CN101050913A - 利用从液化天然气中提取的冷量生产液氧的空气分离方法 - Google Patents

利用从液化天然气中提取的冷量生产液氧的空气分离方法 Download PDF

Info

Publication number
CN101050913A
CN101050913A CNA2006100886361A CN200610088636A CN101050913A CN 101050913 A CN101050913 A CN 101050913A CN A2006100886361 A CNA2006100886361 A CN A2006100886361A CN 200610088636 A CN200610088636 A CN 200610088636A CN 101050913 A CN101050913 A CN 101050913A
Authority
CN
China
Prior art keywords
logistics
nitrogen
pressure
air feed
lng
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006100886361A
Other languages
English (en)
Other versions
CN100592013C (zh
Inventor
D·M·赫伦
J·S·崔
D·P·迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of CN101050913A publication Critical patent/CN101050913A/zh
Application granted granted Critical
Publication of CN100592013C publication Critical patent/CN100592013C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0234Integration with a cryogenic air separation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • F25J3/04272The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons and comprising means for reducing the risk of pollution of hydrocarbons into the air fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen

Abstract

本发明提出一种低温空气分离方法,其中,为了提供使至少一部分氧产品达到液氧要求所需的冷量,在该方法中将从LNG中提取的冷量用于液化氮气物流。本发明的关键在于,不是将液化后的氮气进料至蒸馏塔,而是将液化后的氮气与蒸馏塔系统的空气进料换热。

Description

利用从液化天然气中提取的冷量生产液氧的空气分离方法
技术领域
本发明涉及用于空气进料的低温分离的已知方法(以下简称“方法”),其中:
(a)压缩空气进料,去除在低温时会凝固的杂质诸如水和二氧化碳,随后进料至低温空气分离单元(以下简称“低温ASU”),该低温空气分离单元包括置于大保温箱(工业上通常称为冷匣)内的主换热器和蒸馏塔系统;
(b)空气进料在主换热器中通过与蒸馏塔系统的至少一部分排出物流之间的间接换热而被冷却;
(c)将冷却后的空气进料在蒸馏塔系统中分离成排出物流,所述排出物流包括富氮物流和富氧物流以及任选的富含空气进料的剩余组分包括氩、氪、氙的各种物流;
(d)蒸馏塔系统通常包含第一塔(以下称为“高压塔”或者“HP塔”)和第二塔(以下称为“低压塔”或“LP塔”),所述的第一塔将空气进料分离成含有富氮蒸气流和粗液氧物流的排出物流,所述第二塔(i)其操作压力相对低于HP塔的操作压力,(ii)将粗液氧物流分离成包含氧气产品物流和一个或多个其它富氮蒸气流的排出物流;(iii)其与高压塔热连接,从而将至少一部分来自高压塔的富氮蒸气在再沸器/冷凝器中用LP塔塔底(或污水槽)收集的沸腾的富氧液体冷凝。
更确切地说,本发明涉及该方法的已知实施方案,其中利用从液化天然气(以下简称“LNG”)中提取的冷量(refrigeration)来提供使至少部分氧产品达到液态氧所需的冷负荷。特别地,冷量是通过将LNG与一股或多股从蒸馏塔中提取的富氮蒸气物流在换热器内间接换热而从LNG中提取的以液化这些富氮物流。本领域技术人员会想到用LNG液化这些富氮物流与更常规的用必要的冷负荷生产液氧产品的方法的差异。确切地说,更常规的方法包括汽轮机流体(通常是氮气或空气)膨胀作功。
本发明的关键在于被沸腾的LNG液化的富氮物流发生了什么。尤其是,虽然现有技术将所述物流引入到蒸馏塔系统中,但是本发明将这些物流引入到换热器(优选主换热器)中与至少一部分进入蒸馏塔系统的空气进料间接换热以液化至少一部分进入蒸馏塔系统的空气进料。换句话说,虽然现有技术将从LNG提出的冷量直接提供给蒸馏塔系统,但本发明将所述冷量提供给空气进料。如本文进一步讨论的,其优点在于可减少进入高压塔的蒸气进料(因而以更小的投资成本使用较小的高压塔),并且可避免现有技术所用的与天然气间接换热后的液化氮气被直接引入到蒸馏塔系统中存在的安全隐患。特别是,如果天然气/氮气换热的换热器存在天然气泄露到氮气中的缺陷,泄漏的天然气将会被直接引入到蒸馏塔中,因此就存在其与氧气混合形成非常危险的混合物的可能性。
背景技术
上面描述的安全隐患是一种非常重要的考虑因素,因为它将导致某些独特特征,该独特特征可参见下面描述的利用包含LNG内的冷量以助于液化的现有技术的方法。
GB专利申请1376678(以下简称“GB’678”)对于如何使用LNG冷量液化氮气流教导了非常基本的概念。将LNG首先泵送到所需的传送压力,然后进入换热器中。将升温后的氮气在所述的换热器中冷却,然后进行数级压缩。在每一级压缩后,更高温度的氮气返回到换热器中重新被冷却。最后一级压缩后将氮气冷却,然后通过阀门减压,产生液体。物流的压力减小时一些产生的蒸气再循环到合适的压缩等级。
GB’678教导了很多重要的基础性原则。首先,LNG不足够冷以液化低压氮气。实际上,如果LNG在常压下蒸发,则沸腾温度通常会超过-260,要使氮气冷凝将至少需要将其压缩到15.5bara。如果LNG的蒸发压力升高,所需的氮气压力也要相应地升高。因此,多级氮气压缩是必需的,LNG可被用来提供压缩机中间冷却器和后冷器的冷却。第二,由于LNG的温度相对高于氮气的正常沸点(大约-320),当液化后的氮气减压时会产生闪蒸气。该闪蒸气必须再循环和再压缩。
美国专利No.3886758(以后简称“US’758”)公开了一种方法,在该方法中,氮气物流被压缩到大约15bara,然后与蒸发的LNG换热而被冷却和冷凝。氮气物流产生于双塔循环中低压塔的顶部或单塔循环中单塔的顶部。与汽化的LNG换热冷凝下来的部分液氮返回到产生气态氮的蒸馏塔塔顶。液氮提供的冷量在蒸馏塔中传递以产生液态氧产品。没有返回到蒸馏塔的冷凝液氮部分直接作为液氮产品进行储存。
EP0304355(以后简称“EP’355”)教导了利用惰性气体如氮气或氩气再循环作为介质以将来自LNG的冷量传递到空气分离装置。在该方案中,高压惰性气体物流被汽化的LNG液化,然后用于冷却来自于空气分离单元(ASU)的中压物流。ASU中的一股物流经冷却后被冷压、液化,然后作为冷冻剂返回到ASU。本文的动机在于保持在同一换热器中的物流作为LNG但压力高于LNG。这样可保证LNG不会泄漏到氮气物流中,即,确保甲烷不会随着液化的回流氮气被传递到ASU中。作者也宣称ASU所需的大部分冷量作为回流液体被吹入精馏塔中。
美国专利No.5137558,5139547和5141543(以下分别简称“US’558”,“US’547”,“US’543”)对1990年以前的现有技术作了很好的调查。这三篇文献也教导了当时的现有技术。US’558教导了冷压到21bara以上以使氮气的压力超过LNG的压力。US’547涉及该方法的液化器部分——关键特征在于冷压到24bara和回收自闪蒸气的冷量。US’543进一步教导了对LNG使用附加的涡轮膨胀以获得冷量用以液化氮气。
自90年代早期以来,在文献中几乎没有新的技术记载。因为从LNG(LNG接收极限)中回收冷量的大部分申请已饱和而新的极限仍未建立。近来再次兴起关于LNG接收的新的极限和从LNG中回收冷量的潜力的研究。
关于ASU的运行,US’758的基础性教导如图1所示。设备包括基于LNG的氮气液化器(2)和低温ASU(1)。在该实施例中,低温ASU包括高压塔(114)、低压塔(116)和主换热器(110)。将空气进料100在102中压缩并在单元104中去除低温时会凝结的杂质例如水和二氧化碳,得到物流108。将物流108在110中用返回的气态产品物流冷却,得到冷却后的空气进料112。物流112在双塔系统中分馏得到液氧158、高压氮气(物流174)和低压氮气(物流180)。将氮气物流174和180在主换热器110中加热得到物流176和182。将物流176和182传送到基于LNG的氮气液化器内加工处理以产生液化氮气产品物流184和液氮冷冻剂物流186。将液氮冷冻剂物流186通过阀门136和140引入到蒸馏塔中。
图1所示的原理在JP2005134036、JP55-77680(JP1978150868)、美国专利No.4192662、美国专利No.4054433以及上述US’758和EP’355中也有描述。基于图1的方法存在两个缺陷。第一,如果有烃泄漏到ASU冷冻剂物流186中,则烃将浓缩在低压塔塔底和液氧物流158中。由于要避免烃在氧气中的浓缩,为了安全起见,必须采取步骤以确保基于LNG的氮气液化器不会发生所述的泄漏。第二,由于所有进入到低温ASU中的空气(物流108)都是以气相进入到高压塔中,所以高压塔需要有较大的直径(因此意味着更高的成本)。
因此需要提供一种能够将基于LNG的氮气液化器的冷量传递到低温ASU中而避免与直接将可能存在有烃泄漏的液氮注入到蒸馏塔中而带来的缺陷的有效方法。
正如本文所用的那样,“基于LNG的氮气液化器”应定义为其利用包含在LNG中的冷量使气态氮转化为液氮的系统。在所述的常用系统中,将氮气分级压缩。如果压缩在冷入口温度下进行,则将LNG用于通过间接换热冷却压缩机的排出物。氮气的冷却和/或液化将至少部分通过与变暖的或汽化的LNG间接的换热而实现,至少部分地实现。基于LNG的氮气液化器的例子可参见以上引用的文献GB’678、US’558、US’547和US’543。
发明内容
本发明涉及一种低温空气分离方法,其中,为了提供使至少一部分氧产品达到所要求的液氧而必需的冷量,将来自于LNG的冷量在该方法中用于液化氮气流。本发明的关键在于,液化氮不是作为进料进入蒸馏塔,而是与进入蒸馏塔系统的空气进料进行换热。
附图说明
当参照下列附图阅读时,可以对本发明的详细描述进行更好的理解。
图1是表示现有技术如何将来自于LNG的冷量提供给低温ASU的示意图
图2是本发明的一种实施方案的示意图,它描述了本发明如何将来自于LNG的冷量提供给低温ASU。
图3是类似于图2的示意图,所不同的是其包括图2中为简化起见而省略的低温ASU的特征和细节。
图4是表示本发明的基于LNG的氮气液化器如何被装配的一个例子并且涉及工作实施例的示意图。
图5类似于图3,所不同的是低温ASU结合一个侧面氩气塔。图5还涉及工作实施例。
图6是与图1相类似的现有技术的示意图,所不同是为了在工作实施例中与图5相比较的目的,它还结合图5中低温ASU的形式。
具体实施方式
本发明的基本思想如图2所示。设备包括基于LNG的氮气液化器(2)和低温ASU(1)。在该实例中,低温ASU包括高压塔(114)、低压塔(116)和主换热器(110)。将空气进料100在102中压缩,然后在104单元中除去低温时会凝固的杂质如水和二氧化碳,得到物流108。将物流108分成第一部分208和第二部分230。物流208在110中被返回的气态产品物流冷却,得到冷却后的空气进料212。物流230在110中首先被返回的气态产品物流冷却,然后被液化以得到物流232。将液态空气流232分流,然后通过阀门236和240引入到蒸馏塔中。将物流212和232在双塔系统中蒸馏以产生液氧158、高压氮气(物流174)和低压氮气(物流180)。将氮气174和180在主换热器110中加热以产生物流176和182。液氮冷冻剂物流186直接进入主换热器,在其中通过与冷凝物流230间接换热而被蒸发,从而形成氮蒸汽返回物流288。将物流288、176和182在基于LNG的氮气液化器中处理以得到液化氮产品物流184和液氮冷冻剂物流186。
在本发明的一种关键实施方案中,液氮冷冻剂物流在低于空气流108的压力下蒸发。这样做可保证:即使烃从基于LNG的氮气液化器中泄漏到液氮冷冻剂物流、即使在液氮冷冻剂物流和进入的空气(如在主换热器中)之间也存在泄漏,最初从基于LNG的氮气液化器中泄漏的烃也不会进入到蒸馏塔中。实际上,这两股物流之间的压差很小,大约0.1巴。
在图2中,优选将物流232完全冷凝。由于空气物流232和液氧物流158之间潜热的差异,物流232的流量大约是液氧物流158的流量的1.4倍。氧物流158的流量通常是进入的空气物流108的流量的20~21%,在这种情况下,物流232的流量大约是28~29%,物流212的流量是72~71%。换言之,高压塔114的蒸气流量大约是空气的72%。相反地,对于图1所示的方法,高压塔114的蒸气流量大约是空气的100%。很明显,本发明相对于现有技术的优点在于高压塔的直径更小,因而成本也更低。
对于图2所示的方法,如果物流232完全冷凝,则氧气的回收率将最大化。然而,可以在物流232仅部分冷凝的条件下进行本发明。在这种情况下,物流232的流量将增加,因为在物流中仍存在约28~29%液态形式的空气。在极限情况下,如果物流208的流量减小到0,则物流232的流量将为100%,物流232中的液相部分是28~29%。以此方式运行的优点在于使主换热器110的设计简化,因而成本更低,尽管氧气的回收率也会降低。因此,不同选择的决定将取决于资金和能量的经济换位。
为了简化起见,许多关于低温ASU的特征和细节在图2中被省略而在图3中提供。将大气100在主空气压缩机102中压缩,在吸附床104中净化以除去杂质如二氧化碳和水,然后分为两部分:物流230和物流208。物流208在主换热器110中冷却变成物流212,即高压塔114的蒸气空气进料。将物流230冷却到与物流212接近的温度,部分冷凝形成物流232,然后分成物流334和338,将物流334和338通过阀门236和240减压,然后引入到高压塔114和低压塔116中。高压塔在塔顶产生富氮蒸气物流362,在塔底产生富氧物流350。物流362被分成物流174和物流364。将物流174在主换热器中加热,经过主换热器形成物流176到达基于LNG的氮气液化器。物流364在再沸器-冷凝器318中冷凝形成物流366。物流366的一部分以回流形式(物流368)返回到高压塔;将剩余部分(物流370)最终通过阀门372引入到低压塔中作为该塔的塔顶进料。将富氧物流350最终也通过阀门352引入到低压塔中。低压塔在塔底产生氧(将其以液体物流158的形式取出);并且塔顶产生富氮物流180。
将富氮物流180在主换热器110中加热,然后经过主换热器作为物流182到达基于LNG的液化器。将废物流以物流390的形式从低压塔中除去,在主换热器中加热,最终以物流392的形式排出。低压塔塔底的沸腾由再沸冷凝器318提供。液氮冷冻剂物流186直接进入主换热器,在该换热器中通过与冷凝物流230的间接热交换而被蒸发,从而形成蒸汽氮返回物流288。将物流288、176和182在基于LNG的氮气液化器中处理以产生液化氮产品物流184和液氮冷冻剂物流186。
在图3中,没有低压塔进料物流在减压和进入低压塔之前被冷却。将低压塔进料进行冷却的做法是很普通的,并且可以在称作过冷器的换热器中通过加热低压气体物流诸如物流180来实现。在本发明的具体实施方案中,包含有过冷器通常会随着动力消耗和/或工厂规模的增长而变得合乎情理。
低压氮气物流180和高压氮气物流174的产量是任选的。例如,如果没有液氮产品的流量(没有从基于LNG的液化器流出的物流184的流量),则不需要物流176或182。在这种情况下,从低温ASU出来的氮气作为废物物流392离开。如果液氮产品物流184的产量与液氧产品物流158的产量相适应,则通常不需要低压氮气物流180,但使用物流174。如果液氮产品物流184的产量大于液氧产品物流158的产量,则通常不需要高压氮气物流174,但使用物流180。为了获得中间产量水平的液氮,会使用物流174和180两者。对于本领域普通技术人员而言,哪种组合最佳是显而易见的,也就是说,这只是一种经济优化。
另外,本发明的实施方式还包括气态氮气产品的联产。在这种情况下,可选择将一部分低压物流182用作氮气产品。或者可选择将一部分高压物流176用作氮气产品。当将氮气副产品从高压塔塔顶取出时,从低于高压塔塔顶一系列塔板的位置中抽提低压塔回流物流370是常见的,但不是必需的。在这种情况下,将所有的经再沸冷凝器冷凝的物流366返回到高压塔。此外,也可以选择从基于LNG的液化器中回收气态氮气——如果氮气的压力超过物流176或182的话,则这种方法也是可行的。
另外,在图2和图3中也表明将冷凝后的空气物流232送至这两个塔。将所有的物流232仅送至高压塔或者低压塔是可能的,通常也是合理的。或者将所有的物流232送入高压塔,在与物流232进料的同一位置处从高压塔取出液体。或者一起取消冷凝后的空气物流232。相关的物流230、334、338以及阀门236和240也被取消。在这种情况下,单一的空气物流212将会通过与蒸发的氮气冷冻剂物流186的换热而部分冷凝,物流212将会构成高压塔的第二股进料。
在图2和图3中,从低压塔出来的单一氧气产品为物流158。尽管没有示出,但是得到气态氧气副产品也是可以的。这可通过一系列不同的方法实现。例如,氧气可以以蒸气形式从低压塔塔底取出,在主换热器中加热,然后被压缩。另外,气态氧气物流可以仅与废物物流390相混合。或者氧气物流158的一部分在主换热器中蒸发,然后作为产品传送。
在图2和图3中,可以看出,物流230的冷凝和物流186的蒸发都在主换热器中进行。在单独的换热器中通过间接换热进行该冷凝和蒸发也在本发明的范围内。
基于LNG的氮气液化器的性质不是本发明的焦点所在,然而在图4中描述了基于LNG的液化器(图1-3中所示的单元2)的例子。低压氮蒸气物流182在液化交换器404中冷却以得到物流422,物流422随后与返回的蒸气物流464混合形成物流424。将物流424在低压冷压机406中压缩以形成物流426。物流426在液化交换器404中冷却以得到物流428,物流428随后与返回的蒸气物流454以及急冷物流432混合形成物流434。
高压氮气物流176与氮蒸汽返回物流288相混合以形成物流430,物流430随后在液化交换器404中冷却以形成物流432。将物流434在高压冷压机408中压缩得到物流436。物流436在液化交换器404中冷却以得到物流438,将物流438在VHP冷压机410中压缩形成物流446。将物流446在液化交换器404中进行冷却和液化以得到物流448。
液化后的物流448在冷却器412中进一步冷却以形成物流450。将物流450通过阀门414减压并引入到容器416中,在容器416中,两相流体分离成蒸气相物流452和液相物流456。液相物流456分成两股物流:物流460和物流186,物流186构成直接进入低温ASU的液氮冷冻剂物流。将物流460通过阀门418减压并引入到容器420中,在容器420中,两相流体分离成蒸气相物流462和液氮产品物流184。蒸气相物流462和452分别在冷却器412中冷却以形成物流464和454。
基于LNG的液化器的冷量由LNG物流196提供,将物流196在液化交换器404中蒸发或加热以形成物流198。
从严格意义上说,术语“蒸发”和“冷凝”适用于低于其临界压力的物流。通常,物流446(最高压力的氮气物流)和196(LNG供给)的压力大于临界压力。可理解成这些物流事实上并没有冷凝或蒸发。它们只是进行了其特征在于高度热容的相态的变化。本领域普通技术人员将会想到具有高度热容(在超临界条件下)和具有潜热(在亚临界条件下)之间的一致性。
图4所示的液化器的设计有多种变化。一种区别如下所示。液氮冷冻剂物流186从中压分离器416中取出。这样做的原因在于方便。然而,从低压分离器420中取出物流186同样也在本发明的宗旨之内。还可以将所有液化器产生的液体都送往贮存器并从贮存器(未示出)中取出物流186。在这两种情况中的任一种中,在物流186进入ASU之前将其泵压至合适的压力是理想的。
下面的实施例给出了与该方法相关的可能的操作条件。在该实施例中,本发明通过图4所示的基于LNG的液化器和图5所示的低温ASU来描述。将该方法与现有技术的教导相比较,现有技术的教导将产生通过图4所示的基于LNG的液化器和图6所示的低温ASU所描述的方法。
图5类似于图3,所不同的是增加了氩气塔562。如图5所示,从低压塔抽提的蒸气流作为物流558并进料到氩气塔562中。氩气产品作为液态物流554从该塔的塔顶取出。塔底液态物流560返回到低压塔中。氩气塔的回流通过与蒸发的富氧物流的间接换热来提供,所述富氧物流称为物流350,其来自于高压塔。物流350通过阀门352进入再沸冷凝器564,至少部分蒸发以形成物流556,物流556直接进入低压塔。如图4和图5所示,将本发明进行精确模拟得到的精选结果列于表1中。在该实施例中,高压氮气(物流176)流量为零。
图6表示现有技术的低温ASU。如图6所示,液氮冷冻剂物流186通过阀门136进入高压塔。考虑现有技术的两种不同情况。在第一种情况下,如表1的现有技术1所示,高压氮气(物流176)流量为0——正如本发明实施例一样。在第二种情况下,如表1的现有技术2所示,调节高压氮蒸气(物流176)流量使其产生的氩气与本发明实施例中的氩气产量相同。
表1所示的结果证明该设备的总动力消耗小于或等于现有技术的动力消耗。同时,高压塔空气流量也比现有技术显著降低,如表中的物流212或112所示。由此可以确定本发明的高压塔的直径也明显小于现有技术的。最后,重要的是,本发明可减轻与直接注入有关的潜在的进入蒸馏塔的液氮载有烃的缺陷。
表1
  本发明   现有技术1   现有技术2
  空气物流(108)压力塔的空气流(212,112)温度液态空气流(232)温度液氮冷冻剂(186)压力液氧流(158)液氩冷(554)液氮产品(184)低压氮气流(182)压力高压氮气流(176)压力气相氮气冷冻剂(288)压力LNG供给流量(196)压力温度动力主空气压缩器(102)LP压缩器(406)HP压缩器(408)VHP压缩器(410)其余各项合计   Nm3/hrbaraNm3/hr℃Nm3/hr℃Nm3/hrbaraNm3/hrNm3/hrNm3/hrNm3/hrbaraNm3/hrbaraNm3/hrbaraNm3/hrbara℃kWkWkWkWkWkW   31,9235.7223,974-172.47,949-1798,4455.305,85925520,01620,4381.2005.238,4455.1690,28375.9-1542,6038541,5501,5742136,794   30,1565.730,156-173.7n/an/a8,5365.305,84727720,01628,9741.2005.22n/an/a90,28375.9-1542,4581,1721,6761,5522047,062   30,1245.7130,123-173.8n/an/a8,5835.305,85725520,01623,1671.205,8405.22n/an/a90,28375.9-1542,4579561,6501,5202046,787

Claims (6)

1、一种用于空气进料的低温分离方法,在该方法中,
(a)压缩空气进料,去除低温时会凝固的杂质,随后进料至包含主换热器和蒸馏塔系统的空气分离单元;
(b)空气进料在主换热器中通过与至少一部分蒸馏塔系统的排出物流之间的间接换热而被冷却;
(c)将冷却后的空气进料在蒸馏塔系统中分离成排出物流,所述排出物流包括富氮物流和富氧物流;和
(d)为了提供使至少一部分氧产品达到液氧要求所必需的冷量,通过将LNG与从蒸馏塔系统中取出的一股或多股富氮蒸气物流在主换热器中进行间接换热来从LNG提取冷量,以用于液化所述的富氮物流;
改进包括;
(e)将至少一部分步骤(d)液化的富氮物流与至少一部分蒸馏塔系统的空气进料间接换热,以液化至少一部分蒸馏塔系统的空气进料。
2、如权利要求1所述的方法,在步骤(e)中与空气进料换热的液化后的富氮物流的压力低于所述的空气进料的压力。
3、如权利要求1所述的方法,步骤(e)中的换热在主换热器中进行。
4、如权利要求1所述的方法,步骤(e)中的换热在与主换热器分开的换热器中进行。
5、如权利要求1所述的方法,其中蒸馏塔系统包括高压塔和低压塔,所述高压塔将空气进料分离成包含富氮蒸气物流和粗液氧物流的排出物流;所述低压塔(i)其操作压力相对低于高压塔的操作压力;(ii)将粗液氧物流分离成包含有氧气产品物流和一股或多股其它的富氮蒸气物流的排出物流;以及(iii)其与高压塔热连接,从而将至少一部分来自高压塔的富氮蒸气在再沸器/冷凝器中用低压塔塔底(或槽)收集的沸腾的富氧液体冷凝。
6、如权利要求5所述的方法,将步骤(e)中液化的空气进料的第一部分进料至高压塔,同时将步骤(e)中液化的空气进料的另一部分进料至低压塔。
CN200610088636A 2006-04-05 2006-04-30 利用从液化天然气中提取的冷量生产液氧的空气分离方法 Active CN100592013C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US78939706P 2006-04-05 2006-04-05
US60/789397 2006-04-05
US11/406440 2006-04-19

Publications (2)

Publication Number Publication Date
CN101050913A true CN101050913A (zh) 2007-10-10
CN100592013C CN100592013C (zh) 2010-02-24

Family

ID=38782448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610088636A Active CN100592013C (zh) 2006-04-05 2006-04-30 利用从液化天然气中提取的冷量生产液氧的空气分离方法

Country Status (4)

Country Link
US (1) US7552599B2 (zh)
CN (1) CN100592013C (zh)
MX (1) MX2007003996A (zh)
TW (1) TWI301883B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839612A (zh) * 2010-04-06 2010-09-22 浙江大学 基于lng卫星站冷能利用的倒灌式空气分离系统及方法
CN102829605A (zh) * 2012-09-08 2012-12-19 浙江海天气体有限公司 一种利用液氮倒灌提供冷量制取液氧的空分装置
CN105254463A (zh) * 2015-10-23 2016-01-20 苏州市兴鲁空分设备科技发展有限公司 从含有甲烷、氢、氮的混合气中提取甲烷的方法
CN106288650A (zh) * 2015-06-26 2017-01-04 上海恩图能源科技有限公司 常温氮气回收lng冷能工艺
CN106883897A (zh) * 2017-03-29 2017-06-23 四川华亿石油天然气工程有限公司 Bog分离提纯设备及工艺
CN112833327A (zh) * 2021-01-19 2021-05-25 华南理工大学 一种集传热分离一体化的lng冷能利用工艺装置
CN113606866A (zh) * 2021-08-06 2021-11-05 苏州市兴鲁空分设备科技发展有限公司 一种空气分离制取氮气的装置和方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009008229A1 (de) * 2009-02-10 2010-08-12 Linde Ag Verfahren zum Abtrennen von Stickstoff
EP2669613A1 (de) * 2012-05-31 2013-12-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Stickstoffverflüssigung
FR3044747B1 (fr) * 2015-12-07 2019-12-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de liquefaction de gaz naturel et d'azote
EP4028488A2 (en) 2019-09-11 2022-07-20 Michiel Cramwinckel Process to convert a waste polymer product to a gaseous product
US20240101907A1 (en) 2019-10-29 2024-03-28 Michiel Cramwinckel Process for a plastic product conversion
CN111197912A (zh) * 2020-01-24 2020-05-26 杭州制氧机集团股份有限公司 一种lng冷能空分中的lng与空气、液氧安全隔离装置
NL2027029B1 (en) 2020-12-03 2022-07-06 Cramwinckel Michiel Suspension of a waste plastic and a vacuum gas oil
EP3878926A1 (en) 2020-03-09 2021-09-15 Michiel Cramwinckel Suspension of a waste plastic and a vacuum gas oil, its preparation and use in fcc
CN113007594B (zh) * 2021-04-02 2022-07-05 江南造船(集团)有限责任公司 一种lng过冷加注系统
IT202100032876A1 (it) 2021-12-29 2023-06-29 Rita S R L Impianto e processo per la produzione di ossigeno e azoto gassosi mediante separazione criogenica di una miscela di gas contenente ossigeno ed azoto

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3058314A (en) * 1957-08-12 1962-10-16 British Oxygen Co Ltd Process and apparatus for the low temperature separation of air
FR2060184B1 (zh) 1969-09-10 1973-11-16 Air Liquide
FR2131985B1 (zh) 1971-03-30 1974-06-28 Snam Progetti
FR2300303A1 (fr) 1975-02-06 1976-09-03 Air Liquide Cycle fr
JPS5382687A (en) 1976-12-28 1978-07-21 Nippon Oxygen Co Ltd Air liquefaction rectifying method
JPS5577680A (en) 1978-12-05 1980-06-11 Chubu Ekisan Kk Liquifying separation method
JPH0789014B2 (ja) 1987-07-28 1995-09-27 テイサン株式会社 空気分離装置における外部冷熱源利用方法
US5220798A (en) * 1990-09-18 1993-06-22 Teisan Kabushiki Kaisha Air separating method using external cold source
US5137558A (en) 1991-04-26 1992-08-11 Air Products And Chemicals, Inc. Liquefied natural gas refrigeration transfer to a cryogenics air separation unit using high presure nitrogen stream
US5139547A (en) 1991-04-26 1992-08-18 Air Products And Chemicals, Inc. Production of liquid nitrogen using liquefied natural gas as sole refrigerant
US5141543A (en) 1991-04-26 1992-08-25 Air Products And Chemicals, Inc. Use of liquefied natural gas (LNG) coupled with a cold expander to produce liquid nitrogen
FR2702040B1 (fr) * 1993-02-25 1995-05-19 Air Liquide Procédé et installation de production d'oxygène et/ou d'azote sous pression.
JP2000337767A (ja) * 1999-05-26 2000-12-08 Air Liquide Japan Ltd 空気分離方法及び空気分離設備
CN1178038C (zh) * 2001-08-19 2004-12-01 中国科学技术大学 利用液化天然气冷能的空气分离装置
US7143606B2 (en) * 2002-11-01 2006-12-05 L'air Liquide-Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etide Et L'exploitation Des Procedes Georges Claude Combined air separation natural gas liquefaction plant
JP4276520B2 (ja) 2003-10-30 2009-06-10 株式会社神戸製鋼所 空気分離装置の運転方法
US7228715B2 (en) * 2003-12-23 2007-06-12 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839612A (zh) * 2010-04-06 2010-09-22 浙江大学 基于lng卫星站冷能利用的倒灌式空气分离系统及方法
CN102829605A (zh) * 2012-09-08 2012-12-19 浙江海天气体有限公司 一种利用液氮倒灌提供冷量制取液氧的空分装置
CN106288650A (zh) * 2015-06-26 2017-01-04 上海恩图能源科技有限公司 常温氮气回收lng冷能工艺
CN106288650B (zh) * 2015-06-26 2019-07-05 上海恩图能源科技有限公司 常温氮气回收lng冷能工艺
CN105254463A (zh) * 2015-10-23 2016-01-20 苏州市兴鲁空分设备科技发展有限公司 从含有甲烷、氢、氮的混合气中提取甲烷的方法
CN106883897A (zh) * 2017-03-29 2017-06-23 四川华亿石油天然气工程有限公司 Bog分离提纯设备及工艺
CN112833327A (zh) * 2021-01-19 2021-05-25 华南理工大学 一种集传热分离一体化的lng冷能利用工艺装置
CN112833327B (zh) * 2021-01-19 2023-11-03 华南理工大学 一种集传热分离一体化的lng冷能利用工艺装置
CN113606866A (zh) * 2021-08-06 2021-11-05 苏州市兴鲁空分设备科技发展有限公司 一种空气分离制取氮气的装置和方法

Also Published As

Publication number Publication date
US7552599B2 (en) 2009-06-30
TWI301883B (en) 2008-10-11
TW200739015A (en) 2007-10-16
MX2007003996A (es) 2009-12-18
CN100592013C (zh) 2010-02-24
US20080216512A1 (en) 2008-09-11

Similar Documents

Publication Publication Date Title
CN100592013C (zh) 利用从液化天然气中提取的冷量生产液氧的空气分离方法
RU2355960C1 (ru) Двухступенчатый отвод азота из сжиженного природного газа
RU2337130C2 (ru) Отвод азота из конденсированного природного газа
KR100874680B1 (ko) 공기 분리 공정에서의 lng 기반의 액화 장치의생산능력을 높이기 위한 시스템
US6196022B1 (en) Process and device for recovering high-purity oxygen
CN1081782C (zh) 在压力下生产气态氧的方法和装置
US6336345B1 (en) Process and apparatus for low temperature fractionation of air
JPH06117753A (ja) 空気の高圧低温蒸留方法
EP0994318A2 (en) Method and apparatus for enhancing carbon dioxide recovery
CN111406192B (zh) 通过与氮气膨胀机联动制动的膨胀机增压机来产生增压空气的深冷精馏方法与设备
JP4057668B2 (ja) 空気を成分分離して窒素を生産する方法及び装置
NO174684B (no) Fremgangsmaate ved fremstilling av nitrogen ved destillasjon av luft
JPH06101963A (ja) 空気の高圧低温蒸留方法
KR100191987B1 (ko) 질소 생성방법 및 장치
NO169977B (no) Fremgangsmaate for separering av luft ved kryogen destillasjon
JPH06257939A (ja) 空気の低温蒸留方法
US9222726B2 (en) Air separation method and apparatus with improved argon recovery
CA2277838A1 (en) Method and device for producing compressed nitrogen
JPH0771872A (ja) 大気圧以上の圧力で酸素を製造する単一カラム法および製造装置
EP2126501B1 (en) Nitrogen production method and apparatus
US5528906A (en) Method and apparatus for producing ultra-high purity oxygen
CN101509722A (zh) 蒸馏方法和设备
TW536615B (en) Air separation method to produce gaseous product
TW202117249A (zh) 空氣的低溫分離方法與設備
RU2010141520A (ru) Способ и устройство для получения жидкого азота путем разложения воздуха при низкой температуре

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant