CN101111972B - 天线及无线通信设备 - Google Patents

天线及无线通信设备 Download PDF

Info

Publication number
CN101111972B
CN101111972B CN200580047329.2A CN200580047329A CN101111972B CN 101111972 B CN101111972 B CN 101111972B CN 200580047329 A CN200580047329 A CN 200580047329A CN 101111972 B CN101111972 B CN 101111972B
Authority
CN
China
Prior art keywords
circuit
antenna
reactance
radiation electrode
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200580047329.2A
Other languages
English (en)
Other versions
CN101111972A (zh
Inventor
石塚健一
川端一也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to CN201210375560.6A priority Critical patent/CN103022704B/zh
Publication of CN101111972A publication Critical patent/CN101111972A/zh
Application granted granted Critical
Publication of CN101111972B publication Critical patent/CN101111972B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

提供一种能够以低电压使多个谐振频率同时变化为期望范围的天线及无线通信设备。天线(1)具有第一天线部(2)和第二天线部(3)。第一天线部(2)由供电电极(5)、频率可变电路(4)和放射电极(6)构成,第二天线部(3)由供电电极(5)、第一电抗电路(4a)和追加放射电极(7)构成。而且,频率可变电路(4)是连接第一电抗电路(4a)和第二电抗电路(4b)的电路构造,若对连接点(P)施加控制电压(Vc),则第一及第二电抗电路(4a、4b)的电抗值根据控制电压(Vc)的大小而变化,第一天线部(2)的谐振频率(f1)和第二天线部(3)的谐振频率(f2)会同时变化。

Description

天线及无线通信设备
技术领域
本发明涉及无线通信中所利用的天线及无线通信设备。 
背景技术
近年来,在移动电话等无线通信设备中,为了实现宽带而不断发展多谐振化与多频带化。而且,还研究了控制多个谐振频率,能够实现宽带收发的天线。另外,也可虑了使频率可变来实现宽带化的天线。 
以往,作为这样的天线例如在专利文献1~专利文献3中被公开。 
专利文献1所公开的天线是倒F型天线装置。具体而言,天线元件被平行配置在接地导体上,至少一个耦合元件被平行地设置在这些接地导体与天线元件之间。而且,天线元件通过短路导体与接地导体电连接,并且,与供电用同轴线缆的供电点连接。这样,通过除了天线元件之外还具备耦合元件,可得到两个谐振频率。 
专利文献2所公开的天线具备:天线元件、和与该天线元件串联或并联连接而形成谐振电路的可变电容元件,对可变电容元件施加上述控制电压,以使谐振频率变化。 
专利文献3所公开的天线形成了放射元件与调谐电路串联连接的构成,调谐电路形成了第一电感元件和具有可变电容元件的并联电路串联连接的构成。而且,通过串联连接的第一天线单元和第二天线单元得到第一谐振频率,且仅由第一天线单元得到第二谐振频率。并且,通过由供电元件开始设置的第三天线单元得到第三谐振频率。 
专利文献1:特开2003-51712号公报 
专利文献2:特开2002-232313号公报 
专利文献3:特开2004-320611号公报 
但是,上述的现有天线中存在着下述的问题。 
在专利文献1所公开的天线中,由于是倒F型天线装置,所以,在安装于移动电话等那样的小型、薄型的无线通信设备中时,因为必须减小从接地导体到天线元件的高度,所以,耦合元件的安装位置被限制为低的位置。因此,对于多谐振的谐振频率的控制而言存在界限,其带宽只能扩展为倒F天线元件带宽的1.5倍左右。而且,相对带宽为几%,存在界限。
另一方面,在专利文献2所公开的天线中,通过上述控制电压可以使谐振频率变化,但由于将由可变电容元件构成的频率可变用谐振电路设置在天线元件的供电部附近,所以,导致供电部与天线元件的匹配条件发生变化。因此,复杂的匹配电部变得必不可少。与之相对,公开有一个将频率可变用谐振电路设置在天线元件的前端部的例子。在该例子中,由于不需要复杂的电路构成,而在电场最大(电流密度最小)的天线元件前端部设置了谐振电路,所以,无法使谐振频率大幅变化。而且,为了控制一个可变电容元件使天线的谐振频率在期望的范围中变化,需要较大的上述控制电压,因此,无法满足移动电话等无线通信设备所要求的低电压化的请求。 
另外,在专利文献3所公开的天线中,虽然能够实现多谐振且可以使谐振频率变化,但由于第三天线单元不经由调谐电路而与供电元件并联连接,所以,无法使第三谐振频率大幅变化。而且,由于并联电路被设置在放射元件的供电部附近,所以,具有与上述专利文献2所公开的天线同样的问题点。 
发明内容
本发明为了解决上述课题而提出,其目的在于,提供一种能够以低电压使多个谐振频率同时在期望的范围中变化的天线及无线通信设备。 
为了解决上述课题,技术方案1的发明提供一种天线,具备:将前端开放的放射电极经由频率可变电路与供电电极连接而构成的第一天线部;和包括在频率可变电路的中途连接的前端开放的追加放射电极和供电电极的第二天线部;将频率可变电路构成为在第一电抗电路上串联连接第二电抗电路,其中,所述第一电抗电路与所述供电电极连接且能够基于直流的控制电压使其电抗值变化,所述第二电抗电路与第一天线部的放射电极连接,通过将第二天线部的追加放射电极从上述第一及第二电抗电路的连 接点分支,从而由所述供电电极、第一电抗电路、第二电抗电路和放射电极构成了所述第一天线部,由所述供电电极、第一电抗电路、追加放射电极构成了所述第二天线部。 
根据该构成,第一天线部由供电电极、频率可变电路和放射电极构成,第二天线部由供电电极、频率可变电路的第一电抗电路和追加放射电极构成。由此,可得到第一天线部的谐振频率和第二天线部的谐振频率的多谐振状态。而且,通过使频率可变电路的第一电抗电路的电抗值变化,第一天线部的谐振频率和第二天线部的谐振频率会同时变化。即,通过频率可变电路,能够使多个谐振频率同时变化期望的范围。然而,在通过单谐振的天线谋求宽带化的情况下,需要对频率可变电路施加大的控制电压,使谐振频率在宽的范围内变化。但是,根据本发明的天线,由于能够以低的控制电压使频率不同的多个谐振频率同时变化,所以,可使用低电压的控制电压,实现宽带化。 
技术方案2的发明根据技术方案1而提出,其特征在于,第二电抗电路能够通过控制电压使其电抗值变化。 
根据该构成,可以通过控制电压使第二电抗电路的电抗值在期望的范围内变化,结果,能够使第一天线部的谐振频率多样地变化。 
技术方案3的发明根据技术方案1而提出,其特征在于,第二电抗电路其电抗值为固定值。 
根据该构成,频率可变电路的电抗值成为第一电抗电路的可变电抗值与第二电抗电路的固定电抗值之和,通过改变第一电抗电路的电抗值,第一及第二天线部的谐振频率会同时变化。 
技术方案4的发明根据技术方案2而提出,其特征在于,第一电抗电路是包括可变电容元件的串联电路或包括可变电容元件的并联电路,第二电抗电路是包括可变电容元件的串联电路或包括可变电容元件的并联电路,将第一及第二电抗电路的可变电容元件的同极之间连接,作为第一及第二电抗电路的连接点,并对该连接点施加用于对可变电容元件的电容进行控制的控制电压。 
技术方案5的发明根据技术方案3而提出,其特征在于,第一电抗电路是包括可变电容元件的串联电路或包括可变电容元件的并联电路,第二电抗电路是包括固定电容元件的串联电路或包括固定电容元件的并联电路,将第一电抗电路的可变电容元件与第二电抗电路连接,作为第一及第二电抗电路的连接点,并对该连接点施加用于对可变电容元件的电容进行控制的控制电压。 
技术方案6的发明根据技术方案1~5中任意一项而提出,其特征在于,将电感器按照跨过第一电抗电路和第二电抗电路的方式与第一及第二电抗电路并联连接。 
根据该构成,通过使用该电感器,可以构成在比第一天线部或第二天线部覆盖的频率低的频带进行谐振的第三天线部。 
技术方案7的发明根据技术方案1~6中任意一项而提出,其特征在于,追加放射电极经由用于控制谐振频率的电感器从连接点分支。 
技术方案8的发明根据技术方案1~7中任意一项而提出,其特征在于,使与追加放射电极独立的一个以上的追加放射电极从连接点分支。 
根据该构成,能够实现更多的谐振化。 
技术方案9的发明根据技术方案8而提出,其特征在于,使独立的一个以上的追加放射电极分别经由与第一电抗电路相同构造的其他电抗电路从连接点分支,向该电抗电路施加用于对该其他电抗电路的可变电容元件的电容进行控制的其他控制电压。 
根据该构成,可以按每个天线部使各追加放射电极的天线部的谐振频率自由变化。 
技术方案10的发明根据技术方案1~9中任意一项而提出,其特征在于,在放射电极的中途连接了与追加放射电极独立的追加放射电极。 
技术方案11的发明根据技术方案10而提出,其特征在于,经由电感器将独立的追加放射电极与放射电极连接。 
技术方案12的发明根据技术方案1~11中任意一项而提出,其特征在于,第一天线部呈供电电极与放射电极的开放前端隔着间隔被对置配置的环形状。 
根据该构成,通过使供电电极与放射电极的开放前端之间的间隔变化,可以改变第一天线部的电抗值。 
技术方案13的发明根据技术方案1~12中任意一项而提出,其特征在于,在电介质基体上形成了供电电极、频率可变电路、放射电极、追加放射电极等天线要素的全部或一部分。 
根据该构成,通过使电介质基体的介电常数变化,可以改变第一及第 二天线部的电抗值。 
技术方案14的发明根据技术方案1~13中任意一项而提出,其特征在于,在第一天线部的放射电极、第二天线部的追加放射电极以及一个以上独立的追加放射电极中任意一个电极或所有电极中,将该电极的中途或开放前端经由电感器单体或电抗电路与地连接。 
根据该构成,可得到基于电感器单体或电抗电路的新的谐振。 
技术方案15的发明根据技术方案14而提出,其特征在于,电抗电路是串联谐振电路或并联谐振电路的任意一种电路,或者是这些串联谐振电路与并联谐振电路的复合电路。 
技术方案16的发明根据技术方案14或技术方案15而提出,其特征在于,能够接收FM的电波、VHF频带的电波、及UHF频带的电波。 
而且,技术方案17的发明所涉及的无线通信设备具备技术方案1~16中任意一项所述的天线。 
如以上详细说明那样,根据技术方案1~16的发明的天线,可以实现多谐振状态,而且,具有能够以低的控制电压实现宽带化的出色效果。由此,能够应用于像移动电话等那样被要求低电源电压化的无线通信设备等。 
尤其是根据技术方案2的发明所涉及的天线,由于频率可变电路的第二电抗电路也可变,所以,可以使第一天线部的谐振频率更加多样地变化。 
而且,根据技术方案3的发明所涉及的天线,由于频率可变电路的第二电抗电路是固定的,所以,能够以低成本对第一及第二天线部的谐振频率赋予不同的变化量。 
并且,根据技术方案6的发明所涉及的天线,通过追加使用电感,可以由供电电极、该电感器和放射电极构成第三天线部,从而可确保新的低谐振频率的频带。 
另外,根据技术方案8的发明所涉及的天线,能够实现更多的谐振化,可提供与多媒体对应的多频带天线。 
尤其是根据技术方案9的发明所涉及的天线,可以使各谐振频率多样地变化。 
而且,根据技术方案14~16的发明所涉及的天线,可以将天线体积 保持得小,同时附加新的谐振。 
特别是在技术方案15的发明所涉及的天线中,通过将电抗电路设为串联谐振电路,可以减小对连接了该串联谐振电路的电极的谐振频率的影响,而且,通过将电抗电路设为并联谐振电路,能够减少安装电感器的常数,从而可以解决芯片部件所带有的自谐振频率问题。并且,通过采用串联谐振电路和并联谐振电路的复合电路作为电抗电路,可得到串联谐振电路具有的优点和并联谐振电路具有的优点双方的优点。 
此外,根据技术方案17的发明,可提供一种能够以低电压实现宽带收发的无线通信设备。 
附图说明
图1是表示本发明的第一实施例所涉及的天线的概略俯视图。 
图2是用于说明多谐振的可变状态的线图。 
图3是用于说明能够以低电压实现宽带化的线图。 
图4是表示本发明的第二实施例所涉及的天线的概略俯视图。 
图5是表示串联电路的第一电抗电路的具体例子的电路图。 
图6是表示可变的第二电抗电路的具体例的电路图。 
图7是表示本发明的第三实施例所涉及的天线的概略俯视图。 
图8是表示固定的第二电抗电路的具体例的电路图。 
图9是表示第三实施例的一个变形例的概略俯视图。 
图10是表示本发明的第四实施例所涉及的天线的概略俯视图。 
图11是表示并联电路的第一电抗电路的具体例的电路图。 
图12是表示第四实施例的变形例的概略俯视图,图12(a)表示第一变形例,图12(b)表示第二变形例,图12(c)表示第三变形例。 
图13是表示本发明的第五实施例所涉及的天线的概略俯视图。 
图14是由附加的电感器的特性产生的回波损耗曲线图,图14(a)表示将电感器设定为扼流线圈的情况,图14(b)表示间电感器设定为谐振频率调整用的情况。 
图15是表示第五实施例的变形例的概略俯视图,图15(a)表示第一变形例,图15(b)表示第二变形例。 
图16是表示本发明的第六实施例所涉及的天线的概略俯视图。 
图17是表示本发明的第七实施例所涉及的天线的立体图。 
图18是表示本发明的第八实施例所涉及的天线的概略俯视图。 
图19是由附加的电感器的特性产生的回波损耗曲线图。 
图20是表示本发明的第九实施例所涉及的天线的概略俯视图。 
图21是由附加的两个电感器的特性产生的回波损耗曲线图。 
图22是表示本发明的第十实施例所涉及的天线的概略俯视图 
图23是由附加的三个电感器的特性产生的回波损耗曲线图。 
图24是表示本发明的第十一实施例所涉及的天线的概略俯视图。 
图25是由附加的串联谐振电路的特性产生的回波损耗曲线图。 
图26是表示将电感器单体的电抗与串联谐振电路的电抗进行比较的线图。 
图27是表示本发明的第十二实施例所涉及的天线的概略俯视图。 
图28是由附加的串联谐振电路的特性产生的回波损耗曲线图。 
图29是表示本发明的第十三实施例所涉及的天线的概略俯视图。 
图30是由附加的串联谐振电路的特性产生的回波损耗曲线图。 
图31是表示将放射电极直接形成于追加放射电极的变形例的概略俯视图。 
图中:1-天线,2-第一天线部,3-第二天线部,4-频率可变电路,4a-第一电抗电路,4b-第二电抗电路,5-供电电极,6-放射电极,6’、7、7’-追加放射电极,9-串联谐振电路,9’-并联谐振电路,10-复合电路,40、41、43、46、47、90~94、94’、111、112-电感器,42、44-可变电容二极管,45、48、95、95’-电容器,60-开放前端,61、70、71-谐振频率调整用电感器,100-电路基板,101-非接地区域,102-接地区域,110-收发部,120-接收频率控制部,121、DC-高频截断用电阻,122-旁路电容器,G-间隔,M、M1、M2-变化量,P-连接点,Vc-控制电压,f0、fa、fb、fc、f1、f2-谐振频率。 
具体实施方式
下面,参照附图对本发明的最佳实施方式进行说明。 
实施例1 
图1是表示本发明的第一实施例所涉及的天线的概略俯视图。 
该实施例的天线1被设置于移动电话等无线通信设备。 
如图1所示,天线1形成在无线通信设备的电路基板100的非接地区域101,在与被搭载于接地区域102上的收发部110之间进行高频信号的交换。另外,直流控制电压Vc从设置于收发部110内的接收频率控制部120被输入到天线1。 
天线1具有第一天线部2和第二天线部3,该第一及第二天线部2、3成为共有频率可变电路4的构造。 
第一天线部2通过经由频率可变电路4将放射电极6与供电电极5连接而构成。具体而言,由电感器111、112构成的匹配电路形成在非接地区域101上,作为导体图案的供电电极5经由该匹配电路与收发部110连接。即,供电电极5构成第一天线部2的供电部。而且,放射电极6经由频率可变电路4与供电电极5连接,其开放前端60是隔着规定间隔G而与供电电极5对置的形状的导体图案。由此,第一天线部2整体成为环状。并且,由于基于间隔G会在供电电极5与放射电极6之间产生电容,所以,通过改变该间隔G的大小,可以将第一天线部2的电抗值改变为期望值。 
频率可变电路4被夹设在第一天线部2的供电电极5与放射电极6之间,是通过电抗值的可变而改变第一天线部2的电气长度,使第一天线部2的谐振频率可变的电路。 
频率可变电路4成为使与放射电极6连接的第二电抗电路4b(图1中记做“jX2”)与第一电抗电路4a(图1中记做“jX1”)连接的电路构造,所述第一电抗电路4a与供电电极5连接且能够通过控制电压Vc使其电抗值变化。作为第一电抗电路4a,有包括可变电容元件的串联电路或包括可变电容元件的并联电路。 
另一方面,作为第二电抗电路4b,是能够通过控制电压Vc控制其电抗值的电路,即包括可变电容元件的串联电路或包括可变电容元件的并联电路;或者其电抗值固定的电路,即包括固定电容元件的串联电路或包括固定电容元件的并联电路。 
这些第一电抗电路4a与第二电抗电路4b的连接点P经由高频截断用 电阻121及DC旁路电容器122而与接收频率控制部120连接。 
由此,如果来自接收频率控制部120的控制电压Vc被施加于连接点P,则第一及第二电抗电路4a、4b的电抗值根据控制电压Vc的大小而变化。 
第二天线部3由在频率可变电路4的中途连接的前端开放的追加放射电极7和供电电极5构成。 
具体而言,导电图案的追加放射电极7经由用于对第二天线部3的谐振频率进行控制的谐振频率调整用电感器70,与第一及第二电抗电路4a、4b的连接点P连接。由此,第二天线部3由供电电极5、频率可变电路4的第一电抗电路4a和追加放射电极7构成。而且,如果控制电压Vc被施加于连接点P、使得频率可变电路4的第一电抗电路4a的电抗值变化,则第二天线部3的电气长度变化,第二天线部3的谐振频率可变。 
接着,针对本实施例的天线显示出的作用及效果进行说明。 
图2是用于说明多谐振的可变状态的线图,图3是用于说明能够以低电压实现宽带化的线图。 
如上所述,由于第一天线部2由供电电极5、频率可变电路4和放射电极6构成,第二天线部3由供电电极5、频率可变电路4的第一电抗电路4a和追加放射电极7构成,所以,能够得到由第一天线部2产生的谐振频率f1和由第二天线部3产生的谐振频率f2的双谐振状态。而且,如果将放射电极6的长度设定得比追加放射电极7长,则由第一天线部2产生的谐振频率f1会比由第二天线部3产生的谐振频率f2低,将得到图2中由实线表示的回波损耗曲线S1。因此,如上所述,在第二电抗电路4b是能够由控制电压Vc控制的可变电路的情况下,通过将控制电压Vc从接收频率控制部120施加到频率可变电路4的连接点P,第一及第二电抗电路4a、4b的电抗值会变化,使得第一天线部2的电气长度变化。结果,如图2的由虚线表示的回波损耗曲线S2所示,第一天线部2的谐振频率f1移动了与控制电压Vc的大小对应的变化量M1,达到频率f1’。而且,同时第二天线部3的谐振频率f2移动了与可变电容二极管42的电抗值的变化对应的变化量M2,达到频率f2’。因此,通过第一及第二电抗电路4a、4b的部件设定,使得谐振频率f1的变化量M1与谐振频率f2的变化量 M2相等或不同,可以使这些谐振频率f1、f2在期望的范围内变化。而且,由于第二电抗电路4b其电抗值也可变,所以,能够使第一天线部2的谐振频率f1多样地变化。 
另外,根据该实施例的天线1,能够以低电压的控制电压Vc实现宽带化。即,如图3(a)所示,在按照由仅为谐振频率f1的单谐振天线能够实现频率f1~f3的收发的方式谋求宽带化时,必须将大的控制电压Vc施加给频率可变电路,使谐振频率f1变化变化量M,变化到频率f1~f3为止。因此,这样的天线不适用于要求低电压化的移动电话等无线通信设备。 
与之相对,在本实施例的天线1中,通过控制电压Vc能够同时使双谐振状态的谐振频率f1、f2变化。因此,如图3(b)所示,通过使谐振频率f2变化至希望的频率f2’(=f3),并且使谐振频率f1变化到谐振频率f2的最低频率f2以上的频率f1’,能够实现频率f1~f3的宽带收发。此时,谐振频率f1、f2的变化量分别为M1、M2,任意一个变化量都比单谐振情况下的变化量M小得多。即,在该天线1中,由于通过仅变化微小变化量M1或变化量M2的低电压控制电压Vc,可以使谐振频率f1、f2在频率f1~f3的范围中变化,所以,能够实现频率f1~f3的宽带收发。因此,通过使用本实施例的天线1,即使在如移动电话等那样被要求低电源电压化的无线通信设备等中也能够实现宽带收发。 
而且,在该天线1中,在将与单谐振时相同大小的控制电压Vc施加于频率可变电路4时,能够在远超过频率f1~f3的宽广范围中进行收发。根据如何设定频率可变电路4的部件,可确保单谐振时的频带一倍以上的频带。 
实施例2 
图4是表示本发明的第二实施例所涉及的天线的概略俯视图,图5是表示串联电路的第一电抗电路4a的具体例的电路图,图6是表示可变的第二电抗电路4b的具体例的电路图。 
该实施例的天线1相对第一实施例的第一电抗电路4a及第二电抗电路4b采用了具体的可变串联电路。 
作为第一电抗电路4a是包括可变电容元件的串联电路或包括可变电 容元件的并联电路,但在该实施例中,采用了包括可变电容元件的串联电路。其中,作为包括可变电容元件的串联电路,举出了图5(a)及(b)所示的串联电路。在该实例中,采用了图5(a)的串联电路。 
另一方面,作为第二电抗电路4b是包括可变电容元件的串联电路或包括可变电容元件的并联电路、或者包括固定电容元件的串联电路或包括固定电容元件的并联电路,但在该实施例中,采用了包括可变电容元件的串联电路或包括可变电容元件的并联电路。其中,作为包括可变电容元件的串联电路或包括可变电容元件的并联电路举出了图6(a)~(d)所示的电路。在该实例中,采用了图6(a)的串联电路作为可变电路。 
即,如图4所示,由将作为可变电容元件的可变电容二极管42的阳极侧与电感器41连接的串联电路构成第一电抗电路4a,其中电感器41与供电电极5连接,由将作为可变电容元件的可变电容二极管44的阳极侧与电感器43连接的串联电路构成第二电抗电路4b,其中电感器43与放射电极6连接。而且,将这些可变电容二极管42、44的同极之间(阴极侧之间)连接,并将其连接点P经由高频截断用电阻121及DC旁路电容器122与接收频率控制部120连接。其中,由于需要将可变电容二极管42、44的阳极侧的电位共同设定为零电位,所以,将电感器4c连接在电感器41的供电电极5侧的端部与电感器43的放射电极6侧的端部之间。 
由此,如果控制电压Vc从接收频率控制部120施加给频率可变电路4的连接点P,则可变电容二极管42、44的电容值变化,使得第一天线部2的电气长度变化,从而第一天线部2的谐振频率变位成与控制电压Vc的大小对应的谐振频率。与此同时,第二天线部3的谐振频率也根据可变电容二极管42的电抗值的变化而变位。 
另外,在该实施例中,作为串联连接电路的与第一电抗电路4a连接的第二电抗电路4b,采用了将电感器43和可变电容二极管44串联连接的图6(a)所示的电路,但本发明不限定于此,可以采用包括可变电容二极管44的所有串联电路或并联电路。因此,作为第二电抗电路4b,也可以采用图6(d)所示的并联电路的任意一个。 
实施例3 
接着,对本发明的第三实施例进行说明。 
图7是表示本发明的第三实施例所涉及的天线的概略俯视图,图8是表示固定的第二电抗电路4b的具体例的电路图。 
在上述第二实施例中,作为第一电抗电路4a采用了包括可变电容元件的串联电路,作为第二电抗电路4b采用了包括可变电容元件的串联电路或包括可变电容元件的并联电路,但在本实施例中,作为第二电抗电路4b采用了包括固定电容元件的串联电路或包括固定电容元件的并联电路。 
其中,作为包括固定电容元件的串联电路或包括固定电容元件的并联电路,举出了图8(a)~(e)所示的电路。在该实例中,采用了作为固定电路的图8(a)的串联电路。 
具体而言,如图7所示,与上述第一实施例同样,由电感器41和可变电容二极管42的串联电路构成了频率可变电路4的第一电抗电路4a,由作为固定电容元件的电容器45和电感器43的串联电路构成了第二电抗电路4b。而且,将第一电抗电路4a的可变电容二极管42与第二电抗电路4b的电容器45连接,并对其连接点P施加用于对可变电容二极管42的电容进行控制的控制电压Vc。 
根据该构成,由于第二电抗电路4b的电抗值是固定的,所以,不需要昂贵的可变电容二极管44等,可以相应地以低成本进行制造。 
由于其他的构成、作用及效果与上述的第二实施例相同,所以省略了详细记载。 
另外,在该实施例中,作为串联连接电路的与第一电抗电路4a连接的第二电抗电路4b,采用了将电感器43和电容器45串联连接的图8(a)所示的电路,但本发明并不限定于此,可以使用包括电容器45的所有串联电路或并联电路。因此,也可以采用图8(e)所示的并联电路作为第二电抗电路4b。即,如图9所示,通过由将电感器43和电容器45并联连接的并联电路构成第二电抗电路4b,并将可变电容二极管42的阴极侧与第二电抗电路4b连接,可得到与该实施例同样的作用效果。 
实施例4 
接着,对本发明的第四实施例进行说明。 
图10是表示本发明的第四实施例所涉及的天线的概略俯视图,图11是表示并联电路的第一电抗电路4a的具体例的电路图。 
在上述第二及第三实施例中,作为第一电抗电路4a采用了包括可变电容元件的串联电路,但在本实施例中,采用了包括可变电容元件的并联电路作为第一电抗电路4a。 
其中,作为包括可变电容元件的并联电路可举出图11(a)及(b)所示的电路。在该实例中,采用了图11(a)的并联电路。 
即,如图10所示,将由电感器47及公用电容器48构成的串联电路与由电感器41及可变电容二极管42构成的串联电路并联连接,构成了并联电路的第一电抗电路4a。另外,对于第二电抗电路4b而言也同样,将由电感器46及公用电容器48构成的串联电路与由电感器43及可变电容二极管44构成的串联电路并联连接,构成了并联电路的第二电抗电路4b。 
而且,将可变电容二极管42、44的同极之间连接,并对其连接点P施加用于对可变电容二极管42、44的电容进行控制的控制电压Vc。 
根据该构成,由于频率可变电路4的第一电抗电路4a成为并联电路,所以,与使用了串联电路的情况相比,可以使第一电抗电路4a的电抗值大幅变化。 
而且,通过将电感器46、47的任意一个用为扼流线圈,可以将第一及第二电抗电路4a、4b的一方设为串联电路构成的电抗电路,将另一方设为并联电路构成的电抗电路。因此,例如通过将电感器46用作扼流线圈,可由供电电极5、电感器41及可变电容二极管42的串联电路与追加放射电极7构成第二天线部3,在该条件下,能够设定谐振频率f2和决定可变范围。其中,电容器48作为直流截断用的电容器而发挥功能。 
由于其他的构成、作用及效果与上述第二及第三实施例相同,所以省略其记载。 
另外,在本实施例中,举例说明了作为并联电路的与第一电抗电路4a连接的第二电抗电路4b,连接了图8(c)所示的并联电路,但本发明不限定于此,当然可以采用图6及图8所示的所有电路作为第二电抗电路4b。因此,能够实现图12所示的变形。即,作为第一电抗电路4a与第二电抗电路4b的连接组合,可以采用:如图12(a)所示,图11(a)的并联电路与图6(d)所示的可变并联电路的组合;如图12(b)所示,图11(b)的并联电路与图8(a)所示的固定串联电路的组合;及如图12(c)所示, 图11(a)的并联电路与图8(d)所示的固定并联电路的组合等。 
实施例5 
接着,对本发明的第五实施例进行说明。 
图13是表示本发明的第五实施例所涉及的天线的概略俯视图,图14是由附加的电感器的特性产生的回波损耗曲线图,图14(a)表示将电感器设定为扼流线圈的情况,图14(b)表示将电感器设定为谐振频率调整用的情况。 
该实施例如图13所示,与上述第一~第四实施例的不同点在于:按照跨过频率可变电路4的第一及第二电抗电路4a、4b的方式并联附加了电感器40。 
这里,举例说明将电感器40与频率可变电路4并联连接的情况,其中,频率可变电路4采用图5(a)所示的可变串联电路作为第一电抗电路4a,并采用图6(b)所示的可变电路作为第二电抗电路4b。 
即,将电感器40配置在供电电极5与放射电极6之间,并将其两端分别与可变电容二极管42、44的阴极侧连接。 
因此,通过将电感器40设定为扼流线圈,不仅可从频带内除去杂音,而且可以仅大幅变动任意的谐振频率。由此,如图14(a)的实线回波损耗曲线S1及虚线回波损耗曲线S2所示,能够按照谐振频率f1的变化量M1比谐振频率f2的变化量M2大的方式,仅使谐振频率f1大幅变化。 
而且,通过将电感器40设定为谐振频率调整用电感器,可以由供电电极5、该电感器40和放射电极6构成第三天线部。结果。如图14(b)的实线回波损耗曲线S1所示,在第一天线部2的比谐振频率f1低的频率区域生成由该第三天线部产生的新的谐振频率f0,可确保其低的频带。并且,虚线回波损耗曲线S2所示,通过调整电感器40的电感值,可以使第三天线部的谐振频率f0任意变化。 
由于其他的构成、作用及效果与上述第一~第四实施例相同,所以,省略其记载。 
另外,在该实施例中,作为第一电抗电路4a采用图5(a)所示的可变串联电路,并且作为第二电抗电路4b采用图6(b)所示的可变电路,构成了频率可变电路4,但只要按照跨过第一及第二电抗电路4a、4b的方 式并联附加电感器40即可,对于频率可变电路4的构造没有限定。因此,可以考虑图15所示的天线。 
即,如图15(a)所示,即使将电感器40与上述第二实施例中采用的构造的频率可变电路4并联连接,也能够得到与本实施例同样的作用效果。另外,如图15(b)所示,在第二电抗电路46中,采用电感器43与电容器45的串联电路,也能够得到与该实施例同样的作用效果。 
实施例6 
接着,对本发明的第六实施例进行说明。 
图16是表示本发明的第六实施例所涉及的天线的概略俯视图。 
该实施例通过在上述第四实施例中,形成将第二天线部3的与追加放射电极7独立的追加放射电极7’经由谐振频率调整用电感器71与连接点P连接,并且,将追加放射电极6’经由谐振频率调整用电感器61与放射电极6连接的构成。而且,对连接点P施加控制电压Vc。 
由此,可由供电电极5、第一电抗电路4a、谐振频率调整用电感器71和追加放射电极7’形成第三天线部,并且,由供电电极5、频率可变电路4和追加放射电极6’形成第四天线部,从而可实现四谐振的天线。即,能够实现更多的谐振化,可以提供与多媒体对应的多频带天线。 
由于其他的构成、作用及效果与上述实施例相同,所以省略其记载。 
实施例7 
接着,对本发明的第七实施例进行说明。 
图17是表示本发明的第七实施例所涉及的天线的立体图。 
该实施例构成为在规定的电介质基体上形成了供电电极5、频率可变电路4、放射电极6和追加放射电极7等天线要素。 
在该实施例中如图17所示,针对将图15(a)所示的天线形成在电介质基体8表面的例子进行说明。 
具体而言,电介质基体8呈具有正面80、两侧面81和82、上面83、下面84和背面85的长方体形状,被载置于电路基板100的非接地区域101上。 
而且,供电电极5在该电介质基体8的左侧,从正面80开始遍及上面83形成了图案。在非接地区域101上形成有图案113,通过电感器112 与收发部110连接。并且,供电电极5一方的端部5a与该图案113连接,另一方的端部与频率可变电路4连接。在该频率可变电路4中,第一电抗电路4a的电感器41及可变电容二极管42和第二电抗电路4b的电感器43及可变电容二极管44分别是芯片部件,经由在上面83上形成的图案48而连接。 
并且,电感器40按照跨过该第一电抗电路4a及第二电抗电路4b的方式形成在上面83上。即,形成有与图案48平行的图案49,并在该图案49的中途夹设有电感器40。 
放射电极6具有从图案48、49的连接部开始在上面83的上角向右方延伸、在侧面81下降的电极部6a。而且,电极部6b以与电极部6a连接的状态向下面84的左方延伸,在侧面82上升。并且,该电极部6b的上端与在上面83上的角落形成的电极部6c连接。即,放射电极6由电极部6a~6c构成,整体呈环状。 
另外,从频率可变电路4的可变电容二极管42、44的连接部,引出图案72,在上面83及正面80传递,与形成在非接地区域101上、到达接收频率控制部120的图案123连接。并且,在图案72的中途夹设有高频截断用电阻121。 
追加放射电极7按照相对上述的图案72朝向垂直方向的方式形成图案,经由谐振频率调整用电感器70与图案72连接。 
根据该构成,通过使电介质基体8的介电常数变化,可调整第一及第二天线部2、3的电抗值。 
由于其他的构成、作用及效果与上述第一~第六实施例相同,所以,省略其记载。 
另外,在该实施例中,将供电电极5等天线要素几乎全部形成于电介质基体8,但也可以将天线要素的一部分形成于电介质基体8。而且,该实施例中,在电介质基体8表面形成了图15(a)所示的天线,但本发明不限定于此,当然可以在电介质基体8表面形成上述所有实施例的天线。 
实施例8 
接着,对本发明的第八实施例进行说明。 
图18是表示本发明的第八实施例所涉及的天线的概略俯视图,图19 是由附加的电感器的特性产生的回波损耗曲线图。 
该实施例如图18所示,与上述实施例的不同之处在于,在第二天线部3的追加放射电极7的中途连接了单体的电感器90。 
具体而言,将电感器90的一端90a与追加放射电极7的前端部侧连接,并且,将另一端90b与接地区域102(参照图1)连接。 
根据该构成,如图19的回波损耗曲线S1所示,如果设电感器111、供电电极5和频率可变电路部分4’的谐振频率为f0,电感器111、供电电极5、频率可变电路4和放射电极6的谐振频率为f1,电感器111、供电电极5、频率可变电路4、谐振频率调整用电感器70和追加放射电极7的谐振频率为f2,则新生成了电感器111、供电电极5、频率可变电路4、谐振频率调整用电感器70、追加放射电极7和电感器90的谐振频率fa。 
作为电感器90,在与追加放射电极7和接地区域102连接的状态下,可选择成为高阻抗的电感器,由此,防止了天线增益的恶化。并且,通过如此采用高阻抗的电感器90,可以不对电感器111、供电电极5、频率可变电路4、谐振频率调整用电感器70和追加放射电极7的谐振频率f2造成大的影响,生成作为比分支源的追加放射电极7所具有的频率低的频率的新谐振频率fa。在仅由电极形成该低频谐振频率时,必须采用相当长的电极,导致天线体积增大。但是,如该实施例那样,通过不使用电极由电感器90生成新的谐振频率fa,可实现天线体积的小型化。 
另外,由于包含可变电容二极管42、44的频率可变电路4被夹设在供电电极5与放射电极6之间及供电电极5与追加放射电极7之间,所以,通过对频率可变电路4施加控制电压Vc,能够如图19的虚线所示的回波损耗曲线S2那样,使谐振频率f0、fa、f1、f2整体变化。 
并且,通过适当设定谐振频率f0、fa、f1、f2,能够接收FM电波、VHF频带电波及UHF频带的电波。 
由于其他的构成、作用及效果与上述实施例相同,所以省略其记载。 
另外,在该实施例中,形成了在第二天线部的追加放射电极7的中途连接了电感器90的构成,但也可以将电感器90设置在追加放射电极7的开放前端部7a侧。不过,如果电感器90过于靠近开放前端部70a侧,则有可能使得天线增益恶化,因此,优选在注意该点的基础上,将电感器90 与追加放射电极7连接。 
而且,在该实施例中,形成了将电感器90仅与第二天线部的追加放射电极7连接的构成,但也可以不将电感器90与追加放射电极7连接,而仅在第一天线部2的放射电极6的中途连接电感器90。 
并且,在该实施例中,将一个电感器90与电感器90连接,但本发明不限定于此,也可以并联连接多个电感器90。 
实施例9 
接着,对本发明的第九实施例进行说明。 
图20是表示本发明的第九实施例所涉及的天线的概略俯视图,图21是由附加的两个电感器的特性产生的回波损耗曲线图。 
该实施例如图20所示,与上述第八实施例的不同之处在于,还将单体的电感器91连接在第一天线部2的放射电极6的中途。 
具体而言,将电感器91的一端91a与放射电极6的折曲部6d连接,并且将另一端91b与接地区域102连接。 
由此,如图21的回波损耗曲线S1所示,除了电感器111、供电电极5和频率可变电路部分4’的谐振频率f0;电感器111、供电电极5、频率可变电路4、谐振频率调整用电感器70、追加放射电极7和电感器90的谐振频率fa;电感器111、供电电极5、频率可变电路4和放射电极6的谐振频率f1;电感器111、供电电极5、频率可变电路4、谐振频率调整用电感器70和追加放射电极7的谐振频率f2之外,通过电感器111、供电电极5、频率可变电路4、放射电极6和电感器91,可新生成作为比分支源的放射电极6所具有的频率低的频率的新谐振频率fb。 
该电感器91与电感器90同样也是高阻抗的电感器,谐振频率fb是位于谐振频率fa与f1之间的低谐振频率。 
而且,通过对频率可变电路4施加控制电压Vc,如图21的虚线所示的回波损耗曲线S2那样,可以使谐振频率f0、fa、fb、f1、f2整体变化。 
由于其他的构成、作用及效果与上述第八实施例相同,所以省略其记载。 
实施例10 
接着,对本发明的第十实施例进行说明。 
图22是表示本发明的第十实施例所涉及的天线的概略俯视图,图23是由附加的三个电感器的特性产生的回波损耗曲线图。 
该实施例如图22所示,与上述第八及第九实施例的不同点在于,在设置了第二天线部3的与追加放射电极7独立的追加放射电极6’、7’的天线中,还分别将单体的电感器92、93与追加放射电极6’、7’连接。 
具体而言,将电感器92的一端92a与放射电极6的折曲部6e连接,并且,将另一端92b与接地区域102连接。而且,将电感器93的一端93a与追加放射电极7’的开放前端连接,并且,将另一端93b与接地区域102连接。 
由此,如图23的回波损耗曲线S1所示,除了谐振频率f0、fa、f1、f2之外,由电感器111、供电电极5、频率可变电路4、放射电极6、谐振频率调整用电感器61、追加放射电极6’和电感器92,新生成作为比分支源的追加放射电极6’所具有的频率低的频率的新谐振频率fb;由电感器111、供电电极5、频率可变电路4、谐振频率调整用电感器71、追加放射电极7’和电感器93,新生成作为比分支源的追加放射电极7’所具有的频率低的频率的新谐振频率fc。 
这些电感器92、93也与电感器90、91同样,是高阻抗的电感器,谐振频率fb是位于谐振频率fa与f1之间的低频率,谐振频率fc是位于谐振频率f0与fa之间的低频率。 
而且,通过对频率可变电路4施加控制电压Vc,如图23的虚线所示的回波损耗曲线S2那样,能够使谐振频率f0、fc、fa、fb、f1、f2整体变化。 
由于其他的构成、作用及效果与上述第八及第九实施例相同,所以省略其记载。 
实施例11 
接着,对本发明的第十一实施例进行说明。 
图24是表示本发明的第十一实施例所涉及的天线的概略俯视图,图25是由附加的串联谐振电路的特性产生的回波损耗曲线图,图26是表示将电感器单体的电抗与串联谐振电路的电抗进行比较的线图。 
该实施例如图24所示,与上述第八~第十实施方式的不同点在于, 将作为电抗电路的串联谐振电路9与第二天线部3的追加放射电极7连接。 
具体而言,由串联连接的电感器94和电容器95构成串联谐振电路9,将电感器94的一端94a与追加放射电极7的前端部侧连接,并且,将电容器95的一端95a与接地区域102连接。 
由此,如图25的回波损耗曲线S1所示,除了谐振频率f0、f1、f2之外,新生成了基于电感器111、供电电极5、频率可变电路4、谐振频率调整用电感器70、追加放射电极7和串联谐振电路9的谐振频率fa。 
而且,通过对频率可变电路4施加控制电压Vc,如图25的虚线表示的回波损耗曲线S2那样,可以使谐振频率f0、fa、f1、f2整体变化。 
但是,如图26的电抗曲线R1所示,在如串联谐振电路9那样的串联谐振电路中,与电抗曲线R2表示的如电感器90~93那样的电感器单体相比,电抗相对频率的变化梯度大。因此,如果追加谐振所需要的电感器单体的电抗与串联谐振电路的电抗为相同值,则对于分支源的电极(该实施例中为追加放射电极7)所具有的谐振频率下的电抗而言,串联谐振电路比电感器单体的情况下大。即,在该实施例中,通过替代电感器90将串联谐振电路9与追加放射电极7连接,可以不对基于电感器111、供电电极5、频率可变电路4、谐振频率调整用电感器70和追加放射电极7的谐振频率f2施加大的影响,得到新的谐振频率fa。结果,可提供动作特性出色的天线。 
由于其他的构成、作用及效果与上述第八~第十实施例相同,所以省略其记载。 
实施例12 
接着,对本发明的第十二实施例进行说明。 
图27是表示本发明的第十二实施例所涉及的天线的概略俯视图,图28是由附加的串联谐振电路的特性产生的回波损耗曲线图。 
该实施例如图27所示,与上述第十一实施例的不同之处在于,将作为电抗电路的并联谐振电路9’与第二天线部3的追加放射电极7连接。 
具体而言,由并联连接的电感器94’和电容器95’构成并联谐振电路9’,将并联谐振电路9’的一端9a’与追加放射电极7的前端部侧连接,并且,将另一端的一端9b’与接地区域102连接。 
由此,如图28的回波损耗曲线S 1所示,除了谐振频率f0、f1、f2之外,可新生成基于电感器111、供电电极5、频率可变电路4、谐振频率调整用电感器70、追加放射电极7和并联谐振电路9’的谐振频率fa。 
而且,通过对频率可变电路4施加控制电压Vc,如图28的虚线表示的回波损耗曲线S2那样,可以使谐振频率f0、f1、f2整体变化。 
可是,为了在上述第十一实施例的串联谐振电路9中得到大的电抗,需要使用常数(nH)大的电感器94。一般而言,使用芯片部件作为电感器94。而且,如果使用常数大的芯片部件,则自谐振频率会降低,导致其介电性劣化。与之相对,如本实施例那样通过使用并联谐振电路9’,可由常数小的电感器94’得到大的电抗。因此,通过使用并联谐振电路9’,可以解决芯片部件自身带有的自谐振频率的问题。 
由于其他的构成、作用及效果与上述第十一实施例相同,所以省略其记载。 
实施例13 
接着,对本发明的第十三实施例进行说明。 
图29是表示本发明的第十三实施例所涉及的天线的概略俯视图,图30是由附加的串联谐振电路的特性产生的回波损耗曲线图。 
该实施例如图29所示,与上述第十一及第十二实施例的不同之处在于,作为电抗电路,将串联谐振电路9与并联谐振电路9’的复合电路10与第二天线部3的追加放射电极7连接。 
具体而言,将串联谐振电路9与并联谐振电路9’串联连接,构成复合电路10,将串联谐振电路9的电感器94的一端94a与追加放射电极7的前端部侧连接,并且将并联谐振电路9’的一端9b’与接地区域102连接。 
由此,如图30的回波损耗曲线S1所示,除了谐振频率f0、f1、f2之外,可新生成基于电感器111、供电电极5、频率可变电路4、谐振频率调整用电感器70、追加放射电极7和复合电路10的谐振频率fa。 
而且,通过对频率可变电路4施加控制电压Vc,如图30的虚线表示的回波损耗曲线S2那样,可以使谐振频率f0、fa、f1、f2整体变化。 
根据该构成,能够享受串联谐振电路9的可以不对基于追加放射电极7的谐振频率f2造成大的影响地得到新的谐振频率fa;和并联谐振电路9’ 的可以解决电感器芯片部件具备的自谐振频率问题的两个优点。 
由于其他的构成、作用及结果与上述第十一及第十二实施例相同,所以省略其记载。 
另外,本发明不限定于上述实施例,在发明主旨的范围内可实施各种变形或变更。 
例如,在上述实施例中,举例说明了经由谐振频率调整用电感器将追加放射电极连接在频率可变电路4的连接点P或放射电极6的中途的情况,但也可以如图31所示,将与构成第二天线部3的追加放射电极7独立的追加放射电极6’直接形成在放射电极6的中途。 

Claims (17)

1.一种天线,具备:将前端开放的放射电极经由频率可变电路与供电电极连接而构成的第一天线部;和包括在所述频率可变电路的中途连接的前端开放的追加放射电极和所述供电电极的第二天线部,
将所述频率可变电路构成为在第一电抗电路上串联连接第二电抗电路,其中,所述第一电抗电路与所述供电电极连接且能够基于直流的控制电压使其电抗值变化,所述第二电抗电路与所述第一天线部的放射电极连接,
通过将所述第二天线部的追加放射电极从所述第一及第二电抗电路的连接点分支,从而由所述供电电极、第一电抗电路、第二电抗电路和放射电极构成了所述第一天线部,由所述供电电极、第一电抗电路、追加放射电极构成了所述第二天线部。
2.根据权利要求1所述的天线,其特征在于,
所述第二电抗电路能够通过所述控制电压使其电抗值变化。
3.根据权利要求1所述的天线,其特征在于,
所述第二电抗电路其电抗值为固定值。
4.根据权利要求2所述的天线,其特征在于,
所述第一电抗电路是包括可变电容元件的串联电路或包括可变电容元件的并联电路,
所述第二电抗电路是包括可变电容元件的串联电路或包括可变电容元件的并联电路,
将所述第一及第二电抗电路的可变电容元件的同极之间连接,作为所述第一及第二电抗电路的连接点,并对该连接点施加用于对所述可变电容元件的电容进行控制的所述控制电压。
5.根据权利要求3所述的天线,其特征在于,
所述第一电抗电路是包括可变电容元件的串联电路或包括可变电容元件的并联电路,
所述第二电抗电路是包括固定电容元件的串联电路或包括固定电容元件的并联电路,
将所述第一电抗电路的可变电容元件与所述第二电抗电路连接,作为所述第一及第二电抗电路的连接点,并对该连接点施加用于对所述可变电容元件的电容进行控制的所述控制电压。
6.根据权利要求1~5中任意一项所述的天线,其特征在于,
将电感器按照跨过所述第一电抗电路和第二电抗电路的方式与该第一及第二电抗电路并联连接。
7.根据权利要求1~5中任意一项所述的天线,其特征在于,
所述追加放射电极经由用于控制谐振频率的电感器从所述连接点分支。
8.根据权利要求1~5中任意一项所述的天线,其特征在于,
使与所述追加放射电极独立的一个以上的追加放射电极从所述连接点分支。
9.根据权利要求8所述的天线,其特征在于,
使所述独立的一个以上的追加放射电极分别经由与所述第一电抗电路相同构造的其他电抗电路从所述连接点分支,向该电抗电路施加用于对该其他电抗电路的可变电容元件的电容进行控制的其他控制电压。
10.根据权利要求1~5中任意一项所述的天线,其特征在于,
在所述放射电极的中途连接了与所述追加放射电极独立的追加放射电极。
11.根据权利要求10所述的天线,其特征在于,
经由电感器将所述独立的追加放射电极与所述放射电极连接。
12.根据权利要求1~5中任意一项所述的天线,其特征在于,
所述第一天线部呈上述供电电极与放射电极的开放前端隔着间隔被对置配置的环形状。
13.根据权利要求1~5中任意一项所述的天线,其特征在于,
在电介质基体上形成了所述供电电极、频率可变电路、放射电极、追加放射电极天线要素的全部或一部分。
14.根据权利要求1~5中任意一项所述的天线,其特征在于,
在所述第一天线部的放射电极、所述第二天线部的追加放射电极以及所述一个以上独立的追加放射电极中任意一个电极或所有电极中,将所述任意一个电极或所有电极的中途或开放前端经由电感器单体或电抗电路与地连接。
15.根据权利要求14所述的天线,其特征在于,
所述电抗电路是串联谐振电路或并联谐振电路的任意一种电路,或者是这些串联谐振电路与并联谐振电路的复合电路。
16.根据权利要求1~5中任意一项所述的天线,其特征在于,
设定为能够接收FM的电波、VHF频带的电波、及UHF频带的电波。
17.一种无线通信设备,其特征在于,具备权利要求1~16中任意一项所述的天线。
CN200580047329.2A 2005-01-27 2005-12-06 天线及无线通信设备 Active CN101111972B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210375560.6A CN103022704B (zh) 2005-01-27 2005-12-06 天线及无线通信设备

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005020199 2005-01-27
JP020199/2005 2005-01-27
JP2005241890 2005-08-23
JP241890/2005 2005-08-23
PCT/JP2005/022342 WO2006080141A1 (ja) 2005-01-27 2005-12-06 アンテナ及び無線通信機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201210375560.6A Division CN103022704B (zh) 2005-01-27 2005-12-06 天线及无线通信设备

Publications (2)

Publication Number Publication Date
CN101111972A CN101111972A (zh) 2008-01-23
CN101111972B true CN101111972B (zh) 2015-03-11

Family

ID=36740175

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201210375560.6A Active CN103022704B (zh) 2005-01-27 2005-12-06 天线及无线通信设备
CN200580047329.2A Active CN101111972B (zh) 2005-01-27 2005-12-06 天线及无线通信设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201210375560.6A Active CN103022704B (zh) 2005-01-27 2005-12-06 天线及无线通信设备

Country Status (5)

Country Link
US (1) US7375695B2 (zh)
EP (1) EP1843432B1 (zh)
JP (1) JP4508190B2 (zh)
CN (2) CN103022704B (zh)
WO (1) WO2006080141A1 (zh)

Families Citing this family (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004001899A1 (de) * 2004-01-14 2005-08-11 Md Elektronik Gmbh Sperrkreisanordnung
FI20055420A0 (fi) 2005-07-25 2005-07-25 Lk Products Oy Säädettävä monikaista antenni
FI119009B (fi) 2005-10-03 2008-06-13 Pulse Finland Oy Monikaistainen antennijärjestelmä
FI118782B (fi) 2005-10-14 2008-03-14 Pulse Finland Oy Säädettävä antenni
US20070248116A1 (en) 2006-04-21 2007-10-25 Masashi Hamada Communication control apparatus and method of controlling same
WO2008007606A1 (fr) * 2006-07-11 2008-01-17 Murata Manufacturing Co., Ltd. Dispositif à antenne et circuit résonnant
US8618990B2 (en) 2011-04-13 2013-12-31 Pulse Finland Oy Wideband antenna and methods
WO2008078437A1 (ja) * 2006-12-22 2008-07-03 Murata Manufacturing Co., Ltd. アンテナ構造およびそれを備えた無線通信装置
EP2104178A4 (en) * 2007-01-19 2014-05-28 Murata Manufacturing Co ANTENNA MODULE AND WIRELESS COMMUNICATION DEVICE
US7573425B2 (en) 2007-03-20 2009-08-11 Industrial Technology Research Institute Antenna for radio frequency identification RFID tags
FI20075269A0 (fi) 2007-04-19 2007-04-19 Pulse Finland Oy Menetelmä ja järjestely antennin sovittamiseksi
KR100867527B1 (ko) 2007-05-30 2008-11-06 삼성전기주식회사 튜닝 가능한 루프 안테나
JP2009049868A (ja) * 2007-08-22 2009-03-05 Hitachi Cable Ltd 周波数補正回路付き同調型アンテナモジュール及びその製造方法
JP4389275B2 (ja) * 2007-08-24 2009-12-24 株式会社村田製作所 アンテナ装置及び無線通信機
FI120427B (fi) 2007-08-30 2009-10-15 Pulse Finland Oy Säädettävä monikaista-antenni
KR20120102173A (ko) * 2007-09-13 2012-09-17 퀄컴 인코포레이티드 무선 전력 인가를 위한 안테나
TWI420741B (zh) * 2008-03-14 2013-12-21 Advanced Connectek Inc Multi-antenna module
TWI411158B (zh) * 2008-04-09 2013-10-01 Acer Inc 一種多頻折疊環形天線
TWI359530B (en) * 2008-05-05 2012-03-01 Acer Inc A coupled-fed multiband loop antenna
JP5009240B2 (ja) * 2008-06-25 2012-08-22 ソニーモバイルコミュニケーションズ株式会社 マルチバンドアンテナ及び無線通信端末
JP2010041071A (ja) * 2008-07-31 2010-02-18 Toshiba Corp アンテナ装置
WO2010016298A1 (ja) * 2008-08-05 2010-02-11 株式会社村田製作所 アンテナ及び無線通信機
WO2010044086A1 (en) * 2008-10-13 2010-04-22 Galtronics Corporation Ltd. Multi-band antennas
JP5131481B2 (ja) * 2009-01-15 2013-01-30 株式会社村田製作所 アンテナ装置及び無線通信機
US8339322B2 (en) 2009-02-19 2012-12-25 Galtronics Corporation Ltd. Compact multi-band antennas
WO2010116373A1 (en) 2009-04-07 2010-10-14 Galtronics Corporation Ltd. Distributed coupling antenna
JP5287474B2 (ja) * 2009-04-24 2013-09-11 株式会社村田製作所 アンテナ装置
JP5003729B2 (ja) * 2009-06-18 2012-08-15 株式会社村田製作所 アンテナ及び無線通信装置
JP5321290B2 (ja) * 2009-06-30 2013-10-23 株式会社村田製作所 アンテナ構造
KR20120091264A (ko) 2009-11-02 2012-08-17 갈트로닉스 코포레이션 리미티드 분산형 리액턴스 안테나
FI20096134A0 (fi) 2009-11-03 2009-11-03 Pulse Finland Oy Säädettävä antenni
JP5399866B2 (ja) * 2009-11-16 2014-01-29 三菱電線工業株式会社 アンテナ装置用基板およびアンテナ装置
JP5531582B2 (ja) 2009-11-27 2014-06-25 富士通株式会社 アンテナおよび無線通信装置
FI20096251A0 (sv) 2009-11-27 2009-11-27 Pulse Finland Oy MIMO-antenn
US8847833B2 (en) 2009-12-29 2014-09-30 Pulse Finland Oy Loop resonator apparatus and methods for enhanced field control
FI20105158A (fi) 2010-02-18 2011-08-19 Pulse Finland Oy Kuorisäteilijällä varustettu antenni
US9406998B2 (en) 2010-04-21 2016-08-02 Pulse Finland Oy Distributed multiband antenna and methods
JP5602484B2 (ja) * 2010-04-26 2014-10-08 京セラ株式会社 携帯電子機器
US8325103B2 (en) * 2010-05-07 2012-12-04 Nokia Corporation Antenna arrangement
EP2418728A1 (en) * 2010-08-09 2012-02-15 Sony Ericsson Mobile Communications AB Antenna arrangement, dielectric substrate, PCB & device
TWI449262B (zh) * 2010-10-05 2014-08-11 Univ Nat Sun Yat Sen 一種雙寬頻行動通訊裝置
WO2012099084A1 (ja) * 2011-01-19 2012-07-26 株式会社村田製作所 Memsモジュール、可変リアクタンス回路及びアンテナ装置
FI20115072A0 (fi) 2011-01-25 2011-01-25 Pulse Finland Oy Moniresonanssiantenni, -antennimoduuli ja radiolaite
US8648752B2 (en) 2011-02-11 2014-02-11 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US9673507B2 (en) 2011-02-11 2017-06-06 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US9166279B2 (en) 2011-03-07 2015-10-20 Apple Inc. Tunable antenna system with receiver diversity
US9246221B2 (en) 2011-03-07 2016-01-26 Apple Inc. Tunable loop antennas
CN102800945A (zh) * 2011-05-31 2012-11-28 深圳光启高等理工研究院 一种天线及具有该天线的mimo天线
CN102800942A (zh) * 2011-05-31 2012-11-28 深圳光启高等理工研究院 一种天线及具有该天线的mimo天线
CN102891355B (zh) * 2011-05-31 2016-08-03 深圳光启智能光子技术有限公司 一种天线及具有该天线的mimo天线
CN102683902B (zh) * 2011-03-14 2015-07-29 深圳光启高等理工研究院 一种超材料双极化的射频基站天线
CN102810733B (zh) * 2011-05-31 2016-05-04 深圳光启创新技术有限公司 一种双极化天线及具有该双极化天线的mimo天线
CN102891354A (zh) * 2011-05-31 2013-01-23 深圳光启高等理工研究院 一种无线路由器
CN102800943A (zh) * 2011-05-31 2012-11-28 深圳光启高等理工研究院 一种双极化天线及具有该双极化天线的mimo天线
CN102799220B (zh) * 2011-05-31 2015-04-22 深圳光启智慧科技有限公司 一种笔记本电脑
TWI502811B (zh) * 2011-05-31 2015-10-01 Kuang Chi Intelligent Photonic Technology Ltd 雙極化天線及具有該雙極化天線的mimo天線
CN102810731B (zh) * 2011-05-31 2015-03-11 深圳光启创新技术有限公司 一种双极化天线及具有该双极化天线的mimo天线
CN102800946B (zh) * 2011-05-31 2015-09-09 深圳光启创新技术有限公司 一种双极化天线及具有该双极化天线的mimo天线
CN102904007B (zh) * 2011-05-31 2016-08-03 深圳光启智能光子技术有限公司 一种双极化天线及具有该双极化天线的mimo天线
CN102800934B (zh) * 2011-05-31 2016-01-13 深圳光启高等理工研究院 蓝牙模块及应用蓝牙模块的设备
CN103036016B (zh) * 2011-05-31 2016-06-29 深圳光启智能光子技术有限公司 无线路由器
CN102809986B (zh) * 2011-05-31 2016-04-20 深圳光启智慧科技有限公司 一种笔记本电脑
CN102801827B (zh) * 2011-05-31 2015-05-27 深圳光启高等理工研究院 手机
CN102800935B (zh) * 2011-05-31 2015-05-27 深圳光启高等理工研究院 手机
CN102810730B (zh) * 2011-05-31 2017-02-01 深圳光启高等理工研究院 一种双极化天线及具有该双极化天线的mimo天线
CN102810728A (zh) * 2011-05-31 2012-12-05 深圳光启高等理工研究院 一种无线局域网系统
CN102810726B (zh) * 2011-05-31 2016-01-20 深圳光启智能光子技术有限公司 一种无线局域网系统
CN102798872B (zh) * 2011-05-31 2015-04-22 深圳光启高等理工研究院 导航装置
CN102800947B (zh) * 2011-05-31 2016-05-04 深圳光启高等理工研究院 一种双极化天线及具有该双极化天线的mimo天线
CN102904006A (zh) * 2011-05-31 2013-01-30 深圳光启高等理工研究院 手机
CN102810167A (zh) * 2011-06-24 2012-12-05 深圳光启高等理工研究院 读写器、电子标签和射频识别系统
CN102811374A (zh) * 2011-06-30 2012-12-05 深圳光启高等理工研究院 一种手持cmmb终端
US8866689B2 (en) 2011-07-07 2014-10-21 Pulse Finland Oy Multi-band antenna and methods for long term evolution wireless system
CN103069648B (zh) * 2011-07-11 2015-10-21 松下电器(美国)知识产权公司 天线装置及无线通信装置
CN102882540B (zh) * 2011-07-14 2015-05-20 深圳光启高等理工研究院 一种基于soc的无线通讯系统
CN102882546B (zh) * 2011-07-14 2015-03-18 深圳光启高等理工研究院 一种基于片上系统的射频装置
CN102882563B (zh) * 2011-07-14 2015-07-15 深圳光启高等理工研究院 一种基于soc的近距离无线通讯系统及无线通讯方法
US9450291B2 (en) 2011-07-25 2016-09-20 Pulse Finland Oy Multiband slot loop antenna apparatus and methods
US9070980B2 (en) * 2011-10-06 2015-06-30 Panasonic Intellectual Property Corporation Of America Small antenna apparatus operable in multiple bands including low-band frequency and high-band frequency and increasing bandwidth including high-band frequency
US9123990B2 (en) 2011-10-07 2015-09-01 Pulse Finland Oy Multi-feed antenna apparatus and methods
US9240627B2 (en) 2011-10-20 2016-01-19 Htc Corporation Handheld device and planar antenna thereof
US10230156B2 (en) 2011-11-03 2019-03-12 Nokia Technologies Oy Apparatus for wireless communication
US9531058B2 (en) 2011-12-20 2016-12-27 Pulse Finland Oy Loosely-coupled radio antenna apparatus and methods
US9484619B2 (en) 2011-12-21 2016-11-01 Pulse Finland Oy Switchable diversity antenna apparatus and methods
US9350069B2 (en) * 2012-01-04 2016-05-24 Apple Inc. Antenna with switchable inductor low-band tuning
JP5590060B2 (ja) * 2012-03-28 2014-09-17 株式会社村田製作所 マルチバンドアンテナ装置の設計方法
US8988296B2 (en) 2012-04-04 2015-03-24 Pulse Finland Oy Compact polarized antenna and methods
US20130285863A1 (en) * 2012-04-26 2013-10-31 Microsoft Corporation Reconfigurable Multi-band Antenna
TWI502817B (zh) 2012-10-04 2015-10-01 Acer Inc 通訊裝置
CN103731176B (zh) * 2012-10-12 2016-03-30 宏碁股份有限公司 通信装置
US9979078B2 (en) 2012-10-25 2018-05-22 Pulse Finland Oy Modular cell antenna apparatus and methods
US10069209B2 (en) 2012-11-06 2018-09-04 Pulse Finland Oy Capacitively coupled antenna apparatus and methods
US8842047B2 (en) * 2012-11-29 2014-09-23 Htc Corporation Portable communication device and adjustable antenna thereof
JP2015509318A (ja) * 2012-12-07 2015-03-26 ▲華▼▲為▼終端有限公司Huawei Device Co., Ltd. 無線端末に適用されるpcb、及び無線端末
JP2014146851A (ja) * 2013-01-25 2014-08-14 Panasonic Corp アンテナ装置及び該アンテナ装置を備えた携帯端末
US9647338B2 (en) 2013-03-11 2017-05-09 Pulse Finland Oy Coupled antenna structure and methods
US10079428B2 (en) 2013-03-11 2018-09-18 Pulse Finland Oy Coupled antenna structure and methods
KR102060331B1 (ko) * 2013-03-26 2019-12-31 삼성전자주식회사 평면형 안테나 장치 및 방법
US9634383B2 (en) 2013-06-26 2017-04-25 Pulse Finland Oy Galvanically separated non-interacting antenna sector apparatus and methods
TWM470398U (zh) * 2013-07-19 2014-01-11 Chi Mei Comm Systems Inc 天線裝置
CN103441333B (zh) * 2013-08-21 2017-02-08 深圳汉阳天线设计有限公司 同步双频电路板辐射天线
US9680212B2 (en) 2013-11-20 2017-06-13 Pulse Finland Oy Capacitive grounding methods and apparatus for mobile devices
CN104956541A (zh) * 2013-11-22 2015-09-30 华为终端有限公司 一种可调天线及终端
US9590308B2 (en) 2013-12-03 2017-03-07 Pulse Electronics, Inc. Reduced surface area antenna apparatus and mobile communications devices incorporating the same
US10205244B2 (en) * 2013-12-19 2019-02-12 Intel IP Corporation Platform independent antenna
US9350081B2 (en) 2014-01-14 2016-05-24 Pulse Finland Oy Switchable multi-radiator high band antenna apparatus
US9325080B2 (en) * 2014-03-03 2016-04-26 Apple Inc. Electronic device with shared antenna structures and balun
US10290940B2 (en) * 2014-03-19 2019-05-14 Futurewei Technologies, Inc. Broadband switchable antenna
CN104201464B (zh) * 2014-08-05 2018-02-02 西安电子科技大学 一种频率可重构三频天线及方法
US9948002B2 (en) 2014-08-26 2018-04-17 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9973228B2 (en) 2014-08-26 2018-05-15 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9722308B2 (en) 2014-08-28 2017-08-01 Pulse Finland Oy Low passive intermodulation distributed antenna system for multiple-input multiple-output systems and methods of use
GB2529884B (en) 2014-09-05 2017-09-13 Smart Antenna Tech Ltd Reconfigurable multi-band antenna with independent control
GB2529886A (en) * 2014-09-05 2016-03-09 Smart Antenna Technologies Ltd Reconfigurable multi-band antenna with four to ten ports
WO2016034900A1 (en) * 2014-09-05 2016-03-10 Smart Antenna Technologies Ltd Reconfigurable multi-band antenna with four to ten ports
CN104577334B (zh) 2015-02-11 2017-07-21 小米科技有限责任公司 天线模块及移动终端
CN106159450A (zh) * 2015-03-26 2016-11-23 联想(北京)有限公司 环形天线和电子设备
KR102288148B1 (ko) * 2015-04-24 2021-08-10 엘지이노텍 주식회사 안테나 모듈
EP3295518B1 (en) * 2015-05-11 2021-09-29 Carrier Corporation Antenna with reversing current elements
US9906260B2 (en) 2015-07-30 2018-02-27 Pulse Finland Oy Sensor-based closed loop antenna swapping apparatus and methods
US10431891B2 (en) 2015-12-24 2019-10-01 Intel IP Corporation Antenna arrangement
US20170358838A1 (en) * 2016-06-09 2017-12-14 Futurewei Technologies, Inc. Load-adaptive aperture tunable antenna
CN107093788B (zh) * 2017-03-17 2020-07-14 江苏省东方世纪网络信息有限公司 低剖面天线
US10615486B2 (en) 2017-06-28 2020-04-07 Intel IP Corporation Antenna system
JP6881593B2 (ja) * 2017-10-30 2021-06-02 株式会社村田製作所 アンテナ装置および通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1341978A (zh) * 2000-08-24 2002-03-27 株式会社村田制作所 天线装置及包含该天线装置的无线设备
JP2002158529A (ja) * 2000-11-20 2002-05-31 Murata Mfg Co Ltd 表面実装型アンテナ構造およびそれを備えた通信機
WO2004109850A1 (ja) * 2003-06-04 2004-12-16 Murata Manufacturing Co. Ltd. 周波数可変型アンテナおよびそれを備えた通信機

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145693A (en) * 1977-03-17 1979-03-20 Electrospace Systems, Inc. Three band monopole antenna
JP2001298378A (ja) * 2000-04-14 2001-10-26 Fujitsu Ten Ltd 車載用アンテナ装置
AU2001265221A1 (en) * 2000-05-31 2001-12-11 Bae Systems Information And Electronic Systems Integration, Inc. Wideband meander line loaded antenna
JP4019639B2 (ja) 2001-02-07 2007-12-12 松下電器産業株式会社 アンテナ装置
JP2002271123A (ja) * 2001-03-09 2002-09-20 Mitsubishi Materials Corp アンテナモジュール及びアンテナ用基板
FI115871B (fi) * 2001-04-18 2005-07-29 Filtronic Lk Oy Menetelmä antennin virittämiseksi ja antenni
KR20020091785A (ko) 2001-05-31 2002-12-06 니혼도꾸슈도교 가부시키가이샤 전자부품 및 이것을 사용한 이동체 통신장치
JP3958110B2 (ja) 2001-06-01 2007-08-15 松下電器産業株式会社 逆f型アンテナ装置及び携帯無線通信装置
US6670925B2 (en) 2001-06-01 2003-12-30 Matsushita Electric Industrial Co., Ltd. Inverted F-type antenna apparatus and portable radio communication apparatus provided with the inverted F-type antenna apparatus
JP2003060408A (ja) 2001-06-05 2003-02-28 Murata Mfg Co Ltd フィルタ部品および通信機装置
US6765536B2 (en) * 2002-05-09 2004-07-20 Motorola, Inc. Antenna with variably tuned parasitic element
JP4075650B2 (ja) * 2003-03-18 2008-04-16 日本電気株式会社 アンテナ装置及び送受信装置
JP4060746B2 (ja) * 2003-04-18 2008-03-12 株式会社ヨコオ 可変同調型アンテナおよびそれを用いた携帯無線機
JP2004328128A (ja) * 2003-04-22 2004-11-18 Alps Electric Co Ltd アンテナ装置
US7129907B2 (en) * 2003-10-03 2006-10-31 Sensor Systems, Inc. Broadband tunable antenna and transceiver systems
US7202790B2 (en) * 2004-08-13 2007-04-10 Sensormatic Electronics Corporation Techniques for tuning an antenna to different operating frequencies
US7592961B2 (en) * 2005-10-21 2009-09-22 Sanimina-Sci Corporation Self-tuning radio frequency identification antenna system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1341978A (zh) * 2000-08-24 2002-03-27 株式会社村田制作所 天线装置及包含该天线装置的无线设备
JP2002158529A (ja) * 2000-11-20 2002-05-31 Murata Mfg Co Ltd 表面実装型アンテナ構造およびそれを備えた通信機
WO2004109850A1 (ja) * 2003-06-04 2004-12-16 Murata Manufacturing Co. Ltd. 周波数可変型アンテナおよびそれを備えた通信機

Also Published As

Publication number Publication date
EP1843432B1 (en) 2015-08-12
CN103022704A (zh) 2013-04-03
EP1843432A4 (en) 2009-05-27
US7375695B2 (en) 2008-05-20
CN103022704B (zh) 2015-09-02
JPWO2006080141A1 (ja) 2008-06-19
US20070268191A1 (en) 2007-11-22
CN101111972A (zh) 2008-01-23
WO2006080141A1 (ja) 2006-08-03
EP1843432A1 (en) 2007-10-10
JP4508190B2 (ja) 2010-07-21

Similar Documents

Publication Publication Date Title
CN101111972B (zh) 天线及无线通信设备
CN103518325B (zh) 阻抗匹配切换电路、天线装置、高频功率放大装置及通信终端装置
CN1274059C (zh) 天线装置
CN103141031B (zh) 阻抗变换电路以及通信终端装置
CN100375334C (zh) 天线装置
US8473017B2 (en) Adjustable antenna and methods
CN207765315U (zh) 磁场耦合元件、天线装置以及电子设备
US7307591B2 (en) Multi-band antenna
EP1368855B1 (en) Antenna arrangement
KR100810291B1 (ko) 전자기적 결합 급전 소형 광대역 모노폴 안테나
CN102144334B (zh) 天线和无线通信设备
CN101553953B (zh) 天线装置
CN103348531B (zh) 稳频电路、天线装置及通信终端装置
CN109672019B (zh) 一种终端mimo天线装置及实现天线信号传输方法
CA2813829A1 (en) A loop antenna for mobile handset and other applications
CN103518324A (zh) 阻抗变换电路以及通信终端装置
US20070161419A1 (en) Mobile telephone device
KR20020081490A (ko) Pifa 안테나 장치
US20140266964A1 (en) Impedance conversion device, antenna device and communication terminal device
CN212626053U (zh) 一种用于无线终端的小型化圆极化天线及无线终端
KR101776263B1 (ko) 메타머티리얼 안테나
CN219350682U (zh) 一种全频段天线
CN116995416A (zh) 双极化天线
CN111834744A (zh) 一种用于无线终端的小型化圆极化天线及无线终端
KR20210026856A (ko) 안테나와 무선장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant