CN100467662C - 具有电弧处理能力的高峰值功率等离子体脉冲电源 - Google Patents

具有电弧处理能力的高峰值功率等离子体脉冲电源 Download PDF

Info

Publication number
CN100467662C
CN100467662C CNB038230151A CN03823015A CN100467662C CN 100467662 C CN100467662 C CN 100467662C CN B038230151 A CNB038230151 A CN B038230151A CN 03823015 A CN03823015 A CN 03823015A CN 100467662 C CN100467662 C CN 100467662C
Authority
CN
China
Prior art keywords
plasma
plasma body
substrate
coating
operation mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038230151A
Other languages
English (en)
Other versions
CN1688737A (zh
Inventor
戴维·J·克里斯蒂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Energy Industries Inc
Original Assignee
Advanced Energy Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Energy Industries Inc filed Critical Advanced Energy Industries Inc
Publication of CN1688737A publication Critical patent/CN1688737A/zh
Application granted granted Critical
Publication of CN100467662C publication Critical patent/CN100467662C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3444Associated circuits
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供了一种新的磁控溅射装置,通常包括一个脉冲电源,该脉冲电源能够提供的峰值功率为0.1兆瓦特到数兆瓦特,峰值功率密度大于1kW/cm2。该电源有一个脉冲电路,该脉冲电路包括一个储能电容和一个通过开关装置串联的电感,检测到电弧现象时,该开关装置将脉冲电路与等离子体断开,并将电感能量循环回到储能电容。储能电容和串联电感提供对等离子体的阻抗匹配,限制有电弧时电流的上升率和峰值幅度,对到等离子体的电压脉冲进行整形。

Description

具有电弧处理能力的高峰值功率等离子体脉冲电源
技术领域
本发明一般涉及用于高离子化、高密度金属等离子体的磁控溅射的装置和方法,尤其涉及具有电弧处理能力、向溅射磁控等离子体负载提供峰值功率为0.1兆瓦特到数兆瓦特、峰值功率密度为1kW/cm2或更高的磁控溅射装置。
背景技术
通过产生金属离子并使用吸引离子的电偏置将离子吸引到加工件从而涂敷基板,是我们所希望的。该方法的效用包括将涂层应用到通过常规溅射无法均匀淀积的不规则表面上,而这实质上需要瞄准线。实际上,可以如同Monteiro在JVST B 17(3)1999年第1094页以及Lu和Kushner在JVST A 19(5)2001年第2652页所叙述的那样,通过偏置晶片吸引离子,从而涂敷甚至填充半导体器件中的高纵横比沟槽。
Kouznetzov等在《表面与涂敷技术(Surface and CoatingsTechnology)》122(1999年)第290页中描述了使用具有高峰值功率和低占空系数的电脉冲驱动传统溅射磁控管,从而产生高离子化、高密度金属等离子体的技术。其他方法可参考Macak等的JVST A 18(4)2000年第1533页、Gudmundsson等的APL第78卷No.22(2001年5月28日)第3427页和Ehiasarian等的Vacuum 65(2002年)第147页以及美国专利6296742 B1(2001年10月2日)。
该技术的优点在于能产生大量离子化物质,通过应用偏置电压将这些离子化物质吸引到加工件。上述关于高峰值功率技术的参考文献需要使用一个通过电感的简单电容放电。但是,这些参考文献描述的方法没有披露任何电弧处理能力,实际上暗示存在无电弧区域。硬件上不可避免的缺陷使得不可能在物理上实现完全无电弧区域,即使理论暗示存在无电弧区域。使用没有电弧处理能力的该技术使得商业应用很不实际。因此,需要提供一种装置,其通过最小化电弧能量,来将高峰值功率脉冲加到磁控管上,从而产生高密度、高离子化的金属等离子体,因此将电弧引起的产品和对象损坏降低到可接受的范围内。
典型情况下,电弧控制和电弧转移装置包括检测电弧并将电源与负载断开的电路或者包括一个有效地将电源短路从而消除电弧的开关电路。这些类型的电弧处理方法成本很高,因为它们会导致工艺的停止,浪费昂贵的库存材料,或者需要消耗电源电路中存储的能量。在高功率应用中,将电源短路会产生极高的电流,导致对电源本身的毁坏,重复消耗存储的能量需要能承受高峰值功率和高平均功率的昂贵的电阻元件以及将其冷却的装置。
我们也希望为高产商业应用提供一种具有电弧处理能力、提供0.1兆瓦特或更高峰值功率的磁控溅射装置和方法。本发明的一个目的是提供一种磁控溅射等离子体系统,其具有检测电弧并采取措施限制传递到电弧的能量的能力。
发明内容
本发明提供了一种具有电弧处理能力的、适用于向高密度磁控等离子体提供高峰值功率的高压脉冲的产生装置和方法。一个脉冲电路包括储能电容,通过与该等离子体串联的一个电感重复充电和放电。该电感和电容的结合可以对脉冲整形,从容为等离子体提供阻抗匹配,以及限制有电弧时的电流上升率和峰值幅度。在脉冲期间,通过放电电压的降低低于预定的电压门限,或者放电电流的升高高于预定的电流门限,可以检测到电弧。当检测到电弧时,将串联电感与储能电容断开,从而阻止电流升高。然后,从等离子体负载断开脉冲电路,电感能量就循环回到储能电容。
根据本发明的一个方面,提供一种以连续工作模式将阴极材料溅射淀积从而在基板上形成涂层的装置,包括:
a)等离子体腔,在该等离子体腔中产生包含离子和电子的等离子体;
b)至少一个靶,其被置于该等离子体腔中并包含原子,响应于来自该等离子体的离子的轰击,所述原子可以自该靶被溅射,从而在邻近该等离子体的至少一个基板的表面上淀积薄膜;
c)直流脉冲电源,其具有连接到置于该等离子体腔中的所述靶的脉冲电路,从而传递电压脉冲给该靶;以及
d)该脉冲电路还包括储能电容,用于通过开关装置将脉冲传递到串联的电感,该开关装置用于将该脉冲电路与该等离子体断开以及在检测到电弧情况时将电感能量循环回到该储能电容。
优选地,其中所述储能电容和所述串联的电感对所述电压脉冲进行整形。
附图简述
图1是将本发明原理具体化的磁控等离子体处理系统的示意图;
图2示出了图1中磁控等离子体处理系统的常规操作的波形图;以及
图3示出了电弧处理操作的波形图。
发明详述
参考图1,其示出了一个磁控等离子体处理系统10。直流电源12经由脉冲电路16连接到磁控等离子体处理腔14。该磁控等离子体处理腔是本领域技术人员公知的传统磁控腔,具有磁控阴极18和阳极20。脉冲电路16是先进能源工业公司(Advanced Energy Industries,Inc.)制造的MegaPulserTM模型,其提供穿过阴极18和阳极20的高压脉冲,从而以本领域技术人员公知的方式,点燃这两个电极之间的等离子体22。与传统等离子体处理腔一样,等离子体作用于阴极18的材料上,从而在位于腔中的基板26上产生涂层。本领域技术人员通常知道并能充分理解:在高压下,随着腔中处理环境的变化,从等离子体22或阴极18到阳极20会发生电弧放电。此外,一个较小的直流电源28连接到该磁控等离子体处理腔,直流电源28从脉冲电路16向磁控管提供使等离子体在高压脉冲之间保持点火的最小电压。该电源也可用于在高脉冲操作开始之前最初点燃等离子体。
为了将高压脉冲加到磁控处理腔,脉冲电路16包括储能电容C1,C1与电感L1通过开关S1串联连接。电感L1通过开关S2连接磁控管的阴极。
图2是该电路常规操作的波形图。在整个序列中,S2闭合,S3打开。直流电源12将电容C1充电到其初始电压。由S1启动放电,电容C1通过电感L1放电到等离子体负载中。控制电路启动开关的计时,从而控制电容C1的充电时间以及到负载的脉冲放电时间。Vc、iinductor、VLoAD和Iload波形的形状由Vc的初始值、C1和L1的值以及等离子体负载和输出电缆的特性唯一确定。
图3是脉冲电路16的脉冲期间发生的电弧的波形图。该序列开始时如图2所示并如上所述,但是当发生电弧时,电流升高,电压降低,直到检测到电弧。可以通过两种方式之一检测电弧。用于实现电弧检测方式的具体电路技术对本领域技术人员是公知的。首先,当负载电流超过预定门限时,可以检测到电弧。实际上,可以通过根据等离子体负载特性和Vc的初始值、C1和L1的值预测输出电流,以及通过增加容限以防止错误检测,来逐个脉冲地更新该门限。根据这些参数预测输出电流,对本领域技术人员来说是公知的。或者,电流门限基于平均峰值电流,可以增加一定容限来防止错误的电弧检测。这种情况下,最好使具有高电弧电流的脉冲不进行平均计算。其次,当负载电流超过第二电流门限而负载电压低于预定门限时,可以检测到电弧,这只用于第二种方法。当检测到电弧时,S1立即打开,在一个短延迟后闭合S3,然后在另一短延迟后打开S2。这样,就将负载与脉冲电路16断开,并开始将能量从电感L1谐振传输到电容C1。结果,当电弧发生时电感L1中的能量被循环回到C1。在发生电弧的情况下,该电弧处理序列将传递到负载的能量最小化。如果没有电弧处理措施,C1中存储的能量和L1中存储的能量将被传递到电弧,这几乎肯定会对对象和加工件造成损害。电弧处理措施使得该工艺可以投入商业应用。
从以上描述不难看出,本发明为脉冲磁控管提供了一种新的高峰值功率等离子体脉冲电源,其具有电弧处理能力,在检测到电弧现象时,通过将脉冲电路与等离子体负载断开以及将为高峰值功率脉冲存储的电感能量循环回到储能电容,从而将电弧导致的危害最小化。
尽管上面描述了具体的结构和操作细节,但应该明白,这只是出于示例性目的,在不脱离本发明精神和范围的情况下,本领域技术人员可以做出各种改变和修改。

Claims (6)

1、一种以连续工作模式将阴极材料溅射淀积从而在基板上形成涂层的装置,包括:
a)等离子体腔,在该等离子体腔中产生包含离子和电子的等离子体;
b)至少一个靶,其被置于该等离子体腔中并包含原子,响应于来自该等离子体的离子的轰击,所述原子可以自该靶被溅射,从而在邻近该等离子体的至少一个基板的表面上淀积薄膜;
c)直流脉冲电源,其具有连接到置于该等离子体腔中的所述靶的脉冲电路,从而传递电压脉冲给该靶;以及
d)该脉冲电路还包括储能电容,用于通过开关装置将脉冲传递到串联的电感,该开关装置用于将该脉冲电路与该等离子体断开以及在检测到电弧情况时将电感能量循环回到该储能电容。
2、如权利要求1所述的以连续工作模式将阴极材料溅射淀积从而在基板上形成涂层的装置,其中,所述储能电容和所述串联的电感提供对所述等离子体的阻抗匹配。
3、如权利要求2所述的以连续工作模式将阴极材料溅射淀积从而在基板上形成涂层的装置,其中,在电弧发生时,所述储能电容和所述串联的电感限制电流的上升率和峰值幅度。
4、如权利要求3所述的以连续工作模式将阴极材料溅射淀积从而在基板上形成涂层的装置,其中,所述储能电容和所述串联的电感对所述电压脉冲进行整形。
5、如权利要求4所述的以连续工作模式将阴极材料溅射淀积从而在基板上形成涂层的装置,其中,所述直流脉冲电源提供的功率为0.1兆瓦特至数兆瓦特,峰值功率密度大于1kW/cm2
6、如权利要求1所述的以连续工作模式将阴极材料溅射淀积从而在基板上形成涂层的装置,其中,所述脉冲电路根据所述储能电容放电开始时的初始充电电压、所述电感和电容的值以及所述等离子体负载特性,来更新电弧电流门限。
CNB038230151A 2002-09-25 2003-09-23 具有电弧处理能力的高峰值功率等离子体脉冲电源 Expired - Fee Related CN100467662C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/254,158 US6808607B2 (en) 2002-09-25 2002-09-25 High peak power plasma pulsed supply with arc handling
US10/254,158 2002-09-25

Publications (2)

Publication Number Publication Date
CN1688737A CN1688737A (zh) 2005-10-26
CN100467662C true CN100467662C (zh) 2009-03-11

Family

ID=31993275

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038230151A Expired - Fee Related CN100467662C (zh) 2002-09-25 2003-09-23 具有电弧处理能力的高峰值功率等离子体脉冲电源

Country Status (6)

Country Link
US (2) US6808607B2 (zh)
EP (1) EP1543175B1 (zh)
JP (1) JP4578242B2 (zh)
CN (1) CN100467662C (zh)
TW (1) TW200409826A (zh)
WO (2) WO2004029322A1 (zh)

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808607B2 (en) * 2002-09-25 2004-10-26 Advanced Energy Industries, Inc. High peak power plasma pulsed supply with arc handling
US7147759B2 (en) * 2002-09-30 2006-12-12 Zond, Inc. High-power pulsed magnetron sputtering
US6896773B2 (en) * 2002-11-14 2005-05-24 Zond, Inc. High deposition rate sputtering
US6967305B2 (en) * 2003-08-18 2005-11-22 Mks Instruments, Inc. Control of plasma transitions in sputter processing systems
US7663319B2 (en) * 2004-02-22 2010-02-16 Zond, Inc. Methods and apparatus for generating strongly-ionized plasmas with ionizational instabilities
US9123508B2 (en) * 2004-02-22 2015-09-01 Zond, Llc Apparatus and method for sputtering hard coatings
US7095179B2 (en) * 2004-02-22 2006-08-22 Zond, Inc. Methods and apparatus for generating strongly-ionized plasmas with ionizational instabilities
US7105075B2 (en) * 2004-07-02 2006-09-12 Advanced Energy Industries, Inc. DC power supply utilizing real time estimation of dynamic impedance
EP2477207A3 (en) * 2004-09-24 2014-09-03 Zond, Inc. Apparatus for generating high-current electrical discharges
KR100628215B1 (ko) * 2004-12-24 2006-09-26 동부일렉트로닉스 주식회사 반도체 소자의 금속배선 형성방법
US7305311B2 (en) * 2005-04-22 2007-12-04 Advanced Energy Industries, Inc. Arc detection and handling in radio frequency power applications
AT502351A1 (de) * 2005-09-12 2007-03-15 Ziger Peter Anlage zur plasmaprozessierung von endlosmaterial
GB2437080B (en) * 2006-04-11 2011-10-12 Hauzer Techno Coating Bv A vacuum treatment apparatus, a bias power supply and a method of operating a vacuum treatment apparatus
US7859237B2 (en) * 2006-07-12 2010-12-28 Texas Instruments Incorporated Method and apparatus for voltage to current conversion
JP4910575B2 (ja) * 2006-08-31 2012-04-04 日本テキサス・インスツルメンツ株式会社 スイッチング電源装置
JP4842752B2 (ja) * 2006-09-28 2011-12-21 株式会社ダイヘン プラズマ処理システムのアーク検出装置、アーク検出装置を実現するためのプログラム及び記憶媒体
EP2102889B1 (en) * 2006-12-12 2020-10-07 Evatec AG Rf substrate bias with high power impulse magnetron sputtering (hipims)
US8217299B2 (en) * 2007-02-22 2012-07-10 Advanced Energy Industries, Inc. Arc recovery without over-voltage for plasma chamber power supplies using a shunt switch
EP1995818A1 (en) 2007-05-12 2008-11-26 Huettinger Electronic Sp. z o. o Circuit and method for reducing electrical energy stored in a lead inductance for fast extinction of plasma arcs
SE533395C2 (sv) * 2007-06-08 2010-09-14 Sandvik Intellectual Property Sätt att göra PVD-beläggningar
US7966909B2 (en) 2007-07-25 2011-06-28 The Gillette Company Process of forming a razor blade
US9039871B2 (en) 2007-11-16 2015-05-26 Advanced Energy Industries, Inc. Methods and apparatus for applying periodic voltage using direct current
US8133359B2 (en) * 2007-11-16 2012-03-13 Advanced Energy Industries, Inc. Methods and apparatus for sputtering deposition using direct current
WO2009071667A1 (en) * 2007-12-07 2009-06-11 Oc Oerlikon Balzers Ag Reactive sputtering with hipims
EP2075823B1 (en) * 2007-12-24 2012-02-29 Huettinger Electronic Sp. z o. o Current change limiting device
DE102008028140B3 (de) * 2008-06-13 2009-12-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer transparenten und leitfähigen Metalloxidschicht durch gepulstes, hochionisierendes Magnetronsputtern
US9613784B2 (en) 2008-07-17 2017-04-04 Mks Instruments, Inc. Sputtering system and method including an arc detection
JP2010065240A (ja) * 2008-09-08 2010-03-25 Kobe Steel Ltd スパッタ装置
DE102008053679B3 (de) * 2008-10-29 2010-01-28 Forschungszentrum Karlsruhe Gmbh Stromversorgung und Verfahren für eine gepulst betriebene induktive Last
US8395078B2 (en) 2008-12-05 2013-03-12 Advanced Energy Industries, Inc Arc recovery with over-voltage protection for plasma-chamber power supplies
PL2648209T3 (pl) 2009-02-17 2018-06-29 Solvix Gmbh Urządzenie zasilające do obróbki plazmowej
CN101572280B (zh) * 2009-06-01 2011-03-02 无锡尚德太阳能电力有限公司 用于制作薄膜太阳电池金属电极层的沉积装置
CN101824602B (zh) * 2010-05-07 2011-08-10 西安理工大学 一种具有高启动电压的磁控溅射脉冲电源
DE102010031568B4 (de) 2010-07-20 2014-12-11 TRUMPF Hüttinger GmbH + Co. KG Arclöschanordnung und Verfahren zum Löschen von Arcs
DE102010038605B4 (de) 2010-07-29 2012-06-14 Hüttinger Elektronik Gmbh + Co. Kg Zündschaltung zum Zünden eines mit Wechselleistung gespeisten Plasmas
US8552665B2 (en) 2010-08-20 2013-10-08 Advanced Energy Industries, Inc. Proactive arc management of a plasma load
DE102011112434A1 (de) * 2011-01-05 2012-07-05 Oerlikon Trading Ag, Trübbach Blitzdetektion in Beschichtungsanlagen
JP5397410B2 (ja) * 2011-05-16 2014-01-22 株式会社デンソー 車載用電気システム
DE102011086551B4 (de) 2011-11-17 2023-02-23 Siemens Healthcare Gmbh Flexible Impedanzanpassung für einen pulsstromversorgten Mikrowellengenerator
US9842725B2 (en) 2013-01-31 2017-12-12 Lam Research Corporation Using modeling to determine ion energy associated with a plasma system
US9197196B2 (en) 2012-02-22 2015-11-24 Lam Research Corporation State-based adjustment of power and frequency
US9462672B2 (en) 2012-02-22 2016-10-04 Lam Research Corporation Adjustment of power and frequency based on three or more states
US9114666B2 (en) 2012-02-22 2015-08-25 Lam Research Corporation Methods and apparatus for controlling plasma in a plasma processing system
US10128090B2 (en) 2012-02-22 2018-11-13 Lam Research Corporation RF impedance model based fault detection
US10157729B2 (en) 2012-02-22 2018-12-18 Lam Research Corporation Soft pulsing
CN103582720B (zh) * 2012-06-05 2016-06-08 三菱电机株式会社 放电表面处理装置
US20140217832A1 (en) * 2013-02-06 2014-08-07 Astec International Limited Disconnect switches in dc power systems
JP5679241B1 (ja) 2013-09-27 2015-03-04 株式会社京三製作所 電圧形直流電源装置および電圧形直流電源装置の制御方法
US9594105B2 (en) 2014-01-10 2017-03-14 Lam Research Corporation Cable power loss determination for virtual metrology
WO2015112661A1 (en) * 2014-01-23 2015-07-30 Isoflux Incorporated Open drift field sputtering cathode
US10950421B2 (en) 2014-04-21 2021-03-16 Lam Research Corporation Using modeling for identifying a location of a fault in an RF transmission system for a plasma system
JP6368928B2 (ja) * 2014-09-11 2018-08-08 京都電機器株式会社 直流スパッタ装置用電源装置
US9761459B2 (en) 2015-08-05 2017-09-12 Lam Research Corporation Systems and methods for reverse pulsing
EP3232463B1 (en) * 2016-04-11 2020-06-24 SPTS Technologies Limited Dc magnetron sputtering
WO2018061932A1 (ja) * 2016-09-30 2018-04-05 株式会社アルバック 電源装置
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
JP7451540B2 (ja) 2019-01-22 2024-03-18 アプライド マテリアルズ インコーポレイテッド パルス状電圧波形を制御するためのフィードバックループ
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
CN110004426A (zh) * 2019-04-19 2019-07-12 东莞超汇链条有限公司 连续式镀膜系统的镀膜方法及其方法所得的镀膜
FR3097237B1 (fr) 2019-06-11 2021-05-28 Safran Procédé de revêtement d'un substrat par du nitrure de tantale
US11996677B2 (en) 2019-12-30 2024-05-28 Waymo Llc Laser pulser circuit with tunable transmit power
JP2023518170A (ja) 2020-03-10 2023-04-28 スロベンスカ テクニッカ ウニベラヂッタ べ ブラチスラバ 特にマグネトロン・スパッタリングのための高性能パルス放電プラズマ発生器の接続物
EP3945541A1 (en) * 2020-07-29 2022-02-02 TRUMPF Huettinger Sp. Z o. o. Pulsing assembly, power supply arrangement and method using the assembly
US11462388B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
CN112080728B (zh) * 2020-08-12 2022-05-10 北京航空航天大学 HiPIMS系统及减小HiPIMS放电电流延迟的方法
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11984306B2 (en) 2021-06-09 2024-05-14 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US12106938B2 (en) 2021-09-14 2024-10-01 Applied Materials, Inc. Distortion current mitigation in a radio frequency plasma processing chamber
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US12111341B2 (en) 2022-10-05 2024-10-08 Applied Materials, Inc. In-situ electric field detection method and apparatus
KR20240056114A (ko) * 2022-10-21 2024-04-30 전북대학교산학협력단 임피던스 조정 회로
CN117614309B (zh) * 2023-12-05 2024-09-13 唐山标先电子有限公司 采用串联辅助电源的高功率脉冲磁控溅射电源及其方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009999A1 (de) * 1990-11-22 1992-06-11 Peter Siemroth Schaltungsanordnung zur stromversorgung für gepulst betriebene vakuumbögen
US5241152A (en) * 1990-03-23 1993-08-31 Anderson Glen L Circuit for detecting and diverting an electrical arc in a glow discharge apparatus
US6296742B1 (en) * 1997-03-11 2001-10-02 Chemfilt R & D Aktiebolag Method and apparatus for magnetically enhanced sputtering

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3700633C2 (de) * 1987-01-12 1997-02-20 Reinar Dr Gruen Verfahren und Vorrichtung zum schonenden Beschichten elektrisch leitender Gegenstände mittels Plasma
DE4202425C2 (de) * 1992-01-29 1997-07-17 Leybold Ag Verfahren und Vorrichtung zum Beschichten eines Substrats, insbesondere mit elektrisch nichtleitenden Schichten
JP3684593B2 (ja) * 1993-07-28 2005-08-17 旭硝子株式会社 スパッタリング方法およびその装置
US5651865A (en) * 1994-06-17 1997-07-29 Eni Preferential sputtering of insulators from conductive targets
US5682067A (en) * 1996-06-21 1997-10-28 Sierra Applied Sciences, Inc. Circuit for reversing polarity on electrodes
US5889391A (en) * 1997-11-07 1999-03-30 Sierra Applied Sciences, Inc. Power supply having combined regulator and pulsing circuits
DE10015244C2 (de) * 2000-03-28 2002-09-19 Fraunhofer Ges Forschung Verfahren und Schaltungsanordnung zur pulsförmigen Energieeinspeisung in Magnetronentladungen
US6524455B1 (en) * 2000-10-04 2003-02-25 Eni Technology, Inc. Sputtering apparatus using passive arc control system and method
US6808607B2 (en) * 2002-09-25 2004-10-26 Advanced Energy Industries, Inc. High peak power plasma pulsed supply with arc handling
US6896773B2 (en) * 2002-11-14 2005-05-24 Zond, Inc. High deposition rate sputtering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241152A (en) * 1990-03-23 1993-08-31 Anderson Glen L Circuit for detecting and diverting an electrical arc in a glow discharge apparatus
WO1992009999A1 (de) * 1990-11-22 1992-06-11 Peter Siemroth Schaltungsanordnung zur stromversorgung für gepulst betriebene vakuumbögen
US6296742B1 (en) * 1997-03-11 2001-10-02 Chemfilt R & D Aktiebolag Method and apparatus for magnetically enhanced sputtering

Also Published As

Publication number Publication date
CN1688737A (zh) 2005-10-26
EP1543175B1 (en) 2013-05-08
TW200409826A (en) 2004-06-16
JP2006500473A (ja) 2006-01-05
EP1543175A4 (en) 2007-07-04
WO2004029322A1 (en) 2004-04-08
WO2005010228A2 (en) 2005-02-03
WO2005010228A3 (en) 2005-12-01
US20040055881A1 (en) 2004-03-25
US6808607B2 (en) 2004-10-26
US20040124077A1 (en) 2004-07-01
EP1543175A1 (en) 2005-06-22
JP4578242B2 (ja) 2010-11-10

Similar Documents

Publication Publication Date Title
CN100467662C (zh) 具有电弧处理能力的高峰值功率等离子体脉冲电源
JP2006500473A5 (zh)
US9620340B2 (en) Charge removal from electrodes in unipolar sputtering system
US6296742B1 (en) Method and apparatus for magnetically enhanced sputtering
KR101923755B1 (ko) 플라즈마 챔버 내에서의 고이온화 플라즈마 발생 방법 및 장치
EP2463890A1 (en) Generating plasmas in pulsed power systems
CN111348224B (zh) 一种微阴极电弧推进系统
CN108220901B (zh) 一种等离子体溅射镀膜方法
US8980072B2 (en) Method and arrangement for redundant anode sputtering having a dual anode arrangement
CN101924490B (zh) 电感储能微秒级高功率脉冲电流源
CN113123936A (zh) 一种栅极加速微阴极电弧推进系统
Liu et al. An all solid-state pulsed power generator based on Marx generator
EP1654394A2 (en) High peak power plasma pulsed supply with arc handling
US20160118233A1 (en) Waveform for improved energy control of sputtered species
WO2024208908A1 (en) Method of operating a plasma process system and a plasma process system
CN221177675U (zh) 一种高功率脉冲磁控溅射电源及其薄膜制备装置
CN112080728B (zh) HiPIMS系统及减小HiPIMS放电电流延迟的方法
CN204442191U (zh) 带引弧装置弧电源
CN117614309B (zh) 采用串联辅助电源的高功率脉冲磁控溅射电源及其方法
JP3775170B2 (ja) プラズマイオン注入方法及び装置
JP2004006146A (ja) 放電用電源、スパッタリング用電源及びスパッタリング装置
Park et al. Development of high voltage pulse modulator for plasma source ion implantation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090311

Termination date: 20110923