如所示,两对线路可以布线在构成对的过孔之间。这种排列还允许两个接地焊盘,例如AP1和AP2耦接到同一接地过孔G。因此,可以删除多个接地过孔。
可以改变过孔排列以获得可接受程度的差动串扰。如众所周知的,在一列中的差动串扰是单个串扰之和的函数。例如,对于在图12B所示排列中从上数第三列,可以通过将在信号导体1和2、2和3、3和4、及1和4之间的单个串扰相加来计算差动串扰。过孔排列可以被改变,例如过孔可以相对于彼此而来回移动,直至全部的单个串扰之和接近0(或至少低于可接受的程度)。
图13A和13B示出了另一种基底面,其提供了双倍密度的布线,而无需分离信号对。图13A所示的焊盘排列与图12A所示的焊盘排列相同。图13A和13B说明如在结合图12A和12B所示排列的描述中一样用于一列内的原理也能够用于列之间。就是说,过孔可以彼此相对来回移动,直至差动串扰低于可接受的程度。
如图13B所示,相邻信号对3、4和5、6被相互分开,但信号对没有被分开(就是说,每个信号导体和与其构成一对的另一个信号导体相邻)。因此,相邻过孔对可以被相互分开一个距离,该距离允许在其间布线。如所示,四对线路可以布线在过孔对3、4和5、6之间。
可以通过对在信号导体之间的单个串扰求和来计算在对之间的差动串扰。例如,可以通过对在信号导体1和3、2和3、2和4、及1和4之间的单个串扰求和,来计算在对1、2和3、4之间的差动串扰。过孔可以来回移动,直至差动串扰低于可接受的程度。
图14A和14B示出了一种基底面,其中两列焊盘耦接到一列过孔。如所示,过孔列间距PVC可以是焊盘间距PC的两倍。因此,在板的内层中,在相邻过孔列之间的布线通道可以是两倍宽,尽管这种布线通道的数量可能只有一半。如所示,四个对可以布线在一个通道中,而不是在两个通道的每一个中布线两个对。过孔行间距PVR可以是焊盘行间距PR的一半。然而,信号对可以被分开,以改善信号完整性。就是说,在一个过孔列中的相邻信号导体过孔可以属于不同信号对。例如,信号导体过孔1和3可以构成第一对,信号导体过孔2和4可以构成第二对。如所示,两个信号对可以彼此相邻布置,而无需在其间插入接地。由于两个接地焊盘可以耦接到一个接地过孔,因此可以删除多个接地过孔。
图15A和15B示出了一种基底面,其中两列焊盘耦接到一列过孔,且无需分离信号对。如所示,过孔列间距PVC可以是焊盘列间距PC的两倍。这样,在相邻过孔列之间的布线通道可以是两倍宽,尽管这种布线通道数量可能只有一半。如所示,四个对可以布线在一个通道内,而不是在两个通道的每一个中布线两个对。由于两个接地焊盘可以耦接到一个接地过孔,因此可以删除多个接地过孔。过孔行间距PVR可以是焊盘行间距PR的两倍。信号对可以沿着行交错。就是说,相邻信号导体可以属于同一对(例如,过孔1和2可以构成第一对;过孔3和4可以构成第二对),并且两个信号对(例如,1、2和3、4)可以彼此相邻布置,而无需在其间插入接地。
图16A和16B示出了一种基底面,其提供了2.5倍布线密度。尽管在图16A和16B所示的基底面没有显示分离信号对,应理解信号对能够被分离。注意图16B所示的布线通道与图15B所示的布线通道相同。然而,图16B所示的基底面与图15B所示的基底面不同之处在于图16B所示的线路可以比图15B所示的线路窄。
使用更窄的线路增大了在给定宽度的布线通道内的布线密度。更宽的线路是有利的,因为插入损耗随线路宽度增大而减小。线路可以具有在约100-300μm范围中的宽度,优选的在大约100-200μm的范围内。
在图16B所示的实例中,五对线路可以布线在相邻过孔列之间。在具有四列的导体实例中,其中每一列有五个信号对,在布线密度上增加25%(即,每四个有一对额外的布线线路)意味者只需要两个板层,而不是三个。如上所述,减少板层数量有助于减小电容量,从而增大阻抗。减少板层数量还可以减小或消除过孔的背面钻孔的需要。
根据本发明,在图14B、15B和16B所示的任何过孔排列都可以根据图17-21所示的实施例来修改,以改善连接器/基板系统的布线密度和电性能。
图17示出了一种连接器基底面的局部视图,其包括第一对信号导体过孔S1和S2,及第二对信号导体过孔S3和S4。过孔S1和S2可以构成第一差动信号对,信号导体过孔S3和S4可以构成第二差动信号对。如所示,过孔可以布置在线性排列中。
在信号导体过孔S1和S2之间的间距E1及在信号导体过孔S3和S4之间的间距E3每一个都可以小于在信号导体过孔S2和S3之间的间距E2。同样的,在信号导体过孔S1和接地导体过孔G1之间的间距E,及在信号导体过孔S4和接地导体G2之间的间距E4可以小于间距E2。通常,间距E、E1、E3和E4可以彼此相同或不同。可以选择实际距离E、E1、E2、E3和E4,以通过更佳的阻抗匹配和串扰减小来实现预期的布线密度,同时优化信号传输性能。
图18示出了一种连接器基底面的可选实施例的局部视图,其包括两个接地导体过孔G1和G2,及四个信号导体过孔S1、S2、S3和S4。如图18所示,信号导体过孔S1、S2、S3和S4可以沿中心线C彼此相对交错,过孔沿着中心线布置。就是说,例如,信号导体过孔S1和S3可以在第一方向上相对于中心线C偏移距离B1,信号导体过孔S2和S4可以在与第一方向相反的方向上相对于中心线C偏移距离B2。偏移量B1可以与偏移量B2相同或不同。如所示,接地导体过孔G1和G2可以位于中心线C之上。因此,信号导体过孔S1、S2、S3和S4可以被以这样一种方式来彼此相对交错:使其相对于分别与信号导体过孔S1和S4相邻的接地导体过孔G1和G2对称。可以选择实际距离B1和B2,以通过更佳的阻抗匹配和串扰减小来实现预期的布线密度,同时优化信号传输性能。
通常,间距F、F1、F2、F3和F4可以彼此相同或不同。可以选择实际间距F、F1、F2、F3和F4以通过更佳的阻抗匹配和串扰减小来实现预期的布线密度,同时优化信号传输性能。还期望距离F、F1、F2、F3和F4之和可以小于图17所示的距离E、E1、E2、E3和E4之和,以对于相同的连接器引线排列实现相同的电性能。
图19示出了一种连接器基底面的示范实施例的局部视图,其包括两个接地导体过孔G1和G2,及四个信号导体过孔S1、S2、S3和S4。如图19所示,信号导体过孔S1、S2、S3和S4可以沿中心线C彼此相对交错,过孔沿着中心线布置。就是说,例如,信号导体过孔S1和S3可以在第一方向上相对于中心线C偏移距离B1,信号导体过孔S2和S4可以在与第一方向相反的方向上相对于中心线C偏移距离B2。偏移量B1可以与偏移量B2相同或不同。
接地导体过孔G1和G2也可以相对于中心线C偏移。接地导体G1可以相对于中心线C偏移距离B3,且可以与信号导体过孔S2和S4偏移方向相同。接地导体G2可以相对于中心线C偏移距离B4,且可以与信号导体过孔S1和S3偏移方向相同。通常,偏离量B1、B2、B3和B4可以彼此相同或不同。如所示,过孔可以被以这样一种方式来彼此相对交错:使其相对于中心线C对称。可以选择实际距离B1、B2、B3和B4,以通过更佳的阻抗匹配和串扰减小来实现预期的布线密度,同时优化信号传输性能。
通常,间距H、H1、H2、H3和H4可以彼此相同或不同。可以选择实际距离H、H1、H2、H3和H4,以通过更佳的阻抗匹配和串扰减小来实现预期的布线密度,同时优化信号传输性能。还期望距离H、H1、H2、H3和H4之和会小于图19所示的距离F、F1、F2、F3和F4之和,以对于相同的连接器引线排列实现相同的电性能。
图20示出了一种连接器基底面的局部视图,包括多个焊盘P,其排列为与要被基板容纳的电连接器引线的末端部分(未示出)的排列相对应。基板还可以包括排列在两对列单元中的多个过孔V。如所示,每个列单元都可以包括两对信号导体过孔S,和两个接地导体过孔G。每个过孔V都电连接到各自的焊盘P。过孔V可以相对于过孔列中心线C偏移,如结合图19的说明。
如图20所示,与在列内的相邻过孔或对之间的间距相比,在相邻列单元之间的间距可以较大。因此,由于其允许将额外的线路TV布置在相邻列单元之间,因此图20所示的连接器基底面可以改善布线密度。
图21示出一种连接器基底面的示范实施例的局部视图,其包括两个接地导体过孔G1和G2,及四个信号导体过孔S1、S2、S3和S4。如图21所示,信号导体过孔S1、S2、S3和S4可以相对于中心线C交错,过孔沿着中心线C布置。就是说,例如信号导体过孔S1和S2可以在第一方向上相对于中心线C偏移距离B1,信号导体过孔S3和S4可以在与第一方向相反的方向上相对于中心线C偏移距离B2。偏移量B1可以与偏移量B2相同或不同。如所示,接地导体过孔G1、G2可以位于中心线C上。因此,信号导体过孔S1、S2、S3和S4可以被以这样一种方式来彼此相对偏移:使其相对于接地导体过孔对称。
通常,间距I、I1、I3和I4可以彼此相同或不同。在信号导体S1与接地导体G2之间的间距I4可以大于任一间距I、I1、I2和I3。可以选择实际距离I、I1、I2、I3和I4,以通过更佳的阻抗匹配和串扰减小来实现预期的布线密度,同时优化信号传输性能。
图22A和22B示出了典型现有技术的基底面,其中,过孔排列与焊盘排列相同。就是说,例如过孔V可以排列为行和列,正如将SMT焊盘P排列为行和列一样。此外,过孔排列的行间距PVR和列间距PVC可以与焊盘排列的行间距PR和列间距PC相同。如所示,相邻过孔列没有被彼此相对交错。
图23A和23B示出了如图22A和22B所示的基底面,但通过将特定信号对重新定向到不同的过孔而进行了修改。如图23B所示,布线可以与图22B所示的相同,但线路可以发送不同的信号。在图23C所示的基底面中,可以使线路足够窄,以使得两对线路可以在相邻列之间的布线通道中布线,而不是如图22B和23B所示的只有一对。
图24A和24B示出了一个基底面,其提供双倍密度的布线,其中相邻信号对已经被分离到不同的过孔列中。如所示,过孔列可以是焊盘列的两倍。过孔行间距PVR可以与焊盘行间距PR相同,过孔列间距PVC可以是焊盘列间距PC的一半。因此,尽管在相邻过孔列之间的布线通道可以只有一半宽,但可以有两倍数量的这种布线通道。因此,可以在每条通道内布线一对线路T,而不是在数量上是一半的每条通道内布线两对。因此,布线密度没有变化。然而,将这些对分离得更远有助于改善信号完整性。可选的,该结构可以被视为将一个或多个过孔行相对于相邻行偏移。如图24B所示,例如左数第四个过孔行被从左数第三行偏移了焊盘列间距PC的一半。
图25A和25B示出了一种基底面,其提供1.5倍的布线密度。如所示,第一过孔列(例如,图25B所示最上面的过孔列)可以与第二过孔列(例如,从上数第二个过孔列)分开第一过孔列间距PV1。第二过孔列可以沿列延伸的方向相对于第一过孔列偏移距离OV。第二过孔列可以与第三过孔列(例如,从上数第三个过孔列)分开第二过孔列间距PV2,其大于第一过孔列间距PV1。这样,可以在第一过孔列与第二过孔列之间形成第一条相对较窄的布线通道(具有列间距PV1),并可以在第二过孔列与第三过孔列之间形成第二条相对较宽的布线通道(具有列间距PV2)。可以沿着第一布线通道布线一对线路T。可以沿着第二布线通道布线两对线路T。这样,该排列提供了两条相邻的布线通道,其结合起来为三对线路提供布线空间。
图26A和26B示出了一种基底面,其提供1.5倍的布线密度。如所示,第一过孔列(例如,图26B所示最上面的过孔列)可以与第二过孔列(例如,从上数第二个过孔列)分开第一过孔列间距PV1。第二过孔列可以相对于第一过孔列偏移距离OV。第二过孔列可以与第三过孔列(例如,从上数第三个过孔列)分开第二过孔列间距PV2,其大于第一过孔列间距PV1。这样,如图26B所示,可以在第二和第三过孔列之间形成布线通道,其宽度足够三对线路的布线。因此,替换每一条都能够布线一对线路的两条布线通道,该排列提供单一的布线通道,其能够布线三对线路。
图27A和27B示出了一种基底面,其提供了弯曲的布线。如所示,第一过孔列(例如,图27B所示最上面的过孔列)可以与第二过孔列(例如,从上数第二个过孔列)分开第一过孔列间距PV1。第一过孔行(例如,图27B所示的最左边的过孔行)可以相对于第二过孔行(例如,从左数第二个过孔行)偏移一个距离,如所示,该距离可以与过孔列间距PV1相同。第二过孔列可以与第三过孔列(例如,从上数第三个过孔列)分开第二过孔列间距PV2,其大于第一过孔列间距PV1。相邻行可以交错。就是说,第一行可以相对于相邻行偏移距离O。如所示,每个第三行被偏移。这样,如图27B所示,可以在第二和第三过孔列之间形成弯曲的布线通道。可以沿弯曲的布线通道布置一条或多条弯曲的线路T。
图28A和28B示出了一种基底面,其提供了双倍密度的布线。如所示,与构成第一焊盘列(例如,图28A所示最上面的焊盘列)的SMT焊盘P相关联的过孔V,及与构成与第一焊盘列相邻的第二焊盘列(例如,从上数第二个焊盘列)的焊盘P相关联的过孔V可以排列在单一过孔列中,其可以布置在第一和第二焊盘列之间。因此,没有过孔需要布置在第二焊盘列和与第二焊盘列相邻的第三焊盘列之间。
如所示,焊盘列可以分开距离PC。焊盘行可以分开距离PR。过孔列可以分开距离PVC,其可以近似为焊盘列间距PC的两倍。过孔行可以分开距离PVR,其可以近似为焊盘行间距PR的一半。因此,如图28B所示,可以在第二和第三过孔列之间形成布线通道,其宽度足够四对线路的布线。因此,替代每一条能够布线一对线路的两条布线通道,可以提供能够布线四对线路的单一布线通道。
如图28B所示,注意到每隔两对信号导体过孔可以删除一个接地过孔。这样,该排列提供了在相邻过孔单元之间的(在此每一个过孔单元包括一个接地导体过孔和两对相邻的信号导体过孔)布线通道。如所示,相邻过孔单元可以分开距离PVR2,其可以约为过孔行间距PVR的两倍。
如图28C所示,可以使得线路T足够窄,以使得可以在相邻过孔列之间的布线通道中布线五对线路T,而不是如图28B所示的只有四对。这样,可以实现2.5倍的布线密度。
图29A和29B示出了连接器基底面的实例,其中,焊盘PS、PG排列为多个行,过孔VS、VG耦接到焊盘PS、PG,并排列为多个列。示出了两行焊盘PS、PG,每一行都是信号-信号-接地结构。阴影线圆圈表示接地焊盘PG,开孔的圆圈表示信号焊盘PS。一行的信号焊盘PS可以与相邻行的信号焊盘PS对齐(即,在相同列中),但例如也可以偏移一个位置位移。同样,一行的接地焊盘PG可以与另一行接地焊盘PG对齐。这样,一行的信号和接地焊盘PS、PG可以分别与另一行的信号和接地焊盘PS、PG垂直对齐。
每个焊盘PS、PG都可以通过线路T耦接到相应的过孔VS、VG。过孔VS、VG可以垂直排列,即排列成列。过孔VS、VG可以位于在两行焊盘PS、PG之间的内部区域IA中和/或可以位于外部区域OA中,外部区域OA是在与内部区域IA相对的一侧与一行相邻的区域。过孔列可以跨过这两个焊盘行延伸,并包含与在这两行中的焊盘相关联的过孔。与焊盘相关联的过孔优选的排列为多个并排的、通常是平行的列。每一列的过孔VS、VG都可以是信号-信号-接地结构。画上阴影线的过孔表示接地过孔VG,没有画阴影线的过孔表示信号过孔VS。过孔VS、VG的相邻列可以交错,以使得在一列中的每个接地过孔VG都与相邻列中的信号过孔VS相邻。这样,每一列过孔VS、VG都可以是信号-信号-接地结构,但是接地过孔VG可以相对于相邻列中的接地过孔VG交错。线路T因此可以以这样一种方式布线:将列中交错的接地过孔VG耦接到行中未交错的接地焊盘PG。图29的线路结构可以由两行未交错的焊盘PS、PG产生四列交错的过孔VS、VG。这导致了在过孔垂直列之间布线空间的增加。可以理解,也可以为单端信号传输来设计本发明的实施例,可以相应地调整焊盘和过孔的排列。
应注意,图29的过孔结构显示了在跨过四列交错的过孔VS、VG的对角线上以线性排列的接地过孔VG的排列。这个对角线排列以虚线g来表示。在接地过孔VG的每个对角线线性排列之间可以是信号过孔VS的对角线行。信号过孔VS的对角线排列以虚线s1和s2来表示。然而,应理解,可以设计替换排列,来提供接地过孔VG相对于相邻过孔列的交错。
过孔VS和VG在图29中示为线性排列为多个列,并且信号过孔和接地过孔构成各个信号-信号-接地单元,其沿着列方向彼此等距隔开。然而,对于希望得到的线路布线和电特性,可以根据前述实施例来布置过孔的间隔和相对位置。例如,过孔之间的相对间隔可以如在图2B所示的,在信号过孔之间的距离小于在接地过孔与下一个相邻信号过孔之间的距离。类似的,过孔能够如图3B或4B所示的来排列,信号过孔相对于列中心线横向偏移。
在可选实施例中,焊盘PS、PG可以与电镀通孔列相耦接,在此,电镀通孔具有与过孔VS、VG的结构相似的交错结构。可选的,信号焊盘PS可以耦接到信号过孔VS,接地焊盘PG可以耦接到接地电镀通孔,且反之亦然。
图29B示出了这样一种焊盘排列,例如其可以适于SMT边缘插卡应用。在所示实施例中,焊盘的排列理论上适合于差动对边缘插卡连接器。传送差动信号的两个连接器端可以端接到相邻焊盘PS,这些焊盘对通过接地焊盘PG与相邻焊盘对隔开。
图30A示出了两对信号导体过孔S,在这些对之间布置了接地过孔GS。这些对可以是差动信号对。过孔沿中心线C排列为线性阵列。各个过孔开孔可以为近似相同的尺寸。图31B示出了两对信号导体过孔S,在这些对之间布置了相对较大的接地过孔GL。如图30B所示,接地过孔开孔可以大于任何信号过孔开孔。
图31A示出了两对信号导体过孔S,在这些对之间布置了接地过孔GS。这些对可以是差动信号对。过孔排列为两个相邻列,并以距离PVC隔开。这些列彼此以距离OV相对偏移。如图31A所示,每个过孔开孔可以为近似相同的尺寸。图31B示出了两对信号导体过孔S,在这些对之间布置了相对较大的接地过孔GL。如图31B所示,接地过孔开孔可以大于任何信号过孔开孔。
接地过孔开孔越大,在信号导体过孔之间的串扰就越小。图32A和32B为各种接地过孔开孔尺寸分别提供了差动阻抗与串扰的曲线图实例。数据是为具有约0.5mm直径的信号过孔开孔、及约0.5、0.9和1.3mm直径的接地过孔开孔的基底面而收集的。由图32A可见,差动阻抗(即,在构成差动信号对的信号过孔之间的阻抗)相对而言不受接地过孔开孔尺寸变化的影响。能够由图32B可见,随着接地过孔开孔直径的增加,串扰性能显著改善。
这样,就描述了用于SMT底板和边缘插卡应用的基底面定义的几个实施例。应理解,前述实施例仅是为了解释的目的而提供的,决不是被解释为本发明的限制。例如,尽管结合包括接地导体过孔和信号导体过孔的过孔排列而描述了前述示范实施例,但可以预期到,根据本发明的原理,可以为仅具有信号触头的连接器设计适合的排列。类似的,尽管结合包括差动信号对的过孔排列描述了前述示范实施例,但可以预期到,根据本发明的原理,可以为仅具有单端信号导体的连接器,以及为具有差动信号对和单端信号导体组合的连接器设计适合的排列。另外,应理解可以单独使用上述概念,或者与上述任意另一概念相组合来使用。

Claims (28)

1.一种用于容纳电组件的电路板,所述电路板包括:
基板;
多个导电焊盘(P),布置在所述基板的表面上,以及
多个过孔(S1、S2),延伸到所述基板中,
其中,(i)所述多个过孔(S1、S2)的每一个都电连接到所述多个焊盘(P)中的相应焊盘,(ii)所述多个焊盘(P)彼此相对地布置在焊盘排列中,(iii)所述多个过孔(S1、S2)彼此相对地布置在过孔排列中,所述过孔排列与所述焊盘排列不同,以及(iv)所述电路板的电性能特性相对于在所述过孔排列与所述焊盘排列相同的情况下将会具有的电性能特性而得到改善。
2.如权利要求1所述的电路板,其中,所述电性能特性是串扰。
3.如权利要求1所述的电路板,其中,所述电性能特性是阻抗。
4.如权利要求1所述的电路板,其中,所述电性能特性是插入损耗。
5.一种用于容纳电组件的电路板,所述电路板包括:
基板;
第一多个导电焊盘,布置在所述基板的表面上的第一线性阵列中;
第二多个导电焊盘,布置在所述基板的表面上的第二线性阵列中;以及
多个导电过孔,布置在线性阵列中,所述多个过孔的每一个都延伸到所述基板中,
其中,(i)在每个焊盘阵列中的所述多个焊盘排列在接地-信号-信号-接地的排列中,并且(ii)所述多个焊盘的每一个都电连接到所述多个过孔的其中之一,(iii)所述多个过孔排列在接地-信号-信号-信号-信号-接地的排列中,(iv)所述多个信号过孔中的第一两个电连接到所述第一焊盘阵列中的焊盘,(v)所述多个信号过孔中的第二两个电连接到所述第二焊盘阵列中的焊盘,(vi)所述第一两个信号过孔构成第一差动信号对,(vii)所述第二两个信号过孔构成第二差动信号对。
6.一种用于容纳电组件的电路板,所述电路板包括:
基板;
布置在所述基板的表面上的导电焊盘的第一线性焊盘阵列,所述第一焊盘阵列包括第一接地焊盘、与所述第一接地焊盘相邻的第一信号焊盘、与所述第一信号焊盘相邻的第二信号焊盘、与所述第二信号焊盘相邻的第二接地焊盘;
布置在所述基板的表面上的导电焊盘的第二线性焊盘阵列,所述第二焊盘阵列包括第三接地焊盘、与所述第三接地焊盘相邻的第三信号焊盘、与所述第三信号焊盘相邻的第四信号焊盘、与所述第四信号焊盘相邻的第四接地焊盘;以及
延伸到所述基板中的导电过孔的线性过孔阵列,所述过孔阵列包括第一接地过孔、与所述第一接地过孔相邻的第一信号过孔、与所述第一信号过孔相邻的第二信号过孔、与所述第二信号过孔相邻的第三信号过孔、与所述第三信号过孔相邻的第四信号过孔、以及与所述第四信号过孔相邻的第二接地过孔,
其中,所述接地焊盘的每一个都电连接到所述接地过孔的其中之一,所述信号焊盘的每个都电连接到所述信号过孔中的相应过孔。
7.如权利要求6所述的电路板,其中,所述信号过孔的第一两个构成第一差动信号对,以及所述信号过孔的第二两个构成第二差动信号对。
8.如权利要求6所述的电路板,其中,所述第一和第二信号过孔构成第一差动信号对,并且所述第三和第四信号过孔构成第二差动信号对。
9.如权利要求8所述的电路板,其中,所述第一信号过孔电连接到所述第一信号焊盘,所述第二信号过孔电连接到所述第二信号焊盘,所述第三信号过孔电连接到所述第三信号焊盘,所述第四信号过孔电连接到所述第四信号焊盘。
10.如权利要求7所述的电路板,其中,所述第一和第三信号过孔构成所述第一差动信号对,并且所述第二和第四信号过孔构成所述第二差动信号对。
11.如权利要求10所述的电路板,其中,所述第一信号过孔电连接到所述第一信号焊盘,所述第三信号过孔电连接到所述第二信号焊盘,所述第二信号过孔电连接到所述第三信号焊盘,所述第四信号过孔电连接到所述第四信号焊盘。
12.如权利要求6所述的电路板,其中,所述过孔阵列布置在所述第一和第二焊盘阵列之间。
13.如权利要求12所述的电路板,其中,所述过孔阵列平行于所述第一和第二焊盘阵列中的每一个。
14.如权利要求6所述的电路板,其中,所述第一和第三接地焊盘中每一个都电连接到所述第一接地过孔。
15.如权利要求14所述的电路板,其中,所述第二和第四接地焊盘中每一个都电连接到所述第二接地过孔。
16.一种用于容纳电组件的电路板,所述电路板包括:
基板;
第一多个导电焊盘,布置在所述基板的表面上的第一线性阵列中;
第二多个导电焊盘,布置在所述基板的表面上、与所述第一线性阵列平行的第二线性阵列中;以及
多个导电过孔,延伸到所述基板中,其中,所述多个过孔的每个都电连接到所述多个焊盘中的相应焊盘,并且所述多个过孔布置在所述焊盘阵列之间。
17.如权利要求16所述的电路板,其中,(i)所述第一多个焊盘包括第一信号焊盘和与所述第一信号焊盘相邻的第二信号焊盘,(ii)所述第二多个焊盘包括第一接地焊盘,(iii)所述多个过孔包括:第一接地过孔,其电连接到所述第一接地焊盘;第一信号过孔,其电连接到所述第一信号焊盘;以及第二信号过孔,其电连接到所述第二信号焊盘。
18.如权利要求17所述的电路板,其中,所述第一信号过孔、所述第二信号过孔、以及所述第一接地过孔布置在第三线性阵列中。
19.如权利要求18所述的电路板,其中,所述第三线性阵列垂直于所述第一线性阵列。
20.如权利要求19所述的电路板,其中,所述第一和第二信号焊盘构成第一差动信号对。
21.如权利要求17所述的电路板,其中,(i)所述第一多个焊盘包括第二接地焊盘,(ii)所述第二多个焊盘包括第三信号焊盘和与所述第三信号焊盘相邻的第四信号焊盘,(iii)所述多个过孔包括:第二接地过孔,其电连接到所述第二接地焊盘;第三信号过孔,其电连接到所述第三信号焊盘;以及第四信号过孔,其电连接到所述第四信号焊盘。
22.如权利要求21所述的电路板,其中,(i)所述第一信号过孔、所述第二信号过孔、以及所述第一接地过孔布置在第三线性阵列中,并且(ii)所述第三信号过孔、所述第四信号过孔、以及所述第二接地过孔布置在第四线性阵列中。
23.如权利要求22所述的电路板,其中,所述第三和第四线性阵列中每一个都垂直于所述第一线性阵列。
24.如权利要求23所述的电路板,其中,(i)所述第一接地过孔和所述第三信号过孔沿着第一行过孔布置,(ii)所述第一信号过孔和所述第四信号过孔沿着第二行过孔布置,以及(iii)所述第二信号过孔和所述第二接地焊盘沿着第三行过孔布置。
25.如权利要求24所述的电路板,其中,所述第三线性阵列与所述第四线性阵列相邻。
26.如权利要求25所述的电路板,其中,(i)所述第一和第二信号焊盘构成第一差动信号对,并且(ii)所述第三和第四信号焊盘构成第二差动信号对。
27.一种电连接器系统,包括:
电连接器,包括多个电触头,所述电连接器具有由所述多个电触头的末端形成的贴装接口,所述电连接器确定在所述贴装接口处的连接器阻抗;以及
电路板,包括基板、布置在所述基板的表面上的多个导电焊盘(P)、以及延伸到所述基板中的多个过孔(S1、S2);
其中,(i)所述多个过孔(S1、S2)的每一个都电连接到所述多个焊盘(P)中的相应焊盘,(ii)所述多个焊盘(P)彼此相对地布置在焊盘排列中,(iii)所述多个过孔(S1、S2)彼此相对地布置在过孔排列中,所述过孔排列与所述焊盘排列不同,(iv)所述电触头的末端贴装到所述电路板上的相应的焊盘上,并且(v)所述电路板所具有的板阻抗基本上与所述连接器的阻抗匹配。
28.一种用于容纳电组件的电路板,所述电路板包括:
基板;
布置在所述基板的表面上的导电焊盘的第一线性焊盘阵列,所述第一焊盘阵列包括第一接地焊盘、与所述第一接地焊盘相邻的第一信号焊盘、与所述第一信号焊盘相邻的第二信号焊盘、与所述第二信号焊盘相邻的第二接地焊盘;
布置在所述基板的表面上的导电焊盘的第二线性焊盘阵列,所述第二焊盘阵列包括第三接地焊盘、与所述第三接地焊盘相邻的第三信号焊盘、与所述第三信号焊盘相邻的第四信号焊盘、与所述第四信号焊盘相邻的第四接地焊盘;
布置在所述焊盘阵列之间的导电过孔的第一线性阵列,所述第一过孔阵列包括第一接地过孔、与所述第一接地过孔相邻的第一信号过孔、以及与所述第一信号过孔相邻的第二信号过孔;以及
布置在所述焊盘阵列之间的、与所述第一线性阵列平行的导电过孔的第二线性阵列,所述第二过孔阵列包括第三信号过孔、与所述第三信号过孔相邻的第四信号过孔、以及与所述第四信号过孔相邻的第二接地过孔,
其中,(i)所述第一接地焊盘电连接到所述第一接地过孔,(ii)所述第二接地焊盘电连接到所述第二接地过孔,(iii)所述第一信号焊盘电连接到所述第四信号过孔,(iv)所述第二信号焊盘电连接到所述第二信号过孔,(v)所述第三信号焊盘电连接到所述第三信号过孔,以及(vi)所述第四信号焊盘电连接到所述第一信号过孔。
CN2005800473019A 2004-11-29 2005-11-28 改进的匹配阻抗表面贴装技术基底面 Expired - Fee Related CN101112135B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US63154504P 2004-11-29 2004-11-29
US63149904P 2004-11-29 2004-11-29
US60/631,545 2004-11-29
US60/631,499 2004-11-29
US68651405P 2005-06-01 2005-06-01
US60/686,514 2005-06-01
PCT/EP2005/012691 WO2006056473A2 (en) 2004-11-29 2005-11-28 Improved matched-impedance surface-mount technology footprints

Related Child Applications (4)

Application Number Title Priority Date Filing Date
CN2009102040712A Division CN101673887B (zh) 2004-11-29 2005-11-28 改进的匹配阻抗表面贴装技术基底面
CN2009102040708A Division CN101673886B (zh) 2004-11-29 2005-11-28 改进的匹配阻抗表面贴装技术基底面
CN2009102040695A Division CN101673885B (zh) 2004-11-29 2005-11-28 改进的匹配阻抗表面贴装技术基底面
CN2009102040727A Division CN101674707B (zh) 2004-11-29 2005-11-28 改进的匹配阻抗表面贴装技术基底面

Publications (2)

Publication Number Publication Date
CN101112135A CN101112135A (zh) 2008-01-23
CN101112135B true CN101112135B (zh) 2010-12-29

Family

ID=36217936

Family Applications (5)

Application Number Title Priority Date Filing Date
CN2009102040708A Expired - Fee Related CN101673886B (zh) 2004-11-29 2005-11-28 改进的匹配阻抗表面贴装技术基底面
CN2009102040695A Expired - Fee Related CN101673885B (zh) 2004-11-29 2005-11-28 改进的匹配阻抗表面贴装技术基底面
CN2009102040727A Expired - Fee Related CN101674707B (zh) 2004-11-29 2005-11-28 改进的匹配阻抗表面贴装技术基底面
CN2009102040712A Expired - Fee Related CN101673887B (zh) 2004-11-29 2005-11-28 改进的匹配阻抗表面贴装技术基底面
CN2005800473019A Expired - Fee Related CN101112135B (zh) 2004-11-29 2005-11-28 改进的匹配阻抗表面贴装技术基底面

Family Applications Before (4)

Application Number Title Priority Date Filing Date
CN2009102040708A Expired - Fee Related CN101673886B (zh) 2004-11-29 2005-11-28 改进的匹配阻抗表面贴装技术基底面
CN2009102040695A Expired - Fee Related CN101673885B (zh) 2004-11-29 2005-11-28 改进的匹配阻抗表面贴装技术基底面
CN2009102040727A Expired - Fee Related CN101674707B (zh) 2004-11-29 2005-11-28 改进的匹配阻抗表面贴装技术基底面
CN2009102040712A Expired - Fee Related CN101673887B (zh) 2004-11-29 2005-11-28 改进的匹配阻抗表面贴装技术基底面

Country Status (3)

Country Link
EP (1) EP1839466A2 (zh)
CN (5) CN101673886B (zh)
WO (1) WO2006056473A2 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916915A (zh) * 2005-08-19 2007-02-21 鸿富锦精密工业(深圳)有限公司 改良过孔阻抗的方法
GB0709792D0 (en) * 2007-05-22 2007-06-27 Texas Instruments Ltd Optimization of organic packaging interconnect for gigabit signalling
CN101728351B (zh) * 2008-10-16 2011-07-20 英业达股份有限公司 接垫布局
US8591257B2 (en) * 2011-11-17 2013-11-26 Amphenol Corporation Electrical connector having impedance matched intermediate connection points
EP2739125A1 (en) * 2012-11-28 2014-06-04 Tyco Electronics Svenska Holdings AB Electrical connection interface for connecting electrical leads for high speed data transmission
CN103857179A (zh) * 2012-12-03 2014-06-11 泰科电子日本合同会社 Pwb占用区、具有pwb占用区的pwb、pwb与板对板连接器组件
EP3084894B1 (en) * 2013-12-18 2021-02-17 Intel Corporation Ground routing device and method
KR20160137558A (ko) * 2014-03-24 2016-11-30 센티넬 커넥터 시스템즈, 아이엔씨. 크로스 오버 통신 잭용 테스트 장치 및 이의 작동 방법
CN105764232A (zh) * 2014-12-17 2016-07-13 鸿富锦精密工业(武汉)有限公司 印刷电路板及应用该印刷电路板的电子装置
CN104822225B (zh) * 2015-04-30 2018-03-13 华为技术有限公司 一种电路板和印刷电路板组件
JP6594361B2 (ja) * 2017-02-16 2019-10-23 株式会社ソニー・インタラクティブエンタテインメント 通信機器
EP3707971A4 (en) * 2017-11-08 2021-07-28 Amphenol Corporation REAR FACE IMPRESSION FOR HIGH-DENSITY AND HIGH-SPEED ELECTRICAL CONNECTORS
CN110474183B (zh) * 2018-05-09 2020-11-20 陈松佑 用于内存模块卡的卡缘连接器及电路板组合
CN109587943A (zh) * 2018-11-09 2019-04-05 加弘科技咨询(上海)有限公司 差分线零桩线共铺走线电路板及电子器件
CN109600933B (zh) * 2018-11-28 2020-09-18 北京遥测技术研究所 同轴电连接器内导体与印制板焊盘三维立体锡膏涂覆方法
US11658080B2 (en) * 2020-10-29 2023-05-23 Hewlett Packard Enterprise Development Lp Methods and systems for transposition channel routing
CN117440595A (zh) * 2022-09-27 2024-01-23 中兴智能科技南京有限公司 差分排布结构和印制电路板
CN115696737A (zh) * 2022-11-01 2023-02-03 超聚变数字技术有限公司 电路板和计算设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636919A (en) * 1985-03-20 1987-01-13 Hitachi, Ltd. Multilayer printed circuit board
US6150729A (en) * 1999-07-01 2000-11-21 Lsi Logic Corporation Routing density enhancement for semiconductor BGA packages and printed wiring boards
US6198635B1 (en) * 1999-05-18 2001-03-06 Vsli Technology, Inc. Interconnect layout pattern for integrated circuit packages and the like
US6232564B1 (en) * 1998-10-09 2001-05-15 International Business Machines Corporation Printed wiring board wireability enhancement
US6538213B1 (en) * 2000-02-18 2003-03-25 International Business Machines Corporation High density design for organic chip carriers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5784262A (en) * 1995-11-06 1998-07-21 Symbios, Inc. Arrangement of pads and through-holes for semiconductor packages
US6717825B2 (en) * 2002-01-18 2004-04-06 Fci Americas Technology, Inc. Electrical connection system for two printed circuit boards mounted on opposite sides of a mid-plane printed circuit board at angles to each other
US7062742B2 (en) * 2003-04-22 2006-06-13 Lsi Logic Corporation Routing structure for transceiver core
US7269813B2 (en) * 2004-11-19 2007-09-11 Alcatel Off-width pitch for improved circuit card routing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636919A (en) * 1985-03-20 1987-01-13 Hitachi, Ltd. Multilayer printed circuit board
US6232564B1 (en) * 1998-10-09 2001-05-15 International Business Machines Corporation Printed wiring board wireability enhancement
US6198635B1 (en) * 1999-05-18 2001-03-06 Vsli Technology, Inc. Interconnect layout pattern for integrated circuit packages and the like
US6150729A (en) * 1999-07-01 2000-11-21 Lsi Logic Corporation Routing density enhancement for semiconductor BGA packages and printed wiring boards
US6538213B1 (en) * 2000-02-18 2003-03-25 International Business Machines Corporation High density design for organic chip carriers

Also Published As

Publication number Publication date
CN101673885A (zh) 2010-03-17
CN101674707B (zh) 2012-02-22
CN101673885B (zh) 2012-07-18
CN101673887A (zh) 2010-03-17
WO2006056473A3 (en) 2006-09-08
EP1839466A2 (en) 2007-10-03
CN101673886B (zh) 2012-07-25
CN101673887B (zh) 2013-04-10
CN101112135A (zh) 2008-01-23
CN101673886A (zh) 2010-03-17
CN101674707A (zh) 2010-03-17
WO2006056473A2 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
CN101112135B (zh) 改进的匹配阻抗表面贴装技术基底面
US7709747B2 (en) Matched-impedance surface-mount technology footprints
US11950356B2 (en) Mating backplane for high speed, high density electrical connector
EP2952074B1 (en) Pcb having offset differential signal routing
US4047132A (en) Multilayer printed circuit boards
US20060073709A1 (en) High density midplane
US20030188889A1 (en) Printed circuit board and method for producing it
JP2008543023A (ja) 電気コネクタ
CN102714917A (zh) 具有气孔的电路板
US10958001B2 (en) Connectors for low cost, high speed printed circuit boards
KR20040087876A (ko) 다층 신호라우팅 디바이스에서 층수를 줄이는 기술
US7271472B2 (en) Circuit board and method for producing a circuit board
US20240196518A1 (en) Mating backplane for high speed, high density electrical connector

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP02 Change in the address of a patent holder

Address after: French guyancourt

Patentee after: FCI S. A.

Address before: Versailles France

Patentee before: FCI S. A.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101229

Termination date: 20161128

CF01 Termination of patent right due to non-payment of annual fee