CN100558946C - 低温下以氧化物为前驱体制备稀土硼酸盐晶体的方法 - Google Patents

低温下以氧化物为前驱体制备稀土硼酸盐晶体的方法 Download PDF

Info

Publication number
CN100558946C
CN100558946C CNB2006101183433A CN200610118343A CN100558946C CN 100558946 C CN100558946 C CN 100558946C CN B2006101183433 A CNB2006101183433 A CN B2006101183433A CN 200610118343 A CN200610118343 A CN 200610118343A CN 100558946 C CN100558946 C CN 100558946C
Authority
CN
China
Prior art keywords
rare earth
product
low temperature
presoma
oxide compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006101183433A
Other languages
English (en)
Other versions
CN1974885A (zh
Inventor
吴庆生
马杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CNB2006101183433A priority Critical patent/CN100558946C/zh
Publication of CN1974885A publication Critical patent/CN1974885A/zh
Application granted granted Critical
Publication of CN100558946C publication Critical patent/CN100558946C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

本发明属于微/纳米材料制备技术及水热合成领域,具体涉及一种低温下以氧化物为前驱体制备稀土酸盐晶体的方法。水热反应体系中,直接利用通常状态下难溶的稀土氧化物和作为硼源的水合三氧化二硼或三氧化二硼为前驱体,温度控制在为190-280℃,反应时间为1248小时,洗涤,得到所需产品。本发明为无机合成提供了一种新的合成途径,整个生产过程无任何污染,是一种环保型合成方法。本发明工艺简单,整个制备体系容易构建,操作简便,条件易控,成本低廉,产物形貌、尺寸易控,纯度高,结晶度好且产物处理方便简洁,适合于大规模工业生产。

Description

低温下以氧化物为前驱体制备稀土硼酸盐晶体的方法
技术领域
本发明属于微/纳米材料制备技术及水热合成领域,具体涉及一种低温下以氧化物为前驱体制备稀土硼酸盐晶体的方法。
背景技术
稀土元素因其特有的4f层电子结构,激发光为线谱或窄带谱的优良性能,在荧光粉中倍受青睐。稀土荧光粉将取代锌、锶、硫化物荧光粉,以获得更高的亮度和清晰度。稀土硼酸盐系列荧光粉是90年代末,为了适应大屏幕高清晰彩色投影电视和计算机终端显示技术的发展,而正在研究开发的一类新型的稀土荧光材料。同时稀土硼酸盐也广泛应用于多种发光玻璃、发光二极管,非线性光学材料、激光材料等光学材料的制备,磁性材料,润滑油抗磨减摩的添加剂的原料等。随着纳米技术的发展,对纳米级稀土正硼酸盐的需求量将越来越大。然而关于纳米级的稀土正硼酸盐的制备的报道却十分缺少,这可能由于稀土硼酸盐在通常的条件下较难得到有关:因为在常温或中温条件下,固体硼酸和稀土氧化物不能发生反应;如果在水溶液中利用稀土盐类和硼酸盐作用,水合硼酸盐一般是在弱酸性、中性或碱性条件下形成的(合成方法主要采用溶液法或水热法)而三价稀土离子在此合成条件下水解倾向性较大,因而也很难形成水合稀土硼酸盐。近年来,已报道的稀土正硼酸盐的制备方法主要局限在用固相法和溶胶-凝胶法:固相法通常是以过量的硼酸盐或硼酸或硼单质为硼源,以稀土氧化物或盐类为阳离子源,通过高温煅烧(>600℃)的方法得到相应的晶体,溶胶-凝胶法主要是利用有机硼氧化物为硼酸盐鹏源,以有机稀土化合物或稀土盐类为阳离子源在有机溶剂或胶联剂的作用下形成溶胶,进而形成凝胶,最后通过烧结的方法去除有机成分,而得到相应得纳米级稀土硼酸盐。
上述这些方法虽然提供了一些合成稀土硼酸盐的途径,但是仍然存在不足,如固相反应要通过高温,过量的硼及复杂的工序才能获得纳米级硼酸盐;而溶胶-凝胶会造成大量的有机物的浪费,生产成本较高,同时也会产生大量的废气,不利于环境保护和资源的合理化应用。
发明内容
本发明的目的在于提出一种粒度可控、晶型可控、高纯度、处理方便、易于工业化的低温下以氧化物为前驱体制备稀土硼酸盐晶体的方法。
本发明提出的低温下以氧化物为前驱体制备稀土硼酸盐晶体的方法,其具体步骤如下:
(1)以硼源和稀土氧化物为前驱体,以去离子水为溶剂,分别置于耐压容器(如反应釜)中,混合均匀,其中,硼源与稀土氧化物的摩尔比为1∶1-1.2∶1,去离子水与稀土氧化物物质的量的比例为250∶1-400∶1,去离子水的加入量为容器体积的50%-80%;
(2)将步骤(1)中装有混合料的容器置于控温炉中焙烧,以8.5-11.5℃/分升温速率,根据所要获得不同特性产物要求,控制炉内温度为190℃-280℃,恒温加热12-48小时,取出容器,自然冷却至室温;
(3)将步骤(2)中容器中所得的沉淀产物洗涤,即得所需产品;
其中,所述硼源为水合三氧化二硼或三氧化二硼;所述稀土氧化物为所有的二价、三价、四价的稀土金属氧化物及其水合物,纯度均不低于化学纯。
本发明中,步骤(1)中还可以加入添加剂,添加剂的加入量为添加剂与稀土氧化物的摩尔比为0.1∶1-1∶1。
本发明中,所述添加剂为无机配体、有机配体或表面活性剂等中的一至多种。
本发明中,所述有机配体可以采用EDTA及其盐、柠檬酸及其盐、邻菲罗林、邻二氮菲、乙二胺及其衍生物、磷酸酯等多齿配位体;表面活性剂可以采用阴离子表面活性剂、长链磷酸酯等;阳离子表面活性剂可以采用长链脂肪铵盐或咪唑盐等;非离子表面活性剂可以采用聚乙二醇、环糊精类、聚苯乙二醇、聚丙烯醇等。
本发明中,步骤(1)中混合均匀,可以通过机械搅拌或振荡、磁力搅拌、超声振荡等方式进行。
本发明中,所述超声振荡时间为8-15分钟。
本发明中,步骤(3)中所述洗涤采用去离子水和无水乙醇交替洗涤,洗涤次数为3-6次,在每次洗涤完成后,用离心分离器分离后再进行下一次洗涤。
利用本发明方法制备得到的稀土硼酸盐晶体在真空紫外荧光材料、发光玻璃、磁光材料、压电陶瓷、光电陶瓷、光电二极管、传感器、电极的粉体或本体材料中的应用。
对本发明方法所得产物的结构、形貌、组成进行表征,可以分别选用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、傅立叶转换红外光谱仪(FTIR)、X射线光电子能谱仪(XPS)、透射电境(TEM)等,XRD结果表明产物的晶型种类的多寡、粒度分布和主要成分,SEM,TEM表明粒子粒径和整体形貌,FTIR验证XRD的结果及水分的含量。XPS检测微区元素组成,佐证XRD的结果。
本发明优点在于:
1.本发明实现了利用常温下难溶于水的氧化物为水热反应的前驱体,突破以往水相合成的经典模式,为无机合成提供了一种新的合成途径。
2.本发明是采用氧化物为反应的前驱体,不同于以往所用的盐类反应物,在制备过程中不会对环境产生有污染的副产物,原子利用率理论上能达到100%,即整个生产过程无任何污染,符合可持续发展要求,是一种环保型合成方法。
3.本发明所使用的方法是水热法,具有设备简单,操作便利,便于工业转化,实现大规模生产。
4.本发明适用范围广,可以用于所有稀土硼酸盐晶体包括纳/微米级粉体的合成,通过改变反应的温度和时间,添加剂的种类可以对产品的晶型、形貌、颗粒的大小进行调控,从而得到不同形貌的纳米级至微米级晶体。所得纳米级晶粒粒径范围为40-100nm,长径比为1-30;在反应时间较长的条件下,可以制得粒径>1μm的微米级晶粒。本发明方法可以便利的制备出不同规格的产品,以满足不同生产工艺的要求。
5.本发明工艺简单,整个制备体系容易构建,操作简便,条件易控,成本低廉,产物形貌、尺寸易控,纯度高,结晶度好且产物处理方便简洁,适合于大规模工业生产。
6.本发明制备的部分产物具有良好的光、电、磁等方面的物理性能,可以作为真空紫外荧光材料,发光玻璃,磁光材料、压电陶瓷、光电陶瓷、光电二极管、传感器、电极的粉体或本体材料,有较为广阔的发展前景和应用空间。
本发明采用较为成熟的水热合成体系,直接以氧化物为反应物来实现。水热合成体系是一种较为成熟的纳米晶粒制备方法,与溶胶凝胶法、共沉淀法等其它湿化学方法相比较,它具有产物晶型好,粒度分度窄、操作方便、不需要高温高压等特殊条件的特点,已经广泛应用于单晶、多晶、纳米级单质和无机/无机-有机化合(复合)物的制备。本发明反应的前驱体选择稀土金属氧化物为稀土离子源和水合三氧化二硼或三氧化二硼为硼源制备出具有规则形貌和晶型的纳米晶和/或微米级晶体。本发明通过调节反应的温度、时间、添加剂的种类和用量来实现对晶型和形貌的控制。
附图说明
图1为200℃下反应24小时的相同条件下制备得到的稀土硼酸盐的XRD谱图。
图2为280℃下反应24小时得到的硼酸钇和硼酸铒的XRD谱图。
图3为240℃下反应24小时得到硼酸镧的XRD谱图。
图4为220℃下反应24小时得到的镝掺杂硼酸镧的XRD谱图。
图5为200℃下反应12小时得到的硼酸钕的XRD谱图。
图6为200℃下反应24小时得到制备得到的稀土硼酸盐的TEM照片。其中,A为GdBO3的TEM照片,B为DyBO3的TEM照片,C为NdBO3的TEM照片,D为LaBO3的TEM照片,E为SmBO3的TEM照片。
图7为280℃下反应24小时得到的硼酸钇和硼酸铒的TEM照片。其中,A为ErBO3的TEM照片,B为YBO3的TEM照片。
图8为220℃下反应24小时得到的2.5%镝掺杂硼酸镧的的TEM照片。
具体实施方式
下面通过实施例进一步描述本发明。
实施例1:制备硼酸镧
向两个容积分别为10ml的聚四氟乙烯反应釜中,分别加入2.0×10-4mol的La2O3、2.0-2.2×10-4mol的B2O3、7ml去离子水后密闭反应釜,将两个反应釜转移至超声发生器中,均超声振荡10分钟,然后将装有混合液的反应釜分别转移至控温炉中焙烧,以10℃/分的升温速度,控制炉内反应温度分别为200℃、240℃,恒温加热间为24小时,取出反应釜,自然冷却到室温,分别取出反应釜内所得沉淀产物,交替用去离子水和无水乙醇分别洗涤3次,即得所需产品。
图1中LaBO3的曲线为LaBO3的X射线粉末衍射图谱。所得产品与正交晶系的硼酸镧的标准谱图一致,并出现了不同程度的宽化,表明产品是单晶态的纳米级的粒子。从图6(D)中产品的TEM照片进一步证实是纳米级的棒状单晶。
图3给出240℃反应条件下所得产品的X射线粉末衍射图谱。从图中可以所得产品均与正交晶系的硼酸镧的标准谱图一致,并出现了不同程度的宽化,表明产品是单晶态的纳米级的粒子。从图6(D)中产品的TEM照片进一步证实是纳米级的棒状单晶。
实施例2:制备Sm、Gd、Dy的硼酸盐
向三个容积分别为10ml的聚四氟乙烯反应釜中,分别加入2.0×10-4mol的Sm2O3、Gd2O3、Dy2O3和2.0-2.2×10-4mol B2O3-3H2O为原料,去离子水6-7mL后密闭反应釜,混合均匀,然后将装有混合液的三个反应釜分别转移至控温炉中焙烧,控制炉内反应温度分别为200℃,恒温加热时间为24小时,取出反应釜,自然冷却到室温,分别取出反应釜内所得沉淀,交替用去离子水和无水乙醇分别洗涤4-5次,即得所需产品。
图1中给出的SmBO3的曲线为所得产品SmBO3的X射线衍射图谱,通过检索发现和标准谱图一致。谱图出现明显的宽化现象,表明产品是纳米级的粒子。图6(E)中给出的产品的TEM照片进一步证实是纳米级的片状晶体。
图1中给出的GdBO3的曲线为所得产品GdBO3的X射线衍射图谱,通过检索发现和标准谱图一致。谱图出现明显的宽化现象,表明产品是纳米级的粒子。图6(A)中给出的产品的TEM照片进一步证实是纳米级的片状晶体。
图1中给出的DyBO3的曲线为所得产品DyBO3的X射线衍射图谱,通过检索发现和标准谱图一致。谱图出现明显的宽化现象,表明产品是纳米级的粒子。图6(B)中给出的产品的TEM进一步证实是纳米级的片状晶体。
实施例3:制备Er和Y的正硼酸盐
向二个容积分别为10ml的聚四氟乙烯反应釜中,分别加入2.0×10-4mol的Er2O3,Y2O3,2.0-2.2×10-4mol B2O3为原料,去离子水7-8mL,添加剂邻二氮菲为0.02克后密闭反应釜,混合均匀,然后将装有混合液的二个反应釜分别转移至控温炉中焙烧,控制炉内反应温度为280℃,反应时间为24小时,取出反应釜,自然冷却到室温,分别取出反应釜内所得沉淀,交替用去离子水和无水乙醇分别洗涤5-6次,即得所需产品。
图2中给出了ErBO3的曲线为ErBO3的X射线衍射图谱,通过检索发现产品和硼酸铒标准谱图一致,谱图出现明显的宽化现象,图7(A)中给出的ErBO3的TEM照片,表明产品是纳米级的片状晶体。
图2中给出了YBO3的曲线为YBO3的X射线衍射图谱,通过检索发现产品和硼酸铒标准谱图一致,谱图出现明显的宽化现象,图7(B)中给出的YBO3的TEM照片,表明产品是纳米级的片状晶体。
实施例4,制备镝掺杂的硼酸镧
向容积为10ml的聚四氟乙烯反应釜中,分别加入2.0×10-4mol的(1-x)La2O3+x Dy2O3(x<12.5%),2.0-2.2×10-4mol B2O3为原料,去离子水6-7mL后密闭反应釜,混合均匀,然后将装有混合液的反应釜转移至控温炉中焙烧,控制炉内反应温度为220℃,反应时间为24小时,取出反应釜,自然冷却到室温,取出反应釜内所得沉淀,交替用去离子水和无水乙醇分别洗涤5-6次,即得所需产品。
图4中给出的所得产品的X射线衍射图谱,通过检索发现产品和硼酸镧标准标准谱图一致。谱图出现明显的宽化现象,表明产品是纳米级的粒子。图8给出所得产品的TEM照片,表明产品是纳米级的片状晶体。
实施例5,制备硼酸钕
向容积为10ml的聚四氟乙烯反应釜中,分别加入2.0×10-4mol的Nd2O3,2.0-2.2×10-4mol B2O3为原料,去离子水6-7mL,密闭反应釜,混合均匀,然后将装有混合液的反应釜转移至控温炉中焙烧,控制炉内反应温度为200℃,反应时间为12小时,取出反应釜,自然冷却到室温,取出反应釜内所得沉淀,交替用去离子水和无水乙醇分别洗涤3-6次,即得所需产品。从图5中给出的所得产品的X射线衍射图谱,通过检索发现此产品和六方晶系的硼酸钐标准谱图基本一致,表明所得的物质是六方晶系的硼酸钕。谱图出现明显的宽化现象,表明产品是纳米级的片状晶体。

Claims (5)

1、一种低温下以氧化物为前驱体制备稀土硼酸盐晶体的方法,其特征在于具体步骤如下:
(1)以硼源和稀土氧化物为前驱体,以去离子水为溶剂,分别置于容器中,混合均匀,其中,硼源与稀土氧化物的摩尔比为1∶1-1.2∶1,去离子水与稀土氧化物物质的量的比例为250∶1-400∶1,去离子水的加入量为容器体积的50%-80%;
(2)将步骤(1)中装有混合料的容器置于控温炉中焙烧,以8.5-11.5℃/分升温速率,根据所要获得不同特性产物要求,控制炉内温度为190℃-280℃,恒温加热12-48小时,取出容器,自然冷却至室温;
(3)将步骤(2)中容器中所得的沉淀产物洗涤,即得所需产品;
其中,所述硼源为水合三氧化二硼或三氧化二硼;所述稀土氧化物为所有的二价、三价、四价的稀土金属氧化物及其水合物。
2、根据权利要求1所述的低温下以氧化物为前驱体制备稀土硼酸盐晶体的方法,其特征在于在步骤(1)中还加入添加剂,添加剂的加入量为添加剂与稀土氧化物的摩尔比为0.1∶1-1∶1,所述添加剂为邻二氮菲。
3、根据权利要求1或2所述的低温下以氧化物为前驱体制备稀土硼酸盐晶体的方法,其特征在于步骤(1)中混合均匀,通过机械搅拌、振荡或磁力搅拌方式进行。
4、根据权利要求3所述的低温下以氧化物为前驱体制备稀土硼酸盐晶体的方法,其特征在于所述振荡采用超声振荡,时间为8-15分钟。
5、根据权利要求1或2所述的低温下以氧化物为前驱体制备稀土硼酸盐晶体的方法,其特征在于步骤(3)中所述洗涤采用去离子水和无水乙醇交替洗涤,洗涤次数为3-6次,在每次洗涤完成后,用离心分离器分离后再进行下一次洗涤。
CNB2006101183433A 2006-11-16 2006-11-16 低温下以氧化物为前驱体制备稀土硼酸盐晶体的方法 Expired - Fee Related CN100558946C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006101183433A CN100558946C (zh) 2006-11-16 2006-11-16 低温下以氧化物为前驱体制备稀土硼酸盐晶体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006101183433A CN100558946C (zh) 2006-11-16 2006-11-16 低温下以氧化物为前驱体制备稀土硼酸盐晶体的方法

Publications (2)

Publication Number Publication Date
CN1974885A CN1974885A (zh) 2007-06-06
CN100558946C true CN100558946C (zh) 2009-11-11

Family

ID=38125225

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101183433A Expired - Fee Related CN100558946C (zh) 2006-11-16 2006-11-16 低温下以氧化物为前驱体制备稀土硼酸盐晶体的方法

Country Status (1)

Country Link
CN (1) CN100558946C (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105694874B (zh) * 2016-03-29 2018-03-06 陕西师范大学 一种多面体状InBO3:Eu3+发光材料的制备方法
CN105694873B (zh) * 2016-03-29 2018-03-06 陕西师范大学 采用硼酸熔融法制备InBO3:Eu3+发光材料的方法
CN106118655B (zh) * 2016-06-16 2019-04-19 沈阳化工大学 一种稀土离子掺杂硼酸镧晶相可控发光粉的制备方法
CN106283175B (zh) * 2016-09-22 2018-08-24 中国科学院理化技术研究所 一种生长非线性光学晶体LiB3O5、CsB3O5和CsLiB6O10的方法
CN109019656B (zh) * 2018-09-28 2021-06-15 包头稀土研究院 纳米稀土氧化物粉体的生产方法
CN109473674B (zh) * 2018-12-16 2020-09-18 河南英能新材料科技有限公司 一种石墨烯负载纳米磷酸镍锂锂电池正极材料及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298272A (ja) * 2004-04-12 2005-10-27 Fuji Photo Film Co Ltd 希土類ホウ酸塩の製造方法
JP2005298679A (ja) * 2004-04-12 2005-10-27 Fuji Photo Film Co Ltd 希土類ホウ酸塩の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298272A (ja) * 2004-04-12 2005-10-27 Fuji Photo Film Co Ltd 希土類ホウ酸塩の製造方法
JP2005298679A (ja) * 2004-04-12 2005-10-27 Fuji Photo Film Co Ltd 希土類ホウ酸塩の製造方法

Also Published As

Publication number Publication date
CN1974885A (zh) 2007-06-06

Similar Documents

Publication Publication Date Title
CN100532254C (zh) 一种制备稀土正磷酸盐纳/微晶体的方法
CN100558946C (zh) 低温下以氧化物为前驱体制备稀土硼酸盐晶体的方法
Li et al. Preparation of nano-sized CeO2 by mechanochemical reaction of cerium carbonate with sodium hydroxide
CN103523824B (zh) 一种光催化用纳米片状铁电材料的制备方法
CN101624209B (zh) 一种ZnO纳米棒的制备方法
CN102275942A (zh) 一种硅酸铋纳米粉体的制备方法
CN101279757A (zh) 一种双水解调控制备碱式碳酸镧纳/微米晶体的方法
CN106554033A (zh) 采用熔盐法制备铝酸镧粉体的方法
CN101767821A (zh) 一种锆钛酸钡基介质材料的合成方法
CN101857430B (zh) 一种钛酸盐系列电子陶瓷纳米晶体材料的合成方法
CN110451953A (zh) 一种取向性钛酸钡锶纳米多晶的可控制备方法
CN103964505A (zh) 一种钶铁矿型金属铌酸盐纳米结构的制备方法
Bai et al. General synthesis of layered rare-earth hydroxides (RE= Sm, Eu, Gd, Tb, Dy, Ho, Er, Y) and direct exfoliation into monolayer nanosheets with high color purity
Matias et al. Synthesis and Characterization of Nb 2 O 5: La 3+, Eu 3+ Phosphors Obtained by the Non-Hydrolytic Sol-Gel Process
Wu et al. Low-temperature preparation of monodispersed Eu-doped CaTiO 3 LED phosphors with controllable morphologies
CN103131417A (zh) 一种Eu掺杂YPO4微球及其制备方法
CN100347087C (zh) 低温下以氧化物为前驱体制备稀土钒酸盐纳/微米晶体方法
Zhang et al. Synthesis and luminescent property of Sr2CeO4 phosphor via EDTA-complexing process
Wang et al. Photoluminescence of (La, Eu) 2 O 2 SO 4 red-emitting phosphors derived from layered hydroxide
CN105752957B (zh) 采用自牺牲模板法制备纳米级稀土磷酸盐荧光粉的方法
CN109879305B (zh) 一种制备微米级单分散LaAlO3:xMm+球形颗粒的方法
CN102070196A (zh) 一种低温制备二氧化锰纳米棒的方法
CN103420418A (zh) V10o24·12h2o的水热制备方法
CN103449511A (zh) 一种钛酸锶亚微米晶体及其制备方法
CN102502845B (zh) 一种单斜相钨酸铅的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091111

Termination date: 20121116