CN100471992C - 半导体制作反应器 - Google Patents

半导体制作反应器 Download PDF

Info

Publication number
CN100471992C
CN100471992C CNB028238834A CN02823883A CN100471992C CN 100471992 C CN100471992 C CN 100471992C CN B028238834 A CNB028238834 A CN B028238834A CN 02823883 A CN02823883 A CN 02823883A CN 100471992 C CN100471992 C CN 100471992C
Authority
CN
China
Prior art keywords
pedestal
reactor
reaction chamber
chip
air intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB028238834A
Other languages
English (en)
Other versions
CN1596325A (zh
Inventor
S·迪巴尔司
中村修二
麦克康特
M·巴特雷斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Lighting Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree Lighting Co filed Critical Cree Lighting Co
Publication of CN1596325A publication Critical patent/CN1596325A/zh
Application granted granted Critical
Publication of CN100471992C publication Critical patent/CN100471992C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种半导体制作反应器包括装在反应室顶部且可旋转的基座。一或多个芯片装在基座表面,基座旋转使芯片旋转。加热器加热基座,入气口使半导体生长气体进入反应室。出气口使生长气体离开反应室。入气口位于或低于芯片水平面,而出气口位于或高于芯片水平面。一种半导体制作系统包括在芯片上形成磊晶层的气体源以及在磊晶层中掺杂物的气体源。气体管让源气体经入气口注入反应室。反应器包括装在反应室可旋转的倒置基座。一或多个芯片装在基座表面上,基座旋转使芯片旋转。加热器加热基座,而源气体使半导体物质沉积在芯片上。

Description

半导体制作反应器
技术领域
本发明涉及制作半导体器件,更具体地说,涉及利用有机金属化学气相沉积(MOCVD)制作半导体器件的装置。
背景技术
很多半导体器件可利用不同的物料系统在有机金属化学气相沉积(MOCVD)系统中制作,MOCVD系统目前被用于制作以第III族氮化物为基的器件。以第III族氮化物为基的半导体器件在MOCVD系统中的生长,在Academic Press Inc.出版的《Semiconductors and Semimetals》(半导体和半金属),1997年第50卷第11-35页,DenBaars and Keller所着一文中有所描述。制作第III族氮化物器件中的很重要的一点是:在器件层中形成具有最少杂质的均匀物质且同时在各层之间存在明显交接口的能力。杂质和各层之间的劣质接口会负面影响器件性能,而且会妨碍一致性复制半导体器件。
一些通常的多芯片MOCVD反应器利用安装在反应室底部的可旋转基座(参阅由Emcore Inc.提供的《Emcore Discover and Enterprise Series of the TurboDiscTools》)。半导体芯片保持在基座的上表面,一加热装置设置在基座下方,以加热基座和芯片。反应物生长气体进入反应器以在芯片上沉积所需物质,同时基座旋转,以使芯片上的沉积更均匀。
这些通常的MOCVD反应器的一个缺点是:由于将基座加热,导致在芯片和基座上方形成边界层较大且厚度不均匀的热空气。在生长期间,基座的热量使得气体上升,各边界层延长展至反应室的上表面。通常经上部入气口将反应物生长气体注入反应室。在较低温度下,生长气体遇到热气体时会发生热对流,这会在反应器内产生湍流。该湍流将导致物质在芯片上不均匀沉积。沉积气体也难以穿透较大边界层,结果,大部分沉积气体不能沉积在芯片。这就得增大形成所需半导体器件所必须的沉积气体量。
基座上方大的边界层亦可能限制基座的旋转速度。随着经加热的基座的旋转速度加快,边界层会产生湍流,其会加大由较低温度生长气体的对流力形成的湍流,从而使得器件层更加不均匀。
通常的MOCVD反应器的另一个缺点是:未在芯片(或基座)上沉积的生长气体可能沉积在基座上面反应室的侧壁或上表面上。这些沉积可能会负面影响反应器生长优良品质层的能力。沉积物可与各后成层的气体反应,并在制作期间再次沉积在芯片上。沉积物可能作为杂质介于后成的层中,且沉积物会降低各层间的尖锐度。这最终会限制反应器精确再制半导体器件的能力。
生长第III-V族化合物半导体物质所用的金属有机物气相外延生长(MOVPE)系统,在《晶体生长期刊(Journal of Crystal Growth)》170,第88-91页(1997),Aria等人作着的“低压MOVPE多芯片系统上的高均匀生长(Highly Uniform Growth on aLow-Pressure MOPVE Multiple Wafer System)”一文中作了描述。将芯片保持在一基座中且向下放置(倒置)于生长室中,同时使流动气体在生长表面下流动。基座旋转,由此使芯片旋转以获得更均匀生长。自室的一侧壁通过一三重流动信道将气体注入该室,而气体自相对的侧壁上排出。第V族物类(氢气)和载气H2、第III族物类(有机金属)和载气H2以及净化气体分别通过三重流动信道的上、中及下信道流入反应器。
该系统的一个缺点是:由于流动信道入气口位于一室的侧壁上,而出气口则位于大致相同高度的相对侧壁上,气流在入气口和出气口之间通过。有些气体可能会流过该室,而没有机会在芯片上沉积反应物。而且,芯片的前缘经受具有最高含量反应物的气体,使得整个芯片上的沉积不均匀。
《晶体生长期刊》125,第311-319页(1992),由侯斯坦(Holstein)所着的“烟囱CVD反应器模型(Modeling of Chimney CVD Reactors)”一文对“烟囱”化学蒸气沉积(CVD)反应器的液流及质传作了讨论。烟囱反应器具有保持在经加热的基座(通常为两个)上的芯片,所述基座垂直安装在反应器内侧壁上。烟囱反应器设计的目的是为了在基座附近产生向上的对流气流,有助于加速突变异质结生长的气体快速转换。含反应物的冷载气在反应器底部进入并向上流入经加热区域。
该设计的一个缺点是:非对称流动条件使主要气流位于反应器一侧附近,而反向流则在另一侧附近。这使得两个基座产生不同的沉积速率。而且,对于向上的气流,由于反应物损耗,基座前缘的生长速率均匀性比其后缘的大得多。
《晶体生长期刊》第120-127页(1986),由Lee等人撰写的“倒置停滞点流中的MOCVD(MOCVD in Inverted Stagnation Point Flow)”一文中也对MOCVD反应器中以GaAs为基的半导体器件生长作了讨论。反应器是以倒置停滞点流几何学为基础,其中反应物向上流向被夹持在一倒置的经加热基座上的芯片。然而,该反应器为停滞流,由于基座不旋转,从而减小器件层的均匀性。
发明内容
本发明寻求提供一种制作半导体器件、特别是在MOCVD反应器中制作半导体器件的改良方法及装置。根据本发明的半导体制作反应器的一个具体实施例包括一安装在反应室顶部的可旋转基座,所述基座具有一面向下的表面。一或多个芯片安装在基座的面向下表面上,基座旋转使芯片在室内旋转。一加热器加热基座,一反应室入气口允许半导体生长气体进入反应室,以在该芯片上沉积半导体物质。入气口最好是处于或低于所述面向下表面的水平面。还可包括一室气体出气口,以使生长气体离开该室。出气口最好完全高于该面向下表面的水平面。
根据本发明的另一个具体实施例包括一种半导体制作系统,该系统包括一用于在芯片上形成磊晶层的气体源以及一用于该磊晶层内掺杂物的气体源。气体管线将掺杂物和磊晶源气体载送到用于在芯片上生长半导体器件的反应器,并将气体管线中的源气体通过一反应器入气口注入该反应器。反应器包括一个装置在反应室内能够旋转的倒置基座。一或多个芯片装在基座的表面上,基座旋转使芯片在室内旋转。一加热器加热基座,源气体使半导体物质沉积在芯片上。一室出气口可使生长气体离开该室。在一个较佳实施例中,入气口处于或低于该芯片水平面,而出气口高于该芯片水平面。
在根据本发明的一个较佳具体实施例中,基座具有一面对该室底部的面向下的表面。如下文所述,藉由倒置芯片使边界层深度减小,从而在较低温度生长气体遇到边界层时减小所产生的湍流。生长气体亦可更容易穿透边界层,且基座可以较高旋转速率旋转。此设计亦有助于减少半导体物质中自反应室内沉积物引入的杂质含量。
较佳地,所述面向下的表面对着所述反应室的底部。
较佳地,所述入气口通过所述反应室的底部。
较佳地,所述入气口是一个通过所述反应室底部的淋浴头式入口,所述淋浴头式入口具有多个孔口,以使所述生长气体进入所述反应室。
较佳地,所述反应器还包括一与所述反应室顶部连接的旋转杆,所述基座固定在所述旋转杆上,旋转所述旋转杆使所述基座在所述反应室内旋转。
较佳地,所述旋转杆是空心的,所述基座一表面具有与所述杆对齐的中心入气口,所述生长气体通过所述杆及中心入气口进入所述反应室。
较佳地,所述入气口通过所述反应室的一侧壁。
较佳地,所述基座可向上和向下移动,以改变所述入气口和所述基座之间的距离。
较佳地,所述基座的角度可作调节,以调节所述入气口和所述基座之间的角度。
较佳地,所述入气口的角度可作调节,以调节所述入气口和所述基座之间的角度。
以下,将结合附图对本发明的具体实施例作详细描述,而这些或其它的特征和优点对本领域的技术人员来说将变得更为清楚。
附图说明
图1为根据本发明的一个MOCVD半导体制作系统的实施例的简图;
图2为根据本发明的一个反应器的实施例的剖视图;
图3为根据本发明的另一个具有中心旋转杆入气口的反应器的实施例的剖视图
图4为根据本发明的一个能够用于图3中反应器的基座的下部立体视图;
图5为根据本发明的另一个具有中心底部入气口的反应器的实施例的剖视图;
图6为根据本发明的另一个具有底部淋浴头式入气口的反应器的实施例的剖视图;
图7为根据本发明的另一个具有侧壁入气口的反应器的实施例的剖视图;及
图8为根据本发明的另一个具有可调节高度的基座的反应器的实施例的剖视图
具体实施方式
根据本发明的具有倒置基座的MOCVD反应器可用于很多不同的半导体制作系统,特别是适用于图1中所示种类的MOCVD制作系统。MOCVD是一种非平衡生长技术,该技术依赖于前质(precursors)的蒸气输送以及第III族烷基化物及第V族氢化物随后在经加热区域中的反应。藉由控制流体速率以及向MOCVD反应器的气流各组分的稀释来控制组合物和生长速率。
第III族有机金属生长气体源既可以是液体(如三甲基镓(TMGa)和三甲基铝(TMA1)),也可以是固体(如三甲基铟(TMIn))。有机金属源贮存在载气(一般为氢气)流动通过的打泡器中。打泡器温度控制源物质的蒸气压力。载气会与来自有机金属源的蒸气饱和,并将蒸气输送到经加热的基材。
第V族生长气体源最通常为气态氢化物,例如,氮化物生长所用的NH3。掺杂物质可以是金属有机前质[二乙基锌(DEZn)、圆弧菌素二烯基镁(cyclopenin dienylmagnesium)(Cp2Mg)j或氢化物(硅烷或二硅烷)]。将生长气体和掺杂物供应到反应器,并使它们在基材或芯片上沉积为磊晶层。将一或多个芯片保持在一种称为基座的石墨结构上,该石墨结构可由射频(RF)线圈加热、电阻加热或电热丝式加热器辐射加热,而石墨结构本身再对芯片依次加热。
MOCVD半导体制作系统10包括一个反应室12,该室12具有装置在反应室12顶部且倒置的基座14。基座14能够保持多个芯片16,诸芯片可由很多不同物质制成,如,蓝宝石、硅(Si)、碳化硅(SiC)、氮化镓铝(AlGaN)、砷化镓(GaAs)。对于以第III族氮化物为基的半导体器件,较佳的芯片是由SiC制成,因为与其它物质比较,其对第III族氮化物具有更接近的晶体点阵匹配,这会产生较高品质的第III族氮化物薄膜。SiC亦具有很高导热性,使得SiC上第III族氮化物器件的总输出功率不受芯片的热耗散限制。使用半绝缘SiC芯片还提供器件隔离能力和减少寄生电容,这使器件商品化成为可能。SiC基材可自北卡洛来纳州德班的克瑞公司购得(Cree,Inc.,of Durham,North Carolina),其制作方法阐述于科学文献第Re.34,861号以及美国专利第4,946,547号及第5,200,022号。
在生长期间,基座14用加热器18加热,使芯片16保持在预定温度。温度一般在400至1200摄氏度(℃)之间,但可依所需生长类型更高或更低。加热器18可以是任何上列的加热装置,但通常为射频(RF)或电阻线圈。
将氢和氮载气20供应到气体管线22。载气20亦通过质流控制器24a-24c供应到各打泡器26a-26c。打泡器26a可具有上述的第III族有机金属源。打泡器26b和26c亦可包含类似的能够生长第III族化合物的合金的有机金属化合物。藉由载气20将有机金属化合物载送到反应室12之前,一般由恒温浴28a-28c使打泡器26a-26c保持在预定温度,以确保该有机金属化合物的蒸气压力恒定。
打开所需的阀30a-30c组合,使通过打泡器26a-26c的载气20与气体管线22内流动的载气20混合。然后,将经混合的气体通过一入气口32引入反应室12,入气口可位于反应器上的不同位置,但在系统10中位于室12的底部。
含氮气体34(如,氨)通过一质流控制器36供应到气体管线22,含氮气体流量由阀38控制。如果将载气20与含氮气体34混合,且将气体管线22内的有机金属蒸气引入反应室12,则元素则会通过有机金属和含氮气体中的分子热分解而在基材16上生长氮化镓。
为在芯片16上掺杂氮化镓合金,可使打泡器26a-26c其中一个不用于有机金属化合物,而用于掺杂物质。可使用很多不同掺杂物质,诸如:铍、钙、锌或碳,较佳的物质是镁(Mg)或硅(Si)。可将打泡器26b或26c用于合金物质,如硼、铝、铟、磷、砷或其它物质。一旦选定掺杂物和/或合金,就可打开适当的阀30a-30c,以使掺杂物随同有机金属及含氮气体34流入气体管线22,在基材16上即可生长氮化镓的掺杂层。
可通过气体净化管线40来净化反应室12内的气体,且净化管线40与一可在液压下工作的泵42连接。另外,净化阀44可建立或消除反应室12的气体压力。
一般通过关闭阀30a-30c来切断有机金属及掺杂物源而使生长制程停止,并保持含氮气体36及载气20流动。或者,使用可受控于质流控制器48和阀50的气体46来净化反应室12。为帮助净化,将阀44打开,以使泵42抽掉反应室12的过量生长气体。一般来说,净化气体46是氢气,但亦可以是其它气体。关闭加热器18的电源,然后冷却基材16。
图2显示了根据本发明的一个MOCVD反应器60的具体实施例。反应器60可用于以不同物质系统制作很多不同的半导体器件,特别是可用于在一MOCVD制作系统中,以第III族氮化物质系统及其合金制作器件。
反应器60包括一个具有基座64的反应室62,该基座被倒置安装在反应器的顶部表面66。基座64可由很多导热材料制成,适合的材料是石墨。半导体芯片68装在面对室底部表面72的基座下表面70上,基座一般可安装大约6个3英寸至18个2英寸的芯片。诸芯片可用很多不同的方式装在基座表面70,这些方式包括(但不限于):安装面板、板夹、线夹、黏着剂、带等。
基座64藉由能够旋转的旋转杆74保持在反应室60内,以使基座64也旋转。使用一加热器80加热基座,该加热器设置在基座64和室顶部表面之间。加热器80可以是上述的任何加热装置,但通常为射频(RF)线圈或电阻线圈。当加热器80加热基座64时,基座表面70和芯片68上方形成热空气边界层82。在芯片68上生长半导体物质期间,生长气体可以很多不同方式通过室62的不同壁而进入该室。
由于倒置基座,边界层82的深度相比通常底部具有基座的反应室的要小。基座64被加热产生热空气时,加热的气体上升。因此,边界层82由于热空气上升而对基座64和芯片68紧压。当较低温度的生长气体遇到边界层82时,所减小的边界层高度使所产生的湍流减小,这会使得芯片68上的沉积物质更均匀。生长气体亦可更容易穿透边界层82,结果使大部分生长气体沉积在芯片68上。这会减少形成所需半导体器件必须的沉积气体量。
减小的边界层亦减小基座64旋转时可能发生的空气对流。因此,基座64相比通常设置的基座的旋转快得多。在反应器10中,基座每分钟旋转可以高于100转并达至数千转。
减小的边界层82亦可在反应室压力增加的情况下使沉积气体沉积在芯片68上,更有利于高效制作。取决于制作中的器件,压力可低于1/8个大气压,至高于10个大气压。
基座倒置设置的另一个优点是,大部分未在芯片上沉积的生长气体上升通过基座64朝向室62的顶部。这些气体可能在基座后面、室62的侧壁和顶部表面上形成沉积物84。这些沉积物与随后的生长气体相互作用而将杂质引入沉积在芯片68上的物质中的可能性较小,因为生长气体只有经过芯片才会遇到这些沉积物。也即是说,只有当气体经过的地点又在芯片上沉积反应物时才会遇到这些杂质。未在芯片或反应器壁上沉积的气体可通过一顶部出气口离开该室,当然,出气口可设在室中不同的位置。
图3显示了根据本发明的一个类似于图2中反应器60的MOCVD反应器90的具体实施例。该反应器具有一空心旋转杆92,以使沉积气体能够通过旋转杆92进入反应室94。
图4显示了一个能够用于反应器90的基座96,该基座包括一中心入气口98,该入气口可使气体自旋转杆92通过基座96进入反应室94。在基座96旋转时,来自入气口的气体被抽吸到基座的周边,一些生长气体会沿此方向沉积在芯片100上。未沉积在芯片的气体终止于基座96边缘,并被向上抽到室的顶部表面102。如上所述,这些气体可在室的侧壁108a、108b的内侧以及该室顶部表面102的内侧上,也即是在基座96的下游和后面,形成沉积物106。如上所述,这些沉积物可能会对以后各层的制作造成不利影响。气体可通过一出气口110离开反应室94,该出气口最好设置在反应室的顶部,可促进气流通过芯片再到达室的顶部。
图5显示了根据本发明的另一个MOCVD反应器120的具体实施例,其中,生长气体通过一底部中心入气口124进入室122,该入气口指向旋转基座128上的芯片126。生长气体朝向基座128上升,从而使气体沉积在芯片126上。如同图3中的具体实施例,未沉积在芯片126上的所有气体被抽吸通过基座128,这些气体可在室的侧壁132a、132b的内侧以及该室的顶部表面134的内侧形成沉积物130。该反应器亦具有一顶部出气口136。
图6显示了根据本发明的另一个MOCVD反应器140的具体实施例,其中,生长气体通过一底部“淋浴头”式入口144进入反应室142。入口144具有多个孔口145,以供生长气体通过而进入该室,气体在此朝向旋转基座148上的芯片146上升。入口144中的各孔口145为生长气体较均匀地施加到整个基座148提供保证,从而也保证半导体物质较均匀地沉积在芯片146上。如上面一样,未沉积在芯片上的气体被引向下游,而且,如果它们未在反应室142的壁上沉积,则可通过顶部出气口149离开该室
图7显示了根据本发明的另一个MOCVD反应器150的具体实施例,其中,生长气体通过一侧壁入气口154进入反应室152。如上面一样,未沉积在旋转基座158上面的芯片156上的气体被引向下游,在此,它们能够在反应器的壁内侧上形成沉积物159。反应器亦可具有一顶部出气口160,该设置可使气体自入气口154通向室152的顶部。生长气体向基座158上升,在此,半导体物质可沉积在芯片156上。
图8显示了根据本发明的另一个MOCVD反应器170的具体实施例,该反应器包括一反应室171、旋转基座172、基座上的芯片174以及淋浴头式入气口175,所有这些部件均与图6中反应器140中的相似。更重要的是,反应器170以与图6中反应器140相同的方式工作。然而,在反应器170中,基座172藉由一杆178装置在反应器的顶部表面176,杆178可以箭头177a、177b所示方向移动,以调节淋浴头式入口175和基座172之间的距离。这种调节可改变与芯片174反应的生长气体中的反应物的含量,从而改变半导体的生长条件和速率。
图8还显示了,基座172可以箭头178a、178b所示的方向作进一步调节,以改变基座172和入气口175之间的角度。同样,入气口175的角度可以箭头179a、179b所示的方向作调节,从而调节基座172和入气口175之间的角度。这些调节也可改变芯片174上的半导体的生长条件和速率。亦可将可移动基座的设置以及可调节基座和入气口角度的设置用于反应器60、120、150,在这些反应器上分别具有通过基座的入气口、一底部入气口及一侧部入气口。各反应器可以包括这些调节选项中的一个或是全部。
虽然已关于一些较佳配置对本发明作了相当详细的描述,但其它改型亦是可能的。可使用很多不同的入气口、出气口及基座。入气口和出气口可设置在很多不同的位置。根据本发明的反应器可用在很多不同的半导体制作系统中以不同物质系统生长很多不同的半导体器件。因此,本发明的精神及范围不应限于以上说明书或以下专利保护范围中的较佳型式。

Claims (6)

1.一种半导体制作反应器,该反应器包括:
一装在一反应室(62)顶部的可旋转基座(64),所述基座(64)具有一面向下的表面(70);
一或多个装在所述基座的面向下表面上的芯片(68),旋转所述基座(64)可使所述芯片(68)在所述反应室(62)内旋转;
一加热所述基座(64)的加热器(80);
一反应室入气口(154),使半导体生长气体进入所述反应室(62),以在所述芯片(68)上沉积半导体物质,所述入气口(98)位于或低于所述面向下表面的水平面;及
一反应室出气口(160),其排列使得气体离开所述反应室(62),所述出气口完全高于所述面向下表面的水平面,
其中,所述入气口(154)通过所述反应室(62)的一侧壁。
2.如权利要求1所述的反应器,其特征在于,所述面向下的表面(70)对着所述反应室(62)的底部。
3.如权利要求1所述的反应器,其特征在于,所述反应器还包括一与所述反应室(62)顶部连接的旋转杆(74),所述基座(64)固定在所述旋转杆(74)上,旋转所述旋转杆(74)使所述基座(64)在所述反应室内旋转。
4.如权利要求1所述的反应器,其特征在于,所述基座(64)可向上和向下移动,以改变所述入气口(154)和所述基座(64)之间的距离。
5.如权利要求1所述的反应器,其特征在于,所述基座(64)的角度可作调节,以调节所述入气口(154)和所述基座(64)之间的角度。
6.如权利要求1所述的反应器,其特征在于,所述入气口(154)的角度可作调节,以调节所述入气口(154)和所述基座(64)之间的角度。
CNB028238834A 2001-09-29 2002-09-27 半导体制作反应器 Expired - Lifetime CN100471992C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32563701P 2001-09-29 2001-09-29
US60/325,637 2001-09-29

Publications (2)

Publication Number Publication Date
CN1596325A CN1596325A (zh) 2005-03-16
CN100471992C true CN100471992C (zh) 2009-03-25

Family

ID=23268745

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028238834A Expired - Lifetime CN100471992C (zh) 2001-09-29 2002-09-27 半导体制作反应器

Country Status (9)

Country Link
US (1) US8133322B2 (zh)
EP (1) EP1432844B1 (zh)
JP (1) JP2005528777A (zh)
KR (1) KR20040047874A (zh)
CN (1) CN100471992C (zh)
CA (1) CA2462102A1 (zh)
MY (1) MY148924A (zh)
TW (1) TWI322462B (zh)
WO (1) WO2003029516A1 (zh)

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122844B2 (en) 2002-05-13 2006-10-17 Cree, Inc. Susceptor for MOCVD reactor
KR100505056B1 (ko) * 2003-01-02 2005-07-29 삼성전자주식회사 반도체 장치의 복합막 형성 방법과, 이를 이용한 커패시터및 게이트 절연막 형성 방법
WO2004068556A2 (en) * 2003-01-27 2004-08-12 Amberwave Systems Corporation Semiconductor structures with structural homogeneity
US8366830B2 (en) * 2003-03-04 2013-02-05 Cree, Inc. Susceptor apparatus for inverted type MOCVD reactor
JP2006169601A (ja) * 2004-12-17 2006-06-29 Tokyo Electron Ltd 成膜装置及び成膜方法
US8052794B2 (en) * 2005-09-12 2011-11-08 The United States Of America As Represented By The Secretary Of The Navy Directed reagents to improve material uniformity
US8628622B2 (en) * 2005-09-12 2014-01-14 Cree, Inc. Gas driven rotation apparatus and method for forming crystalline layers
JP4945185B2 (ja) * 2006-07-24 2012-06-06 株式会社東芝 結晶成長方法
JP5063969B2 (ja) * 2006-09-29 2012-10-31 東京エレクトロン株式会社 蒸着装置、蒸着装置の制御装置、蒸着装置の制御方法および蒸着装置の使用方法
JP5347294B2 (ja) * 2007-09-12 2013-11-20 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
JP5464753B2 (ja) * 2007-12-06 2014-04-09 インテバック・インコーポレイテッド 基板を両面スパッタエッチングするシステム及び方法
WO2010065163A2 (en) * 2008-06-05 2010-06-10 Soraa, Inc. Highly polarized white light source by combining blue led on semipolar or nonpolar gan with yellow led on semipolar or nonpolar gan
US20090309127A1 (en) * 2008-06-13 2009-12-17 Soraa, Inc. Selective area epitaxy growth method and structure
US8847249B2 (en) * 2008-06-16 2014-09-30 Soraa, Inc. Solid-state optical device having enhanced indium content in active regions
US20100006873A1 (en) * 2008-06-25 2010-01-14 Soraa, Inc. HIGHLY POLARIZED WHITE LIGHT SOURCE BY COMBINING BLUE LED ON SEMIPOLAR OR NONPOLAR GaN WITH YELLOW LED ON SEMIPOLAR OR NONPOLAR GaN
US8805134B1 (en) 2012-02-17 2014-08-12 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8143148B1 (en) 2008-07-14 2012-03-27 Soraa, Inc. Self-aligned multi-dielectric-layer lift off process for laser diode stripes
US8259769B1 (en) 2008-07-14 2012-09-04 Soraa, Inc. Integrated total internal reflectors for high-gain laser diodes with high quality cleaved facets on nonpolar/semipolar GaN substrates
EP2319086A4 (en) 2008-08-04 2014-08-27 Soraa Inc WHITE LIGHTING DEVICES WITH NON POLAR OR SEMI-POLAR GALLIUM-HARDENED MATERIALS AND INFLUENCES
US8284810B1 (en) 2008-08-04 2012-10-09 Soraa, Inc. Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods
JP5544697B2 (ja) * 2008-09-30 2014-07-09 東京エレクトロン株式会社 成膜装置
US8252662B1 (en) 2009-03-28 2012-08-28 Soraa, Inc. Method and structure for manufacture of light emitting diode devices using bulk GaN
US7758843B1 (en) * 2009-04-01 2010-07-20 U.S. Department Of Energy Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method
US8242522B1 (en) 2009-05-12 2012-08-14 Soraa, Inc. Optical device structure using non-polar GaN substrates and growth structures for laser applications in 481 nm
CN102396083B (zh) 2009-04-13 2015-12-16 天空激光二极管有限公司 用于激光器应用的使用gan衬底的光学装置结构
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8634442B1 (en) 2009-04-13 2014-01-21 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US8254425B1 (en) 2009-04-17 2012-08-28 Soraa, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8294179B1 (en) 2009-04-17 2012-10-23 Soraa, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8416825B1 (en) 2009-04-17 2013-04-09 Soraa, Inc. Optical device structure using GaN substrates and growth structure for laser applications
US8247887B1 (en) 2009-05-29 2012-08-21 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US8427590B2 (en) 2009-05-29 2013-04-23 Soraa, Inc. Laser based display method and system
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US20110056429A1 (en) * 2009-08-21 2011-03-10 Soraa, Inc. Rapid Growth Method and Structures for Gallium and Nitrogen Containing Ultra-Thin Epitaxial Structures for Devices
US8314429B1 (en) 2009-09-14 2012-11-20 Soraa, Inc. Multi color active regions for white light emitting diode
US8750342B1 (en) 2011-09-09 2014-06-10 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US8355418B2 (en) 2009-09-17 2013-01-15 Soraa, Inc. Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates
US8933644B2 (en) 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
WO2011035265A1 (en) 2009-09-18 2011-03-24 Soraa, Inc. Power light emitting diode and method with current density operation
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US20110182056A1 (en) * 2010-06-23 2011-07-28 Soraa, Inc. Quantum Dot Wavelength Conversion for Optical Devices Using Nonpolar or Semipolar Gallium Containing Materials
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US9927611B2 (en) 2010-03-29 2018-03-27 Soraa Laser Diode, Inc. Wearable laser based display method and system
US8451876B1 (en) 2010-05-17 2013-05-28 Soraa, Inc. Method and system for providing bidirectional light sources with broad spectrum
US8816319B1 (en) 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US8975615B2 (en) 2010-11-09 2015-03-10 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment of contact regions of gallium and nitrogen containing material
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US9318875B1 (en) 2011-01-24 2016-04-19 Soraa Laser Diode, Inc. Color converting element for laser diode
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
US9236530B2 (en) 2011-04-01 2016-01-12 Soraa, Inc. Miscut bulk substrates
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US9646827B1 (en) 2011-08-23 2017-05-09 Soraa, Inc. Method for smoothing surface of a substrate containing gallium and nitrogen
US8971370B1 (en) 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US9020003B1 (en) 2012-03-14 2015-04-28 Soraa Laser Diode, Inc. Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates
US9343871B1 (en) 2012-04-05 2016-05-17 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9800016B1 (en) 2012-04-05 2017-10-24 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US10559939B1 (en) 2012-04-05 2020-02-11 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US8971368B1 (en) 2012-08-16 2015-03-03 Soraa Laser Diode, Inc. Laser devices having a gallium and nitrogen containing semipolar surface orientation
CN103305906A (zh) * 2013-06-08 2013-09-18 光垒光电科技(上海)有限公司 外延沉积氮化iii族或氮化ii族材料的反应腔室
US9166372B1 (en) 2013-06-28 2015-10-20 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US9276190B2 (en) 2013-10-01 2016-03-01 The Pen Practical method of producing an aerogel composite continuous thin film thermoelectric semiconductor material by modified MOCVD
US9379525B2 (en) 2014-02-10 2016-06-28 Soraa Laser Diode, Inc. Manufacturable laser diode
US9368939B2 (en) 2013-10-18 2016-06-14 Soraa Laser Diode, Inc. Manufacturable laser diode formed on C-plane gallium and nitrogen material
US9520695B2 (en) 2013-10-18 2016-12-13 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser device having confinement region
US9362715B2 (en) 2014-02-10 2016-06-07 Soraa Laser Diode, Inc Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US9209596B1 (en) 2014-02-07 2015-12-08 Soraa Laser Diode, Inc. Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates
US9520697B2 (en) 2014-02-10 2016-12-13 Soraa Laser Diode, Inc. Manufacturable multi-emitter laser diode
US9871350B2 (en) 2014-02-10 2018-01-16 Soraa Laser Diode, Inc. Manufacturable RGB laser diode source
CN103882409B (zh) * 2014-03-13 2016-04-20 中国科学院半导体研究所 源输送混合比可调气路装置
US9881788B2 (en) 2014-05-22 2018-01-30 Lam Research Corporation Back side deposition apparatus and applications
US9564736B1 (en) * 2014-06-26 2017-02-07 Soraa Laser Diode, Inc. Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode
CN106663604B (zh) * 2014-07-03 2021-01-26 应用材料公司 旋转批量外延系统
US9246311B1 (en) 2014-11-06 2016-01-26 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US9653642B1 (en) 2014-12-23 2017-05-16 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes
US9666677B1 (en) 2014-12-23 2017-05-30 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing devices
US9748113B2 (en) 2015-07-30 2017-08-29 Veeco Intruments Inc. Method and apparatus for controlled dopant incorporation and activation in a chemical vapor deposition system
US10938182B2 (en) 2015-08-19 2021-03-02 Soraa Laser Diode, Inc. Specialized integrated light source using a laser diode
US10879673B2 (en) 2015-08-19 2020-12-29 Soraa Laser Diode, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package
US11437774B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. High-luminous flux laser-based white light source
US11437775B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. Integrated light source using a laser diode
DE202016104588U1 (de) 2015-09-03 2016-11-30 Veeco Instruments Inc. Mehrkammersystem für chemische Gasphasenabscheidung
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US10571430B2 (en) 2016-03-14 2020-02-25 Veeco Instruments Inc. Gas concentration sensors and systems
CN106591805B (zh) * 2016-11-23 2019-01-15 佛山市中山大学研究院 一种mocvd设备喷淋头及包含其的mocvd设备和进气方式
US10851457B2 (en) 2017-08-31 2020-12-01 Lam Research Corporation PECVD deposition system for deposition on selective side of the substrate
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
US12000552B2 (en) 2019-01-18 2024-06-04 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system for a vehicle
JP6879516B2 (ja) * 2019-01-25 2021-06-02 株式会社デンソー 成膜装置と半導体装置の製造方法
US10903623B2 (en) 2019-05-14 2021-01-26 Soraa Laser Diode, Inc. Method and structure for manufacturable large area gallium and nitrogen containing substrate
US11228158B2 (en) 2019-05-14 2022-01-18 Kyocera Sld Laser, Inc. Manufacturable laser diodes on a large area gallium and nitrogen containing substrate
KR20210004024A (ko) * 2019-07-03 2021-01-13 주성엔지니어링(주) 기판처리장치용 가스공급장치
KR20230037057A (ko) 2019-08-16 2023-03-15 램 리써치 코포레이션 웨이퍼 내에서 차동 보우를 보상하기 위한 공간적으로 튜닝 가능한 증착
CN116043184A (zh) * 2023-02-14 2023-05-02 季华实验室 一种用于反应室的倒置式气浮装置、反应室及外延设备

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1462335A (fr) 1965-10-16 1966-04-15 Philips Nv Procédé d'application de couches d'oxyde d'étain sur des dispositifs supports
US3696779A (en) * 1969-12-29 1972-10-10 Kokusai Electric Co Ltd Vapor growth device
US3633537A (en) 1970-07-06 1972-01-11 Gen Motors Corp Vapor deposition apparatus with planetary susceptor
FR2227640B1 (zh) 1973-04-27 1977-12-30 Radiotechnique Compelec
US3916822A (en) 1974-04-26 1975-11-04 Bell Telephone Labor Inc Chemical vapor deposition reactor
US4279947A (en) 1975-11-25 1981-07-21 Motorola, Inc. Deposition of silicon nitride
US4062318A (en) 1976-11-19 1977-12-13 Rca Corporation Apparatus for chemical vapor deposition
JPS5673694A (en) 1979-11-14 1981-06-18 Fujitsu Ltd Vertical type vapor phase growing method and apparatus
US4599135A (en) * 1983-09-30 1986-07-08 Hitachi, Ltd. Thin film deposition
JPS6115976A (ja) 1984-07-03 1986-01-24 Matsushita Electric Ind Co Ltd プラズマ反応装置およびその使用方法
JPS6223108A (ja) 1985-07-23 1987-01-31 Sumitomo Metal Ind Ltd 気相成長方法及びその装置
JP2871712B2 (ja) 1988-04-04 1999-03-17 ゼロックス コーポレーション 光支援mocvd法
JPH04128379A (ja) 1990-09-17 1992-04-28 Mitsubishi Electric Corp 常圧cvd装置
US5173336A (en) 1991-01-22 1992-12-22 Santa Barbara Research Center Metal organic chemical vapor deposition (MOCVD) reactor with recirculation suppressing flow guide
JP2763222B2 (ja) * 1991-12-13 1998-06-11 三菱電機株式会社 化学気相成長方法ならびにそのための化学気相成長処理システムおよび化学気相成長装置
JP2934565B2 (ja) * 1993-05-21 1999-08-16 三菱電機株式会社 半導体製造装置及び半導体製造方法
US6279506B1 (en) 1995-06-26 2001-08-28 Aixtron Ag Reactor for coating plane substrates and method for producing said substrates
JPH08306632A (ja) * 1995-04-27 1996-11-22 Shin Etsu Handotai Co Ltd 気相エピタキシャル成長装置
JP3430277B2 (ja) 1995-08-04 2003-07-28 東京エレクトロン株式会社 枚葉式の熱処理装置
JP3308775B2 (ja) 1995-08-28 2002-07-29 三菱電機株式会社 Cvd装置
JP3376809B2 (ja) 1996-03-27 2003-02-10 松下電器産業株式会社 有機金属気相成長装置
DE19622403C1 (de) 1996-06-04 1997-11-20 Siemens Ag Vorrichtung zum Erzeugen einer Schicht auf der Oberfläche wenigstens eines Substrats durch CVD
US6454864B2 (en) * 1999-06-14 2002-09-24 Cutek Research, Inc. Two-piece chuck
US6239043B1 (en) 2000-01-03 2001-05-29 United Microelectronics Corp. Method for modulating uniformity of deposited layer thickness

Also Published As

Publication number Publication date
EP1432844B1 (en) 2018-11-21
US20040060518A1 (en) 2004-04-01
CN1596325A (zh) 2005-03-16
JP2005528777A (ja) 2005-09-22
TWI322462B (en) 2010-03-21
WO2003029516A1 (en) 2003-04-10
EP1432844A1 (en) 2004-06-30
CA2462102A1 (en) 2003-04-10
KR20040047874A (ko) 2004-06-05
MY148924A (en) 2013-06-14
US8133322B2 (en) 2012-03-13

Similar Documents

Publication Publication Date Title
CN100471992C (zh) 半导体制作反应器
US10364509B2 (en) Alkyl push flow for vertical flow rotating disk reactors
US6093253A (en) Method and a device for epitaxial growth of objects by chemical vapor deposition
EP0696653B1 (en) Method of chemical vapor deposition and reactor therefor
CN104756231B (zh) 具有可定制的流动注入的外延腔室
TWI465294B (zh) 具有多氣體直通道之噴頭
US4846102A (en) Reaction chambers for CVD systems
US7396415B2 (en) Apparatus and methods for isolating chemical vapor reactions at a substrate surface
EP0835336A1 (en) A device and a method for epitaxially growing objects by cvd
EP1779411A1 (en) Deposition technique for producing high quality compound semiconductor materials
US5261960A (en) Reaction chambers for CVD systems
US5096534A (en) Method for improving the reactant gas flow in a reaction chamber
CN112640045A (zh) 气相生长装置
JP7495882B2 (ja) マルチゾーンインジェクターブロックを備える化学蒸着装置
CN105648425B (zh) 一种化学气相沉积装置及其温控方法
CN103088414A (zh) 可实现氮化物晶体同质外延的气相外延沉积装置
JPS6251919B2 (zh)
RU2673515C2 (ru) Способ подачи газов в реактор для выращивания эпитаксиальных структур на основе нитридов металлов iii группы и устройство для его осуществления
Talalaev Transport phenomena in vapor phase epitaxy reactors
KR101501888B1 (ko) 수직 흐름 회전 디스크 리액터를 위한 밀도 매칭 알킬 압출 흐름
Jaluria et al. Thin Film Deposition: Micro-/Nanoscale Fabrication
JP2021005589A (ja) 成膜装置および成膜方法
KR100267523B1 (ko) 질화갈륨계 화합물 반도체의 결정성장용 반응로 장치
US20120247392A1 (en) Multichamber thin-film deposition apparatus and gas-exhausting module
JPH0682619B2 (ja) 半導体成長装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: North Carolina

Patentee after: CREE, Inc.

Address before: North Carolina

Patentee before: CREE, Inc.

CX01 Expiry of patent term

Granted publication date: 20090325

CX01 Expiry of patent term