CN100483044C - 低压差循环热泵空调机组 - Google Patents

低压差循环热泵空调机组 Download PDF

Info

Publication number
CN100483044C
CN100483044C CNB2004101008401A CN200410100840A CN100483044C CN 100483044 C CN100483044 C CN 100483044C CN B2004101008401 A CNB2004101008401 A CN B2004101008401A CN 200410100840 A CN200410100840 A CN 200410100840A CN 100483044 C CN100483044 C CN 100483044C
Authority
CN
China
Prior art keywords
heat
heat pipe
pipe
tube
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004101008401A
Other languages
English (en)
Other versions
CN1786621A (zh
Inventor
吉阿明
童夏民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National treasure air conditioner (China) Co., Ltd.
Original Assignee
TONG XIAMIN JI AMING
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TONG XIAMIN JI AMING filed Critical TONG XIAMIN JI AMING
Priority to CNB2004101008401A priority Critical patent/CN100483044C/zh
Priority to PCT/CN2005/002092 priority patent/WO2006060953A1/zh
Publication of CN1786621A publication Critical patent/CN1786621A/zh
Application granted granted Critical
Publication of CN100483044C publication Critical patent/CN100483044C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Abstract

一种由渗水式冷凝器J2、内涡旋蒸发器J1、内热管压缩机M构成的低压差循环热泵空调机组。外循环工质水在J2通风翅片和传热管表面渗透循环形成强制性热交换。制冷:R410APK为1.7~1.9MPa,R22PK为1~1.1MPa;循环水24℃,热管26℃,因M压缩终温远高于TK,汽缸壁、润滑油、电机的温压对热管强放热(二次压缩)而进一步提升制冷量和降低压缩功。制热:J2无霜,分流制冷剂在热管内二次压缩而提升吸、排气能量和热泵效率。由吸收剂、制冷剂为循环工质的8字循环:稀溶液i0在J1内吸收空气能量浓缩为i1进入热管被二次压缩进一步浓缩为i2后随压缩排气进入J2,i2在J2低温冷却下表面分压低具强吸收性——超冷凝,可充分降低压缩负荷;同理J2无霜,二次压缩、超冷凝可提升热泵能量和效率。

Description

低压差循环热泵空调机组
技术领域
本发明涉及一种空调系统,尤其涉及是由新型的蒸发器、冷凝器和压缩机组成的低压差循环热泵空调机组。
技术背景
本人的中国专利ZL96116305.4和美国专利US 5,775,114中所述的室外侧热交换器J2中的波纹形内翅片和扁管易于受压剥离,形成较大的径向热阻,上下两侧通风翅片膜波需要足够支撑强度才能压合,这就限制了通风翅片表面的热交换效率和增大了通风阻力;扁管外膜式蒸发面含水量即浸润性不足使表面含气层难以彻底排除,如增大水循环量,则通风翅片膜波表面的膜式蒸发面就会被淹没而使气流阻力增加和表面热交换效率恶化。由于上述缺陷的存在限制了J2的热交换效率的进一步提高,另一方面,间歇式喷水和多余的循环水易于被通风气流携带,也不利于循环水流的表面连续均匀水布。
现行的内螺纹管蒸发器:因管径较粗,内螺纹齿却较浅,径向热阻较大,因此传热温差也较大,使压缩机容积效率降低、压缩功和节流火用损增大。
现行的全封闭压缩机,特别是常用的转子式:因蒸汽的多方压缩特性,电机放热和压缩放热温度远高于冷凝温度TK,这些热量不能有效排除,而是积累到工作蒸汽的吸热(消耗冷量)和外壳散热的平衡状态,而热泵机组外壳不能散热,因此工作温度较高;吸气受热膨胀而降低了输汽效率、压缩功大于绝热压缩,循环过程中压缩机火用损最大。另一方面,电机转子和定子铁芯及线圈,因交流磁场的磁耗形成的强放热不能有效排除,使电机效率降低。显然压缩机工作温度和冷凝温度之差形成的热阻,阻碍了热量的排放,也就是阻碍了制冷量的提取和增加了压缩功。
从上所述可知,由上述三大件构成的现行空调机组,其热力循环系统的效率不够完善,有待进一步的改进。
发明内容
本发明克服了上述存在的技术缺陷,提供了一种低压差循环热泵空调机组,它通过对J2、蒸发器、全封闭压缩机三大组件的改进来优化热力循环系统,从而建立更为完善的高效热力循环,特别是提高热泵效率。
本发明的低压差循环热泵空调机组,它包括室外侧热交换器渗水式冷凝器J2、室内侧热交换器内涡旋蒸发器J1和内热管压缩机M(以下简称冷热管空调)。
所述室外侧热交换器渗水式冷凝器J2(简称J2)的热交换系统:由多层渗水式冷凝器的散热片(简称J2片)和多层膜式波形翅片(简称膜波)相间叠合而成被紧固于上下两块(和J2片形状相同的)夹板和拉杆组成的框架内,上夹板有开有小孔的淋水管和开有小孔的滴水管,淋水管连接小循环泵的出口,小循环泵置于外机底盘,吸水口通向外机底盘水槽,滴水管连接与水源相通的供水细管,J2可制成弧形、圆形、L形。
每个J2片有两根平行排列的插入内翅片的扁管,内翅片垂直壁面双向条形开窗,扁管的外壁轧制横向导水沟槽,扁管外包贴膜式蒸发面,扁管间嵌入纵向间隔排列的长条形海绵和卡片,下部和左右半圆有薄铝片制成的、均布渗水细孔的、外侧贴有膜式蒸发面的渗水托片。J2片还可采用另一种内刺扁管,亦可制成单管J2片。
制作膜波带料的骨架用涂塑薄铝片轧制成细密的波纹骨架并形成毛细沟槽,两侧面用吸水纤维材料加工成蓬松结构无纺布成为两侧面有膜式蒸发面的复合带料。膜波为波形,垂直壁面双向条形开窗。
渗水式冷凝器J2的改进可使扁管外换热系数提高至5~10Kw/M2.℃,从而减少冷凝器原材料的消耗,并为外机的体积缩小、重量减轻、通风阻力降低,开辟技术通道。
所述室内侧热交换器内涡旋蒸发器J1(简称J1):内插铝芯的内螺纹为间隔长短齿条,长齿条间隔开口形成锯齿,长齿迫使制冷剂以螺旋角β涡旋流动,锯齿交换边界层使之形成湍流,旋转的离心力及表面张力将液态部分的制冷剂甩向壁面增强径向导热。
所述内热管压缩机M(简称M):全封闭转子式压缩机的冷却热管主要针对工作温度较高的汽缸壁、汽缸外的润滑油、定子铁芯,在定子铁芯线槽外侧的圆周上均布各支管,垂直穿过定子铁芯的支管绕过线圈向下,一部分穿过汽缸的上下盖和汽缸,在紧贴汽缸壁的圆周均布(错开吸气管和排气阀片);另一部分穿过油槽孔,这部分支管在浸油部位套有翅片。两个上下圆环管分别在顶部和底部与各支管并联,上圆环管连接顶部热管排气管、下圆环管连接底部热管进液管。支管为内壁面轴向分布毛细沟槽的细圆管。转子铁芯分布冷却孔。在液汽分离器内设螺旋回热管。
在热管排气压力和压缩机排气压力相同的等压循环中,上圆环管及热管排气管与内热管压缩机M排气在壳体腔内合并,成为开式内热管压缩机MK(简称MK)。
在制冷运行中:M的压缩放热和电机放热应该排除,这部分热量,如果由J2来冷却则加大了J2的热负荷,可充分利用底盘水槽内的低温循环水,M底部浸水也可以加强M的冷却。
热管回路:热管排气经辅助散热管初冷后进入浸没在水槽中的螺旋冷却管为液态后从热管进液管进入下圆环管分配给各支管吸热沸腾蒸发而汽化(简称二次压缩),并形成升力从热管排气管排出构成重力热管。支管内壁轴向开槽,一方面可以加强管内冷却,另一方面毛细沟槽的升力可提升液态介质的液位高度。
汽缸壁在热管的等温冷却作用下,就可以实现接近等温压缩的放热压缩,畅通系统的放热通道,以增强制冷量的提取能力。
制冷回路,则着力于加强J2的冷凝作用和J1的热交换效率。
在制热运行中:M的压缩放热和电机放热则应输送到J1冷凝,从J1流出的液态制冷剂分为二路:热管回路,分流制冷剂在重力作用下进入M内各支管吸热沸腾蒸发(二次压缩)为汽态热管排气;另一路经毛细管节流降压为蒸发压力P0在J2内吸热后被M吸入压缩增压为压缩排气,压缩排气和热管排气合并即等压送入J1冷凝放热……。可以采用开式内热管压缩机MK
在循环工质为吸收剂i和制冷剂x组成工质对的8字循环中:为增强吸收剂在冷却状态下的吸收性——超冷凝功能,吸收剂的浓缩即吸收能的储存是关键。稀溶液i0在蒸发器中吸收空气能量浓缩为i1和汽态x,汽态x被M吸入,i1由小液泵增压输送至热管内吸收压缩放热和电机放热(二次压缩)进一步浓缩为i2和汽态x1从热管排气管排出与M的压缩排气合并后进入冷凝器在冷凝压力PK工况冷却为稀溶液。
在热泵型热水器中,热管吸收的压缩放热和电机放热(二次压缩)能量可以增强热泵能量和热泵效率,另一方面则在水循环回路中考虑利用淋浴排水热量来增强热泵能量。
内热管压缩机与现行压缩机相比即排除和利用了压缩放热和电机放热,又实现了接近等温压缩的放热压缩,显著提高了热泵效率和制冷效率。
附图说明
图1是渗水式冷凝器的散热片J2片横截面剖视图。
图2是内刺扁管横截面剖视图。
图3是单管渗水式冷凝器的散热片J2片横截面剖视图。
图4是通风膜式波形翅片主视图。
图5是膜式波形翅片带料横截面剖视图。
图6是蒸发器J1内涡旋管展开图。
图7是内热管压缩机M主剖视图。
图8是开式内热管压缩机MK主剖视图。
图9是定子铁芯叠片俯视图。
图10是冷热管空调制冷机组循环图。
图11是使用开式内热管压缩机MK的冷热管空调机组循环图。
图12是冷热管空调8字循环热泵机组循环图。
图13是热泵型热水器系统循环图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步详细的描述。
参见附图1:J2片1中有2根平行排列的扁管2,扁管2内插入内翅片3,内翅片3的垂直壁面双向条形开窗4。扁管2外壁面轧制横向导水沟槽,扁管2外包贴膜式蒸发面5。扁管2之间嵌入纵向间隔排列的长条形海绵6和卡片7,下部和左右半圆有渗水托片8,渗水托片8用薄铝片制成均布渗水细孔9,外侧贴有膜式蒸发面10。
参见附图2:J2片1还可采用内刺扁管11,其内壁有肋化尖刺12和分隔壁13,其外壁面也轧制横向导水沟槽14。
参见附图3:单管J2片15和J2片1一样,在内翅扁管2或内刺扁管11外包贴膜式蒸发面5,下部和左右半圆有渗水托片8。
参见附图4、5:膜式波形翅片16,其垂直壁面双向条形开窗17。制作膜式波形翅片16的复合带料18的骨架用涂塑薄铝片轧制成细密的波纹骨架19,并形成双面毛细沟槽20,两侧面有膜式蒸发面21。
J2片1和单管J2片15制成弧形、圆形、L形时,则J2为弧形、圆形、L形。内翅扁管2或内刺扁管11为制冷剂管,各扁管连接构成J2制冷剂流道。膜式蒸发面5、10、21是用耐腐蚀的吸水性纤维材料制成的无纺布。
J2的渗水流程:补充水在滴水管内经小孔缓慢地滴向膜波16,一部分沿毛细沟槽20向J2片1渗流,一部分在蓬松结构的膜式蒸发面21表面充分展开形成巨大的蒸发表面积,经膜波16冷却的渗水流在J2片1的膜式蒸发面5和长条形海绵6均布在横向导水沟槽14内流动,通过渗水托片8的渗水细孔9渗向下一层膜波16……J2片1的内翅扁管2或内刺扁管11处于浸润状态。渗水流在底盘水槽内汇合冷却热管,小循环泵定时、定量、间歇性向淋水管供水,以保持均匀的渗水循环流量。底盘水槽内设滤网,水位由浮球阀控制。膜波16、渗水托片8、J2片1的膜式蒸发面在空气流道内形成饱和湿空气层,膜波16、开窗17使气流边界层频繁替换而形成扰动湍流而降低膜式蒸发面的表面水汽分压,因此J2的渗水流(在标准制冷工况)总是趋向24℃,即扁管表面总是趋向24℃的等温惯性。热泵运行时:J2为蒸发器,当环境温度为0℃以下时,在底盘水槽(42)加入少量乙二醇,可以实现连续无霜运行。
参见附图6:内插铝芯22的内螺纹为长齿条23和短齿条24间隔排列,长齿条23沿流向间隔开口25形成锯齿,内插铝芯22的外壁面与铜管26内壁面紧贴。可用螺纹丝杆胀管。
参见附图7、8、9:在内热管压缩机M内,支管27在定子铁芯叠片28的线槽29外侧的圆周均布。垂直穿过定子铁芯28的支管27绕过线圈30,一部分垂直穿过汽缸31和上盖32下盖33在紧贴汽缸31内壁的圆周上均布(错开吸气管和排气阀片);另一部分穿过油槽孔34,这部分支管27在浸油部位套有翅片35。上圆环管36在顶部并联各支管27和连接热管排气管38,下圆环管37在底部并联各支管27和连接热管进液管39。转子铁芯叠片分布冷却孔40。
由渗水式冷凝器J2、内涡旋蒸发器J1和内热管压缩机M组成的空调机组,简称为冷热管空调。
参见附图10:热管介质也可以是制冷剂,热管介质回路:气态介质从热管排气管38排出经辅助散热管41初冷后进入浸没底盘水槽42内的螺旋冷却管43冷却为液态介质从进液管39进入下圆环管37而分配到各支管27,液态介质在各支管27内吸收压缩放热和电机放热激烈沸腾而转化为汽态介质在上圆环管36汇合从热管排气管38排出……构成重力热管循环。支管27的轴向毛细沟槽可以提升液态介质的液柱高度增强抗重力作用。M底部浸水可以加强冷却。
制冷剂循环回路:M的压缩排气经J2在PK工况冷却为液态,经过置于液汽分离器44中的螺旋回热管45过冷后经毛细管46节流降压为P0进入J1吸热蒸发为汽态被液汽分离器44吸入……构成循环。液态制冷剂回热过冷,降低了供液温度可增大制冷量、减少节流火用损。
底盘水槽42内的水温24~26℃,M的汽缸壁在热管的等温冷却作用下,因M压缩终温远高于TK,因此就可以实现接近等温压缩的放热压缩。理想的等温压缩的条件是:压缩过程是无限缓慢的,而被压缩工质贴近等温汽缸壁的。
转子铁芯开孔40是加强转子冷却,汽缸外的润滑油的冷却是要求M的工作温度尽可能接近热管工作温度。
参见附图11:开式内热管压缩机MK热管和J2的PK等压,热管排气和压缩排气在MK内合并。热管回路和制冷剂回路联网,MK排气管和辅助散热管41之间连接电磁阀48,换向阀53控制制冷剂运行方向,制冷为实线箭头方向,制热为虚线箭头方向。
制冷回路:MK排气分为二路:一路经换向阀53进入J2在PK工况冷凝为液态后通过单向阀50经螺旋回热管45过冷后经毛细管46节流降为P0在J1内吸热蒸发后被MK吸入;另一路为热管回路:MK排气通过电磁阀48经辅助散热管41和浸没于底盘水槽内的螺旋冷却管43冷却为液态后经单向阀49进入各支管27吸热沸腾蒸发为热管排气。
制热回路:MK排气经换向阀53进入J1在PK工况放热冷凝为液态后分为二路:一路通过单向阀52经毛细管46过冷后经制热毛细管47节流降压为P0后进入J2吸热蒸发为汽态而被MK吸入;另一路为热管回路:经单向阀51后进入各支管27吸热沸腾蒸发为热管排气。热管排气和MK压缩排气合并为MK排气。
参见附图12:热泵型8字循环机组,循环工质:制冷剂-吸收剂组成的工质对。螺旋回热管45置于吸收剂分离罐54中。
制冷回路:吸收剂和制冷剂组成的稀溶液i0经毛细管46节流降压为P0后在J1内吸收空气能量浓缩为i1溶液和汽态制冷剂x经换向阀53流入吸收剂分离罐54。汽态制冷剂x被液汽分离器44吸入,液态i1经底部的小液泵55增压而送入热管吸收压缩放热和电机放热,进一步浓缩为i2和汽态制冷剂x1与压缩排气x合并经换向阀53进入J2在PK工况冷凝为稀溶液i0后经单向阀50、螺旋回热管45热交换后进入毛细管46……。
制热回路:从J1流出的稀溶液i0经单向阀52在螺旋回热管45内热交换后由制热毛细管47节流降压为P0在J2吸热浓缩为i1溶液和汽态x经换向阀53流入吸收剂分离罐54,汽态x被液汽分离器44吸入,i1溶液经底部的小液泵55增压后送入热管吸收压缩放热和电机放热而进一步浓缩为i2和汽态x1与压缩排气x合并经换向阀53进入J1在PK工况放热冷凝为稀溶液i0……。
浓吸收剂溶液i2在冷却条件下表面分压较低,具有强吸收性,这一特征为超冷凝,可充分降低压缩机负荷。
参见附图13:开式内热管压缩机MK,套管式热交换器:冷凝管63、蒸发管56、回热管57及毛细管47、喷淋头58、底盘59、半球滤网60、过滤器61、小水泵62等附件。
水S管路流程:自来水S1经回热管57被加热为S2进入冷凝管63被加热为S3由浴室喷淋头58喷淋使用后流入浴缸或底盘59的底部降温为S4经过半球滤网60、过滤器61过滤后由小水泵62增压进入回热管57向S1放热降温为S5经蒸发管56向制冷剂放热降温为S6排向下水道构成开式水循环。
制冷剂管路循环:从冷凝管63流出的液态制冷剂分为二路:一路经毛细管47节流降压为P0进入蒸发管56吸热蒸发为汽态被M吸入;另一路热管回路:液态制冷剂由重力进入热管各支管吸收压缩放热和电机放热沸腾蒸发为汽态热管排气。热管排气和压缩排气合并进入冷凝管63在PK工况放热冷却为液态制冷剂流出冷凝管63……。

Claims (6)

1、一种低压差循环热泵空调机组,包括室内、外侧热交换器和连接于两者之间的压缩机,其室外机有底盘水槽(42),小循环泵出水管连接冷凝器上夹板的淋水管,吸水口通向底盘水槽(42),间歇性定时定量向淋水管供水,底盘水槽(42)的水位由连接水源的供水细管和浮球阀控制,其特征在于:
A、所述室外侧热交换器为渗水式冷凝器(J2)的热交换系统:由多层渗水式冷凝器的散热片(1)和多层通风膜式波形翅片(16)相间叠合而成,然后被夹合紧固于上下两块和渗水式冷凝器的散热片形状相同的夹板和拉杆组成的框架内,上夹板有开有小孔的淋水管和开有小孔的滴水管,滴水管连接供水细管;每个渗水式冷凝器的散热片(1)有至少一根平行排列的内翅片扁管(2)或内刺扁管(11),内翅片扁管(2)内插入波形内翅片(3)、内翅片(3)垂直壁面双向条形开窗(4),内翅片扁管(2)外壁轧制横向导水沟槽(14),内翅片扁管(2)或内刺扁管(11)外包贴膜式蒸发面(5),内翅片扁管(2)或内刺扁管(11)间嵌入纵向间隔排列的长条形海绵(6)和卡片(7),下部和左右半圆有薄铝片制成的均布渗水细孔(9)的外侧贴有膜式蒸发面的渗水托片(8);膜式波形翅片(16)为波形、垂直壁面双向条形开窗(17),制作膜式波形翅片(16)的复合带料(18)的骨架是用涂塑薄铝片轧制成细密的波纹骨架(19)并形成双面毛细沟槽(20),两侧面有膜式蒸发面(21);膜式蒸发面(5、10、21)用耐腐蚀吸水性纤维材料制成;
B、所述室内侧热交换器为内涡旋蒸发器(J1):其制冷剂管的内插铝芯(22)的内螺纹为长齿条(23)和短齿条(24)间隔排列,长齿条(23)沿流向β角间隔开口(25)形成锯齿,内插铝芯(22)的外壁与光铜管(26)内壁紧贴;
C、所述压缩机为内热管压缩机(M):支管(27)在定子铁芯叠片(28)的线槽(29)外侧的圆周均布,垂直穿过定子铁芯叠片(28)的支管(27)向下绕过线圈(30),一部分垂直穿过汽缸(31)、上盖(32)和下盖(33)并在紧贴汽缸(31)内壁的圆周上错开吸气管和排气阀片均布,另一部分穿过油槽孔(34),这部分支管(27)在浸油部位套有翅片(35),上圆环管(36)在顶部并联各支管(27)和连接热管排气管(38),下圆环管(37)在底部并联各支管(27)和连接热管进液管(39),支管(27)是内壁面轴向分布毛细沟槽的细圆管。
2、根据权利要求1所述的低压差循环热泵空调机组,其特征在于:所述内刺扁管(11),其内壁面有肋化尖刺(12)和分隔壁(13),外壁面轧制横向导水沟槽(14)。
3、根据权利要求1所述的低压差循环热泵空调机组,其特征在于:所述上圆环管(36)和热管排气管(38)与内热管压缩机(M)排气在壳体腔内合并,成为开式内热管压缩机MK
4、根据权利要求1或2所述的低压差循环热泵空调机组,其特征在于:其热管回路:热管排气经辅助散热管(41)初冷后,进入浸没于底盘水槽(42)内的螺旋冷却管(43)冷却为液态介质,经热管进液管(39)进入下圆环管(37)和各支管(27)吸热沸腾蒸发为汽态介质,再从上圆环管(36)进入热管排气管(38)构成重力热管循环,内热管压缩机底部浸水;其制冷剂回路:冷凝压力PK的压缩排气进入渗水式冷凝器冷凝为液态制冷剂后,经毛细管(46)节流降压为蒸发压力P0,在内涡旋蒸发器内吸热蒸发为汽态,然后被内热管压缩机吸入构成循环。
5、根据权利要求1或2或3所述的低压差循环热泵空调机组,其特征在于:在制热运行时,经内涡旋蒸发器冷凝的液态制冷剂分为二路:热管回路,分流制冷剂在重力作用下,进入各支管(27)吸热沸腾蒸发为汽态热管排气;另一路经制热毛细管(47)节流降压为蒸发压力P0,进入渗水式冷凝器内吸热蒸发为汽态,然后被内热管压缩机吸入压缩为压缩排气;压缩排气和热管排气合并进入内涡旋蒸发器冷凝。
6、根据权利要求1或2所述的低压差循环热泵空调机组,其特征在于:当空调机组的循环工质为制冷剂x—吸收剂i组成的工质对时,机组运行的是热泵型8字循环,螺旋回热管(45)置于吸收剂分离罐(54)中;制冷回路:i和x组成的稀溶液i0经毛细管(46)节流降压为蒸发压力P0,再在内涡旋蒸发器内吸热浓缩为i1和汽态x,经吸收剂分离罐(54),x被内热管压缩机吸入,i1经小液泵(55)增压送入热管各支管(27)吸热进一步浓缩为i2和汽态x1,然后与压缩后的x合并进入渗水式冷凝器,在冷凝压力PK工况冷凝为稀溶液i0;制热回路;从内涡旋蒸发器流出的稀溶液i0经毛细管(47)节流降压为蒸发压力P0,再在渗水式冷凝器中吸热浓缩为i1和汽态x,经吸收剂分离罐(54),x被内热管压缩机吸入,i1经小液泵(55)增压后送入热管各支管(27)吸热进一步浓缩为i2和气态x1,然后与内热管压缩机排气x合并进入内涡旋蒸发器,在冷凝压力PK工况冷凝为稀溶液i0
CNB2004101008401A 2004-12-07 2004-12-07 低压差循环热泵空调机组 Expired - Fee Related CN100483044C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB2004101008401A CN100483044C (zh) 2004-12-07 2004-12-07 低压差循环热泵空调机组
PCT/CN2005/002092 WO2006060953A1 (fr) 2004-12-07 2005-12-05 Climatiseur a pompe a chaleur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004101008401A CN100483044C (zh) 2004-12-07 2004-12-07 低压差循环热泵空调机组

Publications (2)

Publication Number Publication Date
CN1786621A CN1786621A (zh) 2006-06-14
CN100483044C true CN100483044C (zh) 2009-04-29

Family

ID=36577662

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004101008401A Expired - Fee Related CN100483044C (zh) 2004-12-07 2004-12-07 低压差循环热泵空调机组

Country Status (2)

Country Link
CN (1) CN100483044C (zh)
WO (1) WO2006060953A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9933169B2 (en) 2015-12-02 2018-04-03 National Taiwan Normal University Compressor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162458B (zh) * 2011-12-14 2018-01-19 童夏民 低压差冷缸循环制冷系统
JP5413480B2 (ja) * 2012-04-09 2014-02-12 ダイキン工業株式会社 空気調和装置
CN103550941B (zh) * 2013-11-15 2014-12-31 厦门绿邦膜技术有限公司 一种低温蒸发浓缩装置及高浓度废水浓缩方法
CN108150391A (zh) * 2018-01-12 2018-06-12 珠海凌达压缩机有限公司 压缩机及制冷循环装置
CN108518338A (zh) * 2018-06-04 2018-09-11 黄石东贝电器股份有限公司 制冷压缩机及制冷设备
CN110822879B (zh) * 2019-11-27 2021-01-26 江苏天舒电器有限公司 一种基于非共沸混合工质热泵系统的烘干除湿方法
CN111481957B (zh) * 2020-05-21 2023-07-25 江西依思特香料有限公司 一种香精香料提取用快速冷凝装置
CN112564356A (zh) * 2020-10-28 2021-03-26 西安交通大学 一种电机具有冷却通道的电动涡旋压缩机
EP4145062A1 (en) * 2021-09-07 2023-03-08 BSH Hausgeräte GmbH Heat pump system with improved compressor cooling and process for operating the heat pump system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938035A (en) * 1987-10-20 1990-07-03 Khanh Dinh Regenerative fresh-air air conditioning system and method
JPH06101922A (ja) * 1992-09-17 1994-04-12 Daikin Ind Ltd ビルマイヤヒートポンプ装置
CN1110394A (zh) * 1994-04-04 1995-10-18 吉阿明 空气能8字循环空调机-微分冷谷管应用
CN1094581C (zh) * 1996-04-04 2002-11-20 童夏民 一种空调机

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
用热管冷却2F-6.3型活塞式压缩机试验. 叶大鼎,李刚.压缩机技术,第102期. 1990
用热管冷却2F-6.3型活塞式压缩机试验. 叶大鼎,李刚.压缩机技术,第102期. 1990 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9933169B2 (en) 2015-12-02 2018-04-03 National Taiwan Normal University Compressor
TWI635244B (zh) * 2015-12-02 2018-09-11 國立臺灣師範大學 Energy-saving compressor

Also Published As

Publication number Publication date
CN1786621A (zh) 2006-06-14
WO2006060953A1 (fr) 2006-06-15

Similar Documents

Publication Publication Date Title
CN103982958B (zh) 一种两级预冷式除湿装置及其方法
CN104329759B (zh) 一种辐射空调用新风控温除湿系统及控温除湿方法
CN102022794B (zh) 热湿独立处理辐射吊顶供冷系统
CN201819477U (zh) 直流变频多联机多功能空调
CN1094581C (zh) 一种空调机
CN205619611U (zh) 一种采用蒸发式冷凝的风冷模块热泵机组
CN104456786B (zh) 蒸发冷却与机械制冷相结合的一体化空调机组
CN103940154A (zh) 一种复合结构湿膜表冷器
CN100483044C (zh) 低压差循环热泵空调机组
WO2020029582A1 (zh) 空气源热泵空调器用无风机且内置蓄热介质的室内换热器
CN103615916A (zh) 一种空气高效除湿无级调温装置
CN101936624A (zh) 利用太阳能的毛细管网热泵系统
CN108444278A (zh) 连续置换式除湿烘干设备
CN108088108A (zh) 一种地铁站直膨式蒸发冷凝热泵空调系统及其工作方法
CN203024477U (zh) 地源热泵中央空调热水三联供机组
CN205119549U (zh) 多功能热泵型蒸发式冷凝空调机组
CN103925657B (zh) 排风源热泵驱动新风系统
CN100465548C (zh) 一种空调器
CN217584650U (zh) 除湿机
CN203687670U (zh) 一种喷淋水冷式冷凝器
CN208687861U (zh) 具有非翅片换热器的空调室内机及空调器
CN210154029U (zh) 一种无风空调系统
CN207831811U (zh) 一种可模块组合的热回收型除湿干燥机
CN207230984U (zh) 节能空调制冷系统
CN101487608A (zh) 一种节能舒适型空调器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Free format text: FORMER OWNER: JI AMING

Owner name: GUOBAO AIR CONDITIONING (CHINA) CO., LTD.

Free format text: FORMER OWNER: TONG XIAMIN

Effective date: 20110225

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 200232 ROOM 101, NO.17, LANE 50, YUNJIN ROAD, XUHUI DISTRICT, SHANGHAI TO: 223005 NO.1, GUOBAO ROAD, HUAIAN ECONOMIC DEVELOPMENT ZONE, JIANGSU PROVINCE

TR01 Transfer of patent right

Effective date of registration: 20110225

Address after: The 223005 Jiangsu Economic Development Zone of Huaian province of China No. 1 Po

Patentee after: National treasure air conditioner (China) Co., Ltd.

Address before: 200232 Shanghai city Xuhui District Yunjin Road 50 Lane No. 101 room 17

Co-patentee before: Ji Aming

Patentee before: Tong Xiamin

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090429

Termination date: 20131207