CN101000867A - 硅线的制备方法 - Google Patents

硅线的制备方法 Download PDF

Info

Publication number
CN101000867A
CN101000867A CNA2006100329476A CN200610032947A CN101000867A CN 101000867 A CN101000867 A CN 101000867A CN A2006100329476 A CNA2006100329476 A CN A2006100329476A CN 200610032947 A CN200610032947 A CN 200610032947A CN 101000867 A CN101000867 A CN 101000867A
Authority
CN
China
Prior art keywords
preparation
silicon
substrate
silicon line
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006100329476A
Other languages
English (en)
Other versions
CN100463111C (zh
Inventor
姚湲
徐立国
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CNB2006100329476A priority Critical patent/CN100463111C/zh
Priority to US11/525,440 priority patent/US7825036B2/en
Priority to JP2007004778A priority patent/JP4800977B2/ja
Publication of CN101000867A publication Critical patent/CN101000867A/zh
Application granted granted Critical
Publication of CN100463111C publication Critical patent/CN100463111C/zh
Priority to US12/589,468 priority patent/US8058117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • C30B11/08Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt every component of the crystal composition being added during the crystallisation
    • C30B11/12Vaporous components, e.g. vapour-liquid-solid-growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • Y10S977/766Bent wire, i.e. having nonliner longitudinal axis
    • Y10S977/768Helical wire
    • Y10S977/769Helical wire formed with nucleic acid

Abstract

本发明涉及一种硅线的制备方法,其利用铜作为催化剂。所述方法包括以下步骤:提供一个基底;在基底上引入铜作为催化剂;以及将带有铜催化剂的基底放置于高温反应炉中并充入反应气体和惰性保护气体同时加热生成硅线。

Description

硅线的制备方法
【技术领域】
本发明涉及一种硅线的制备方法,尤其涉及一种采用金属作为催化剂制备硅线的方法。
【背景技术】
当今科技的发展要求材料具有超微化、智能化、组件的高集成、高密度存储和超快传输等特性,从而为微米级(micro)、亚微米级(sub-micro)和纳米级(nano)材料提供了广阔的发展空间,尤其在光电等领域之应用极为广泛。由于硅(Silicon,Si)是半导业界中最常用的材料,因此相对而言对于微米级、亚微米级和纳米级的硅线(Silicon Wire)的合成与研究较多。
传统的硅线制备依照生产方法可以分为电弧放电法、化学气相沉积法、激光烧蚀法和气-液-固法,其中气-液-固(Vapor-Liquid-Solid,VLS)法的原理是应用液态触媒吸附气态反应物,使其成长出各式微米级及纳米级线材,其大体上包括三个阶段:
1、合金形成(Alloying)阶段:在适当的条件下,将硅或含有硅元素的化合物与催化剂共溶形成合金液滴;
2、成核(Nucleation)阶段:硅元素持续溶入合金球中并逐渐达到饱和状态,硅因为过饱和而析出,最先析出产物的地方形成结晶核;
3、成长(Axial Growth)阶段:硅在共溶体液滴中持续析出,由于液滴的尺寸限制与晶体从液滴中析出时的表面性能因素,生长成均匀的单晶硅线。
此方法关键就是控制好在液态共溶体区中的反应温度以及必须有微米级或纳米级的催化剂颗粒。目前,业界主要采用金(Gold,Au)、镍(Nickel,Ni)和铁(Iron,Fe)等金属颗粒为催化剂。
以金颗粒作为催化剂制备硅线的方法采用硅薄片作为反应基底,基底上预先沉积一定厚度的金金属薄膜或颗粒作为催化剂,金在一定条件下与反应气体发生反应从而促使硅线在硅基底上垂直生长,其生成的硅线直径可达纳米级。由于金颗粒是一种贵重金属,同时金颗粒催化剂的制备过程很复杂并伴有毒性制剂生成,因而使用金颗粒作为催化剂制备硅纳米线的成本较高。
以镍颗粒作为催化剂制备硅线的方法采用重掺硅(Heavily Doped Si)薄片作为反应基底和生成固体硅的原料,基底上预先沉积一定厚度的镍金属薄膜或颗粒作为催化剂。硅线制备时,基底被放置在真空反应腔中,同时反应腔中填充一定量的氢气和氩气作为反应气体和保护气体。当反应温度达到820℃以上时,可得到直径为40纳米的硅线;当反应腔中填充的氢气和氩气同时被钨丝激活且反应温度达到2000℃,可得到直径为50纳米的硅线。另外,以铁颗粒作为催化剂制备硅线的反应温度需要达到1000℃以上。在以铁或镍作为催化剂的硅线制备过程中需要高温环境,其会对反应设备耐高温性能要求较高从而增加硅线的制备成本。同时,铁和镍会在半导体器件的制备过程中掺杂于半导体器件中进而影响其使用性能。
综上所述,一种合适的金属颗粒催化剂对于制备硅线的实际应用有着重要的意义。
【发明内容】
下面将以实施例说明一种硅线的制备方法,其采用有利于反应设备、对半导体器件无害并且制备成本低的金属颗粒作为催化剂。
一种硅线的制备方法,该方法主要包括:提供一个基底;在基底上引入铜作为催化剂;以及将带有铜催化剂的基底放置于高温反应炉中并充入反应气体和惰性保护气体同时加热生成硅线。
所述的硅线的制备方法采用铜颗粒作为催化剂,制备过程中所需的反应温度较低因而对反应设备的耐高温性能要求不高,而且制备过程中采用的制备原料和反应设备都是半导体工厂的标准配置且铜材料的价格较低,从而可以降低制备成本。同时,目前高性能的半导体器件中部分结构由铜材料制成,因此引入铜作为催化剂对半导体器件污染较小进而可以确保其高效的使用性能。
【附图说明】
图1是本发明实施例硅线的制备方法的示意流程图。
图2是通过本发明实施例得到的硅纳米线的扫描电子显微镜(scanningElectron Microscope,SEM)照片。
图3是图2的放大照片,照片中显示一根细长的硅纳米线。
图4是通过本发明实施得到的硅纳米线的透射电镜(TransmissionElectron Microscope,TEM)照片,照片中显示两根并排的硅纳米线,其中一根具有黑色的头部。
图5是图4的放大照片,照片中显示硅纳米线的头部。
【具体实施方式】
以下将结合附图详细说明一种采用铜(Copper,Cu)作为催化剂制备硅线的方法。
请参阅图1,本实施例硅线的制备方法包括以下步骤:
步骤1,提供一个基底。
该基底的材料应为非金属的耐高温材料,例如硅、二氧化硅、石英、蓝宝石、玻璃、石墨。
步骤2,在基底上引入铜作为催化剂。
将铜引入基底上的方法较多,大致可分为以下两种:
第一种方法为使用沉积设备将铜金属沉积在基底上。使用的沉积方法可以采用物理气相沉积(Physical Vapor Deposition,PVD)法或者化学气相沉积(Chemical Vapor Deposition,CVD)法。当沉积时间较短时,会在基底直接形成小尺寸的铜金属颗粒。当沉积时间较长时,可在基底表面形成一层连续的铜金属膜,在生长硅线之前先将覆盖有铜金属薄膜的基底在还原气氛中加热,从而使铜金属薄膜熔化并形成铜金属颗粒。该预先加热形成铜金属颗粒的过程不是必须的而是可选择的,铜金属颗粒也可以在后续生长硅线的加热过程中形成。这种方法形成的铜金属颗粒的尺寸取决于铜金属薄膜的厚度、加热温度和基底材料。
第二种方法为直接在基底表面转接含有铜金属颗粒或者铜的化合物粉末或者含铜的溶液。转接的铜金属颗粒可预先由物理气相沉积(PVD)、化学气相沉积(CVD)、微波等离子体、低压火焰燃烧、电化学沉积、溶胶一凝胶过程、溶液的热分解和沉淀等方法制备。基底上转接的铜化合物粉末或者含铜的溶液可以预先加热形成铜金属颗粒,也可以在后续生长硅线的加热过程中形成铜金属颗粒。
上述的铜金属颗粒尺寸可为微米级、亚微米级或纳米级,其具体尺寸应当根据所需硅线的尺寸而定。当需要微米级的硅线时,铜金属颗粒应为微米级尺寸;当需要亚微米级的硅线时,铜金属颗粒应为亚微米级尺寸;当需要纳米级硅线时,铜金属颗粒应为纳米级尺寸。
步骤3,将带有铜催化剂的基底放置于高温反应炉中并充入反应气体和惰性保护气体同时加热从而生成硅线。
步骤3中使用的高温反应炉是一种可以加热的封闭腔体,包括现有的高温管式炉、化学气相沉积反应炉、等离子体增强化学气相沉积(PlasmaEnhanced CVD,PECVD)反应炉以及热丝加热化学气相沉积设备等。高温反应炉腔体连接有反应气体、惰性保护气体以及真空设备的接口。反应气体应为可以在高温下分解出硅的物质,例如硅烷(Silane,SiH4)、一氧化硅;惰性保护气体可为氩气(Argon,Ar)、氮气(Nitrogen,N2)、氦气(Helium,He)等;高温反应炉内压强在700托(Torr)以下且反应温度在450℃以上。当调节反应气体和惰性保护气体的种类或流量以及反应压强和反应温度可以改变得到的硅线的形貌和品质。
在采用本发明制备纳米级的硅线时,优选的反应条件是:高温反应炉内充入的反应气体为硅烷(SiH4),惰性保护气体为氩(Ar),炉内反应压强在1-100托(Torr)之间且反应温度450℃-500℃之间。通过该条件生成的硅纳米线的直径尺寸在10-100纳米之间,多数可达到20-40纳米,且具有黑色的头部,分析结果显示该头部为铜硅(Cu-Si)合金,所述的硅纳米线的详细照片可参阅图2至图5。

Claims (10)

1.一种硅线的制备方法,其包括以下步骤:
提供一个基底;
在基底上引入铜作为催化剂;以及
将带有铜催化剂的基底放置于高温反应炉中并充入反应气体和惰性保护气体同时加热生成硅线。
2.如权利要求1所述的硅线的制备方法,其特征在于:所述的反应气体应为可以在高温下分解出硅的物质,惰性保护气体可为氩气(Ar)、氮气(N2)或者氦气(He),高温反应炉内压强在700托(Torr)以下且反应温度在450℃以上。
3.如权利要求2所述的硅线的制备方法,其特征在于:当采用本方法制备硅纳米线时,所述的高温反应炉内充入的反应气体为硅烷(SiH4),惰性保护体为氩气,炉内反应压强在1-100托(Torr)之间且温度在450℃-500℃之间。
4.如权利要求3所述的硅线的制备方法,其特征在于:所述的铜催化剂通过使用沉积设备短时间沉积在基底上并形成铜金属颗粒。
5.如权利要求3所述的硅线的制备方法,其特征在于:所述的铜催化剂通过使用沉积设备长时间沉积在基底上并形成铜金属薄膜。
6.如权利要求5所述的硅线的制备方法,其特征在于:所述的铜金属薄膜可预先加热处理形成铜金属颗粒。
7.如权利要求3所述的硅线的制备方法,其特征在于:所述的铜催化剂通过直接在基底上转接铜金属颗粒而形成。
8.如权利要求3所述的硅线的制备方法,其特征在于:所述的铜催化剂通过直接在基底上转接含铜的化合物粉末或者含铜的溶液而形成。
9.如权利要求8所述的硅线的制备方法,其特征在于:所述的铜的化合物粉末或者含铜的溶液可预先加热处理形成铜金属颗粒。
10.如权利要求4、6、7或9所述的硅线的制备方法,其特征在于:所述的基底由非金属的耐高温材料制成。
CNB2006100329476A 2006-01-14 2006-01-14 硅线的制备方法 Active CN100463111C (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CNB2006100329476A CN100463111C (zh) 2006-01-14 2006-01-14 硅线的制备方法
US11/525,440 US7825036B2 (en) 2006-01-14 2006-09-22 Method of synthesizing silicon wires
JP2007004778A JP4800977B2 (ja) 2006-01-14 2007-01-12 シリコンワイヤの製造方法
US12/589,468 US8058117B2 (en) 2006-01-14 2009-10-23 Method of synthesizing silicon wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100329476A CN100463111C (zh) 2006-01-14 2006-01-14 硅线的制备方法

Publications (2)

Publication Number Publication Date
CN101000867A true CN101000867A (zh) 2007-07-18
CN100463111C CN100463111C (zh) 2009-02-18

Family

ID=38263712

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100329476A Active CN100463111C (zh) 2006-01-14 2006-01-14 硅线的制备方法

Country Status (3)

Country Link
US (2) US7825036B2 (zh)
JP (1) JP4800977B2 (zh)
CN (1) CN100463111C (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330067A (zh) * 2011-09-22 2012-01-25 中国航天科技集团公司第五研究院第五一○研究所 柔性基底微晶硅薄膜的快速、均匀制备方法
CN103764544A (zh) * 2011-07-26 2014-04-30 1D材料有限责任公司 纳米结构的电池活性材料及其制备方法
CN105097439A (zh) * 2014-05-23 2015-11-25 中国科学院上海微系统与信息技术研究所 一种微米铜图形控制硅纳米线精确定位生长的方法
CN105177706A (zh) * 2015-08-17 2015-12-23 南京大学 一种制备高质量柔性单晶硅纳米线的方法
CN109850843A (zh) * 2019-03-14 2019-06-07 南京大学 一种悬空纳米线机械手批量制备方法
US10862114B2 (en) 2016-07-15 2020-12-08 Oned Material Llc Manufacturing apparatus and method for making silicon nanowires on carbon based powders for use in batteries

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2171761A4 (en) * 2007-07-19 2011-11-02 California Inst Of Techn STRUCTURES OF ORDERED NETWORKS OF SEMICONDUCTORS
JP2010541194A (ja) 2007-08-28 2010-12-24 カリフォルニア インスティテュート オブ テクノロジー 垂直配列ワイヤアレイ成長用ウェハの再利用方法
CN101550531B (zh) * 2008-04-03 2013-04-24 清华大学 硅纳米结构的制备方法
TWI492896B (zh) * 2008-04-18 2015-07-21 Hon Hai Prec Ind Co Ltd 矽奈米結構的製備方法
WO2011066529A2 (en) * 2009-11-30 2011-06-03 California Institute Of Technology Three-dimensional patterning methods and related devices
US8101522B2 (en) * 2010-02-25 2012-01-24 National Taiwan University Silicon substrate having nanostructures and method for producing the same and application thereof
WO2011156042A2 (en) 2010-03-23 2011-12-15 California Institute Of Technology Heterojunction wire array solar cells
US9476129B2 (en) 2012-04-02 2016-10-25 California Institute Of Technology Solar fuels generator
US10026560B2 (en) 2012-01-13 2018-07-17 The California Institute Of Technology Solar fuels generator
US9545612B2 (en) 2012-01-13 2017-01-17 California Institute Of Technology Solar fuel generator
WO2013126432A1 (en) 2012-02-21 2013-08-29 California Institute Of Technology Axially-integrated epitaxially-grown tandem wire arrays
US9947816B2 (en) 2012-04-03 2018-04-17 California Institute Of Technology Semiconductor structures for fuel generation
US9553223B2 (en) 2013-01-24 2017-01-24 California Institute Of Technology Method for alignment of microwires
CN103771335B (zh) * 2014-01-15 2016-01-20 华中科技大学 一种仿壁虎脚微纳分级结构及其制造工艺
US10056293B2 (en) 2014-07-18 2018-08-21 International Business Machines Corporation Techniques for creating a local interconnect using a SOI wafer
US9443865B2 (en) * 2014-12-18 2016-09-13 Sandisk Technologies Llc Fabricating 3D NAND memory having monolithic crystalline silicon vertical NAND channel
CN105271235B (zh) * 2015-10-15 2018-02-23 中国科学院过程工程研究所 一种硅纳米线材料及其制备方法
WO2023139100A1 (en) 2022-01-21 2023-07-27 Enwires Method for the preparation of a material comprising silicon nanowires and copper

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162365A (en) * 1998-03-04 2000-12-19 International Business Machines Corporation Pd etch mask for copper circuitization
US6248674B1 (en) * 2000-02-02 2001-06-19 Hewlett-Packard Company Method of aligning nanowires
US7301199B2 (en) * 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
CN1215530C (zh) * 2003-07-25 2005-08-17 中国科学院上海微系统与信息技术研究所 一种硅纳米线的制作方法
JP3837554B2 (ja) 2003-07-30 2006-10-25 独立行政法人物質・材料研究機構 珪素−セレン化亜鉛接合ナノワイヤーの製造方法
US7785922B2 (en) * 2004-04-30 2010-08-31 Nanosys, Inc. Methods for oriented growth of nanowires on patterned substrates
JP2007536101A (ja) * 2004-05-05 2007-12-13 カリフォルニア インスティテュート オブ テクノロジー ナノ繊維配列(array)のキャピラリーリソグラフィー

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108452790B (zh) * 2011-07-26 2022-05-03 1D材料公司 纳米结构的电池活性材料及其制备方法
CN103764544A (zh) * 2011-07-26 2014-04-30 1D材料有限责任公司 纳米结构的电池活性材料及其制备方法
CN108452790A (zh) * 2011-07-26 2018-08-28 1D材料有限责任公司 纳米结构的电池活性材料及其制备方法
US10243207B2 (en) 2011-07-26 2019-03-26 Oned Material Llc Nanostructured battery active materials and methods of producing same
US11967707B2 (en) 2011-07-26 2024-04-23 Oned Material, Inc. Nanostructured battery active materials and methods of producing same
US11616225B2 (en) 2011-07-26 2023-03-28 Oned Material, Inc. Nanostructured battery active materials and methods of producing same
CN102330067A (zh) * 2011-09-22 2012-01-25 中国航天科技集团公司第五研究院第五一○研究所 柔性基底微晶硅薄膜的快速、均匀制备方法
CN105097439A (zh) * 2014-05-23 2015-11-25 中国科学院上海微系统与信息技术研究所 一种微米铜图形控制硅纳米线精确定位生长的方法
CN105177706A (zh) * 2015-08-17 2015-12-23 南京大学 一种制备高质量柔性单晶硅纳米线的方法
US10862114B2 (en) 2016-07-15 2020-12-08 Oned Material Llc Manufacturing apparatus and method for making silicon nanowires on carbon based powders for use in batteries
US11728477B2 (en) 2016-07-15 2023-08-15 Oned Material, Inc. Manufacturing apparatus and method for making silicon nanowires on carbon based powders for use in batteries
CN109850843B (zh) * 2019-03-14 2021-01-15 南京大学 一种悬空纳米线机械手批量制备方法
CN109850843A (zh) * 2019-03-14 2019-06-07 南京大学 一种悬空纳米线机械手批量制备方法

Also Published As

Publication number Publication date
JP2007186416A (ja) 2007-07-26
US7825036B2 (en) 2010-11-02
US20100041217A1 (en) 2010-02-18
US8058117B2 (en) 2011-11-15
JP4800977B2 (ja) 2011-10-26
US20070166899A1 (en) 2007-07-19
CN100463111C (zh) 2009-02-18

Similar Documents

Publication Publication Date Title
CN100463111C (zh) 硅线的制备方法
Wang et al. Low‐temperature synthesis of single‐crystal germanium nanowires by chemical vapor deposition
Ozaki et al. Silicon nanowhiskers grown on a hydrogen-terminated silicon {111} surface
Gole et al. Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates
Kolasinski Catalytic growth of nanowires: vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth
US7354871B2 (en) Nanowires comprising metal nanodots and method for producing the same
US8513641B2 (en) Core-shell nanowire comprising silicon rich oxide core and silica shell
CN1483668A (zh) 一种碳纳米管阵列生长方法
EP1072693A1 (en) Chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the apparatus
Sun et al. Synthesis of germanium nanowires on insulator catalyzed by indium or antimony
KR100658113B1 (ko) 화학기상응축법에 의한 실리카 코팅 나노철분말 합성공정
WO2010147191A1 (ja) カーボンナノチューブの製造装置および製造方法
US8076260B2 (en) Substrate structure and manufacturing method of the same
Suzuki et al. Formation of silicon nanowires by CVD using gold catalysts at low temperatures
JP5176925B2 (ja) Cnt合成用基板、その製造方法、及びcntの製造方法
Mohammad General hypothesis and shell model for the synthesis of semiconductor nanotubes, including carbon nanotubes
Jiang et al. Synthesis of core-shell nanowires of FeCoNi alloy core with silicon oxide layers
JP2004051432A (ja) カーボンナノチューブの製造用基板及びそれを用いたカーボンナノチューブの製造方法
CN1275851C (zh) 一种碳纳米管的制备方法
KR20120005683A (ko) 브랜치드 나노와이어의 제조방법
US20100119708A1 (en) Filling structures of high aspect ratio elements for growth amplification and device fabrication
JP4471617B2 (ja) Pd金属内包カーボンナノチューブの製造方法
KR20150135818A (ko) 파도형 탄소나노코일(wnc)이 부착된 줄기형 탄소소재(scm) 및 이를 제조하는 방법
TWI311545B (en) Method for making silicon wire
US7767275B2 (en) Method for synthesizing self-aligned carbon nanomaterials on large area

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant