CN100548577C - 基板抛光的方法和装置 - Google Patents

基板抛光的方法和装置 Download PDF

Info

Publication number
CN100548577C
CN100548577C CNB2006800028481A CN200680002848A CN100548577C CN 100548577 C CN100548577 C CN 100548577C CN B2006800028481 A CNB2006800028481 A CN B2006800028481A CN 200680002848 A CN200680002848 A CN 200680002848A CN 100548577 C CN100548577 C CN 100548577C
Authority
CN
China
Prior art keywords
polishing
polished
burnishing device
wafer
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006800028481A
Other languages
English (en)
Other versions
CN101107097A (zh
Inventor
佐佐木达也
上冈真太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Publication of CN101107097A publication Critical patent/CN101107097A/zh
Application granted granted Critical
Publication of CN100548577C publication Critical patent/CN100548577C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/30Work carriers for single side lapping of plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/16Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the load

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

本发明提供了一种用于优化抛光轮廓的抛光装置,其除了抛光量外还考虑到甚至如将被抛光的物体表面的温度以及抛光垫厚度这些参数。在控制单元CU的控制下抛光将被抛光的物体的抛光装置具有至少两个压紧部分,并且包括能够从每个所述压紧部分对将被抛光的物体施加任意压力的顶环,用于测量将被抛光的物体的抛光量的测量装置IM,以及监控将被抛光的物体的抛光条件的监控装置SM。控制单元CU根据一个模拟程序迫使抛光装置抛光将被抛光的物体,所述模拟程序基于所述测量装置的输出和所述监控装置的输出对所述顶环设定优化将被抛光的物体的抛光轮廓所需的加工压力。

Description

基板抛光的方法和装置
技术领域
本发明涉及一种抛光将被抛光的材料(如半导体基板)的基板抛光装置,其可消除由于在基板表面上的残留膜的非一致性(其主要是由这种耗材的老化变化导致)引起的产率降低,并延长这种耗材的寿命以减少运行成本,以及实施该抛光装置的方法。
背景技术
近年来,随着半导体器件逐渐地小型化并且元件结构越来越复杂,半导体器件往往在表面具有更大的粗糙度和更大的梯度(step)。因此,形成于这些梯度上的膜厚度更小,并且由于金属线连接断开可发生断路,布线层之间的不良绝缘引起的短路,导致更低的产率。在解决这些问题的平面化技术中,在布置绝缘膜和布线金属膜期间(例如在半导体基板上制造半导体器件过程期间),使用化学机械抛光(CMP)以平面化表面粗糙。
在CMP中,基板,即被抛光的物体,被挤压贴在由无纺布或类似材料制成的抛光垫上,并且基板和抛光垫相对于彼此滑动,其间供以抛光浆液以抛光基板。已经发现,在抛光垫表面形成的同心或格状沟槽对于在CMP抛光期间将足量的抛光浆液供给深入基板的中心区域是非常有效的。此外,CMP还涉及所谓的垫调理(pad conditioning),以用金刚石盘或类似物修整垫表面,从而去除可能粘附于抛光垫表面的抛光碎屑。
在抛光被层叠在基板上的布线金属和绝缘膜到消光的CMP过程中,用于生产线的抛光条件在之前已经被优化了,以使得抛光在相同的条件下进行直至抛光部件达到优化条件下的极限消耗水平。但是,随着抛光部件被消耗,对基板上的金属线和绝缘膜进行抛光之后的表面形状(所述的“抛光轮廓”)会随着时间的流逝与抛光部件的消耗水平同步改变。一般地,抛光部件在其老化变化影响器件性能之前所设定的适当时机被置换。
随着半导体器件的小型化,布线层的数量增加,近年来运行速度更快,表面轮廓(即布线金属和绝缘膜在抛光后的抛光轮廓)所需的平整度更高。特别地,抛光轮廓允许的老化变化在小型化的器件和具有更多层的器件内更为有限,导致消耗的抛光部件的置换频率更高。但是,CMP的消耗部件如此昂贵,使得磨损损失引起的置换频率的增高将极大地影响器件的成本。
一般地,通常都知道抛光量Q可根据关系式Q∝kpvΔt以一定精确度进行预测(其中,Q表示抛光量;k是由抛光垫的材料、抛光液以及基板和类似物决定的系数;p是加工压力,v是移动速度,并且Δt是抛光时间),这是抛光领域公知的普雷斯顿经验公式,并且普雷斯顿经验公式在CMP中通常也是成立的。但是,在CMP中,基于化学反应的抛光速度极大地受到加工温度的影响,从而使得在某些情形下很难根据普雷斯顿经验公式以高精确度预测抛光量。此外,抛光垫的表面内的沟槽中的抛光浆液的状态遵循流体力学,并且因此是不考虑在普雷斯顿经验公式中的。此外,普雷斯顿公式不能包括这些因素,如与垫调理器的切割速率减少有关的不充分修整以及被去除的抛光碎屑的数量减少。
发明内容
本发明针对前述的问题而提出,并且本发明的目的在于使用抛光装置内基于普雷斯顿公式的模拟器自动地优化加工压力,充分地监控甚至普雷斯顿公式都不包括的参数,从而提高校正精确度,并且实现与集成电路日益小型化相关的均一的抛光轮廓。
本发明的另一个目的在于正确地管理耗材的状态,该耗材通常在加工一定数量的基板后被置换以延长耗材的寿命并减少运行成本。
为实现上述目的,根据本发明的抛光装置包括顶环,用于抓持将被抛光的物体如晶片,同时将将被抛光的物体压紧在抛光部件上,从而抛光将被抛光的物体。顶环可在每个同心分割的区域内任意地对将被抛光的物体设置压力,并因此控制作用于将被抛光的物体上的压力。因此,如果将被抛光的物体没有被抛光为平面形状,用于所需抛光量的压力将会额外地被施加于例如没有被充分抛光的部位,从而使得可能提供带有高精度平整度的高抛光性能。
顶环的区域内的压力通常被设定成,为形成于被抛光物体上的布线金属或内层绝缘膜提供平坦表面。一般地,该压力往往根据工程师的经验值设定,因此若干将被抛光的物体在限定条件以将被抛光的物体表面抛光为平坦的之前必须被抛光,以用于调整。
因此,本发明利用第一模拟程序,其接收上述顶环的每个区域的压力设定条件,以估测将被抛光的物体的抛光轮廓。已经发现,第一模拟程序执行的模拟的结果与抛光得到的真实轮廓相比仅有1-5%的误差。本发明可减少已经用于压力设定阶段的将被抛光的物体的浪费,同时可通过模拟即时预测抛光轮廓,并且据此也可减少设定压力所需的时间。
因为第一模拟程序可简单地更新抛光系数(该系数包括由于垫和浆液所受的影响),其可从对残留膜(或抛光形状)的形状的测量结果以较小数量的测量点得到,从而预测在抛光后位于大量非测量点处的点的位置的残留膜的厚度,模拟程序可轻易校正抛光部件中如浆液、垫和类似物的变化导致的影响,并且可预测校正后设定的抛光条件下的抛光轮廓。当使用在第一模拟程序中的抛光条件设定值附近的抛光结果更新抛光系数时,误差可减至1-3%。当将被抛光的物体在真实的半导体生产线上随后被抛光时,在将被抛光的依次排列的物体之间的抛光条件设定值没有较大差异,因此可在更高精度下进行模拟。当测定的抛光形状的点的数量较少时,抛光系数可使用由测定点光滑内插的曲线进行计算。
本发明还提供在所需厚度的晶片表面生成膜形状,从而提供了一种所需的抛光轮廓。为此目的,在本发明中,所需的抛光时间、平均抛光量以及残留膜的形状(也可使用抛光形状)被输入以计算每个区域的设定压力,从而满足第二模拟程序的条件。第一模拟程序以模块形式被合并入第二模拟程序。第一模拟程序计算在一定设定压力下抛光轮廓的预定值,并且第二模拟程序将该预定值与所需的抛光轮廓进行比较,从而计算设定压力的修正值。当第二模拟程序用于重复计算抛光轮廓的预定值并且计算设定压力的修正值时,这样可能计算接近所需抛光轮廓的设定压力。
此处,设定抛光时间可被看作参考值(目标值),并且在实际上被终端点系统监控的残留膜的数量达到预定值时抛光可终止。
因为过去平均抛光量简单地被保持稳定,本发明还控制并稳定抛光后的平整度或残留膜的所需形状。因此,在本发明中,在一个将被抛光的测试物体优选被加工以更新抛光系数后,第二模拟程序找到优化抛光条件以提供所需抛光时间、平均抛光量和残留膜形状。当将被抛光的物体在此优化抛光条件下被抛光时,抛光系数基于抛光部件的消耗程度被适当地更新,从而再次优化抛光条件以稳定地提供所需抛光时间、平均抛光量和残留膜的形状。此处,当将被抛光的物体被抛光的抛光条件可被反馈用于随后的抛光时,考虑到受抛光后残留膜的平整度的精度影响的反馈控制精度以及抛光条件,可以极高的精度保证将被抛光的物体的质量。
本发明可得到与抛光形状相关的数据,不仅可用于由光学测量装置测定的生成膜,而且可用于使用可测量金属膜以传导反馈控制的测量装置的金属膜,并且富于通常目的的特性,因为它不仅仅限于CMP加工。此外,厚度的数据可通过任意选择的方法而获得,如使用抛光期间可进行监控的测量装置的测量方法,测量抛光后被转移至测量装置处的晶片的方法,将位于CMP装置外部的测量装置测定的数据传送并且将数据输入CMP装置的方法,等等。此外,前述的方法可任意组合,以使用不同方法获得抛光前和抛光后的厚度数据等等,以便于操作。
此外,在本发明中,校正精度通过充分地监控普雷斯顿公式没有包括的参数来提高,并且实现了与集成电路的日益小型化同步所需的抛光晶片形状的一致性。为此目的,本发明甚至考虑了晶片的抛光表面的温度、垫片的厚度、垫片内的沟槽的深度以及修整器的切割速率值来控制抛光操作。
因此,本发明的权利要求1所述的实施例提供了一种在控制单元的控制下对将被抛光物体进行抛光的抛光装置,包括:
顶环,其具有至少两个压紧部分,并且能够从每个所述压紧部分对将被抛光的物体施加任意压力;
用于测量将被抛光的物体的抛光量的测量装置;以及
监控将被抛光的物体的抛光状态的监控装置,所述抛光装置的特征在于:
所述控制单元根据一个模拟程序迫使抛光装置抛光将被抛光的物体,所述模拟程序基于所述测量装置的输出和所述监控装置的输出对所述顶环设定优化将被抛光的物体的抛光轮廓所需的加工压力。
权利要求2所述的本发明的特征在于:所述至少两个压紧部分包括多个同心气袋以及围绕所述气袋的卡环,并且所述卡环的压力被保持在大于所述气袋施加的压力的总和的平均值的20%。
权利要求3所述的本发明的特征在于,当所述监控装置的输出指示所述卡环的磨损损失低于阈值,所述控制单元指示所述抛光装置停止抛光。
权利要求4所述的本发明的特征在于,当监控装置的输出指示将被抛光的物体的表面温度超过预设温度,控制单元停止使用模拟程序或指示抛光装置停止抛光,并且当监控装置的输出指示表面温度低于预设值时,控制单元指示抛光装置继续抛光。
本发明的权利要求5中,抛光装置还包括抛光垫,用于在所述抛光垫被顶环压紧将被抛光的物体的状态下抛光将被抛光的物体,所述抛光装置的特征在于:当所述监控装置的输出指示所述抛光垫的厚度低于阈值时,所述控制单元停止使用模拟程序或指示所述抛光装置停止抛光。
权利要求6所述的本发明的特征在于,所述监控装置包括激光位移量测定仪,用于测量所述抛光垫的厚度。
在本发明的权利要求7中,抛光装置还包括抛光垫,用于在所述抛光垫被顶环压紧的状态下抛光将被抛光的物体,以及包括调理所述抛光垫的修整器,所述抛光装置的特征在于:当所述监控装置的输出指示所述修整器的切割速率低于阈值时,所述控制单元停止使用模拟程序,或指示所述抛光装置停止抛光。
权利要求8所述的本发明的特征在于,切割速率使用驱动所述修整器用的电机的转矩进行监控。
权利要求9所述的本发明的特征在于,所述控制单元可根据抛光状态调节供应的浆液量。
通常地,抛光装置具有供操作员输入操作条件的触摸面板,并且当控制单元指示抛光装置停止使用模拟程序时,该命令显示在触摸面板上。作为响应,操作员确定抛光是否继续或者停止。此外,通过在触摸面板上的操作可进行预先设定,以当控制单元产生停止使用模拟程序的指示时选择停止抛光的设定。
附图说明
图1为大体示出根据本发明的抛光装置的一个实施例的俯视图;
图2为图1的抛光装置的透视图;
图3为描述图1的抛光装置的某些部件的示意图;
图4为描述图1的抛光装置的某些部件的示意图;
图5为描述用于图1的抛光装置的顶环的结构的截面图;
图6为描述在图1的抛光装置中收集抛光速率分布数据的过程的流程图;
图7(A)为总体描述在图1的抛光装置中使用激光位移量测定仪检测抛光垫厚度变化的结构的示意图,并且图7(B)为示出激光位移量测定仪的输出随着时间变化的示意图;
图8(A)为示出使用或不使用根据本发明的抛光方法得到的测定值的比较表,图8(B)为示出比较结果的示意图;
图9(A)至9(C)分别为当抛光垫为新的时在CMP(A)之前的晶片上的膜厚度、在CMP(B)之后的晶片上的膜厚度以及抛光速率(C)的曲线图;
图10(A)至10(C)分别为当抛光垫已被消耗0.1mm时在CMP(A)之前的晶片上的膜厚度、在CMP(B)之后的晶片上的膜厚度以及抛光速率(C)的曲线图;并且
图11(A)至11(C)分别为当抛光垫已被消耗0.2mm时在CMP(A)之前的晶片上的膜厚度、在CMP(B)之后的晶片上的膜厚度以及抛光速率(C)的曲线图。
具体实施方式
下面,将结合附图描述根据本发明的抛光方法和装置的若干实施例。首先,根据本发明的抛光装置的一个实施例将结合图1和图2被描述,图1为示出抛光装置的各个部件的结构和布局的俯视图,图2为示出抛光装置的透视图。在图1和2中,安装于区域A、B的两个抛光站台(polishing station)共用的传输机构包括单独安装的直线传输器,每个直线传输器都包括两个直线往复平台(stage),所述直线往复平台分别是专用于两个抛光站台的传输机构。特别地,图1和2所示的抛光装置包括四个装载卸载台2以运载堆叠多个晶片的晶片盒1。具有两只手的搬运机器人4位于运行装置3上,从而其手可够到装载/卸载台2上的每个晶片盒1。运行装置3以直线电机为基础。通过使用基于直线电机的运行装置,即使晶片的直径和重量增加也可确保高速和稳定的传输。
在图1所示的抛光装置中,运载晶片盒1的装载/卸载台2包括一个SMIF(标准制造接口)舱或在其外部连接装载/卸载台的FOUP(前开口式整体舱)。SMIF和FOUP都是密闭的容器,在其内接收晶片盒并且用分隔件将其覆盖,以保持与外界空间隔离。当SMIF或FOUP作为抛光装置的装载/卸载台2被安装时,通过打开位于抛光装置的壳体H上的闸板S以及SMIF或FOUP的闸板,抛光装置与晶片盒被合并为一体。
在终止抛光步骤后,SMIF或FOUP通过闭合闸板从抛光装置上分离,并且自动地或手动地被传输至另一个加工步骤,因此保持了内部环境的清洁。为此目的,通过在晶片返回盒子前刚刚经过的区域C上方的化学过滤器形成了向下清洁空气流。此外,因为直线电机用于移动搬运机器人4,就抑制了灰尘并保持区域C的环境更加正常。此外,为保持晶片盒1内的晶片清洁,可使用包含化学过滤器和风扇的清洁盒以利用自身维持其内的清洁度,以用于密闭容器如SMIF和FOUP。
在晶片盒1的相反两侧、相对于搬运机器人4的运行装置3对称地设置了两台清洗机5、6。每个清洗机5、6都位于搬运机器人4触手可及的位置。晶片站50包括四个半导体晶片基座7、8、9、10,且位于两个清洗机5、6之间搬运机器人4触手可及的位置。
设置挡隔件14以将设置了清洗机5、6和基座7、8、9、10的区域D与设置了晶片盒1和搬运机器人4的区域C的清洁度分级。挡隔件14在一个开口处具有闸板11以将半导体晶片从一个区域运至另一个区域。搬运机器人20位于搬运机器人20触手可及清洗机5和三个基座7、9、10的位置,并且搬运机器人21位于搬运机器人21触手可及清洗机6和三个基座8、9、10的位置。
清洗机22位于清洗机5的附近和搬运机器人20的手可触及的位置。此外,清洗机23位于清洗机6的附近和搬运机器人21的手可触及的位置。清洗机22、23可清洗晶片的两面。所有这些清洗机5、6、22、23,晶片站台(wafer station)50的基座7、8、9、10,以及搬运机器人20、21都位于区域D,其中空气压力被调节至低于区域C的空气压力。
图1和2所示的抛光装置具有围绕各个装置的壳体H,并且壳体H被分隔件14、24A、24B分隔为多个室(包括区域C,D)。分隔件24A、24B限定了与区域D分开的、形成两个抛光室的两个区域A、B。两个区域A、B的每个都包括两个抛光台(polishing table),以及一个抓持半导体晶片并且将其压紧在抛光台的同时抛光该半导体晶片的顶环。特别地,抛光台34、36位于区域A,同时抛光台35、37位于区域B。顶环32设置在区域A,且顶环33设置在区域B。此外,在区域A内还设置研磨液喷嘴40以向抛光台34提供研磨液,以及机械修整器38以修整抛光台34,同时在区域B设置研磨液喷嘴41以向抛光台35提供研磨液,以及机械修整器39以修整抛光台35。此外,在区域A内设置修整器48以修整抛光台36,同时在区域B内设置修整器49以修整抛光台37。
除机械修整器38、39之外,抛光台34、35包括喷雾器44、45,所述喷雾器44、45是液压修整器。喷雾器将液体(例如,纯水)与气体(例如,氮气)混合成喷雾流体混合物,从多个喷嘴吹向抛光表面从而冲洗抛光底以及抛光表面上堆积或堵塞的泥点。通过喷雾器的流体压力进行的抛光表面的清洁,以及修整器38、39提供的涉及机械接触的抛光表面修整,可实现更优选的修整,即抛光表面的恢复。
图3为示出顶环32与抛光台34、36之间关系的示意图。可以理解,顶环33与抛光台35、37之间建立类似的关系。如图3所示,顶环32通过可旋转顶环驱动轴91从顶环头31悬伸下来。顶环头31被可定位的摇臂轴92所支撑,并且使得顶环32可接近抛光台34、36。修整器38通过可旋转修整器驱动轴93从修整头94悬伸下来。修整头94被可定位的摇臂轴95所支撑,并且修整器38可在抛光台34上的待机位置与修整位置之间移动。修整头(摇臂)97被可定位的摇臂轴98所支撑,并且修整器48可在抛光台36上的待机位置与修整位置之间移动。
修整器38具有比抛光台36的直径更长的细长形状,并且修整头97绕摇臂轴98摇摆。修整器48通过修整固定装置96从修整头97悬伸下来,从而与来自摇臂轴98的修整头97相对的修整固定装置96和修整器48一起进行枢转移动,因此使得修整头48通过类似汽车的刮水器的运动在抛光台36上修整而不旋转。螺旋形抛光台可用于抛光台36、37。
回到图1,反转器28安装于搬运机器人20的手可触及的地方,以在通过分隔件24A与区域D隔开的区域A内反转半导体晶片。类似地,反转器28’安装于搬运机器人21的手可触及的地方,以在通过分隔件24B与区域D隔开的区域B内反转半导体晶片。将区域A、B与区域D分隔的分隔件24A、24B具有使半导体晶片被传输通过的开口,并且专用于反转器28、28’的闸板25、26位于各个开口上。
反转器28、28’的每个都包括夹持半导体晶片的夹持机构,使得半导体晶片上下反转的反转机构,以及确定半导体晶片是否被夹持机构所夹持的晶片存在探测传感器。半导体晶片被搬运机器人20运送至反转器28,同时半导体晶片被搬运机器人21运送至反转器28’。
在限定一个抛光室的区域A内,安装了提供传输机构的直线传输器27A,以在反转器28与顶环32之间传输半导体晶片。在限定一个抛光室的区域B内,安装了提供传输机构的直线传输器27B,以在反转器28’与顶环33之间传输半导体晶片。直线传输器27A、27B包括两个可直线往复的平台(stage),并且半导体晶片在直线传输器与顶环或反转器之间通过晶片托盘移动。
图3的右部区域示出直线传输器27A、升降器29与推进器30之间的位置关系。在直线传输器27B、升降器29’与推进器30’之间具有与图3所示类似的位置关系。因此,下面的描述仅针对直线传输器27A、升降器29与推进器30。如图3所示,升降器29和推进器30位于直线传输器27A下部。反转器28位于直线传输器27A上部。顶环32摇摆时可被置于推进器30和直线传输器27A的上部。
图4为描述半导体晶片如何通过直线传输器与反转器之间以及直线传输器与顶环之间。如图4所示,半导体晶片101在抛光前被搬运机器人20送至反转器28,从而被反转器28反转。当升降器29向上移动,装载台901上的晶片托盘925被送至升降器29上。当升降器29再度向上移动时,半导体晶片101从反转器28被送至升降器29上的晶片托盘925。随后,升降器29向下移动,并且半导体晶片101与晶片托盘925一起位于装载台901上。晶片托盘925和半导体晶片101借助装载台901的直线运动被送至推进器30上方。在这种情形下,卸载台902通过晶片托盘925接收来自顶环32的抛光半导体晶片101,并且朝升降器29移动。装载台901和卸载台902在其移动中途彼此经过。当装载台901到达推进器30上方时,顶环32在之前已经摆动至如图4所示的位置。接下来,推进器30向上移动,并且在其从装载台901接收晶片托盘925和半导体晶片101后进一步向上移动,以到达仅传递半导体晶片101的顶环32。
已被传递至顶环32的晶片101被顶环32的真空抽吸机构所抽吸,当其仍然被抽吸时被传输至抛光台34。接下来,晶片101被具有抛光垫、磨石或安装于抛光台34上的类似物的抛光表面所抛光。第二抛光台36位于顶环32可到达的位置。在晶片以此方式在第一抛光台34上被抛光后,晶片再次在第二抛光台36上被抛光。但是,取决于形成于半导体晶片上的膜类型,半导体晶片可首先在第二抛光台36上被抛光,随后在第一抛光台34上被抛光。
被抛光晶片101通过与前述相反的通道而返回反转器28。返回反转器28的晶片用纯水或来自冲洗喷嘴的化学洗涤液清洗。此外,晶片已被移走的顶环32的晶片抽吸表面用纯水或来自顶环清洗喷嘴的化学液体清洗。
现在,对图1-4示出的抛光装置的加工步骤进行一般描述。在两个平台清洗中,两个盒平行加工,一个晶片沿着传递晶片盒(CS1)的路径→搬运机器人4→晶片站台(wafer station)50的基座7→搬运机器人20→反转器28→直线传输器27A的装载台901→顶环32→抛光台34→抛光台36(若需要)→直线传输器27A的卸载台902→反转器28→搬运机器人20→清洗机22→搬运机器人20→清洗机5→搬运机器人4t→晶片盒(CS1)。另一个晶片依次沿着传递晶片盒(CS2)的路径→搬运机器人4→晶片站台50的基座8→搬运机器人21→反转器28’→直线传输器27B的装载台901→顶环33→抛光台35→顶环33→直线传输器27B的卸载台902→反转器28’→搬运机器人21→清洗机23→搬运机器人21→清洗机6→搬运机器人4→晶片盒(CS2)。
在三个平台(three-stage)清洗中,两个盒平行加工,一个晶片沿着传递晶片盒(CS1)的路径→搬运机器人4→晶片站台50的基座7→搬运机器人21→清洗机6→搬运机器人21→晶片站台50的基座9→搬运机器人20→反转器28→直线传输器27A的装载台901→顶环32→抛光台34→抛光台36(若需要)→直线传输器27A的卸载台902→反转器28→搬运机器人20→清洗机22→搬运机器人20→晶片站台50的基座10→搬运机器人20→清洗机5→搬运机器人4→晶片盒(CS1)。另一个晶片依次沿着传递晶片盒(CS2)的路径→搬运机器人4→晶片站台50的基座8→搬运机器人21→反转器28’→直线传输器27B的装载台901→顶环33→抛光台35→抛光台37(若需要)→直线传输器27B的卸载台902→反转器28’→搬运机器人21→清洗机23→搬运机器人21→清洗机6→搬运机器人21→晶片站台50的基座9→搬运机器人20→清洗机5→搬运机器人4→晶片盒(CS2)。
此外,在三个平台清洗连续加工中,一个晶片沿着传递晶片盒(CS1)的路径→搬运机器人4→晶片站台50的基座7→搬运机器人20→反转器28→直线传输器27A的装载台901→顶环32→抛光台34→抛光台36(若需要)→直线传输器27A的卸载台902→反转器28→搬运机器人20→清洗机22→搬运机器人20→晶片站台50的基座(seat)10→反转器28’→直线传输器27B的装载台901→抛光台35→抛光台37(若需要)→直线传输器27B的卸载台902→顶环33→反转器28’→搬运机器人21→清洗机23→搬运机器人21→清洗机6→搬运机器人21→晶片站台50的基座9→搬运机器人20→清洗机5→搬运机器人4→晶片盒(CS1)。
根据图1-4所示的抛光装置,因为抛光装置包括具有至少两个直线往复平台(基座)的直线传输器(作为专用于每个抛光站台的传输机构),抛光装置可减少在反转器与顶环之间转移将被抛光的物体所需的时间,并且可增加单位时间内可被加工的将被抛光的物体的数量。此外,当将被抛光的物体在直线传输器的一个平台与反转器之间转移时,将被抛光的物体在晶片托盘与反转器之间转移,并且当将被抛光的物体在直线传输器的一个平台与顶环之间转移时,将被抛光的物体在晶片托盘与顶环之间转移,因此晶片托盘在转移期间可吸收冲击力,从而使得不仅增加了将被抛光的物体被转移的速度,而且增加了将被抛光物体的产量。此外,因为从反转器到顶环的晶片的转移和位移可以通过可拆卸地保持在直线传输器的每个平台上的托盘来实现,有可能减少晶片的转移,例如升降器与直线传输器之间以及直线传输器与推进器之间的转移,从而防止产生的灰尘可能导致的损坏以及在保持晶片过程中的失效。
此外,因为抛光装置具有可被分为两组的多个托盘,即一组专用于装载以在抛光前保持将被抛光的物体,并且一组专用于卸载以保持抛光物体,抛光前的晶片从专用于装载的托盘而非从推进器被传递至顶环,同时抛光后晶片从顶环被传递至专用于卸载的托盘而非推进器。因此,向顶环装载晶片是通过使用夹具或与用于从顶环卸载晶片的部件所不同的部件来实现,使得可能解决这样的问题,即粘附于抛光后晶片的抛光液或类似物会粘在或凝固在装载和卸载共用的晶片支撑部件上,并且在抛光前刮擦或粘在晶片上。
联机监控器(inline monitor)IM安装于上述抛光装置的区域C内的适当位置,因此被抛光和清洗的晶片被搬运机器人传输至联机监控器IM处以测量晶片的厚度和轮廓。联机监控器IM还可测量抛光前的晶片,并且抛光前和抛光后厚度的差被视为与抛光量相等。因此,联机监控器IM作用为厚度测量装置。事实上,联机监控器IM位于机器人3之上。此外,抛光装置包括状态监控器SM以监控表示抛光装置操作状态的参数,如抛光表面的温度、抛光垫的厚度、修整器的切割速率以及卡环的磨损程度。整个抛光装置的运行由控制单元CU所控制。控制单元CU存储后面将详述的模拟程序,以及控制流程程序,用于测量抛光表面上温度、垫厚度、垫内沟槽深度、修整器切割速率值以及顶环内的卡环的磨损程度中的任意值,从而优化抛光。控制单元CU可容纳于图1所示的抛光装置内或与抛光装置分离。状态监控器SM、联机监控器IM以及控制单元CU在图2中被省略。
从普雷斯顿(Preston)公式已知,将晶片表面压紧在抛光垫上的挤压力通常与抛光量成正比。但是,必须通过模拟具有复杂结构的顶环,并且考虑由弹性材料制成的抛光垫的非线性、薄板式晶片的巨大变形特别是明显出现在晶片端面的应力集中,以找到适当的挤压力。因此,困难集中在分析地寻求一种数学解决方案。另一方面,使用有限元法或边界元法以寻找挤压力涉及将物体划分为大量的单元,需要极其大量的计算,很长的运算时间以及极高的运算能力。此外,为得到适当结果,操作员需要具有数值分析的专业能力,因此从成本和实际的角度考虑,几乎不可能在该领域进行简单的调整就参照数学方法推知的挤压力,以及将其包括在CMP装置中进行应用。
有了前述的讨论,上述构型的抛光装置中的顶环通过轮廓控制类型的顶环来实现。此处的轮廓控制类型顶环是指普通意义上的具有多个压紧部件的顶环。特别地,轮廓控制类型顶环可以是包括被多个膜同心分隔开的气袋或水袋的多个压紧部件,或者是具有通过对分隔气室提供压力而使用气压直接压紧晶片后表面的多个部件,或者是具有借助弹簧产生挤压力的部件,或者是具有通过安置一个或多个压电元件的局部压紧部件,以及或者是其组合。
下面,将参照具有多个同心分隔的气袋的顶环来描述压紧部件。如图5所示,顶环包括多个同心气袋,并且调节从每个气袋供至相关晶片区域的压力。下面,晶片面对气袋的一侧称为“晶片后表面”,并且晶片面对抛光垫的一侧称为“晶片表面”。图5示出沿包括用于本发明的抛光装置中的顶环的旋转轴的平面来看的截面图,其中顶环T具有中心圆盘状气袋E1,围绕气袋E1的环形气袋E2,围绕气袋E2的环形气袋E3,围绕气袋E3的环形气袋E4,以及围绕气袋E4的环形卡环E5。如图所示,卡环E5被如此设计以使其可与垫接触,并且承载在抛光台上的晶片W装配在被卡环E5限定的空间,并且受到各个气袋E1-E4提供的压力。
可以理解,构成顶环T的气袋数目不限于四个,而是可根据晶片的尺寸增加或减少。此外,尽管图5未示出,用于每个气袋的气压供给器位于顶环T的适当位置以通过相关的气袋E1-E4调节供给晶片W后表面的压力。此外,施加于卡环E5的压力可被置于卡环E5上的气袋以类似其它气袋的方式所控制,或通过直接从支撑顶环T的轴传递压力被控制。在本发明中,各个气袋E1-E4和卡环E5对晶片W的后表面以及围绕晶片W的抛光垫施加的压力的组合,以及在晶片W表面上的挤压力的结果分布,已在之前被存储在抛光装置的控制单元CU的存储器内。优选地,卡环E5的压力被设置为大于气袋E1-E4施加的压力的总和的20%或更高,从而避免晶片滑落。
通过使用上述结构,假定从气袋供至晶片后表面以及从卡环供至抛光垫的实际压力(下文中称为“后表面压力”)设定范围是100-500hPa,气压的范围是±200hPa,并且在晶片W上的挤压力分布被视为大致线性的(即,叠加原理大致成立);通过组合施加于后表面上的三个不同压力100hPa、300hPa和500hPa而合成晶片表面上的挤压力分布,可在后表面压力设定范围±200hPa中得到每个气袋供至晶片后表面上的相关区域的理想压力引起的晶片表面上的挤压力分布。
也就是说,通过在表面挤压力变化被视为基本线性的范围内划分后表面上的设定压力(叠加原理成立),准备之前计算的多种情形下分布于晶片表面上的挤压力分布的数据,并且合成从准备的数据中适当地选择的数据,不需复杂计算就可根据有限元法或类似方法算出对应于晶片后表面上的任意设定压力的晶片表面上的挤压力分布。通过存储在计算机内寻找晶片表面上的挤压力分布的程序,可生成模拟工具以寻找用于晶片后表面上的设定压力的晶片表面上挤压力分布。
一旦晶片表面上的挤压力分布以这种方式被找到,可通过将该挤压力分布乘以之前找到的用于将被抛光的晶片的晶片表面上的抛光系数分布数据,以得到晶片的预计抛光轮廓。从前述的普雷斯顿公式可知,抛光的晶片量Q通常与每个气袋施加于晶片的压力即挤压力P、接触面上的移动速度V以及抛光时间Δt成正比。当晶片表面上的接触面的移动速度(即,晶片表面相对抛光垫的速度)v在晶片表面的一个位置上与另一个位置上不同,并且取决于抛光条件的抛光时间Δt也各异,如果单位压力内的抛光速率被限定为抛光系数,那么抛光系数对应于kv。当已得到普雷斯顿公式中用于晶片表面的对应于kv的数值分布,可根据压力P得到晶片表面上的抛光量Q以及单位时间内的抛光量Q的分布,即可得到抛光速率Q/Δt。因为晶片抛光量(抛光速率)可通过这样的简单运算得出,可通过该领域内的简单调节来参考通过模拟工具的运算结果,并且被包括在CMP装置中以供使用。
图6示出得到晶片表面上的抛光系数分布数据的典型步骤。首先,在步骤S1,预先测量位于一定晶片上的膜的形状。接下来,在步骤S2,测量的晶片实际上在特定的设定压力条件下被抛光特定的抛光时间。在这种情形下,在步骤S3,在这种压力条件下晶片表面上的挤压力分布使用模拟工具被算出。再次测量被抛光的晶片表面上的膜形状,并且晶片表面上的抛光量的分布根据抛光前和抛光后的形状差异被算出(步骤S4)。接下来,在步骤S5,计算出的抛光量的分布除以抛光时间和计算出的挤压力分布,以得到在晶片表面上的每个点的单位压力下的抛光速率分布,即晶片表面上的抛光系数分布。此处,不除以抛光时间,就可得到单位压力下的抛光量分布。可选地,抛光垫的最初条件、其被使用一段时间后的情形以及接近使用极限的抛光系数分布可被预先算出,并被存储在控制单元CU内作为抛光系数的老化变化的数据。
综上所述,本发明不限于使用气袋的轮廓控制类型顶环,很明显只要得到从晶片后表面作用的压力,就可通过基于作用力计算晶片表面上的挤压力分布来预测轮廓。因此,应用的本发明的顶环可由各个挤压部件构成,后者包括在其内容纳受压液体的液体袋,直接压紧晶片的具有受压气体的分隔气室,产生压力的弹性体如弹簧,压紧晶片的压电元件,或这些选择的组合。
在本发明中,上述模拟工具用于构型顶环,从而可设定每个区域的抛光压力,预测每个区域必须设定的压力以实现目标抛光轮廓,并且将算出的压力值反馈给最终被抛光的晶片。这样,尽管随着抛光部件消耗的越来越多,抛光轮廓也随着时间改变,但是该变化可被适当校正以稳定地确保理想的抛光轮廓。
为实现上述目的,本发明执行下述控制流程:
1.在任意抛光条件下抛光晶片。
2.测量抛光晶片上的布线金属或绝缘膜的厚度分布。该测量可使用容纳于抛光装置或位于抛光装置外部的测量装置来进行,并且测量数据可在线获得,或可获得记录在其它存储器上的测量数据。在每个区域内的指示一个位置进行测量。
3.基于测量结果,计算出抛光压力条件从而创建目标抛光轮廓。该步骤在通过如下步骤进行:
3-1)设定目标抛光轮廓。例如,抛光量应当被控制的多个任意点在晶片表面上被指定,并且抛光量QT在每个指定点被设定,或抛光速率QTΔt=QT/Δt在每个点被设定。通过任何方法进行加工。此处,给出描述设定抛光量的方法。
3-2)算出实际抛光的晶片的每个区域的抛光量Qpoli。抛光量的计算需要抛光前的晶片厚度的初始数据,并且初始厚度使用容纳于抛光装置内或位于抛光装置外部的测量装置进行测量。初始厚度数据可通过步骤2描述的任何方法得到。
3-3)每个点算出的抛光量除以施加于区域的压力P,后者包括计算每单位接触压力的抛光量的点QpoliΔp=Qpoli/P。
3-4)在最接近步骤2测量的分布的点处的目标抛光量QT被开方。可选地,目标抛光量QT可根据靠近测量点附近的两个位置以线性模式被估算。
3-5)在每个点,3-1设定的目标抛光量QT与3-2算出的抛光量Qpoli之间的差值为QT-Qpoli,并且对应于该差值的抛光量除以3-3算出的单位接触压力的抛光量以算出校正抛光压力(QT-Qpoli)/QpoliΔp。
3-6)3-5算出的校正抛光压力加上抛光时设定的压力得到压力值Pinput。当一个区域包括多个测量点时,多个点算出的压力值被平均,并且平均值被设定为该区域的压力值Pinput。
3-7)3-6算出的压力值Pinput输入本发明的模拟工具,以估测3-1指定的每个点的抛光量,从而得到抛光量Qest的估计值。
3-8)抛光量Qest的估计值与目标抛光量QT之间的差值为QT-Qest。
3-9)3-7算出的抛光量Qest除以压力值Pinput以算出单位接触压力下的抛光量QestΔp(=Qest/Pinput)。
3-10)3-8计算出的差值QT-Qest除以单位接触压力下的抛光量QestΔp以得到校正压力值(QT-Qest)/QestΔp,后者接着加上压力值Pinput。区域内的各点处计算出的压力值被平均,并且得到的平均值被定义为每个区域所推荐的压力值Poutput。
3-11)3-10算出的推荐的压力值Poutput再次输入模拟工具内。如果每个点的抛光量的估计值与目标抛光量之间的差值落入预先设定的任意允许范围内,该推荐的压力值Poutput被施加(反馈)于从那时起实际上将被抛光的晶片。如果差值落在可允许的范围之外,步骤3-7~3-10被重复直至差值落入允许的范围内以得到推荐的压力值。
反馈的周期可被任意设定,并且设定周期的典型方法可涉及测量所有晶片并且将推荐的压力值反馈给随后将被抛光的晶片,或当抛光部件由于抛光轮廓的小小变化没有被怎么消耗时不进行反馈而是当抛光部件已经被消耗的很厉害时进行反馈。此外,后者方法设定的周期也可测量任意数量的晶片,并且紧邻测量前反馈的抛光条件从一旦进行测量的时间起就连续施加直至晶片被下一步测量。抛光部件被消耗的越多,周期可设定的越短。可选地,为设定抛光速率,每个抛光量可除以前述步骤3的抛光时间。
此外,不是校正受边缘形状影响的已形成以预测抛光轮廓的抛光系数,而是该边缘形状的测量引起的后表面的压力可在计算推荐的压力值后被校正,以校正边缘抛光轮廓,限制由于边缘形状引起的晶片的外周区域的抛光误差。例如,对于晶片上的氧化膜,卡环(E5)的推荐压力值可根据跌落量(roll-off)乘以压力校正系数(卡环的校正压力值=压力校正系数×卡环的推荐压力值)。此处,压力校正系数通过实际抛光晶片而得到,该晶片具有例如当改变卡环压力时预先可知的跌落量。可选地,可依靠有限元法计算压力与跌落量之间的关系以得到校正系数。
因为抛光进行时跌落量在每一分钟都彼此不同,抛光期间跌落量可通过与抛光装置有关的测量装置进行测量以校正抛光期间的压力。可选地,可通过考虑抛光时间得到的压力校正系数来校正压力而不测量抛光期间跌落量。
由于晶片上的金属膜一端的形状,可以通过与氧化膜跌落校正方法类似的方法进行校正。当推荐的压力值没有算出时,也可应用使用压力校正系数校正边缘形状的方法。
通过互换顶环,图1示出的抛光装置可用于将被抛光的各种物体。当顶环被交换以改变将被抛光的物体,必然要改变将被抛光的物体表面上的、与顶环形状一致的预先算出的一系列挤压力分布。这样,可设定单独预先算出的挤压力分布的计算结果,或当抛光装置被最初致动时可输入参数如顶环的气袋数目、有效的压力范围和类似物,并且可在抛光装置内对应于输入的参数计算将被抛光的物体表面上的多个挤压力分布并将其存储在控制单元中。
这样,图1所示的抛光装置中,可生成不仅抛光晶片为平面的而且抛光晶片为特定形状的诀窍方法。甚至当抛光前晶片的膜表面形状不是平坦的,考虑其原始形状也可生成出使得残留膜的形状在抛光后为平坦的诀窍方法。此外,抛光条件可被优化而不依赖前述工程师的经验值,相反可计算出优化条件以抛光为优选抛光轮廓。与在抛光多个测试晶片后设定抛光条件的现有技术相比,可减少劳动强度、时间和成本。
在前述的描述中,模拟程序使用了两个变量,即初始晶片和被抛光晶片的厚度以及顶环的挤压力。此外,在本发明中,校正的精确度通过充分监控不能被普雷斯顿公式包括的参数而进行修正,并且抛光表面上的温度、垫的厚度、垫内沟槽的深度、修整器的切割速率值以及顶环内的卡环的磨损量也对抛光有影响,用于完成与集成电路的进一步小型化相关的抛光引起的一致形状。
为实现前述目的,本发明的抛光装置中的状态监控器SM(图1)执行了下述操作,并且对控制单元CU供以合成的输出值,以使用模拟程序未考虑的参数进一步优化抛光。
(1)关于抛光表面上的温度,设定抛光可继续的温度范围,并且抛光表面上的温度被状态监控器SM所监控。这可通过提供如带有辐射温度的状态监控器SM来实现。作为监控的结果,当状态监控器SM检测到抛光表面上的温度超过设定温度范围的上限或下限时,控制单元CU停止抛光并且冷却抛光表面。抛光表面以如下方式被冷却。在抛光台内提供流道以在其内流通冷却介质如水。随着抛光停止信号从控制单元输出,冷却介质的流速被增加或者冷却校正本身的温度被减小。此处,当冷却介质的流速或温度根据控制单元的停止信号被控制时,冷却介质的流速和温度可根据状态监控器SM的输出(即抛光表面上的温度变化)进行控制。随后,当状态监控器SM检测到抛光表面上的温度落入温度范围内,控制单元CU重新开始抛光。这种情形下,模拟程序在抛光停止的期间可被暂停。
(2)状态监控器SM还监控抛光垫的厚度或抛光台上抛光垫内的沟槽的深度(结合图7更为详述)。每次状态监控器SM检测到抛光垫的厚度或抛光垫内的沟槽的深度减少0.1mm时,监控晶片而不是到目前为止已经被抛光的晶片就被抛光,并且状态监控器SM根据抛光结果修正模拟应用的默认值,从而优化用于下一个被抛光的晶片的顶环内的卡环和气袋的压力平衡。当状态监控器SM检测到抛光垫的厚度或沟槽的深度低于预定阈值同时晶片正在被抛光,控制单元CU停止抛光。作为响应,操作员替换抛光垫。
状态监控器SM包括激光位移量测定仪,从而抛光垫的厚度可借助激光位移量测定仪通过直接监控抛光垫的表面被监控,或借助激光位移量测定仪通过测量与抛光垫接触的部件的距离被监控,本发明不受此限制。
(3)为防止修整器的不充分修整和被移除抛光碎片的量减少,当抛光垫被调理时,状态监控器SM监控修整器的切割速率。当状态监控器SM检测到切割速率低于预定阈值时,控制单元CU停止抛光或延长修整器的调理时间,即抛光垫被切割的时间。这样,由于抛光垫总是被一致地切去,抛光可以极高精确度进行。可通过监控调理用修整器所使用的电机的转矩来检测切割速率的变化。
(4)此外,状态监控器SM可监控顶环内的卡环的磨损损失。接着,当状态监控器SM检测到卡环的磨损损失低于一定阈值时控制单元CU指示抛光装置停止抛光。
当即使考虑到普雷斯顿公式没有包括的那些参数进行抛光时也不能得到理想的结果时,供应的浆液量优选被调节。前述(1)至(4)的控制指令被存储在控制单元CU内作为程序。
图7(A)大体示出通过与状态监控器SM有关的激光位移量测定仪测量的机械修整器38、39(图1)的位置相对变化的构型,从而检测抛光垫的厚度。如图所示,杆部件1001连接于每个修整器的驱动轴93的适当位置。杆部件1001由可反射激光的材料形成,或在其表面形成有膜并且由可反射激光的材料制成。激光位移量测定仪1002通过适当的连接装置连接在这样一个位置,在该位置,激光位移量测定仪1002可接收辐照至杆部件1001并且从杆部件1001被反射的激光。这样,当抛光垫的厚度随着调理的进行被减小时,激光位移量测定仪1002对应于杆部件1001与激光位移量测定仪1002之间的距离变化,即抛光垫厚度的减小,而输出信号。
图7(B)示出调理时间与抛光垫的厚度减小之间的关系,通过利用激光位移量测定仪1003的输出值推知。从该曲线图中可以了解,抛光垫的厚度随着调理的进行大致直线减小。通过利用这种关系,可得出抛光垫厚度的临时变化率,即修整器的切割速率。
当上述抛光装置实际上用于抛光晶片时,可得到下面的结果。作为参考,使用IC1000/Suba400(K-gr)的抛光垫用于抛光,以及使用SS-25的浆液,并且抛光台的转速设定为70/71rpm,顶环的转速设定为71rpm,并且气袋压力的默认值设定为250hPa,修整器的压力设定为200N。
在前述条件下,以下述步骤进行抛光。首先,在抛光垫被置换后,对监控晶片进行抛光。顶环内气袋的压力平衡根据抛光的结果进行最优化以抛光晶片。接下来,在抛光垫被切除0.1mm后,监控晶片被抛光。顶环内的气袋的压力平衡根据抛光晶片的结果被优化。在抛光垫再次被切除0.1mm后,监控晶片被抛光。气袋内的压力平衡根据抛光晶片的结果被优化。随后,该步骤在所需的时间段内重复。
当机械修整器38、39被这样的装置如滚珠丝杠所进给时,可测量驱动电机所需的用于进给的多个冲量(pulse),以计算机械修整器被进给的量。
图8(A)为描述当实施本发明和不实施本发明时残留膜状态的示意图。晶片的表面不是平坦的而是部分比较粗糙并且具有梯度。晶片内将被抛光的膜的厚度的最大值与最小值之间的差值被称为“厚度差值”。当晶片的抛光表面为平坦的时,厚度差值为零。此外,抛光后与抛光前的“厚度差值”之间的差值被称为“残留膜差值”。
图8(A)示出当实施本发明和不实施本发明时的残留膜差值Δ,抛光垫内的沟槽深度分别为0.4mm,0.3mm以及0.2mm,其中顶环内气袋E1-E5的压力如所示被设定。特别地,残留膜差值Δ为:
3.3nm,其中沟槽深度为0.4mm并且未实施本发明;
-43.5nm,其中沟槽深度为0.4mm并且实施本发明;
7.2nm,其中沟槽深度为0.3mm并且未实施本发明;
-29.4nm,其中沟槽深度为0.3mm并且实施本发明;
68.6nm,其中沟槽深度为0.2mm并且未实施本发明;
-65.3nm,其中沟槽深度为0.2mm并且实施本发明。
图8(B)为表示上述结果的示意图。负的残留膜差值意味着抛光后的“厚度差值”小于抛光前的“厚度差值”,因此厚度的差值与抛光前相比被修正,即平整度提高。因此可理解,通过实施本发明,CMP后的厚度差值极大地被减小。
接下来,图9示出当抛光垫没有完全被消耗时的厚度和抛光速率,其中●代表当实施本发明时的值,并且◆代表未实施本发明时的值。图9(A)为示出在CMP之前距300-mm的晶片中心的径向距离与厚度之间关系的曲线图;并且图9(B)示出图9(A)中的在CMP之后距晶片中心的径向距离与厚度之间关系的曲线图。接着,当实施和不实施本发明时从CMP之前和CMP之后的厚度推知抛光速率,得到图9(C)所示的曲线图。当在曲线图中描绘抛光速率(用○表示)的模拟结果时,可以发现,实施本发明的抛光速率与模拟结果高度一致。
图10示出当抛光垫被消耗0.1mm时的厚度和抛光速率,其中●代表当实施本发明时的值,并且◆代表未实施本发明时的值。图10(A)为示出在CMP之前距300-mm的晶片中心的径向距离与厚度之间关系的曲线图;并且图10(B)示出图10(A)中的在CMP之后距晶片中心的径向距离与厚度之间关系的曲线图。接着,当实施和不实施本发明时从CMP之前和CMP之后的厚度推知抛光速率,得到图10(C)所示的曲线图。当在曲线图中描绘抛光速率(用○表示)的模拟结果时,可以认识到,当抛光垫被消耗更多即抛光垫具有更浅的沟槽时,抛光速率在中心尽管轻微但仍被减小了,但是抛光速率在中心仍然与模拟结果相当一致,同时在外周区域,实际的数值与模拟结果有轻微差异。
图11示出当抛光垫被消耗0.2mm时的厚度和抛光速率,其中●代表当实施本发明时的值,并且◆代表未实施本发明时的值。与图9和图10类似,图11(A)为示出在CMP之前距300-mm的晶片中心的径向距离与厚度之间关系的曲线图;并且图11(B)示出图11(A)中的在CMP之后距晶片中心的径向距离与厚度之间关系的曲线图。接着,当实施和不实施本发明时从CMP之前和CMP之后的厚度推知抛光速率,得到图11(C)所示的曲线图。当在曲线图中描绘抛光速率(用○表示)的模拟结果时,可以认识到,在中心处的抛光速率被极大地减小了,并且在外周区域与模拟结果有极大差异。模拟应用的默认值应当被修正。
工业实用性
从前述的描述可知,因为本发明基于普雷斯顿基本公式优化了加工压力,并且考虑了甚至普雷斯顿公式都没有包括的那些参数来进行抛光,可以实现抛光晶片的形状的一致化,这在与集成电路的日益小型化同步中是必需的。还可能通过正确管理耗材的状态来延长耗材的寿命,以减少运行成本。

Claims (10)

1、一种在控制单元的控制下对将被抛光物体进行抛光的抛光装置,包括:
顶环,其具有至少两个压紧部分,并且能够从每个所述压紧部分对将被抛光的物体施加任意压力;
用于测量将被抛光的物体的抛光量的测量装置;以及
监控装置,其用于监控表示抛光装置的操作状态的各项参数;
其特征在于,所述控制单元根据一个模拟程序迫使抛光装置抛光将被抛光的物体,所述模拟程序基于所述测量装置的输出和所述监控装置的输出,对所述顶环设定优化将被抛光的物体的抛光轮廓所需的加工压力。
2、如权利要求1所述的抛光装置,其特征在于:
所述至少两个压紧部分包括多个同心气袋以及围绕所述气袋的卡环,并且
所述卡环的压力被设置为等于所述气袋施加的压力的总和平均值的20%或更高。
3、如权利要求1或2所述的抛光装置,还包括用于抛光将被抛光的物体的抛光垫,以使得所述抛光垫被所述顶环压紧,其中当所述监控装置检测到所述抛光垫被切除预定深度时,所述控制单元指示所述抛光装置抛光一个监控晶片而不抛光所述将被抛光的物体。
4、如权利要求2所述的抛光装置,其特征在于:当所述监控装置的输出指示所述卡环的磨损损失落入阈值以下,所述控制单元指示所述抛光装置停止抛光。
5、如权利要求1或2所述的抛光装置,其特征在于:
当所述监控装置的输出指示抛光表面上的温度超过预设温度时,所述控制单元停止使用模拟程序或指示所述抛光装置停止抛光,并且
当所述监控装置的输出指示表面温度落入设定值以下时,控制单元指示抛光装置重新继续抛光。
6、如权利要求1或2所述的抛光装置,其特征在于,还包括抛光垫,用于在所述抛光垫被顶环压紧贴着将被抛光的物体的状态下抛光将被抛光的物体,所述抛光装置的特征在于:
当所述监控装置的输出指示所述抛光垫的厚度落入阈值以下时,所述控制单元停止使用模拟程序或指示所述抛光装置停止抛光。
7、如权利要求6所述的抛光装置,其特征在于:所述监控装置包括激光位移量测定仪,用于测量所述抛光垫的厚度。
8、如权利要求1或2所述的抛光装置,还包括抛光垫,用于在所述抛光垫被顶环压紧贴着将被抛光的物体的状态下抛光将被抛光的物体,以及包括调理所述抛光垫的修整器,所述抛光装置的特征在于:
当所述监控装置的输出指示所述修整器的切割速率落入阈值以下时,所述控制单元停止使用模拟程序,或指示所述抛光装置停止抛光。
9、如权利要求8所述的抛光装置,其特征在于:所述切割速率使用驱动所述修整器用的电机的转矩进行监控。
10、如权利要求1、2、4中任意一项所述的抛光装置,其特征在于:所述控制单元可根据抛光状态调节所供应的浆液量。
CNB2006800028481A 2005-01-21 2006-01-16 基板抛光的方法和装置 Expired - Fee Related CN100548577C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005014013 2005-01-21
JP014013/2005 2005-01-21

Publications (2)

Publication Number Publication Date
CN101107097A CN101107097A (zh) 2008-01-16
CN100548577C true CN100548577C (zh) 2009-10-14

Family

ID=36425254

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006800028481A Expired - Fee Related CN100548577C (zh) 2005-01-21 2006-01-16 基板抛光的方法和装置

Country Status (5)

Country Link
US (1) US20080146119A1 (zh)
EP (1) EP1853406A1 (zh)
JP (1) JP2008528300A (zh)
CN (1) CN100548577C (zh)
WO (1) WO2006077994A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108136559A (zh) * 2015-08-11 2018-06-08 费斯托工具有限责任公司 磨削碟和装备有其的磨削机器

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022452A2 (en) * 2004-08-27 2006-03-02 Ebara Corporation Polishing apparatus and polishing method
US8398463B2 (en) * 2005-03-07 2013-03-19 Rajeev Bajaj Pad conditioner and method
DE102007035833B3 (de) * 2007-07-31 2009-03-12 Advanced Micro Devices, Inc., Sunnyvale Fortgeschrittene automatische Abscheideprofilzielsteuerung und Kontrolle durch Anwendung von fortgeschrittener Polierendpunktsystemrückkopplung
JP2009212459A (ja) * 2008-03-06 2009-09-17 Sharp Corp Cmp装置及びウェハーの洗浄方法
US8337279B2 (en) * 2008-06-23 2012-12-25 Applied Materials, Inc. Closed-loop control for effective pad conditioning
TWI381904B (zh) * 2009-12-03 2013-01-11 Nat Univ Chung Cheng The method of detecting the grinding characteristics and service life of the polishing pad
US20110195636A1 (en) * 2010-02-11 2011-08-11 United Microelectronics Corporation Method for Controlling Polishing Wafer
KR101383600B1 (ko) * 2010-03-11 2014-04-11 주식회사 엘지화학 유리판 연마 상황을 모니터링하는 장치 및 방법
US20120270477A1 (en) * 2011-04-22 2012-10-25 Nangoy Roy C Measurement of pad thickness and control of conditioning
CN102211311B (zh) * 2011-05-30 2013-03-27 清华大学 化学机械抛光设备
US20130017762A1 (en) * 2011-07-15 2013-01-17 Infineon Technologies Ag Method and Apparatus for Determining a Measure of a Thickness of a Polishing Pad of a Polishing Machine
TWI565559B (zh) 2011-07-19 2017-01-11 荏原製作所股份有限公司 研磨裝置及方法
JP5791987B2 (ja) * 2011-07-19 2015-10-07 株式会社荏原製作所 研磨装置および方法
US9149906B2 (en) * 2011-09-07 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus for CMP pad conditioning
US10226853B2 (en) 2013-01-18 2019-03-12 Applied Materials, Inc. Methods and apparatus for conditioning of chemical mechanical polishing pads
US9855637B2 (en) * 2014-04-10 2018-01-02 Apple Inc. Thermographic characterization for surface finishing process development
KR101428800B1 (ko) 2014-06-26 2014-08-08 신광선 웨이퍼 연마장치용 헤드
JP6399873B2 (ja) * 2014-09-17 2018-10-03 株式会社荏原製作所 膜厚信号処理装置、研磨装置、膜厚信号処理方法、及び、研磨方法
JP6307428B2 (ja) * 2014-12-26 2018-04-04 株式会社荏原製作所 研磨装置およびその制御方法
JP6444785B2 (ja) * 2015-03-19 2018-12-26 株式会社荏原製作所 研磨装置およびその制御方法ならびにドレッシング条件出力方法
CN105397609B (zh) * 2015-11-03 2017-06-27 大连理工大学 一种光学零件高精度平面的修形加工方法
JP6546845B2 (ja) * 2015-12-18 2019-07-17 株式会社荏原製作所 研磨装置、制御方法及びプログラム
CN105436617B (zh) * 2016-01-13 2017-05-31 中国工程物理研究院核物理与化学研究所 同位素辐照盒无屑切割机
US9865477B2 (en) * 2016-02-24 2018-01-09 Taiwan Semiconductor Manufacturing Co., Ltd. Backside polisher with dry frontside design and method using the same
CN106695487B (zh) * 2016-12-25 2018-08-03 重庆润跃机械有限公司 齿轮去毛刺装置
JP6770910B2 (ja) * 2017-02-16 2020-10-21 株式会社東京精密 Cmp装置
JP2018164052A (ja) * 2017-03-27 2018-10-18 株式会社東京精密 ウェハ加工システム
JP7201322B2 (ja) * 2018-01-05 2023-01-10 株式会社荏原製作所 フェースアップ式の研磨装置のための研磨ヘッド、当該研磨ヘッドを備える研磨装置および当該研磨装置を用いた研磨方法
JP7117171B2 (ja) * 2018-06-20 2022-08-12 株式会社荏原製作所 研磨装置、研磨方法、及び研磨制御プログラム
JP7158223B2 (ja) * 2018-09-20 2022-10-21 株式会社荏原製作所 研磨ヘッドおよび研磨装置
CN109585344A (zh) * 2018-12-04 2019-04-05 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 晶圆去除量一致性控制方法及装置
CN109500724A (zh) * 2019-01-11 2019-03-22 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 化学机械抛光工作台及化学机械抛光设备
JP2021091033A (ja) 2019-12-10 2021-06-17 キオクシア株式会社 研磨装置、研磨ヘッド、研磨方法、及び半導体装置の製造方法
CN112975749A (zh) * 2019-12-17 2021-06-18 大量科技股份有限公司 抛光垫即时整修方法
JP7365282B2 (ja) * 2020-03-26 2023-10-19 株式会社荏原製作所 研磨ヘッドシステムおよび研磨装置
CN112247831B (zh) * 2020-10-23 2022-02-08 德阳精研科技(深圳)有限公司 一种自动加工研磨垫工艺方法
CN115302375B (zh) * 2022-06-29 2024-03-22 郑州磨料磨具磨削研究所有限公司 一种金刚石晶圆片的高效高精复合加工装备及方法
CN115319637B (zh) * 2022-10-17 2023-01-13 华海清科股份有限公司 一种抛光方法和化学机械抛光设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69830121T2 (de) * 1997-10-31 2006-02-23 Ebara Corp. Polierschlamm Spendevorrichtung
US6358128B1 (en) * 1999-03-05 2002-03-19 Ebara Corporation Polishing apparatus
US6325696B1 (en) * 1999-09-13 2001-12-04 International Business Machines Corporation Piezo-actuated CMP carrier
JP2001121394A (ja) * 1999-10-25 2001-05-08 Tdk Corp 磁気ヘッドの研磨装置および方法
US6663466B2 (en) * 1999-11-17 2003-12-16 Applied Materials, Inc. Carrier head with a substrate detector
US6626736B2 (en) * 2000-06-30 2003-09-30 Ebara Corporation Polishing apparatus
JP3849918B2 (ja) * 2000-12-04 2006-11-22 株式会社東京精密 ウェーハ研磨装置
JP2003151933A (ja) * 2001-11-19 2003-05-23 Tokyo Seimitsu Co Ltd ウェーハ研磨装置
US6857947B2 (en) * 2002-01-17 2005-02-22 Asm Nutool, Inc Advanced chemical mechanical polishing system with smart endpoint detection
US20030211811A1 (en) * 2002-05-10 2003-11-13 Berman Michael J. Adaptable multi zone carrier
WO2004087371A1 (ja) * 2003-03-31 2004-10-14 Fujitsu Limited 加工方法及び装置
US7544113B1 (en) * 2003-05-29 2009-06-09 Tbw Industries, Inc. Apparatus for controlling the forces applied to a vacuum-assisted pad conditioning system
JP2005203729A (ja) * 2003-12-19 2005-07-28 Ebara Corp 基板研磨装置
US7150673B2 (en) * 2004-07-09 2006-12-19 Ebara Corporation Method for estimating polishing profile or polishing amount, polishing method and polishing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108136559A (zh) * 2015-08-11 2018-06-08 费斯托工具有限责任公司 磨削碟和装备有其的磨削机器

Also Published As

Publication number Publication date
US20080146119A1 (en) 2008-06-19
WO2006077994A1 (en) 2006-07-27
CN101107097A (zh) 2008-01-16
EP1853406A1 (en) 2007-11-14
JP2008528300A (ja) 2008-07-31

Similar Documents

Publication Publication Date Title
CN100548577C (zh) 基板抛光的方法和装置
CN110948374A (zh) 研磨装置、研磨方法以及机器学习装置
JP7182653B2 (ja) 研磨装置、及び研磨方法
TWI775569B (zh) 研磨裝置、研磨方法、以及電腦程式製品
KR101312475B1 (ko) 연마방법, 연마장치 및 연마장치제어용 프로그램을 기록한 컴퓨터로 판독할 수 있는 기록매체
KR101754855B1 (ko) 유지 링 두께 및 수명의 실시간 모니터링
CN1329960C (zh) 化学机械研磨装置以及研磨方法
US20110064971A1 (en) Glass substrate manufacturing method, glass substrate polishing method, glass substrate polishing apparatus and glass substrate
US7189140B1 (en) Methods using eddy current for calibrating a CMP tool
CN203282328U (zh) 抛光装置以及基板处理装置
CN1813340A (zh) 抛光装置和抛光方法
CN101722469A (zh) 对晶圆进行化学机械研磨工艺的方法
US20160074988A1 (en) Processing module, processing apparatus, and processing method
KR20220123581A (ko) 연마 장치 및 연마 방법
CN105437076A (zh) 晶片轮廓实时控制方法和系统
JP2009033105A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091014

Termination date: 20130116