CN100521278C - 以CuxO为存储介质的RRAM的制备方法 - Google Patents
以CuxO为存储介质的RRAM的制备方法 Download PDFInfo
- Publication number
- CN100521278C CN100521278C CNB200710039648XA CN200710039648A CN100521278C CN 100521278 C CN100521278 C CN 100521278C CN B200710039648X A CNB200710039648X A CN B200710039648XA CN 200710039648 A CN200710039648 A CN 200710039648A CN 100521278 C CN100521278 C CN 100521278C
- Authority
- CN
- China
- Prior art keywords
- solution
- preparation
- storage medium
- acid
- rram
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
本发明属于微电子技术领域,具体为一种以CuxO作为存储介质的RRAM避免forming现象的制备方法,本发明方法是在按常规工艺制备以CuxO作为存储介质的RRAM过程中,在存储介质CuxO薄膜完成以后,将其与含有羟胺成分的稳定溶液接触,处理10~30分钟,将薄膜中的CuO成分还原成Cu2O,从而可以在器件使用前不再需要用一个高于正常操作电压的电压激活过程,即避免了forming现象。
Description
发明领域
本发明属微电子技术领域,具体涉及一种采用CuxO作为存储介质的RRAM的避免forming现象的方法。
发明背景
存储器在半导体市场中占有重要的地位,由于便携式电子设备的不断普及,不挥发存储器在整个存储器市场中的份额也越来越大,其中90%以上的份额被FLASH占据。但是由于存储电荷的要求,FLASH的浮栅不能随技术代发展无限制减薄,有报道预测FLASH技术的极限在32nm左右,这就迫使人们寻找性能更为优越的下一代不挥发存储器。最近电阻随机可存取存储器件(RRAM,resistive random access memory)因为其高密度、低成本、可突破技术代发展限制的特点引起高度关注,所使用的材料有相变材料、掺杂的SrZrO3、铁电材料PbZrTiO3、铁磁材料Pr1-xCaxMnO3、二元金属氧化物材料、有机材料等。其中,CuxO(1<x≤2)作为两元金属氧化物中的一种,其存储特性已经为实验所证明。
采用一般生长工艺获得的CuxO薄膜中一般都会含有CuO成分,这使得器件电阻第一次发生转变的时候(从高阻到低阻),需要采用一个高于存储器正常操作电压的电压进行激活,然后才可以进入正常的存储工作状态,这过程称为forming现象。
发明内容
本发明的目的在于提出一种以CuxO作为存储介质的RRAM可以避免forming现象的制备方法。
本发明方法的步骤是,按双大马士革工艺进行RRAM的铜下电极制备,然后等离子氧化形成存储介质CuxO,在存储介质CuxO薄膜制备完毕后,将其与可还原CuO的含羟胺成分的稳定溶液接触,例如浸没在溶液中或将溶液喷涂在薄膜表面,处理时间10~30分钟,将薄膜中含有的成分CuO还原为Cu2O,或者说将Cu2 +还原为Cu+,然后继续按照双大马士革工艺进行RRAM的上电极制备。
这里所说的溶液是含有羟胺成份的溶液,它可以选择性的还原CuO为Cu2O,而不对Cu2O产生影响,其反应式为:
4CuO+2NH2OH=N2O↑+2Cu2O+3H2O
上述溶液中羟胺以游离碱形式存在于溶液中。可用任何常规的方法制备羟胺水溶液,例如可将碱(如氢氧化钠或者氢氧化钾水)溶液加入羟胺盐(如硫酸羟胺或者盐酸羟胺),得到中性或者碱性的羟胺溶液。
羟胺溶液由于其固有的不稳定性,本发明在羟胺溶液中加入稳定剂使之稳定。
本发明中稳定剂可以是化合物环己二胺四乙酸,或硫胺的盐酸盐,或其混合物[1]。环己二胺四乙酸和硫胺的盐酸盐都可以有效地稳定羟胺水溶液,结合使用是极好的羟胺稳定剂。所述化合物环己二胺四乙酸或者化合物硫胺的盐酸盐的用量是占稳定溶液总重量的1~1000ppm。
本发明中羟胺溶液也可以采用其他稳定剂,稳定剂可以选自二亚乙基三胺五乙酸、三亚乙基四胺六乙酸、亚乙基双(氧亚乙基次氨基)四乙酸、1,4,8,11-四氮杂环十四烷-1,4,8,11-四乙酸、4,5-二羟基-1,3-苯二磺酸、4,7-二羟基-1,10-菲咯啉、2-疏基烟酸、胱氨酸、2,3-二羟基苯甲酸或硫代水杨酸,或者上述化合物的任何混合物[2],可以选定以上至少一种稳定剂加入羟胺的水溶液,得到稳定的羟胺溶液。这种稳定剂在该溶液中的加入量该溶液为总重量的0.005%.~0.1%.。
本发明中羟胺溶液也可以用工业界常用的湿法去除刻蚀后残留物的溶液EKC265:链烷醇胺、苯磷二酚和羟胺的水溶液[3],也可以采用其他湿法去除刻蚀后残留物的溶液,如:30%重量比的羟胺,25%重量比的2-氨基-2-乙氧基乙醇,5%重量比1,2-二氢苯,40%重量比的水[4]。也可以采用双大马士革铜互连工艺中湿法去除刻蚀后残留物的溶液,其配方为:维生素B化合物,有机溶剂和羟胺的水溶液[5]。
本发明中CuxO进行处理的方法可与RRAM工艺集成,存储介质CuxO位于通孔正下部的情况可与双大马士革工艺集成,CuxO位于通孔上方的情况可与大马士革工艺集成。CuxO采用等离子氧化技术制备。即在CuxO存储介质制备完成后,将晶圆与还原溶液接触,例如将晶圆浸没在溶液中或将溶液喷涂在晶圆表面;还原过程结束后,再进一步进行以下的RRAM制备步骤。
由本发明制备的RRAM器件,由于CuO还原为Cu.2O,经验证不需要采用高于存储器正常操作电压的电压激活过程,即可进入正常的存储器工作状态,即避免了forming现象。
附图说明
图1是本发明中的基于CuxO存储介质的RRAM器件存储单元结构,作为存储介质的CuxO位于通孔正下部。
图2也是本发明中的基于CuxO存储介质的RRAM器件存储单元结构,作为存储介质的CuxO位于通孔上方。
图中标号:191a为下介质层,191b为绝缘介质层,191c为另一绝缘介质层,199为扩散阻挡层,193+为容纳上层铜引线的沟槽,193-为容纳下层铜引线的沟槽,197为通孔,304为CuxO存储介质,195a为盖帽层,195b为刻蚀终止层,198为下栓塞。
具体实施方式
图1和图2是根据本发明的一个实施例的剖面图。图1是CuxO存储介质304在通孔197的正下方,图2是CuxO存储介质304在通孔197的正上方。其中下介质层191a在半导体衬底(以下简称衬底)上形成,下栓塞198是通过在191a上构图然后刻蚀直至贯穿191a、暴露出衬底的预定区域,下介质层191a可以是掺杂的氧化硅层,例如掺杂磷或硼的氧化硅(BPSG)或是掺磷的氧化硅(PSG)。
下栓塞198可以是导电材料,例如W,重掺杂的多晶硅,含N的导电材料,如TiN。
在下层铜引线上方的平面上自下而上依次覆盖了盖帽层195a、绝缘介质层191b、刻蚀终止层195b、绝缘介质层191c。通孔197贯通盖帽层195a、绝缘介质层191b、刻蚀终止层195b,容纳上层铜引线的沟槽193+贯通绝缘介质层191c。
在通孔197的正下方或正上方是CuxO存储介质304。
在通孔197和沟槽193+的侧壁上覆盖了扩散阻挡层199。
CuxO存储介质304经过本发明中含有羟胺的溶液处理后,表面的CuO层被还原为Cu2O,从而使得器件不需要forming过程。
扩散阻挡层199是对Cu向介质层的扩散有阻挡作用的导电材料,可以是TaN、Ta/TaN复合层或是Ti/TiN复合层。
接下来,将解释本发明的某些实施例中具体的工艺过程。
参考图1,在衬底上形成下介质层191a,191a可以是掺杂的氧化硅层,例如掺杂磷或硼的氧化硅(BPSG)或是掺磷的氧化硅(PSG),可以采用化学气相沉积并配合表面平坦化的方法制备。在形成下介质层191a之前,可以在衬底的预定区域形成杂质扩散区。在下介质层的预定区域构图,以形成可以暴露出衬底预定区域的通孔的图形,采用常规的各向异性刻蚀工艺贯通下介质层形成通孔,暴露出衬底的预定区域。然后在通孔中形成下栓塞198。在绝缘介质层191a的预定区域构图,形成容纳下层铜引线的沟槽的图形,然后采用刻蚀工艺形成沟槽193-。
接下来在沟槽193-侧壁上沉积扩散阻挡层,扩散阻挡层可以是TaN、Ta/TaN复合层或是Ti/TiN复合层,接下来在沟槽中沉积Cu形成下层铜引线。首先采用物理溅射沉积的方法在扩散阻挡层上沉积一层铜薄作为籽晶,然后采用电化学沉积(ECP)的方法在沟槽中填充铜,然后退火使铜的晶粒充分长大。然后采用化学机械抛光的方法磨除表面上多余的铜和阻挡层材料,形成下层铜引线。然后在表面上沉积盖帽层195a,在盖帽层195a上方依次形成绝缘介质层191b、刻蚀终止层195b、绝缘介质层191c,然后贯通刻蚀形成通孔197的图形,接下来再次在表面预定区域构图,形成沟槽193+的图形,贯通刻蚀形成沟槽193+。贯通采用常规的各向异性干法刻蚀。
接下来清洗去除刻蚀残余物,然后用干法刻蚀的方法轻柔地打开盖帽层195a,暴露出下层铜引线。
本发明的进一步实施,用等离子氧化技术形成CuxO存储介质304。采用氧气,或是采用氧气与其它气体的混合气体,例如氧气与氩气、或氮气混合,或是采用其它含氧元素的气体作为气源,以一定流速流入等离子产生设备的样品室,产生O等离子体,O等离子体与暴露出的下层铜引线中的铜反应形成CuxO存储介质。
本发明的进一步实施,用含有羟胺成分的稳定溶液(如含有羟胺和以环己二胺四乙酸或者硫胺的盐酸盐或者其混合物为稳定剂溶液)处理CuxO存储介质304表面,CuxO存储介质304与可还原CuO的上述溶液接触,例如浸没在溶液中或将溶液喷涂在薄膜表面,处理10-30分钟将CuO还原为Cu2O,或者说将Cu2 +还原为Cu+。
该稳定溶液呈中性或者碱性,化合物的用量以羟胺溶液的重量计是1~1000ppm。因为高温下羟胺易分解,故通常在室温下使用。
本发明中该羟胺稳定溶液也可以是羟胺水溶液和以下稳定剂的混合物,稳定剂可以选自:二亚乙基三胺五乙酸、三亚乙基四胺六乙酸、亚乙基双(氧亚乙基次氨基)四乙酸、1,4,8,11-四氮杂环十四烷-1,4,8,11-四乙酸、4,5-二羟基-1,3-苯二磺酸、4,7-二羟基-1,10-菲咯啉、2-疏基烟酸、胱氨酸、2,3-二羟基苯甲酸或硫代水杨酸,或者上述化合物的任何混合物。其中所述稳定剂的加入量为该溶液的总重量的0.005%-0.1%。
本发明中该羟胺稳定溶液也可以采用工业界常用的湿法去除刻蚀后残留物的EKC265溶液:链烷醇胺、苯磷二酚和羟胺的水溶液。
本发明中该羟胺稳定溶液也可以采用其他湿法去除刻蚀后残留物的配方,如:30%重量比的羟胺,25%重量比的2-氨基-2-乙氧基乙醇,5%重量比1,2-二氢苯,40%重量比的水。也可以采用双大马士革铜互连工艺中湿法去除刻蚀后残留物的配方:维生素B化合物、有机溶剂和羟胺的水溶液。
应当注意,本发明中稳定的含有羟胺成分溶液的具体配方可以变化,不是对本发明的限制。
本发明的进一步实施,采用物理溅射方法在沟槽193+和通孔197的侧壁上形成扩散阻挡层199和籽晶铜,然后采用电化学沉积方法将铜一次性填入通孔和沟槽形成铜栓塞和上层铜引线。扩散阻挡层199与CuxO存储介质304的顶表面接触。扩散阻挡层199是对Cu向介质层的扩散有阻挡作用的导电材料,可以是TaN、Ta/TaN复合层或是Ti/TiN复合层.
本发明的进一步实施,采用化学机械抛光的方法磨除表面多余的铜、阻挡层材料。然后在表面形成盖帽层材料形成图1所示的存储器。
图2是CuxO存储介质304在通孔197的正上方的情况。具体的工艺步骤和图1的类似。只是图1中形成通孔197和沟槽193+是采用双大马士革工艺,而图2中形成通孔197和沟槽193+是采用单大马士革工艺,即在贯通刻蚀形成通孔197的图形后,直接淀积扩散阻挡层199和Cu,化学机械抛光磨除表面多余的铜后,再用等离子氧化技术形成CuxO存储介质304,再将CuxO存储介质304与可还原CuO的羟胺溶液接触,将CuO还原为Cu2O。然后再形成刻蚀终止层195b、绝缘介质层191c,刻蚀形成沟槽193+的图形,再用物理溅射方法在沟槽193+形成扩散阻挡层199和籽晶铜,然后电化学沉积方法将铜填入沟槽193+。采用化学机械抛光的方法磨除表面多余的铜、阻挡层材料,然后在表面形成盖帽层材料形成图2所示的存储器。
经验证,由本发明方法制备的RRAM,完全避免了forming现象。
参考文献
[1]C·H·常;A·E·范蒂尔;Z·钱,稳定的羟胺溶液,中国专利,CN 98804564.8
[2]R·J·威廉斯,稳定化的羟胺溶液,中国专利,CN 02819687.2
[3]US patent 07049275;
Ind.Eng.Chem.Res.2003,42,6096-6103
[4]Lee;Wai Mun,EKC Technology,Inc,Cleaning compositions for removing etching residueand method of using,US patent 6000411
[5]EKC Technology,Inc,Post etch cleaning composition and process for dual damascenesystem,US patent 6417112。
Claims (7)
1、一种以CuxO为存储介质的RRAM的制备方法,其特征在于按双大马士革工艺进行RRAM的铜下电极的制备,然后等离子氧化形成存储介质CuxO;在存储介质CuxO薄膜制备完毕后,将该CuxO薄膜与可还原CuO的含羟胺成分的稳定溶液接触,处理10~30分钟,将薄膜中含有的CuO还原为Cu2O;然后继续按双大马士革工艺进行RRAM的上电极的制备。
2、根据权利要求1所述的制备方法,其特征在于所述稳定溶液中所用的稳定剂为化合物环己二胺四乙酸或硫胺的盐酸盐之一种,所述化合物环己二胺四乙酸或者化合物硫胺的盐酸盐的用量是占稳定溶液总重量的1~1000ppm。
3、根据权利要求2所述的制备方法,其特征在于所述环己二胺四乙酸是反-1,2-环己二胺-N,N,N′N′-四乙酸。
4、根据权利要求1所述的制备方法,其特征在于所述稳定溶液中所用的稳定剂为二亚乙基三胺五乙酸、三亚乙基四胺六乙酸、亚乙基双(氧亚乙基次氨基)四乙酸、1,4,8,11-四氮杂环十四烷-1,4,8,11-四乙酸、4,5-二羟基-1,3-苯二磺酸、4,7-二羟基-1,10-菲咯啉、2-疏基烟酸、胱氨酸、2,3-二羟基苯甲酸或硫代水杨酸之一种,稳定剂加入量为该溶液总重量的0.005%~0.1%。
5、根据权利要求1所述的制备方法,其特征在于所述稳定溶液采用工业界常用的湿法去除刻蚀后残留物的EKC265溶液:链烷醇胺、苯磷二酚和羟胺的水溶液。
6、根据权利要求1所述的制备方法,其特征在于所述稳定溶液采用湿法去除刻蚀后残留物的溶液,按重量百分比的配比为:30%的羟胺,25%的2-氨基-2-乙氧基乙醇,5%的1,2-二氢苯,40%的水。
7、根据权利要求1所述的制备方法,其特征在于所述稳定溶液采用双大马士革铜互连工艺中湿法去除刻蚀后残留物的溶液:维生素B化合物、有机溶剂和羟胺的水溶液。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB200710039648XA CN100521278C (zh) | 2007-04-19 | 2007-04-19 | 以CuxO为存储介质的RRAM的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB200710039648XA CN100521278C (zh) | 2007-04-19 | 2007-04-19 | 以CuxO为存储介质的RRAM的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101051670A CN101051670A (zh) | 2007-10-10 |
CN100521278C true CN100521278C (zh) | 2009-07-29 |
Family
ID=38782956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB200710039648XA Expired - Fee Related CN100521278C (zh) | 2007-04-19 | 2007-04-19 | 以CuxO为存储介质的RRAM的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100521278C (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11329226B2 (en) | 2019-06-21 | 2022-05-10 | Winbond Electronics Corp. | Memory devices including step shape electrode and methods for forming the same |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101159310B (zh) * | 2007-11-08 | 2010-09-29 | 复旦大学 | 一种CuxO电阻存储器的湿法氧化制备方法 |
US7768812B2 (en) | 2008-01-15 | 2010-08-03 | Micron Technology, Inc. | Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices |
CN101232076B (zh) * | 2008-01-17 | 2010-11-17 | 复旦大学 | 一种消除CuxO电阻存储器形成电压的方法 |
CN101231970B (zh) * | 2008-01-17 | 2012-01-18 | 复旦大学 | 一种CuxO电阻存储器与二极管集成的制造方法 |
US8034655B2 (en) | 2008-04-08 | 2011-10-11 | Micron Technology, Inc. | Non-volatile resistive oxide memory cells, non-volatile resistive oxide memory arrays, and methods of forming non-volatile resistive oxide memory cells and memory arrays |
US8211743B2 (en) | 2008-05-02 | 2012-07-03 | Micron Technology, Inc. | Methods of forming non-volatile memory cells having multi-resistive state material between conductive electrodes |
US8134137B2 (en) | 2008-06-18 | 2012-03-13 | Micron Technology, Inc. | Memory device constructions, memory cell forming methods, and semiconductor construction forming methods |
US9343665B2 (en) | 2008-07-02 | 2016-05-17 | Micron Technology, Inc. | Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array |
CN101345288B (zh) * | 2008-09-04 | 2010-12-15 | 复旦大学 | CuxO电阻随机存储器的制备方法 |
US8411477B2 (en) | 2010-04-22 | 2013-04-02 | Micron Technology, Inc. | Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells |
US8427859B2 (en) | 2010-04-22 | 2013-04-23 | Micron Technology, Inc. | Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells |
US8289763B2 (en) | 2010-06-07 | 2012-10-16 | Micron Technology, Inc. | Memory arrays |
CN102347441A (zh) * | 2010-07-30 | 2012-02-08 | 中芯国际集成电路制造(上海)有限公司 | 电阻存储器的形成方法 |
US8351242B2 (en) | 2010-09-29 | 2013-01-08 | Micron Technology, Inc. | Electronic devices, memory devices and memory arrays |
US8759809B2 (en) | 2010-10-21 | 2014-06-24 | Micron Technology, Inc. | Integrated circuitry comprising nonvolatile memory cells having platelike electrode and ion conductive material layer |
US8526213B2 (en) | 2010-11-01 | 2013-09-03 | Micron Technology, Inc. | Memory cells, methods of programming memory cells, and methods of forming memory cells |
US8796661B2 (en) | 2010-11-01 | 2014-08-05 | Micron Technology, Inc. | Nonvolatile memory cells and methods of forming nonvolatile memory cell |
US9454997B2 (en) | 2010-12-02 | 2016-09-27 | Micron Technology, Inc. | Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells |
US8431458B2 (en) | 2010-12-27 | 2013-04-30 | Micron Technology, Inc. | Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells |
US8791447B2 (en) | 2011-01-20 | 2014-07-29 | Micron Technology, Inc. | Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells |
US8488365B2 (en) | 2011-02-24 | 2013-07-16 | Micron Technology, Inc. | Memory cells |
US8537592B2 (en) | 2011-04-15 | 2013-09-17 | Micron Technology, Inc. | Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells |
CN102593353B (zh) * | 2012-02-27 | 2017-08-22 | 上海集成电路研发中心有限公司 | 一种阻变存储器及其制造方法 |
-
2007
- 2007-04-19 CN CNB200710039648XA patent/CN100521278C/zh not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11329226B2 (en) | 2019-06-21 | 2022-05-10 | Winbond Electronics Corp. | Memory devices including step shape electrode and methods for forming the same |
Also Published As
Publication number | Publication date |
---|---|
CN101051670A (zh) | 2007-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100521278C (zh) | 以CuxO为存储介质的RRAM的制备方法 | |
US20220293770A1 (en) | Dual Metal Via for Contact Resistance Reduction | |
US9231207B2 (en) | Method for forming resistance changing element capable of operating at low voltage | |
US8796659B2 (en) | Variable resistance element, semiconductor device including variable resistance element, and methods for manufacturing variable resistance element and semiconductor device | |
CN108122828B (zh) | 集成电路结构及其形成方法 | |
CN110323180B (zh) | 半导体装置及其形成方法 | |
US7968462B1 (en) | Noble metal activation layer | |
KR20090034913A (ko) | 무전해 성막용 도금 용액을 도포하는 장치 | |
US8206603B2 (en) | Methods of etching nanodots, methods of fabricating integrated circuit devices and device structures, methods of etching a layer comprising a late transition metal, and methods of forming a plurality of transistor gate constructions | |
US11961731B2 (en) | Method and structure for semiconductor interconnect | |
CN109585295A (zh) | 半导体装置的形成方法 | |
US11031339B2 (en) | Metal interconnects | |
US9059402B2 (en) | Resistance-variable element and method for manufacturing the same | |
TW200816378A (en) | Metal line in semiconductor device and method for forming the same | |
TW200834684A (en) | Semiconductor structure and method of forming the same | |
CN113113533B (zh) | 集成芯片、存储器件及其形成方法 | |
US6699769B2 (en) | Method for fabricating capacitor using electrochemical deposition and wet etching | |
CN106683996A (zh) | 金属硅化物及金属硅化物上接触孔的制造方法 | |
US12068385B2 (en) | Oxidation to mitigate dry etch and/or wet etch fluorine residue | |
JP2009004807A (ja) | 半導体装置の製造方法及び半導体製造装置 | |
JP2006080559A (ja) | 半導体装置の製造方法、半導体製造装置及び半導体装置 | |
US20110031622A1 (en) | Method for fabricating semiconductor device and semiconductor device | |
US20070178654A1 (en) | Metal capacitor including lower metal electrode having hemispherical metal grains | |
JP5309495B2 (ja) | 半導体装置の製造方法 | |
CN111863712A (zh) | 半导体结构和形成半导体结构的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090729 Termination date: 20120419 |