CN101037451A - 过渡金属络合物、合成方法及其在催化氢化反应中的应用 - Google Patents

过渡金属络合物、合成方法及其在催化氢化反应中的应用 Download PDF

Info

Publication number
CN101037451A
CN101037451A CN 200710095929 CN200710095929A CN101037451A CN 101037451 A CN101037451 A CN 101037451A CN 200710095929 CN200710095929 CN 200710095929 CN 200710095929 A CN200710095929 A CN 200710095929A CN 101037451 A CN101037451 A CN 101037451A
Authority
CN
China
Prior art keywords
autoclave
hydrogen
ligand
cdcl
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200710095929
Other languages
English (en)
Inventor
丁奎岭
荆庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Organic Chemistry of CAS
Original Assignee
Shanghai Institute of Organic Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Organic Chemistry of CAS filed Critical Shanghai Institute of Organic Chemistry of CAS
Priority to CN 200710095929 priority Critical patent/CN101037451A/zh
Publication of CN101037451A publication Critical patent/CN101037451A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种如右结构式的过渡金属络合物、合成方法及其在催化氢化反应中的应用。合成方法简便,适合工业化生产,可以用于催化氢化反应,尤其是用于苯乙酮及其衍生物、二苯甲酮及其衍生物、甲基环丙基甲酮、γ-N,N-二甲氨基α-苯丙酮及其衍生物以及其它酮类化合物的催化不对称氢化反应。

Description

过渡金属络合物、合成方法及其在催化氢化反应中的应用
本发明是申请号为200510023632.0、申请日为2005年1月27日和发明名称为‘过渡金属络合物、合成方法和用途’的分案申请。
技术领域
本发明涉及一类过渡金属络合物、合成方法及其在催化氢化反应中的应用。合成的这些金属络合物可用于催化不对称催化氢化反应。这类络合物可以催化苯乙酮及其衍生物、二苯甲酮及其衍生物、甲基环丙基甲酮、γ-N,N-二甲氨基-α-苯丙酮及其衍生物以及其它酮类化合物的不对称催化氢化反应。
背景技术
不对称催化氢化反应是当前不对称合成领域中的热点[Ohkuma,T.;Kitamura,M.;Noryori,R.(1999)Asymmetric Hydrogenation.In:Ojiama,I.(ed)CatalyticAsymmetric Synthesis.(2nd Ed.).Wily-VCH:New York(Englinsh)2000]。不对称催化氢化自1956年Wilkinson催化剂的出现到最进几年得到不断发展。酮类化合物的不对称氢化反应在最近二十年内也有了迅速的发展[Bakos,J.T.;Heil,B.L.J.Organomet.Chem.1985,279,23],[Jiang,Q.;Jiang,Y.;Xiao,D.;Zhang,X.Angew.Chem.Int.Ed.Engl.1998,37,1100]。一个突破性的进展是Noyori小组实现的,他们发现在络合物[RuCl2(S)-BINAP]中,加入二胺配体,即可生成一种结构为tans-[RuCl2(phosphane)(1,2-diamine)]络合物,在碱(如t-BuOK或KOH)的存在下,可高效地催化酮类底物的不对称氢化反应[Noyori,R.;Takeshi,O.;Hirohito,O.Shohei,H.;Takao,I.J.Am.Chem.Soc.1995,117,2675],[Noyori,R.;Ohkuma,T.;Douce,H.;Murata,K.;Yokozawa,T.;Kozawa,M.;Katayama,E.;England,A.F.;Ikariya,T.,Angew.Chem.Int.Ed.1998,37,1703]。在最近几年中,又涌现出了许多手性双膦配体,应用在酮类化合物的不对称氢化反应中,也可以取得非常好的结果[Jing,W.;Hua,C.;Waihim,K.;Rongwei,G.;Zhongyuan,Z.;Chihung,Y.;Chan,S.C.,J.Chem.Soc.2002,67,7908],[Jing,W.;Jian,X.;Rongwei,G.;Chihung,Y.;Chan,S.C.,Chem.Eur.J.2003,9,2963],[Jian,H.X.;Xin,L.W.;Fu,Y.;Shuo,F.Z.;Bao,M.F.;Hai,F.D.;Zhou,Q.L.J.Am.Chem.Soc.2003.125,4404],[Mark,J.;William,H.;Daniela,H.;Christophe,M.;Antonio,Z.G.Org.Lett.2000,26,4173]。而且最近Mikami小组同Noyori小组合作,将不对活化的策略应用到酮类底物的不对称氢化反应当中[Okuma,T.;Doucet,H.;Pham,T.;Mikami,K.;Korenaga,T.;Terada,M.;Noyori,R.J.Am.Chem.Soc.,1998,120,1086],[Mikami,K.;Korenaga,T.;Terada,M.;Ohkuma,T.;Pham,T.;Noyori,R.Angew.Chem.Int.Ed.Ehgl.,1999,38,495],也取得了较好的结果。在利用非手性的膦配体方面也有相关有研究[Katayama,E.;Inoue,T.JP2001002610,2001],[Ooka,H.;Kanagawa,Inoue,T.WO 007506 A1,2004],[Suparabhorn,S.;Susanne,L.;Chen,W.P.;Xiao J.L.J.Mole.Catal.A,Chemical 2003,196,125-129]。
尽管如此,这些合成这些催化剂所用的手性双膦配体或者是消旋的配体的合成仍然比较困难,因此,本发明专利将以不对称催化氢化反应为对象,以发展价廉、高效、高选择性的实用催化体系为目标,通过运用上述不对称活化的新概念和组合化学方法,发展既实用又高效的不对称催化氢化体系。
发明内容
本发明的目的是提供一种过渡金属络合物。该类金属络合物可用于不对称催化氢化反应。尤其是金属钌络合物。
本发明的另一目的是提供上述过渡金属络合物的合成方法。
本发明的目的还提供将上述络合物在催化氢化反应中的应用。可以用于催化不对称氢化,进一步描述为应用于苯乙酮及其衍生物、二苯甲酮及其衍生物、甲基环丙基甲酮、γ-N,N-二甲氨基-α-苯丙酮及其衍生物以及其它酮类化合物的催化氢化反应。
本专利所涉及的过渡金属络合物的具有如下的结构式:
Figure A20071009592900061
其中A是R1R2R3P,B是R4R5R6P,或者A和B是
Figure A20071009592900071
M是Ru、Pd、Cu或Fe;X是氯、溴、碘;R9是氢、甲基磺酰基或对甲基苯磺酰基;其中,R1、R2、R3、R4、R5或R6是C2-12的烃基或
Figure A20071009592900072
R14或R15是氢、甲基、乙基、正丙基、异丙基、环丙基、正丁基、叔丁基、环戊基、环己基、环庚基、甲氧基、乙氧基、正丙氧基、异丙氧基、苯基、苯氧基、甲基苯氧基、3,5-二甲基苯基、苄基、3,5-二甲基苄基和萘基,R13是如下一些基团:
,其中的R18或R19为氢、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基或异丙氧基,双胺配体是手性或不是手性的双胺配体,手性的双胺配体的绝对构型既可以是(R,R)构型,或是(S,S)构型,当采用双膦配体时,其中R12是如下一些基团:
Figure A20071009592900074
其中的R10或R11为苯基、对甲基苯基或3,5-二甲基苯基;
上述过渡金属络合物中:
当M是Ru、R12
Figure A20071009592900081
R9是H时,R13
Figure A20071009592900082
或M是Ru、R12
Figure A20071009592900083
R9是H时,R13
Figure A20071009592900084
时,R18≠甲氧基、乙氧基、正丙氧基或异丙氧基;
或M是Ru、R12
Figure A20071009592900085
R9是H时,R13
Figure A20071009592900086
时,R18和R19不能同时为H。
本发明的催化剂结构可以进一步分别表示为C3和C4:
Figure A20071009592900087
而其中的R10或R11可以分别为苯基、对甲基苯基或3,5-二甲基苯基等。
该类络合物的制备可以在有机溶剂中和反应温度为0℃-100℃下,由过渡金属化合物、双胺配体、双膦配体或单膦配体反应0.5~20小时获得,其中过渡金属化合物、双胺配体、双膦配体或单膦配体的摩尔比为1∶1~5∶1~5,其中所述的双胺配体的结构式为HR9NR13NH2,所述的双膦配体结构式为 单膦配体为R1R2R3P或R4R5R6P,其中其中R1、R2、R3、R4、R5、R6、R9、R10、R11和R12如前所述,所述的过渡金属化合物是Ru、Pd、Cu或Fe的卤化物或者是它们的络合物。
具体由下面的反应式表示,以金属钌络合物为例:
Figure A20071009592900091
反应式中R1-R13基团的定义如前所述。
在本发明的上述方法中使用的有机溶剂可以是苯、甲苯、二甲苯、三甲苯、乙腈、乙醚、四氢呋喃、乙二醇二甲醚、三氯甲烷、二氯甲烷、甲醇、乙醇、异丙醇、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、N-甲基吡咯烷酮等。
本发明所用的手性双胺配体的绝对构型既可以是(R,R)构型,也可以是(S,S)构型。
本发明的过渡金属络合物的合成方法不仅简便,适合工业化生产,而且可以用于催化不对称氢化,进一步说应用于苯乙酮及其衍生物、二苯甲酮及其衍生物、甲基环丙基甲酮、γ-N,N-二甲氨基-α-苯丙酮及其衍生物以及其它酮类化合物的催化氢化反应。
具体实施方法
通过下述实施例有助于进一步理解本发明,但并不限制发明的内容。
催化剂的制备
本发明的制备方法可以进一步用代表性的化合物的制备过程体现如下:方法一
[(Ph3P)2RuCl2(R,R)-DPEN的制备为例]
DPEN为1,2-二苯基乙二胺
实施例1:催化剂6(Ph3P)2RuCl2(R,R)-DPEN的制备
Figure A20071009592900101
通用方法(方法一):在氩气保护下将50mg(0.24mmol)RuCl3与300mg(1.14mmol)PPh3放入反应管中,并装上回流装置。加入12mL无水CH3OH,加热回流5小时。此时会的棕红色固体析出,在氩气保护下过滤,用无水乙醚洗涤固体,减压抽干溶剂,直接用于下一步反应。
在氩气保护下将上述粉末状固153mg(0.16mmol)放入反应管内,加入2mL无水CH2Cl2,搅拌10分钟后,加入38.2mg(0.18mmol)(R,R)-1,2-二苯基乙二胺,搅拌过夜。加入5mL无水正己烷,可析出棕黄色固体,在氩气保护下过滤,用无水CH2Cl2及无水正己烷重结晶可得棕黄色晶体109mg。产率:75%。M.p.213-215℃(Dec.;[α]D 20=+170.4°(c=0.45,CHCl3);IR(KBr)v 3313cm-1(N-H);1H NMR(300MHz,CDCl3):δ7.53(s,12H),7.24-7.07(m,24H),6.85(s,4H),4.29(t,J=4.5Hz,2H),3.70(m,2H),3.36(s,1H),3.34(s,1H);31P NMR(121MHz,CDCl3):δ46.91ppm。
实施例2:催化剂7(Ph3P)2RuCl2(NH2CH2CH2NH2)
采用方法一,第一步回流10小时,产率:74%。
1H NMR(300MHz,CDCl3):δ7.52-7.46(m,12H),7.29-7.24(m,6H),7.13(t,J=7.5Hz,12H),2.99(br,4H),2.79(s,4H);31P NMR(121MHz,CDCl3):δ44.49ppm。
实施例3:催化剂8
Figure A20071009592900102
采用方法一,第一步回流4小时,产率:71%。
M.p.234-235℃(Dec.);[α]D 20=+115.5°(c=0.54,CHCl3);IR(KBr)v 3312cm-1(N-H);1H NMR(300MHz,CDCl3):δ7.17(t,J=9.9Hz,12H),7.10-7.07(m,5H),6.95-6.87(m,5H),6.80(s,4H),4.30(t,J=4.8Hz,2H),3.69-3.66(m,2H),3.41(s,1H),3.39(s,1H),2.11(s,36H);31P NMR(121MHz,CDCl3):δ43.67ppm。
实施例4:催化剂9
Figure A20071009592900111
产率:80%。
1H NMR(300MHz,CDCl3):δ7.41-7.35(m,12H),7.16-7.11(m,18H),6.87-6.84(m,4H),4.28(t,J=4.8Hz,2H),3.61(m,2H),3.35(s,1H),3.32(s,1H);31P NMR(121MHz,CDCl3):δ44.54ppm。
实施例5:催化剂10
Figure A20071009592900112
采用方法一,第一步以乙醇为溶剂回流15小时,产率:79%。
1H NMR(300MHz,CDCl3):δ7.44-7.39(m,12H),7.09-7.07(m,6H),6.90-6.87(m,4H),6.64(d,J=5.4Hz,12H),4.29(t,J=4.8Hz,2H),3.74-3.65(m,20H);31P NMR(121MHz,CDCl3):δ41.65ppm。
实施例6:催化剂11(Ph3P)2RuCl2[(R,R)-o-OCH3-DPEN]
产率:62%。
1H NMR(300MHz,CDCl3):δ7.55-7.50(m,12H),7.20-7.17(m,10H),7.11-7.06(m,14H),6.63(d,J=5.4Hz,2H),4.67(s,4H),3.72(s,6H),3.18(br,2H);31P NMR(121MHz,CDCl3):δ44.98ppm。
实施例7:催化剂12
Figure A20071009592900113
产率:66%。
1H NMR(300MHz,CDCl3):δ7.16-7.13(m,12H),6.80(s,6H),6.72(s,2H),6.48(s,4H),4.22(t,J=4.5Hz,2H),3.56(m,2H),3.34(s,1H),3.31(s,1H),2.13(s,12H),2.05(s,36H);31P NMR(121MHz,CDCl3):δ43.71ppm。
实施例8:催化剂13
Figure A20071009592900114
采用方法一,第一步以乙醇为溶剂回流12小时,第二步以1,2-二氯乙烷为溶剂,反应10小时。产率:66%。
1H NMR(300MHz,CDCl3):δ7.52-7.49(m,4H),7.16-7.05(m,20H),6.89-6.83(m,8H),4.35(t,J=4.5Hz,2H),3.74-3.69(m,2H),3.46(s,1H),3.42,(s,1H),2.32s,6H),2.07(s,12H),2.05(s,12H);31P NMR(121MHz,CDCl3):δ43.95ppm。
实施例9:催化剂14
Figure A20071009592900121
产率:77%。
1H NMR(300MHz,CDCl3):δ7.20-7.17(m,12H),6.79(s,10H),6.23(d,J=7.2Hz,4H),4.23(t,J=4.5Hz,2H),3.70(s,6H),3.61(m,2H),3.33,(s,1H),3.31(s,1H),2.04(s,36H);31P NMR(121MHz,CDCl3):δ43.65ppm。
实施例10:催化剂15
Figure A20071009592900122
采用方法一,第一步回流4小时,第二步以三氯甲完为溶液剂,产率:76%。
31P NMR(121MHz,CDCl3):δ49.93ppm;19F NMR(282MHz,CDCl3):δ-63.55ppm。
实施例11:催化剂16(Ph3P)2RuCl2[(S)-BINAM]
BINAM为:2,2’-联萘胺
产率:79%。
1H NMR(300MHz,CDCl3):δ7.80(d,J=8.1Hz,2H),7.32(d,J=8.7Hz,2H),7.58(t,J=8.4Hz,12H),7.33-7.27(m,2H),7.24-7.22(m,6H),7.15-7.09(m,14H),6.95(d,J=8.4Hz,2H),6.59(d,J=8.7Hz,2H),5.24(br,2H),4.58(br,2H);31P NMR(121MHz,CDCl3):δ47.25ppm。
实施例12:催化剂17
Figure A20071009592900123
产率:76%。
1H NMR(300MHz,CDCl3):δ7.30-7.26(m,6H),7.78-7.76(m,14H),6.81(s,4H),6.73(s,2H),4.27(t,J=4.2Hz,2H),3.17(m,2H),3.39(s,1H),3.37,(s,1H),2.20(s,12H),2.05(s,36H);31P NMR(121MHz,CDCl3):δ43.68ppm。
实施例13:催化剂18(Ph3P)2RuCl2[(S,S)-m-CH3-DPEN]
产率:70%。
1H NMR(300MHz,CDCl3):δ7.52-7.50(m,14H),7.23-7.19(m,16H),6.96-6.91(m,4H),6.66-6.60(m,4H),4.23(t,J=5.4Hz,2H),3.68(m,2H),3.32(s,1H),3.30(s,1H),2.18(s,6H);31P NMR(121MHz,CDCl3):δ45.03ppm。
实施例14:催化剂19(Ph3P)2RuCl2[(R,R)-p-OCH3-DPEN]
产率:73%。
1H NMR(300MHz,CDCl3):δ7.53-7.50(m,10H),7.35-7.33(m,10H),7.19-7.07(m,10H),6.76(d,J=8.7Hz,4H),6.60(d,J=8.7Hz,4H),4.19(t,J=4.5Hz,2H),3.72(s,6H),3.61(br,2H),3.31(s,1H),3.28(s,1H);31P NMR(121MHz,CDCl3):δ44.98ppm。
实施例15:催化剂20(Ph3P)2RuCl2[(S,S)-p-CH3-DPEN]
产率:80%。
1H NMR(300MHz,CDCl3):δ7.52-7.47(m,10H),7.23-7.18(m,6H),7.09(t,J=7.5Hz,12H),6.87(d,J=8.1Hz,4H),6.72(d,J=7.8Hz,4H),4.23(t,J=4.5Hz,2H),3.66(br,2H),3.33(s,1H),3.30(s,1H),2.18(s,6H);31P NMR(121MHz,CDCl3):δ44.97ppm。
实施例16:催化剂21
Figure A20071009592900131
产率:71%。
31P NMR(121MHz,CDCl3):δ46.58ppm。
实施例17:催化剂22(Ph3P)2RuCl2[(S,S)-3,5-Di-CH3-DPEN]
产率:73%。
31P NMR(121MHz,CDCl3):δ45.10ppm。
实施例18:催化剂23
(Ph3P)2RuCl2[(S)-DAIPEN]
采用方法一,第一步反应以异丙醇为溶剂,回流7小时。产率:67%。
31P NMR(121MHz,CDCl3):δ45.56ppm。
方法二
Figure A20071009592900141
实施例19:催化剂24的制备
通用方法(方法二):在氩气保护下将128mg(0.202mmol)双膦配体(或者是单膦配体0.404mmol)及50mg(0.10mol)[RuCl2(C6H6)]2放入反应管内。加入2mL无水N,N-二甲基甲酰胺(DMF),放入100℃的油浴中,搅拌30分钟。降至室温后加入46mg(0.216mmol)(R,R)-DPEN,搅拌过夜。然后减压将DMF抽去(可适当加热,但温度不超过50℃)。余下固体用无水CH2Cl2及Hexane重结晶可得棕红色固体162mg。产率:84%。
31P NMR(121MHz,CDCl3):δ47.87ppm。
实施例20:催化剂25
Figure A20071009592900142
采用N,N-二甲基甲酰胺为溶剂,100℃反应1小时。产率:84%。
31P NMR(121MHz,CDCl3):δ47.78,47.59,47.29,47.09ppm。
实施例21:催化剂26
Figure A20071009592900143
产率:75%。
31P NMR(121MHz,CDCl3):δ47.34ppm。
实施例22:催化剂27
Figure A20071009592900144
采用N,N-二甲基甲酰胺为溶剂,100℃反应2小时。产率:86%。
M.p.183-185℃;[α]20 D=+53.1°(c=0.91,CHCl3);IR(KBr)v 3315cm-1(N-H);1HNMR(300MHz,CDCl3):δ8.09-8.06(m,12H),7.42(s,6H),7.31-7.25(m,26H),7.19-7.12(m,34H),7.03(t,J=7.2Hz,2H),6.92(t,J=7.5Hz,4H),6.79(d,J=7.5Hz,4H),4.45(m,2H),4.12-4.15(m,2H),3.67(br,2H);31P NMR(121MHz,CDCl3):δ50.95ppm。
实施例23:催化剂28
Figure A20071009592900151
采用N,N-二甲基甲酰胺为溶剂,100℃反应3小时。产率:81%。
M.p.177-179℃;[α]20 D=+57.4°(c=1.07,CHCl3);IR(KBr)v 3313cm-1(N-H);1HNMR(300MHz,CDCl3):δ8.07-7.98(m,12H),7.37(s,6H),7.02-6.84(m,32H),6.76(s,16H),4.43(br,2H),4.01-3.97(m,2H),3.61(br,2H),2.11(s,36H);31P NMR(121MHz,CDCl3):δ51.12ppm。
实施例24:催化剂29(Ph3P)2RuCl2
产率:87%。
31P NMR(121MHz,CDCl3):δ27.80ppm.
实施例25:催化剂30(Ph3P)2RuCl2[(R)-NH2(CH3)CHPh]2
产率:88%。
31P NMR(121MHz,CDCl3):δ37.83ppm。
实施例26:催化剂31
产率:73%。
31P NMR(121MHz,CDCl3):δ43.79ppm。
实施例27:催化剂32
产率:72%。
31P NMR(121MHz,CDCl3):δ44.13ppm。
实施例28:催化剂33
产率:84%。
31P NMR(121MHz,CDCl3):δ43.45ppm。
实施例29:催化剂34
Figure A20071009592900155
产率:82%。
31P NMR(121MHz,CDCl3):δ44.47ppm。
Figure A20071009592900156
实施例30:催化剂35
产率:80%。
31P NMR(121MHz,CDCl3):δ28.52ppm。
实施例31:催化剂36
Figure A20071009592900161
产率:79%。
31P NMR(121MHz,CDCl3):δ36.93ppm.
实施例32:催化剂37[(S)-BINAP]RuCl2(NH2CH2CH2NH2)
产率:87%。
31P NMR(121MHz,CDCl3):δ45.93ppm。
实施例33:催化剂38(Ph3P)2RuCl2[(R,R)-TsDPEN]
N-对甲苯磺酰基-1,2-二苯基乙二胺
产率:85%。
31P NMR(121MHz,CDCl3):δ27.20ppm。
实施例34:催化剂39
Figure A20071009592900162
产率:77%。
31P NMR(121MHz,CDCl3):δ27.84ppm。
实施例35:催化剂40
产率:79%。
31P NMR(121MHz,CDCl3):δ45.11ppm。
实施例36:催化剂41
Figure A20071009592900164
采用N,N-二甲基乙酰胺为溶剂,100℃反应1小时。产率:85%。
31P NMR(121MHz,CDCl3):δ173.9ppm。
实施例37:催化剂42
采用N,N-二甲基乙酰胺为溶剂,100℃反应1小时。产率:86%。
31P NMR(121MHz,CDCl3):δ173.6ppm。
实施例38:催化剂43
Figure A20071009592900171
DACH为1,2-环己二胺,采用N,N-二甲基乙酰胺为溶剂,100℃反应4小时
产率:87%。
31P NMR(121MHz,CDCl3):δ31.02ppm。
实施例39:催化剂44(Ph3P)2RuCl2[(R,R)-DACH]
产率:87%。
31P NMR(121MHz,CDCl3):δ44.82ppm。
实施例40:催化剂45(Ph3P)2PdCl2[(R,R)-DPEN]
在氩气保护下将106mg(0.404mmol)PPh3及35mg(0.20mol)PdCl2放入反应管内。加入2mL无水甲苯,放入110℃的油浴中,搅拌5小时。降至室温后加入45mg(0.21mmol)(R,R)-DPEN,搅拌过夜。然后减压将甲苯抽去(可适当加热,但温度不超过50℃)。余下固体用无水CH2Cl2及Hexane重结晶可得黄色固体155mg。产率:85%。
31P NMR(121MHz,CDCl3):δ22.40ppm。
实施例41:催化剂46(Ph3P)2CuCl2[(S,S)-DPEN]
在氩气保护下将106mg(0.404mmol)PPh3及34mg(0.20mol)CuCl2·2H2O放入反应管内。加入2mL无水二甲苯,放入110℃的油浴中,搅拌反应7小时。降至室温后加入45mg(0.21mmol)(R,R)-DPEN,搅拌过夜。然后减压将二甲苯抽去(可适当加热,但温度不超过50℃)。余下固体用无水CH2Cl2及Hexane重结晶可得绿色固体145mg。产率:83%。
31P NMR(121MHz,CDCl3):δ36.47ppm。
实施例42:催化剂47(Ph3P)2FeCl2[(S,S)-DPEN]
在氩气保护下将106mg(0.404mmol)PPh3及40mg(0.20mol)FeCl2·2H2O放入反应管内。加入2mL无水二甲亚砜,放入100℃的油浴中,搅拌反应15时。降至室温后加入45mg(0.21mmol)(R,R)-DPEN,搅拌过夜。然后减压将二甲亚砜抽去(可适当加热,但温度不超过70℃)。余下固体用无水CH2Cl2及Hexane重结晶可得红色固体130mg。产率:75%。
31P NMR(121MHz,CDCl3):δ44.82ppm。
实施例43:催化剂48
Figure A20071009592900181
采用N,N-二甲基乙酰胺为溶剂,100℃反应5小时。产率:87%。
31P NMR(121MHz,CDCl3):δ45.86ppm。
实施例44:催化剂49
Figure A20071009592900182
产率:85%。
31P NMR(121MHz,CDCl3):δ43.78ppm。
实施例45:催化剂50
Figure A20071009592900183
产率:88%。
31P NMR(121MHz,CDCl3):δ42.37ppm。
实施例46:催化剂51
Figure A20071009592900184
产率:83%。
31P NMR(121MHz,CDCl3):δ43.46ppm。
实施例47:催化剂52
Figure A20071009592900185
采用二甲基亚砜为溶剂,100℃反应5小时。产率:79%。
31P NMR(121MHz,CDCl3):δ44.69ppm。
催化氢化反应
实施例48:苯基乙酮的不对称氢化(I):
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入240mg(2.0mmol)苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20大气压(atm)压力的氢气,室温下搅拌5小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得1-苯基乙醇。经气相色谱分析,产物的对映体过量为95.5%.[α]D 20=-53.7°(c=0.87,CHCl3);1H NMR(300MHz,CDCl3)δ7.34-7.32(m,5H),4.82(q,J=9.6Hz,1H),2.61(br,1H),1.44(d,J=4.2Hz,3H);气相色谱(SuplcoBETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为120℃;保留时间t(R),14.7min;t(S),15.2min,绝对构型通过测定[α]D为S构型。
实施例49:苯基乙酮的不对称氢化(II):
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入2.40g(20mmol)苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌10小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得1-苯基乙醇。经气相色谱分析,产物的对映体过量为95.1%;[α]20 D=-53.6°(c=0.90,CHCl3);1H NMR(300MHz,CDCl3)δ7.34-7.32(m,5H),4.82(q,J=9.6Hz,1H),2.61(br,1H),1.44(d,J=4.2Hz,3H);气相色谱(SuplcoBETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为120℃;t(R),14.7min;t(S),15.2min,绝对构型通过测定[α]D为S构型。
实施例50:苯基乙酮的不对称氢化(III):
在氩气保护下,在一个已有一个磁子的反应管内加入2.7mg(0.003mmol)催化剂6及6.7mg(0.06mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水异丙醇。搅拌20分钟使固体溶解后,再用注射器加入360mg(3.0mmol)苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌6小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得1-苯基乙醇。经气相色谱分析,产物的对映体过量为75.5%.1H NMR(300MHz,CDCl3)δ7.34-7.32(m,5H),4.82(q,J=9.6Hz,1H),2.61(br,1H),1.44(d,J=4.2Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为120℃;保留时间t(R),14.7min;t(S),15.2min,绝对构型为S构型。
实施例51:苯基乙酮的不对称氢化(IV):
在氩气保护下,在一个已有一个磁子的反应管内加入3.2mg(0.003mmol)催化剂8及6.7mg(0.06mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水异丙醇。搅拌20分钟使固体溶解后,再用注射器加入360mg(3.0mmol)苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入10atm压力的氢气,室温下搅拌10小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得1-苯基乙醇。经气相色谱分析,产物的对映体过量为87.0%.1H NMR(300MHz,CDCl3)δ7.34-7.32(m,5H),4.82(q,J=9.6Hz,1H),2.61(br,1H),1.44(d,J=4.2Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为120℃;保留时间t(R),14.7min;t(S),15.2min,绝对构型为S构型。
实施例52:苯基乙酮的不对称氢化(V):
在氩气保护下,在一个已有一个磁子的反应管内加入3.5mg(0.003mmol)催化剂15及5.7mg(0.06mmol)t-BuONa,瓶中气体用氩气置换三次,注入2.0mL无水异丙醇。搅拌20分钟使固体溶解后,再用注射器加入360mg(3.0mmol)苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入30atm压力的氢气,室温下搅拌8小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得1-苯基乙醇。经气相色谱分析,产物的对映体过量为77.1%.1H NMR(300MHz,CDCl3)δ7.34-7.32(m,5H),4.82(q,J=9.6Hz,1H),2.61(br,1H),1.44(d,J=4.2Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为120℃;保留时间t(R),14.7min;t(S),15.2min,绝对构型为S构型。
实施例53:苯基乙酮的不对称氢化(VI):
在氩气保护下,在一个已有一个磁子的反应管内加入3.0mg(0.003mmol)催化剂25及3.3mg(0.06mmol)KOH,瓶中气体用氩气置换三次,注入3.0mL无水异丙醇。搅拌20分钟使固体溶解后,再用注射器加入360mg(3.0mmol)苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌10小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得1-苯基乙醇。经气相色谱分析,产物的对映体过量为81.5%.1H NMR(300MHz,CDCl3)δ7.34-7.32(m,5H),4.82(q,J=9.6Hz,1H),2.61(br,1H),1.44(d,J=4.2Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为120℃;保留时间t(R),14.7min;t(S),15.2min,绝对构型为S构型。
实施例54:苯基乙酮的不对称氢化(VII):
在氩气保护下,在一个已有一个磁子的反应管内加入3.9mg(0.005mmol)催化剂49及4.0mg(0.10mmol)NaOH,瓶中气体用氩气置换三次,注入5.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入360mg(3.0mmol)苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌12小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得1-苯基乙醇。经气相色谱分析,产物的对映体过量为75.5%.1HNMR(300MHz,CDCl3)δ7.34-7.32(m,5H),4.82(q,J=9.6Hz,1H),2.61(br,1H),1.44(d,J=4.2Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为120℃;保留时间t(R),14.7min;t(S),15.2min,绝对构型为S构型。
实施例55:苯基乙酮的不对称氢化(VIII):
在氩气保护下,在一个已有一个磁子的反应管内加入4.1mg(0.005mmol)催化剂48及4.0mg(0.10mmol)NaOH,瓶中气体用氩气置换三次,注入5.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入360mg(3.0mmol)苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入40atm压力的氢气,室温下搅拌16小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得1-苯基乙醇。经气相色谱分析,产物的对映体过量为75.5%.1H NMR(300MHz,CDCl3)δ7.34-7.32(m,5H),4.82(q,J=9.6Hz,1H),2.61(br,1H),1.44(d,J=4.2Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为120℃;保留时间t(R),14.7min;t(S),15.2min,绝对构型为R构型。
实施例56:4’-甲基苯基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌30分钟使固体溶解后,再用注射器加入268mg(2.0mmol)4’-甲基苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌10小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得4’-甲基苯基-1-乙醇。经气相色谱分析,产物的对映体过量为93.7%,[α]D 20=-52.1°(c=0.89,CHCl3);1H NMR(300MHz,CDCl3)δ7.28(d,J=7.8Hz,2H),7.18(d,J=7.8Hz,2H),4.87(q,J=9.6Hz,1H),2.35(s,3H),1.88(br,1H),1.50(d,J=6.3Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为135℃;t(R),11.7min;t(S),12.2min,绝对构型通过测定[α]D为S构型。
实施例57:2’-甲基苯基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入268mg(2.0mmol)2’-甲基苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入30atm压力的氢气,室温下搅拌7小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得2’-甲基苯基-1-乙醇。经气相色谱分析,产物的对映体过量为95.1%;[α]D 20=-72.5°(c=0.75,CHCl3);1H NMR(300MHz,CDCl3)δ7.50(d,J=7.8Hz,1H),7.24-7.29(m,3H),5.09(q,J=6.3Hz,1H),2.32(s,3H),2.11(br,1H),1.44(d,J=6.6Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mmi.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为135℃;t(R),14.2min;t(S),15.8min,绝对构型通过测定[α]D为S构型。
实施例58:2’-甲氧基苯基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入300mg(2.0mmol)2’-甲氧基苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌10小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得2’-甲氧基苯基-1-乙醇。经气相色谱分析,产物的对映体过量为93.3%;[α]D 20=-23.4°(c=0.79,CHCl3);1H NMR(300MHz,CDCl3)δ7.36-7.33(m,1H),7.28-7.22(m,1H),6.99(t,J=7.2Hz,1H),6.87(d,J=8.1Hz,1H),5.12(q,J=6.0Hz,1H),3.89(s,3H),1.52(d,J=6.1Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为135℃;t(S),17.6min;t(R),18.7min,绝对构型通过测定[α]D为S构型。
实施例59:4’-甲氧基苯基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再加入268mg(2.0mmol)4’-甲氧基苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入40atm压力的氢气,室温下搅拌2小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得4’-甲氧基苯基-1-乙醇。经气相色谱分析,产物的对映体过量为87.9%.[α]D 20=-44.6°(c=0.85,CHCl3);1H NMR(300MHz,CDCl3)δ7.31(d,J=9.0Hz,2H),6.89(d,J=9.0Hz,2H),4.87(q,J=6.3Hz,1H),3.78(s,3H),1.99(br,1H),2.11(br,1H),1.44(d,J=6.6Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为0.8mL/min);进样口温度为250℃;检测器温度为300℃;柱温为140℃;t(R),27.0min;t(S),27.8min,绝对构型通过测定[α]D为S构型。
实施例60:2’-溴代苯基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入400mg(2.0mmol)2’-溴代苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌10小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得2’-溴代苯基-1-乙醇。经气相色谱分析,产物的对映体过量为96.1%.[α]D 20=-52.1°(c=0.93,CHCl3);1H NMR(300MHz,CDCl3)δ7.61(d,J=8.1Hz,1H),7.52(d,J=8.1Hz,1H),7.34(t,J=15.3Hz,1H),7.13(t,J=15.0Hz,1H),5.24(q,J=9.6Hz,1H),1.49(d,J=6.6Hz,3H);气相色谱(Suplco BETA-DEXTM120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.2mL/min);进样口温度为250℃;检测器温度为300℃;柱温为140℃;t(R),13.0min;t(S),14.9min,绝对构型通过测定[α]D为S构型。
实施例61:3’-溴代苯基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入400mg(2.0mmol)3’-溴代苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌4小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得3’-溴代苯基-1-乙醇。经气相色谱分析,产物的对映体过量为93.3%;[α]D 20=-29.3°(c=0.96,CHCl3);1H NMR(300MHz,CDCl3)δ7.52(s,1H),7.41-7.37(m,1H),7.29-7.17(m,2H),4.87(q,J=6.3Hz,1H),2.20(br,1H),1.50(d,J=6.6Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mmi.d.×30m);载气为N2(流速为1.1mL/min);进样口温度为250℃;检测器温度为300℃;柱温为150℃;t(R),18.9min;t(S),19.3min,绝对构型通过测定[α]D为S构型。
实施例62:4’-溴代苯基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再加入400mg(2.0mmol)4’-溴代苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌3小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得4’-溴代苯基-1-乙醇。经气相色谱分析,产物的对映体过量为80.5%;[α]D 20=-25.2°(c=0.83,CHOH);1H NMR(300MHz,CDCl3)δ7.49(d,J=9.0Hz,2H),7.46(d,J=9.0Hz,2H),4.90(q,J=6.6Hz,1H),1.88(br,1H),1.48(d,J=6.3Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.1mL/min);进样口温度为250℃;检测器温度为300℃;柱温为155℃;t(R),16.4min;t(S),17.1min,绝对构型通过测定[α]D为S构型。
实施例63:2’-氯代苯基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丁醇。搅拌20分钟使固体溶解后,再用注射器加入310mg(2.0mmol)2’-氯代苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入30atm压力的氢气,室温下搅拌10小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得2’-氯代苯基-1-乙醇。经气相色谱分析,产物的对映体过量为96.3%;[α]D 20=-60.3°(c=0.80,CHCl3);1H NMR(300MHz,CDCl3)δ7.59(d,J=7.8Hz,1H),7.33-7.22(m,2H),7.21-7.17(m,1H),5.29(q,J=6.3Hz,1H),2.20(br,1H),1.50(d,J=4.5Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.2mL/min);进样口温度为250℃;检测器温度为300℃;柱温为155℃;t(R),8.4min;t(S),9.2min,绝对构型通过测定[α]D为S构型。
实施例64:3’-氯代苯基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌30分钟使固体溶解后,再用注射器加入310mg(2.0mmol)3’-氯代苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入40atm压力的氢气,室温下搅拌13小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得3’-氯代苯基-1-乙醇。经气相色谱分析,产物的对映体过量为95.3%;[α]D 20=-40.0°(c=0.60,CHCl3);1H NMR(300MHz,CDCl3)δ7.36(s,1H),7.29-7.19(m,3H),4.87(q,J=6.6Hz,1H),1.47(d,J=8.1Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.2mL/min);进样口温度为250℃;检测器温度为300℃;柱温为140℃;t(R),17.0min;t(S),17.5min,绝对构型通过测定[α]D为S构型。
实施例65:4’-氯代苯基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入310mg(2.0mmol)4’-氯代苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌10小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得4’-氯代苯基-1-乙醇。经气相色谱分析,产物的对映体过量为84.7%;[α]D 20=-28.2°(c=0.75,CHCl3);1H NMR(300MHz,CDCl3)δ7.31(m,4H),4.88(q,J=6.6Hz,1H),1.48(d,J=5.7Hz,3H);气相色谱(Suplco BETA-DEXTM120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.2mL/min);进样口温度为250℃;检测器温度为300℃;柱温为145℃;t(R),14.6min;t(S),15.3min,绝对构型通过测定[α]D为S构型。
实施例66:2’-氟代苯基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入278mg(2.0mmol)2’-氟代苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌20小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得2’-氟代苯基-1-乙醇。经气相色谱分析,产物的对映体过量为95.1%;[α]D 20=-38.2°(c=0.92,CHCl3);1H NMR(300MHz,CDCl3)δ7.51-7.45(m,1H),7.28-7.19(m,1H),7.17-7.11(m,1H),7.04-6.98(m,1H),4.87(q,J=6.3Hz,1H),2.36(br,1H),1.53(d,J=6.0Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为125℃;t(R),12.1min;t(S),12.8min,绝对构型通过测定[α]D为S构型。
实施例67:4’-氟代苯基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入280mg(2.0mmol)4’-氟代苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌10小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得4’-氟代苯基-1-乙醇。经气相色谱分析,产物的对映体过量为91.5%;[α]D 20=-42.5°(c=0.91,CHCl3);1H NMR(300MHz,CDCl3)δ7.33-7.26(m,2H),7.05-6.97(m,2H),4.88(q,J=6.3Hz,1H),2.32(br,1H),1.46(d,J=6.6Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.1mL/min);进样口温度为250℃;检测器温度为300℃;柱温为125℃;t(R),12.7min;t(S),13.4min,绝对构型通过测定[α]D为S构型。
实施例68:2’-三氟甲基苯基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入378mg(2.0mmol)2’-三氟甲基苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌9小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得2’-三氟甲基苯基-1-乙醇。经气相色谱分析,产物的对映体过量为96.5%;[α]D 20=-43.4°(c=0.74,CHCl3);1H NMR(300MHz,CDCl3)δ7.82(d,J=7.8Hz,1H),7.61-7.55(m,2H),7.38-7.33(m,1H),5.34(q,J=6.0Hz,1H),2.25(br,1H),1.47(d,J=6.3Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为130℃;t(R),8.7min;t(S),9.5min,绝对构型通过测定[α]D为S构型。
实施例69:3’,5’-二三氟甲基苯基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入515mg(2.0mmol)3’,5’-二三氟甲基苯基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入30atm压力的氢气,室温下搅拌10小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得3’,5’-二三氟甲基苯基-1-乙醇。经气相色谱分析,产物的对映体过量为90.9%;[α]D 20=-20.0°(c=0.79,CHCl3);1H NMR(300MHz,CDCl3)δ7.84(s,2H),7.79(s,1H),5.06(q,J=3.0Hz,1H),2.00(br,1H),1.56(d,J=6.6Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为125℃;t(S),7.0min;t(R),7.6min,绝对构型通过测定[α]D为S构型。
实施例70:1’-萘基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丁醇及5μL Et3N。搅拌20分钟使固体溶解后,再用注射器加入340mg(2.0mmol)1’-萘基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌15小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得1’-萘基-1-乙醇。经气相色谱分析,产物的对映体过量为94.7%;[α]D 20=-57.4°(c=0.86,CHCl3);1H NMR(300MHz,CDCl3)δ8.11-8.08(m,1H),7.89-7.86(m,1H),7.79(d,J=8.1Hz,1H),7.68(d,J=6.9Hz,1H),7.55-7.45(m,3H),7.38-7.33(m,1H),5.68(q,J=6.6Hz,1H),2.18(br,1H),1.66(d,J=7.2Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为175℃;t(S),23.2min;t(R),24.0min,绝对构型通过测定[α]D为S构型。
实施例71:2’-萘基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丁醇E及5μL Et3N。搅拌20分钟使固体溶解后,再用注射器加入340mg(2.0mmol)2’-萘基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌10小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得2’-萘基-1-乙醇。经气相色谱分析,产物的对映体过量为90.5%;[α]D 20=-47.2°(c=0.82,CHCl3);1H NMR(300MHz,CDCl3)δ7.86-7.83(m,4H),7.53-7.46(m,3H),3.51(q,J=7.0Hz,1H),1.61(d,J=6.0Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为170℃;t(R),32.2min;t(S),32.7min,绝对构型通过测定[α]D为S构型。
实施例72:二茂铁基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丁醇及5μL Et3N。搅拌20分钟使固体溶解后,再用注射器加入460mg(2.0mmol)二茂铁基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入30atm压力的氢气,室温下搅拌10小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得二茂铁基-1-乙醇。经液相色谱分析,产物的对映体过量为87.5%;[α]D 20=+26.1°(c=0.77,CHCl3);1H NMR(300MHz,CDCl3)δ4.58(q,J=6.0Hz,1H),4.21-4.18(m,9H),1.46(d,J=6.6Hz,3H);高效液相色谱(Chiralpak日本大成公司AS-H手性柱,λ=254nm;流速:0.7mL/min,正己烷∶异丙醇=95∶5;t(S)=16.9min;t(R)=24.4min);产物绝对构型通过测定[α]D为S构型。
实施例73:2’-呋喃基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入220mg(2.0mmol)2’-呋喃基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌4小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得2’-呋喃基-1-乙醇。经气相色谱分析,产物的对映体过量为89.5%;[α]D 20=-9.1°(c=1.56,CHCl3);1H NMR(300MHz,CDCl3)δ7.38-7.37(m,1H),6.34-6.32(m,1H),6.24-6.23(m,1H),4.90(q,J=6.3Hz,1H),1.56(d,J=6.3Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.2mL/min);进样口温度为250℃;检测器温度为300℃;柱温为95℃;t(R),13.2min;t(S),13.5min,绝对构型通过测定[α]D为S构型。
实施例74:2’-噻吩基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入255mg(2.0mmol)2’-噻吩基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌10小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得2’-噻吩基-1-乙醇。经气相色谱分析,产物的对映体过量为95.9%;[α]D 20=-29.1°(c=0.74,CHCl3);1H NMR(300MHz,CDCl3)δ7.29-7.26(m,1H),7.02-6.98(m,2H),5.18(q,J=6.3Hz,1H),2.36(br,1H),1.63(d,J=6.3Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.2mL/min);进样口温度为250℃;检测器温度为300℃;柱温为115℃;t(R),18.3min;t(S),19.1min,绝对构型通过测定[α]D为S构型。
实施例75:2’-吡啶基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入4.6μL(0.02mmol)三异丙基硼酸酯及2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入244mg(2.0mmol)2’-吡啶基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入30atm压力的氢气,室温下搅拌8小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得2’-吡啶基-1-乙醇。经气相色谱分析,产物的对映体过量为80.7%;[α]D 20=-47.4°(c=0.78,EtOH);1H NMR(300MHz,CDCl3)δ8.54(d,J=5.1Hz,1H),7.72-7.64(m,1H),7.30(d,J=7.8Hz,1H),7.21(m,1H),4.89(q,J=6.6Hz,1H),1.52(d,J=6.6Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.1mL/min);进样口温度为250℃;检测器温度为300℃;柱温为105℃;t(R),23.1min;t(S),23.5min,绝对构型通过测定[α]D为S构型。
实施例76:3’-吡啶基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丁醇。搅拌20分钟使固体溶解后,再用注射器加入244mg(2.0mmol)3’-吡啶基乙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌10小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得3’-吡啶基-1-乙醇。经气相色谱分析,产物的对映体过量为95.5%;[α]D 20=-42.9°(c=0.76,EtOH);1H NMR(300MHz,CDCl3)δ8.53(s,1H),8.46-8.44(m,1H),7.76-7.72(m,1H),7.30-7.26(m,1H),4.95(q,J=6.6Hz,1H),2.00(br,1H),1.52(d,J=6.9Hz,3H);气相色谱(Suplco BETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为140℃;t(R),15.1min;t(S),15.5min,绝对构型通过测定[α]D为S构型。
实施例77:苯基丙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入268mg(2.0mmol)苯基丙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入20atm压力的氢气,室温下搅拌5小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得苯基-1-丙醇。经气相色谱分析,产物的对映体过量为96.3%;[α]D 20=-46.0°(c=1.00,CHCl3);1H NMR(300MHz,CDCl3)δ7.35-7.28(m,5H),4.58(t,J=6.0Hz,1H),1.82-1.74(m,2H),0.91(t,J=7.5Hz,3H);气相色谱(SuplcoBETA-DEXTM 120,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.0mL/min);进样口温度为250℃;检测器温度为300℃;柱温为125℃;t(S),18.5min;t(R),19.0min,绝对构型通过测定[α]D为S构型。
实施例78:γ-N,N-二甲氨基-α-苯丙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的反应管内加入4.3mg(0.002mmol)催化剂28及4.5mg(0.04mmol)t-BuOK,瓶中气体用氩气置换三次,注入2.0mL无水正丙醇。搅拌20分钟使固体溶解后,再用注射器加入356mg(2.0mmol)γ-N,N-二甲氨基-α-苯丙酮,并用橡皮塞封好。在用氮气保护的手套箱内将反应瓶上的橡皮塞打开,并将反应瓶转移至高压釜内,高压釜封好后移出手套箱,用高纯氢气将高压釜内的氮气小心置换四次后,加入30atm压力的氢气,室温下搅拌10小时后,将高压釜内的氢气放掉后,减压除去溶剂后,用核磁共振检测原料转化率为大于99%。把反应余下的液体用10cm长的硅胶柱过滤,展开剂为乙酸乙酯∶石油醚10∶1,可得γ-N,N-二甲氨基-α-苯丙醇。经液相色谱分析,产物的对映体过量为96.7%;[α]D 20=-21.0°(c=0.91,CHCl3);1H NMR(300MHz,CDCl3)δ7.40-7.24(m,5H),4.96(q,J=4.5Hz,1H),2.66-2.62(m,1H),2.51-2.45(m,1H),2.31(s,6H),1.86-1.81(m,2H);高效液相色谱(Chiralcel日本大成公司OD-H手性柱,λ=254nm;流速:1.0mL/min,正己烷∶异丙醇=95∶5;t(R)=4.5min;t(S)=6.2min);产物绝对构型通过测定[α]D为S构型。
实施例79:环丙基乙酮的不对称氢化:
在氩气保护下,在一个已有一个磁子的300mL高压釜体内加入3.5mg(0.0035mmol)催化剂6及35mg(0.625mmol)NaOH,瓶中气体用氩气置换三次,注入5.0mL无水甲醇后,再用注射器加入29.5g(350mmol)环丙基乙酮。将高压釜封好后,用高纯氢气将高压釜内的氩气小心置换四次后,加入50atm压力的氢气,室温下搅拌24小时后,将高压釜内的氢气放掉后,用核磁共振检测原料转化率为大于99%。将反应物蒸馏后,可得环丙基-1-乙醇28克,收率:95%。经气相色谱分析产物的对映体过量为30.3%。[α]D 20=-7.0°(c=1.00,CHCl3);1H NMR(300MHz,CDCl3):δ3.17-3.04(m,1H),1.29(d,J=6.3Hz,3H),0.94-0.88(m,1H),0.53-0.49(m,2H),0.35-0.31(m,1H),0.22-0.17(m,1H);气相色谱(Suplco BETA-DEXTM 325,df=0.25μm,0.25mm i.d.×30m);载气为N2(流速为1.3mL/min);进样口温度为250℃;检测器温度为300℃;柱温为50℃;t(S),12.5min;t(R),12.9min,绝对构型通过测定[α]D为S构型。
实施例80:二苯基甲酮的氢化:
在氩气保护下,在一个已有一个磁子的300mL高压釜体内加入5mg(0.0055mmol)催化剂6及91mg(1.63mmol)KOH及100g(550mmol)二苯基甲酮,瓶中气体用氩气置换三次后,注入180mL无水异丙醇,。将高压釜封好后,用高纯氢气将高压釜内的氩气小心置换四次后,加入70atm压力的氢气,室温下搅拌24小时后,将高压釜内的氢气放掉后,用核磁共振检测原料转化率为大于99%。将溶剂除去后,可得二苯基甲醇94克,收率:94%。1H NMR(300MHz,CDCl3):δ7.36-7.32(m,10H),5.80(s,1H)
实施例81:4,4’-二氟二苯基甲酮的氢化:
在氩气保护下,在一个已有一个磁子的1L高压釜体内加入8.3mg(0.009mmol)催化剂6及410mg(3.65mmol)t-BuOK及100g(458mmol)4,4’-二氟二苯基甲酮,瓶中气体用氩气置换三次后,注入450mL无水异丙醇,。将高压釜封好后,用高纯氢气将高压釜内的氩气小心置换四次后,加入80atm压力的氢气,室温下搅拌24小时后,将高压釜内的氢气放掉后,用核磁共振检测原料转化率为大于99%。将溶剂除去后,减压蒸馏可得4,4’-二氟二苯基甲醇90克,收率:90%。1H NMR(300MHz,CDCl3):δ7.33-7.29(m,4H),7.05-7.00(m,4H),5.79(s,1H)。
对上述不对称氢化反应的说明:
上述不对称氢反应中所使用的溶剂可以为甲醇、乙醇、异丙醇、正丙醇、正丁醇、异丁醇、正醇、苯、甲苯、二甲苯、三甲苯、乙腈、乙醚、四氢呋喃、乙二醇二甲迷、氯仿、二氯甲烷、二甲基亚砜、N-甲基吡咯烷酮等。
所用的碱可以是氢氧化钠、氢氧化钾、碳酸盐、碳酸氢盐、磷酸盐、磷酸氢盐、磷酸二氢盐、氟化盐、氢化钠、氢化钾、氢化钙、三乙胺、二异丙基乙基胺、四甲基乙二胺、N,N-二甲基苯胺、N,N-二乙基苯胺、1,4-二氮杂二环[2,2,2]辛烷(DABCO)、二氮杂二环十二烷(DBU)、1,4-二甲基哌嗪、1-甲基哌啶、1-甲基吡咯、喹啉、或吡啶等。
采用氢气的压力可以为5-80atm,反应时间可以为2-48小时。

Claims (8)

1.一种过渡金属络合物,具有如下的结构式:
Figure A2007100959290002C1
其中A是R1R2R3P,B是R4R5R6P,或者A和B是
Figure A2007100959290002C2
M是Ru、Pd、Cu或Fe;X是氯、溴、碘;R9是氢、甲基磺酰基或对甲基苯磺酰基;其中,R1、R2、R3、R4、R5或R6是C2-12的烃基或
Figure A2007100959290002C3
R14或R15是氢、甲基、乙基、正丙基、异丙基、环丙基、正丁基、叔丁基、环戊基、环己基、环庚基、甲氧基、乙氧基、正丙氧基、异丙氧基、苯基、苯氧基、甲基苯氧基、3,5-二甲基苯基、苄基、3,5-二甲基苄基和萘基,R13是如下一些基团:
Figure A2007100959290002C4
,其中的R18或R19为氢、甲基、乙基、正丙基、异丙基、甲氧基、乙氧基、正丙氧基或异丙氧基,双胺配体是手性或不是手性的双胺配体,手性的双胺配体的绝对构型既可以是(R,R)构型,或是(S,S)构型,当采用双膦配体时,其中R12是如下一些基团:
Figure A2007100959290003C1
其中的R10或R11为苯基、对甲基苯基或3,5-二甲基苯基;
上述过渡金属络合物中:
当M是Ru、R12
Figure A2007100959290003C2
R9是H时,
Figure A2007100959290003C4
或M是Ru、R12
Figure A2007100959290003C5
R9是H时,
Figure A2007100959290003C6
Figure A2007100959290003C7
时,R18≠甲氧基、乙氧基、正丙氧基或异丙氧基;
或M是Ru、R12
Figure A2007100959290003C8
R9是H时,
Figure A2007100959290003C9
Figure A2007100959290003C10
时,R18和R19不能同时为H。
2.如权利要求1所述的过渡金属络合物,其特征是具有如下的结构式:
Figure A2007100959290003C11
其中M、C、R1、R2、R3、R9、R10、R11、R12或R13如权利要求1所述。
3.如权利要求1所述的过渡金属络合物,其特征是所述的C2-12的烃基是乙基、正丙基、异丙基、环丙基、正丁基、叔丁基、环戊基、环己基、环庚基、苯基、苄基、3,5-二甲基苄基、1-萘基或2-萘基。
4.一种如权利要求1所述的过渡金属络合物的合成方法,其特征是在有机溶剂中和反应温度为0℃-100℃下,过渡金属化合物、双胺配体、双膦配体或单膦配体反应0.5~20小时获得,其中过渡金属化合物、双胺配体、双膦配体或单膦配体的摩尔比为1∶1~5∶1~5,所述的双胺配体的结构式为HR9NR13NH2,所述的双膦配体结构式为
Figure A2007100959290004C1
单膦配体为R1R2R3P或R4R5R6P,其中R1、R2、R3、R4、R5、R6、R9、R10、R11和R12如权利要求1所述,所述的过渡金属化合物是Ru、Pd、Cu或Fe的卤化物或者是它们的络合物。
5.如权利要求4所述的过渡金属络合物的合成方法,其特征是采用双胺或双膦配体时,过渡金属化合物和双胺或双膦配体的摩尔比为1∶1~3。
6.如权利要求4过渡金属络合物的合成方法,其特征是所述的过渡金属化合物是[RuX2(C6H6)]2、RuX3、PdX2、CuX2或FeX2,所述的X是卤素。
7.一种如权利要求1所述的过渡金属络合物的用途,其特征是所述的过渡金属络合物用于催化不对称氢化。
8.如权利要求7所述的过渡金属络合物的用途,其特征是所述的过渡金属络合物用于苯乙酮及其衍生物、二苯甲酮及其衍生物、甲基环丙基甲酮、γ-N,N-二甲氨基-α-苯丙酮及其衍生物以及其它酮类化合物的催化氢化反应。
CN 200710095929 2005-01-27 2005-01-27 过渡金属络合物、合成方法及其在催化氢化反应中的应用 Pending CN101037451A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710095929 CN101037451A (zh) 2005-01-27 2005-01-27 过渡金属络合物、合成方法及其在催化氢化反应中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710095929 CN101037451A (zh) 2005-01-27 2005-01-27 过渡金属络合物、合成方法及其在催化氢化反应中的应用

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100236320A Division CN1331874C (zh) 2005-01-27 2005-01-27 过渡金属络合物、合成方法及其用途

Publications (1)

Publication Number Publication Date
CN101037451A true CN101037451A (zh) 2007-09-19

Family

ID=38888650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710095929 Pending CN101037451A (zh) 2005-01-27 2005-01-27 过渡金属络合物、合成方法及其在催化氢化反应中的应用

Country Status (1)

Country Link
CN (1) CN101037451A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101940951A (zh) * 2010-09-26 2011-01-12 温州大学 一种负载型手性催化剂及其应用于催化制备氟西汀中间体
CN102245562A (zh) * 2008-12-18 2011-11-16 弗·哈夫曼-拉罗切有限公司 合成氨基-甲基四氢化萘衍生物的方法
CN102311299A (zh) * 2010-07-02 2012-01-11 中国科学院兰州化学物理研究所 不对称氢化反应合成手性仲醇的方法
CN102381990A (zh) * 2010-08-31 2012-03-21 凯瑞斯德生化(苏州)有限公司 一种光学活性的n-苄基新福林的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245562A (zh) * 2008-12-18 2011-11-16 弗·哈夫曼-拉罗切有限公司 合成氨基-甲基四氢化萘衍生物的方法
CN102245562B (zh) * 2008-12-18 2014-08-13 弗·哈夫曼-拉罗切有限公司 合成氨基-甲基四氢化萘衍生物的方法
CN102311299A (zh) * 2010-07-02 2012-01-11 中国科学院兰州化学物理研究所 不对称氢化反应合成手性仲醇的方法
CN102381990A (zh) * 2010-08-31 2012-03-21 凯瑞斯德生化(苏州)有限公司 一种光学活性的n-苄基新福林的制备方法
CN101940951A (zh) * 2010-09-26 2011-01-12 温州大学 一种负载型手性催化剂及其应用于催化制备氟西汀中间体

Similar Documents

Publication Publication Date Title
CN1680412A (zh) 过渡金属络合物、合成方法及其用途
CN1062273C (zh) 含有杂环碳烯的金属配合物
CN1610688A (zh) 邻位取代的手性膦和三价膦酸酯及其在不对称催化反应中的用途
CN1181083A (zh) 用于制备喜树碱衍生物(cpt-11)以及相关化合物的新中间体和方法
CN1231433C (zh) 转移氢化方法
CN1537088A (zh) 转移氢化方法和催化剂
CN1835909A (zh) 芳胺的制备方法
CN101035523A (zh) 旋光增加的手性离子液体
CN1974547A (zh) 烷基胍盐离子液体及其制备方法
CN1898255A (zh) 制备吡啶衍生物的方法
CN1517351A (zh) 铜-碳烯络合物及其应用
CN101037451A (zh) 过渡金属络合物、合成方法及其在催化氢化反应中的应用
CN1839122A (zh) 基于结合有腈官能团的咪唑鎓的离子液体
CN1875027A (zh) 共沸干燥的卤化镍(ii)的用途
CN1545502A (zh) 吲哚衍生物的制备方法
CN1946670A (zh) 使用铜(i)催化剂制备1,3-烯炔的方法
CN1874844A (zh) 镍(0)-磷配体配合物的制备方法
CN100337751C (zh) 应用锆催化剂羟基化β-二羰基化合物的方法
CN100344376C (zh) 可回收的手性易位反应催化剂
JP6225358B2 (ja) 2−アミノ置換ベンズアルデヒド化合物を製造する方法
CN101054355A (zh) 光学纯双亚磺酰胺化合物及其应用
CN1639171A (zh) 使用铱催化剂制备芳香杂环型硼化合物的方法
JP6065259B2 (ja) 光学活性アミン類の製造方法
CN1368945A (zh) 转移氢化方法
CN1314209A (zh) 手性铜络合催化剂组合物及用其进行不对称制备的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20070919