CN1786621A - 低压差循环热泵空调机组 - Google Patents

低压差循环热泵空调机组 Download PDF

Info

Publication number
CN1786621A
CN1786621A CN 200410100840 CN200410100840A CN1786621A CN 1786621 A CN1786621 A CN 1786621A CN 200410100840 CN200410100840 CN 200410100840 CN 200410100840 A CN200410100840 A CN 200410100840A CN 1786621 A CN1786621 A CN 1786621A
Authority
CN
China
Prior art keywords
heat
pipe
tube
heat pipe
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410100840
Other languages
English (en)
Other versions
CN100483044C (zh
Inventor
吉阿明
童夏民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Treasure Air Conditioner (china) Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNB2004101008401A priority Critical patent/CN100483044C/zh
Priority to PCT/CN2005/002092 priority patent/WO2006060953A1/zh
Publication of CN1786621A publication Critical patent/CN1786621A/zh
Application granted granted Critical
Publication of CN100483044C publication Critical patent/CN100483044C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种由渗水式冷凝器J2、内涡旋蒸发器J1、内热管压缩机M构成的低压差循环热泵空调机组。外循环工质水在J2通风翅片和传热管表面渗透循环形成强制性热交换。制冷:R410APK为1.7~1.9MPa,R22PK为1~1.1MPa;循环水24℃,热管26℃,因M压缩终温远高于TK,汽缸壁、润滑油、电机的温压对热管强放热(二次压缩)而进一步提升制冷量和降低压缩功。制热:J2无霜,分流制冷剂在热管内二次压缩而提升吸、排气能量和热泵效率。由吸收剂、制冷剂为循环工质的8字循环:稀溶液i0在J1内吸收空气能量浓缩为i1进入热管被二次压缩进一步浓缩为i2后随压缩排气进入J2,i2在J2低温冷却下表面分压低具强吸收性——超冷凝,可充分降低压缩负荷;同理J2无霜,二次压缩、超冷凝可提升热泵能量和效率。

Description

低压差循环热泵空调机组
技术领域
本发明涉及一种空调系统,尤其涉及是由新型的蒸发器、冷凝器和压缩机组成的低压差循环热泵空调机组。
技术背景
本人的中国专利ZL96116305.4和美国专利US 5,775,114中所述的室外侧热交换器J2中的波纹形内翅片和扁管易于受压剥离,形成较大的径向热阻,上下两侧通风翅片膜波需要足够支撑强度才能压合,这就限制了通风翅片表面的热交换效率和增大了通风阻力;扁管外膜式蒸发面含水量即浸润性不足使表面含气层难以彻底捧除,如增大水循环量,则通风翅片膜波表面的膜式蒸发面就会被淹没而使气流阻力增加和表面热交换效率恶化。由于上述缺陷的存在限制了J2的热交换效率的进一步提高,另一方面,间歇式喷水和多余的循环水易于被通风气流携带,也不利于循环水流的表面连续均匀水布。
现行的内螺纹管蒸发器:因管径较粗,内螺纹齿却较浅,径向热阻较大,因此传热温差也较大,使压缩机容积效率降低、压缩功和节流损增大。
现行的全封闭压缩机,特别是常用的转子式:因蒸汽的多方压缩特性,电机放热和压缩放热温度远高于冷凝温度TK,这些热量不能有效排除,而是积累到工作蒸汽的吸热(消耗冷量)和外壳散热的平衡状态,而热泵机组外壳不能散热,因此工作温度较高;吸气受热膨胀而降低了输汽效率、压缩功大于绝热压缩,循环过程中压缩机 损最大。另一方面,电机转子和定子铁芯及线圈,因交流磁场的磁耗形成的强放热不能有效捧除,使电机效率降低。显然压缩机工作温度和冷凝温度之差形成的热阻,阻碍了热量的捧放,也就是阻碍了制冷量的提取和增加了压缩功。
从上所述可知,由上述三大件构成的现行空调机组,其热力循环系统的效率不够完善,有待进一步的改进。
发明内容
本发明克服了上述存在的技术缺陷,提供了一种低压差循环热泵空调机组,它通过对J2、蒸发器、全封闭压缩机三大组件的改进来优化热力循环系统,从而建立更为完善的高效热力循环,特别是提高热泵效率。
本发明的低压差循环热泵空调机组,它包括室外侧热交换器渗水式冷凝器J2、室内侧热交换器内涡旋蒸发器J1和内热管压缩机M(以下简称冷热管空调)。
所述室外侧热交换器渗水式冷凝器J2的热交换系统:由多层J2片和多层膜式波形翅片(简称膜波)相间叠合而成被紧固于上下两块(和J2片形状相同的)夹板和拉杆组成的框架内,上夹板有开有小孔的淋水管和开有小孔的滴水管,淋水管连接小循环泵的出口,小循环泵置于外机底盘,吸水口通向外机底盘水槽,滴水管连接与水源相通的供水细管,J2可制成弧形、圆形、L形。
每个J2片有两根平行排列的插入内翅片的扁管,内翅片垂直壁面双向条形开窗,扁管的外壁轧制横向导水沟槽,扁管外包贴膜式蒸发面,扁管间嵌入纵向间隔排列的长条形海绵和卡片,下部和左右半圆有薄铝片制成的、均布渗水细孔的、外侧贴有膜式蒸发面的渗水托片。J2片还可采用另一种内刺扁管,亦可制成单管J2片。
制作膜波带料的骨架用涂塑薄铝片轧制成细密的波纹骨架并形成毛细沟槽,两侧面用吸水纤维材料加工成蓬松结构无纺布成为两侧面有膜式蒸发面的复合带料。膜波为波形,垂直壁面双向条形开窗。
渗水式冷凝器J2的改进可使扁管外换热系数提高至5~10Kw/M2.℃,从而减少冷凝器原材料的消耗,并为外机的体积缩小、重量减轻、通风阻力降低,开辟技术通道。
所述室内侧热交换器内涡旋蒸发器J1:内插铝芯的内螺纹为间隔长短齿条,长齿条间隔开口形成锯齿,长齿迫使制冷剂以螺旋角β涡旋流动,锯齿交换边界层使之形成湍流,旋转的离心力及表面张力将液态部分的制冷剂甩向壁面增强径向导热。
所述内热管压缩机M:全封闭转子式压缩机的冷却热管主要针对工作温度较高的汽缸壁、汽缸外的润滑油、定子铁芯,在定子铁芯线槽外侧的圆周上均布各支管,垂直穿过定子铁芯的支管绕过线圈向下,一部分穿过汽缸的上下盖和汽缸,在紧贴汽缸壁的圆周均布(错开吸气管和排气阀片);另一部分穿过油槽孔,这部分支管在浸油部位套有翅片。两个上下圆环管分别在顶部和底部与各支管并联,上圆环管连接顶部热管排气管、下圆环管连接底部热管进液管。支管为内壁面轴向分布毛细沟槽的细圆管。转子铁芯分布冷却孔。在液汽分离器内设螺旋回热管。
在热管排气压力和压缩机排气压力相同的等压循环中,则可去除热管的上圆环管及热管排气管,成为开式内热管压缩机MK
在制冷运行中:M的压缩放热和电机放热应该排除,这部分热量,如果由J2来冷却则加大了J2的热负荷,可充分利用底盘水槽内的低温循环水,M底部浸水也可以加强M的冷却。
热管回路:热管排气经辅助散热管初冷后进入浸没在水槽中的螺旋冷却管为液态后从热管进液管进入下圆环管分配给各支管吸热沸腾蒸发而汽化(简称二次压缩),并形成升力从热管排气管排出构成重力热管。支管内壁轴向开槽,一方面可以加强管内冷却,另一方面毛细沟槽的升力可提升液态介质的液位高度。
汽缸壁在热管的等温冷却作用下,就可以实现接近等温压缩的放热压缩,畅通系统的放热通道,以增强制冷量的提取能力。
制冷回路,则着力于加强J2的冷凝作用和J1的热交换效率。
在制热运行中:M的压缩放热和电机放热则应输送到J1冷凝,从J1流出的液态制冷剂分为二路:热管回路,分流制冷剂在重力作用下进入M内各支管吸热沸腾蒸发(二次压缩)为汽态热管排气;另一路经毛细管节流降压为P0在J2内吸热后被M吸入压缩增压为压缩排气,压缩排气和热管排气合并即等压送入J1冷凝放热……。可以采用开式内热管压缩机MK
在循环工质为吸收剂i和制冷剂x组成工质对的8字循环中:为增强吸收剂在冷却状态下的吸收性——超冷凝功能,吸收剂的浓缩即吸收能的储存是关键。稀溶液i0在蒸发器中吸收空气能量浓缩为i1和汽态x,汽态x被M吸入,i1由小液泵增压输送至热管内吸收压缩放热和电机放热(二次压缩)进一步浓缩为i2和汽态x1从热管排气管排出与M的压缩排气合并后进入冷凝器在PK工况冷却为稀溶液。
在热泵型热水器中,热管吸收的压缩放热和电机放热(二次压缩)能量可以增强热泵能量和热泵效率,另一方面则在水循环回路中考虑利用淋浴排水热量来增强热泵能量。
内热管压缩机与现行压缩机相比即排除和利用了压缩放热和电机放热,又实现了接近等温压缩的放热压缩,显著提高了热泵效率和制冷效率。
附图说明
图1是J2片横截面剖视图。
图2是内刺扁管横截面剖视图。
图3是单管J2片横截面剖视图。
图4是通风翅片膜波主视图。
图5是膜波带料横截面剖视图。
图6是蒸发器J1内涡旋管展开图。
图7是内热管压缩机M主剖视图。
图8是开式内热管压缩机MK主剖视图。
图9是定子铁芯叠片俯视图。
图10是冷热管空调制冷机组循环图。
图11是使用开式内热管压缩机MK的冷热管空调机组循环图。
图12是冷热管空调8字循环热泵机组循环图。
图13是热泵型热水器系统循环图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步详细的描述。
参见附图1:J2片1中有2根平行排列的扁管2,扁管2内插入内翅片3,内翅片3的垂直壁面双向条形开窗4。扁管2外壁面轧制横向导水沟槽,扁管2外包贴膜式蒸发面5。扁管2之间嵌入纵向间隔排列的长条形海绵6和卡片7,下部和左右半圆有渗水托片8,渗水托片8用薄铝片制成均布渗水细孔9,外侧贴有膜式蒸发面10。
参见附图2:J2片1还可采用内刺扁管11,其内壁有肋化尖刺12和分隔壁13,其外壁面也轧制横向导水沟槽14。
参见附图3:单管J2片15和J2片1一样,在内翅扁管2或内刺扁管11外包贴膜式蒸发面5,下部和左右半圆有渗水托片8。
参见附图4、5:膜波16为波形翅片,其垂直壁面双向条形开窗17。制作膜波16的复合带料18的骨架用涂塑薄铝片轧制成细密的波纹骨架19,并形成双面毛细沟槽20,两侧面有膜式蒸发面21。
J2片1和单管J2片15制成弧形、圆形、L形时,则J2为弧形、圆形、L形。内翅扁管2或内刺扁管11为制冷剂管,各扁管连接构成J2制冷剂流道。膜式蒸发面5、10、21是用耐腐蚀的吸水性纤维材料制成的无纺布。
J2的渗水流程:补充水在滴水管内经小孔缓慢地滴向膜波16,一部分沿毛细沟槽20向J2片1渗流,一部分在蓬松结构的膜式蒸发面21表面充分展开形成巨大的蒸发表面积,经膜波16冷却的渗水流在J2片1的膜式蒸发面5和长条形海绵6均布在横向导水沟槽14内流动,通过渗水托片8的渗水细孔9渗向下一层膜波16……J2片1的内翅扁管2或内刺扁管11处于浸润状态。渗水流在底盘水槽内汇合冷却热管,小循环泵定时、定量、间歇性向淋水管供水,以保持均匀的渗水循环流量。底盘水槽内设滤网,水位由浮球阀控制。膜波16、渗水托片8、J2片1的膜式蒸发面在空气流道内形成饱和湿空气层,膜波16、开窗17使气流边界层频繁替换而形成扰动湍流而降低膜式蒸发面的表面水汽分压,因此J2的渗水流(在标准制冷工况)总是趋向24℃,即扁管表面总是趋向24℃的等温惯性。热泵运行时:J2为蒸发器,当环境温度为0℃以下时,在底盘水槽(42)加入少量乙二醇,可以实现连续无霜运行。
参见附图6:内插铝芯22的内螺纹为长齿条23和短齿条24间隔排列,长齿条23沿流向间隔开口25形成锯齿,内插铝芯22的外壁面与铜管26内壁面紧贴。可用螺纹丝杆胀管。
参见附图7、8、9:在内热管压缩机M内,支管27在定子铁芯叠片28的线槽29外侧的圆周均布。垂直穿过定子铁芯28的支管27绕过线圈30,一部分垂直穿过汽缸31和上盖32下盖33在紧贴汽缸31内壁的圆周上均布(错开吸气管和排气阀片);另一部分穿过油槽孔34,这部分支管27在浸油部位套有翅片35。上圆环管36在顶部并联各支管27和连接热管排气管38,下圆环管37在底部并联各支管27和连接热管进液管39。转子铁芯叠片分布冷却孔40。
由渗水式冷凝器J2、内涡旋蒸发器J1和内热管压缩机M组成的空调机组,简称为冷热管空调。
参见附图10:热管介质也可以是制冷剂,热管介质回路:气态介质从热管排气管38排出经辅助散热管41初冷后进入浸没底盘水槽42内的螺旋冷却管43冷却为液态介质从进液管39进入下圆环管37而分配到各支管27,液态介质在各支管27内吸收压缩放热和电机放热激烈沸腾而转化为汽态介质在上圆环管36汇合从热管排气管38排出……构成重力热管循环。支管27的轴向毛细沟槽可以提升液态介质的液柱高度增强抗重力作用。M底部浸水可以加强冷却。
制冷剂循环回路:M的压缩排气经J2在PK工况冷却为液态,经过置于液汽分离器44中的螺旋回热管45过冷后经毛细管46节流降压为P0进入J1吸热蒸发为汽态被液汽分离器44吸入……构成循环。液态制冷剂回热过冷,降低了供液温度可增大制冷量、减少节流 损。
底盘水槽42内的水温24~26℃,M的汽缸壁在热管的等温冷却作用下,因M压缩终温远高于TK,因此就可以实现接近等温压缩的放热压缩。理想的等温压缩的条件是:压缩过程是无限缓慢的,而被压缩工质贴近等温汽缸壁的。
转子铁芯开孔40是加强转子冷却,汽缸外的润滑油的冷却是要求M的工作温度尽可能接近热管工作温度。
参见附图11:开式内热管压缩机MK热管和J2的PK等压,热管捧气和压缩排气在MK内合并。热管回路和制冷剂回路联网,MK排气管和辅助散热管41之间连接电磁阀48,换向阀53控制制冷剂运行方向,制冷为实线箭头方向,制热为虚线箭头方向。
制冷回路:MK排气分为二路:一路经换向阀53进入J2在PK工况冷凝为液态后通过单向阀50经螺旋回热管45过冷后经毛细管46节流降为P0在J1内吸热蒸发后被MK吸入;另一路为热管回路:MK排气通过电磁阀48经辅助散热管41和浸没于底盘水槽内的螺旋冷却管43冷却为液态后经单向阀49进入各支管27吸热沸腾蒸发为热管排气。
制热回路:MK排气经换向阀53进入J1在PK工况放热冷凝为液态后分为二路:一路通过单向阀52经毛细管46过冷后经制热毛细管47节流降压为P0后进入J2吸热蒸发为汽态而被MK吸入;另一路为热管回路:经单向阀51后进入各支管27吸热沸腾蒸发为热管排气。热管排气和MK压缩捧气合并为MK排气。
参见附图12:热泵型8字循环机组,循环工质:制冷剂-吸收剂组成的工质对。螺旋回热管45置于吸收剂分离罐54中。
制冷回路:吸收剂和制冷剂组成的稀溶液i0经毛细管46节流降压为P0后在J1内吸收空气能量浓缩为i1溶液和汽态制冷剂x经换向阀53流入吸收剂分离罐54。汽态制冷剂x被液汽分离器44吸入,液态i1经底部的小液泵55增压而送入热管吸收压缩放热和电机放热,进一步浓缩为i2和汽态制冷剂x1与压缩排气x合并经换向阀53进入J2在PK工况冷凝为稀溶液i0后经单向阀50、螺旋回热管45热交换后进入毛细管46……。
制热回路:从J1流出的稀溶液i0经单向阀52在螺旋回热管45内热交换后由制热毛细管47节流降压为P0在J2吸热浓缩为i1溶液和汽态x经换向阀53流入吸收剂分离罐54,汽态x被液汽分离器44吸入,i1溶液经底部的小液泵55增压后送入热管吸收压缩放热和电机放热而进一步浓缩为i2和汽态x1与压缩排气x合并经换向阀53进入J1在PK工况放热冷凝为稀溶液i0……。
浓吸收剂溶液i2在冷却条件下表面分压较低,具有强吸收性,这一特征为超冷凝,可充分降低压缩机负荷。
参见附图13:开式内热管压缩机MK,套管式热交换器:冷凝管63、蒸发管56、回热管57及毛细管47、喷淋头58、底盘59、半球滤网60、过滤器61、小水泵62等附件。
水S管路流程:自来水S1经回热管57被加热为S2进入冷凝管63被加热为S3由浴室喷淋头58喷淋使用后流入浴缸或底盘59的底部降温为S4经过半球滤网60、过滤器61过滤后由小水泵62增压进入回热管57向S1放热降温为S5经蒸发管56向制冷剂放热降温为S6排向下水道构成开式水循环。
制冷剂管路循环:从冷凝管63流出的液态制冷剂分为二路:一路经毛细管47节流降压为P0进入蒸发管56吸热蒸发为汽态被M吸入;另一路热管回路:液态制冷剂由重力进入热管各支管吸收压缩放热和电机放热沸腾蒸发为汽态热管排气。热管排气和压缩排气合并进入冷凝管63在PK工况放热冷却为液态制冷剂流出冷凝管63……。

Claims (8)

1、一种低压差循环热泵空调机组,包括室内、外侧热交换器和连接于两者之间的压缩机,其室外机有底盘水槽(42),小循环泵出水管连接冷凝器上夹板的淋水管,吸水口通向底盘水槽(42),间歇性定时定量向淋水管供水,底盘水槽(42)的水位由连接水源的供水细管和浮球阀控制,其特征在于:
A、所述室外侧热交换器为渗水式冷凝器(J2)的热交换系统:由多层J2片(1)和多层通风翅片膜波(16)相间叠合而成被夹合紧固于上下两块和J2片形状相同的夹板和拉杆组成的框架内、上夹板有开有小孔的淋水管和开有小孔的滴水管、滴水管连接供水细管,每个J2片(1)有两根平行排列的内翅片扁管(2)、扁管(2)内插入波形内翅片(3)、内翅片(3)垂直壁面双向条形开窗(4),扁管(2)外壁轧制横向导水沟槽(14)、扁管(2)外包贴膜式蒸发面(5),扁管(2)间嵌入纵向间隔排列的长条形海绵(6)和卡片(7)、下部和左右半圆有薄铝片制成的均布渗水细孔(9)的外侧贴有膜式蒸发面的渗水托片(8);膜波(16)为波形、垂直壁面双向条形开窗(17),制作膜波(16)的复合带料(18)的骨架是用涂塑薄铝片轧制成细密的波纹骨架(19)并形成双面毛细沟槽(20),两侧面有膜式蒸发面(21);膜式蒸发面(5)、(10)、(21)用耐腐蚀吸水性纤维材料制成;
B、所述室内侧热交换器为内涡旋蒸发器(J1):其制冷剂管的内插铝芯(22)的内螺纹为长齿条(23)和短齿条(24)间隔排列,长齿条(23)沿流向β角间隔开口(25)形成锯齿,内插铝芯(22)的外壁与光铜管(26)内壁紧贴;
C、所述压缩机为内热管压缩机(M):支管(27)在定子铁芯叠片(28)的线槽(29)外侧的圆周均布、垂直穿过定子铁芯叠片(28)的支管(27)向下绕过线圈(30)、一部分垂直穿过汽缸(31)和上盖(32)、下盖(33)在紧贴汽缸(31)内壁的圆周上错开吸气管和排气阀片均布,另一部分穿过油槽孔(34),这部分支管(27)在浸油部位套有翅片(35),上圆环管(36)在顶部并联各支管(27)和连接热管排气管(38),下圆环管(37)在底部并联各支管(27)和连接热管进液管(39),支管(27)是内壁面轴向分布毛细沟槽的细圆管。
2、根据权利要求1所述的低压差循环热泵空调机组,其特征在于:所述内热管压缩机(M)在热管排气压力和M排气压力相同的等压循环中,可去除上圆环管(36)和热管排气管(38),成为开式内热管压缩机MK
3、根据权利要求1或2所述的低压差循环热泵空调机组,其特征在于:所述J2片(1)中的扁管亦可采用另一种内刺扁管(11),其内壁面有肋化尖刺(12)和分隔壁(13),外壁面轧制横向导水沟槽(14)。
4、根据权利要求3所述的低压差循环热泵空调机组,其特征在于:所述的J2片(1)可以简化为单管J2片(15)。
5、根据权利要求1所述的低压差循环热泵空调机组,其特征在于:其热管回路:热管排气经辅助散热管(41)初冷后进入浸没于底盘水槽(42)内的螺旋冷却管(43)冷却为液态介质后经热管进液管(39)进入下圆环管(37)和各支管(27)吸热沸腾蒸发为汽态介质从上圆环管(36)进入热管排气管(38)构成重力热管循环,M底部浸水:其制冷剂回路:PK的压缩排气进入J2冷凝为液态制冷剂后经毛细管(46)节流降压为P0在J1内吸热蒸发为汽态被M吸入构成循环。
6、根据权利要求1或2所述的低压差循环热泵空调机组,其特征在于:在制热运行时,经J1冷凝的液态制冷剂分为二路:热管回路,分流制冷剂在重力作用下进入各支管(27)吸热沸腾蒸发为汽态热管排气;另一路经制热毛细管(47)节流降压为P0进入J2内吸热蒸发为汽态被M吸入压缩为压缩排气,压缩排气和热管排气合并进入J1冷凝。
7、根据权利要求1所述的低压差循环热泵空调机组,其特征在于:当空调机组的循环工质为制冷剂x一吸收剂i组成的工质对时,机组运行的是热泵型8字循环,螺旋回热管(45)置于吸收剂分离罐(54)中;制冷回路:i和x组成的稀溶液i0经毛细管(46)节流降压为P0在J1内吸热浓缩为i1和汽态x经吸收剂分离罐(54),x被M吸入、i1经小液泵(55)增压送入热管各支管(27)吸热进一步浓缩为i2和汽态x1与压缩后的x合并进入J2在PK工况冷凝为稀溶液i0;制热回路:从J1流出的稀溶液i0经毛细管(47)节流降压为P0在J2吸热浓缩为i1和汽态x经吸收剂分离罐(54),x被M吸入,i1经小液泵(55)增压后送入热管各支管(27)吸热进一步浓缩为i2和气态x1与M排气x合并进入J1在PK工况冷凝为稀溶液i0
8、根据权利要求2所述的低压差循环热泵空调机组,其特征在于:所述开式内热管压缩机MK与套管式热交换器:冷凝管(63)、蒸发管(56)、回热管(57)组成热泵式热水器,水S流程:自来水S1经回热管(57)吸热为S2进入冷凝管(63)再吸热为S3经喷淋头(58)喷出流入浴缸或底盘(59)的底部降温为S4经过滤后由小水泵(62)送入回热管(57)放热为S5再进入蒸发管(56)放热为S6排出……;制冷剂回路,从冷凝管(63)流出的液态制冷剂分为二路:一路经毛细管(47)节流降压为P0进入蒸发管(56)吸热蒸发为汽态被MK吸入;另一路由重力作用进入热管各支管(27)吸热沸腾蒸发为汽态热管排气和MK排气合并进入冷凝管(63)冷凝为液态制冷剂流出……。
CNB2004101008401A 2004-12-07 2004-12-07 低压差循环热泵空调机组 Expired - Fee Related CN100483044C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB2004101008401A CN100483044C (zh) 2004-12-07 2004-12-07 低压差循环热泵空调机组
PCT/CN2005/002092 WO2006060953A1 (fr) 2004-12-07 2005-12-05 Climatiseur a pompe a chaleur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004101008401A CN100483044C (zh) 2004-12-07 2004-12-07 低压差循环热泵空调机组

Publications (2)

Publication Number Publication Date
CN1786621A true CN1786621A (zh) 2006-06-14
CN100483044C CN100483044C (zh) 2009-04-29

Family

ID=36577662

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004101008401A Expired - Fee Related CN100483044C (zh) 2004-12-07 2004-12-07 低压差循环热泵空调机组

Country Status (2)

Country Link
CN (1) CN100483044C (zh)
WO (1) WO2006060953A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162458A (zh) * 2011-12-14 2013-06-19 童夏民 低压差冷缸循环的应用
EP2851633A4 (en) * 2012-04-09 2016-03-02 Daikin Ind Ltd AIR CONDITIONING
CN108150391A (zh) * 2018-01-12 2018-06-12 珠海凌达压缩机有限公司 压缩机及制冷循环装置
CN110822879A (zh) * 2019-11-27 2020-02-21 江苏天舒电器有限公司 一种基于非共沸混合工质热泵系统的烘干除湿方法
CN112564356A (zh) * 2020-10-28 2021-03-26 西安交通大学 一种电机具有冷却通道的电动涡旋压缩机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103550941B (zh) * 2013-11-15 2014-12-31 厦门绿邦膜技术有限公司 一种低温蒸发浓缩装置及高浓度废水浓缩方法
TWI635244B (zh) * 2015-12-02 2018-09-11 國立臺灣師範大學 Energy-saving compressor
CN108518338B (zh) * 2018-06-04 2024-05-17 黄石东贝压缩机有限公司 制冷压缩机及制冷设备
CN111481957B (zh) * 2020-05-21 2023-07-25 江西依思特香料有限公司 一种香精香料提取用快速冷凝装置
EP4145062A1 (en) * 2021-09-07 2023-03-08 BSH Hausgeräte GmbH Heat pump system with improved compressor cooling and process for operating the heat pump system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938035A (en) * 1987-10-20 1990-07-03 Khanh Dinh Regenerative fresh-air air conditioning system and method
JPH06101922A (ja) * 1992-09-17 1994-04-12 Daikin Ind Ltd ビルマイヤヒートポンプ装置
CN1110394A (zh) * 1994-04-04 1995-10-18 吉阿明 空气能8字循环空调机-微分冷谷管应用
CN1094581C (zh) * 1996-04-04 2002-11-20 童夏民 一种空调机

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162458A (zh) * 2011-12-14 2013-06-19 童夏民 低压差冷缸循环的应用
EP2851633A4 (en) * 2012-04-09 2016-03-02 Daikin Ind Ltd AIR CONDITIONING
US9488399B2 (en) 2012-04-09 2016-11-08 Daikin Industries, Ltd. Air conditioning apparatus
CN108150391A (zh) * 2018-01-12 2018-06-12 珠海凌达压缩机有限公司 压缩机及制冷循环装置
CN110822879A (zh) * 2019-11-27 2020-02-21 江苏天舒电器有限公司 一种基于非共沸混合工质热泵系统的烘干除湿方法
CN110822879B (zh) * 2019-11-27 2021-01-26 江苏天舒电器有限公司 一种基于非共沸混合工质热泵系统的烘干除湿方法
CN112564356A (zh) * 2020-10-28 2021-03-26 西安交通大学 一种电机具有冷却通道的电动涡旋压缩机

Also Published As

Publication number Publication date
CN100483044C (zh) 2009-04-29
WO2006060953A1 (fr) 2006-06-15

Similar Documents

Publication Publication Date Title
CN2715029Y (zh) 全热回收空调机组
CN1094581C (zh) 一种空调机
CN102022794B (zh) 热湿独立处理辐射吊顶供冷系统
CN102216722A (zh) 具有微通道热交换器的冷却系统
CN100483044C (zh) 低压差循环热泵空调机组
CN102393054A (zh) 一种空调热水系统
WO2020029582A1 (zh) 空气源热泵空调器用无风机且内置蓄热介质的室内换热器
CN102721133B (zh) 自冷式固体干燥剂降温除湿空调系统
CN1534255A (zh) 一种新型多功能良性循环空调器
CN2713359Y (zh) 全热回收新风空调机
CN206609081U (zh) 一种医用热泵式综合处理新风机组
CN217584650U (zh) 除湿机
CN203053291U (zh) 一种平行流蒸发器用微通道扁管
CN215930654U (zh) 一种分离式重力热管换热系统
CN1170088C (zh) 利用水液气二相变化进行复式热移转的空调系统
CN1554920A (zh) 热管导冷装置及带有该装置的蓄冷体和冷库
CN201569342U (zh) 一种新型间接蒸发冷却器
CN202835741U (zh) 一种热泵空调器及其室外换热器
CN106338119A (zh) 回流式蒸发冷却冷水机组
CN201407764Y (zh) 水蒸发制冷空气调节器
CN2775568Y (zh) 一种蒸发式冷凝器
CN205561170U (zh) 蒸发式溶液热回收空气处理装置
CN203771809U (zh) 一种复合结构湿膜表冷器
CN109114714A (zh) 一种水份蒸发装置及分体式空调
CN221036030U (zh) 一种套管式露点间接蒸发冷却器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Free format text: FORMER OWNER: JI AMING

Owner name: GUOBAO AIR CONDITIONING (CHINA) CO., LTD.

Free format text: FORMER OWNER: TONG XIAMIN

Effective date: 20110225

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 200232 ROOM 101, NO.17, LANE 50, YUNJIN ROAD, XUHUI DISTRICT, SHANGHAI TO: 223005 NO.1, GUOBAO ROAD, HUAIAN ECONOMIC DEVELOPMENT ZONE, JIANGSU PROVINCE

TR01 Transfer of patent right

Effective date of registration: 20110225

Address after: The 223005 Jiangsu Economic Development Zone of Huaian province of China No. 1 Po

Patentee after: National treasure air conditioner (China) Co., Ltd.

Address before: 200232 Shanghai city Xuhui District Yunjin Road 50 Lane No. 101 room 17

Co-patentee before: Ji Aming

Patentee before: Tong Xiamin

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090429

Termination date: 20131207