CN100459050C - 用于动态表面退火工艺的吸收层 - Google Patents

用于动态表面退火工艺的吸收层 Download PDF

Info

Publication number
CN100459050C
CN100459050C CNB2004800287472A CN200480028747A CN100459050C CN 100459050 C CN100459050 C CN 100459050C CN B2004800287472 A CNB2004800287472 A CN B2004800287472A CN 200480028747 A CN200480028747 A CN 200480028747A CN 100459050 C CN100459050 C CN 100459050C
Authority
CN
China
Prior art keywords
layer
substrate
electromagnetic radiation
described substrate
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800287472A
Other languages
English (en)
Other versions
CN1864247A (zh
Inventor
卢克·范·奥特里维
颗里斯·D·本彻
迪安·詹宁斯
梁海凡
阿比斯拉斯·J·玛尤尔
马克·亚姆
温迪·H·耶胡
查理德·A·布拉夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN1864247A publication Critical patent/CN1864247A/zh
Application granted granted Critical
Publication of CN100459050C publication Critical patent/CN100459050C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02354Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light using a coherent radiation, e.g. a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3146Carbon layers, e.g. diamond-like layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提供了一种处理衬底的方法,包括在衬底上沉积一包括无定形碳的层,然后在足够将该层加热到至少约300℃的温度条件下,将该衬底暴露在具有一种或者多种介于约600nm到约1000nm波长的电磁辐射中。可选的,该层进一步包括选自包含氮、硼、磷、氟或者其组合的组的掺杂剂。一方面,该包括无定形碳的层为一抗反射涂层和吸收电磁辐射并退火该衬底的上表面层的吸收层。一方面,该衬底在激光退火工艺中暴露在电磁辐射中。

Description

用于动态表面退火工艺的吸收层
技术领域
本发明的实施方式涉及集成电路的制造。更具体的,本发明的实施例涉及在衬底上沉积一薄膜层然后对衬底退火的工艺。
背景技术
集成电路制造中的许多工艺需要对于诸如含硅衬底的半导体衬底上的沉积层执行快速高温工艺步骤,或者用于退火已沉积在衬底上的层。例如,在掺杂离子例如硼、磷或者砷,注入到半导体衬底中之后,典型的,将衬底退火用以修复在掺杂过程中损伤的衬底的晶体结构以及激活掺杂离子。
典型优选的是快速加热和冷却衬底以最小化衬底暴露在高温下而可能导致不必要扩散的时间。已经开发出了能够以类似于大约200到400℃/秒的速率提高衬底温度的快速加热工艺(RTP)腔室和方法。RTP工艺提供了相比于分层式烘炉(batch furnace)加热改进的快速加热方法,后者典型的以5-15℃/秒的速率提高衬底温度。
尽管RTP工艺能够快速加热和冷却衬底,但是其通常加热衬底的整个厚度。加热半导体衬底的整个厚度通常是不必要和不需要的,因为半导体衬底上的需要退火的器件典型的只延伸在衬底的上表面层上,诸如几个微米。而且,加热衬底的整个厚度增加了冷却衬底需要的时间,这增加了处理衬底所需的时间并因此降低了半导体工艺系统中衬底的产量。增加冷却衬底的时间还限制了衬底暴露在用于激活的提升温度下的时间。人们期望获得更短的加热和冷却时间,原因在于这样限制了扩散并最小化器件的收缩。
衬底表面加热不均匀是RTP或者其他传统的衬底加热工艺经常遇到的另一个问题。因为现在的集成电路一般包括在衬底表面上以不同的密度间隔分布的多个器件,并具有不同的尺寸、形状和材料,衬底表面在不同区域可能具有非常不同的热吸收特性。例如,衬底上具有较低密度器件的第一区域比相比第一区域具有较高密度器件的第二区域加热的更快。衬底表面不同区域的不同反射率也对衬底表面的均匀加热提出挑战。
因此,需要一种方法,在退火工艺期间均匀加热整个半导体衬底表面。
发明内容
本发明的实施例提供了一种处理衬底的方法,包括在该衬底上沉积一层,然后在足够将该层加热到至少约300℃的温度条件下,将该衬底暴露在具有一种或者多种介于约600nm到约1000nm波长的电磁辐射中,其中将所述衬底暴露至电磁辐射包含通过将连续波长电磁辐射聚焦成延伸穿过所述衬底表面的线而退火所述衬底。一方面,该层包括无定形碳。另一方面,该层进一步包括氮、硼、磷、氟或者其组合。
另一方面,提供一种处理衬底的方法,包括:在所述衬底上沉积一包括无定形碳和选自包含氮、硼、磷、氟或者其组合的组的掺杂剂的层;然后在足够将所述层加热到至少约300℃的温度条件下,将所述衬底暴露在电磁辐射中,所述电磁辐射具有一种或者多种介于约600nm到约1000nm波长,其中将所述衬底暴露至电磁辐射包含通过将连续波长电磁辐射聚焦成延伸穿过所述衬底表面的线而退火所述衬底。
另一方面,提供了一种处理衬底的方法,该方法包括沉积厚度介于约
Figure C20048002874700051
至约2.5μm以及对波长介于约600nm和约1000nm的电磁辐射具有0.84或更大的发射率的层;然后通过将连续波长电磁辐射聚焦成延伸穿过所述衬底表面的线而激光退火该衬底。
附图说明
为了能够更详细的理解本发明的上述特征,可以通过参照实施例,对以上主要总结的本发明进行更具体的描述,附图中示出了一些实施例。但是,应当注意,附图仅示出了本发明典型的实施例,因此不能视为对本发明范围的限制,因为本发明容许其他等效的实施例。
图1是根据此处所述实施例所使用的示例性化学汽相沉积反应器的截面图;
图2是根据此处所述实施例所使用的激光退火装置的侧视图;
图3A-3F是表示衬底处理顺序的一实施例的截面图;
图4示出根据此处所述实施例的沉积层对辐射的吸收百分比的图表。
具体实施方式
本发明的实施方式提供了一种处理衬底的方法,该方法包括在衬底上沉积一层以提高整个衬底表面在衬底退火期间的加热均匀性。在一实施方式中,在对该层施加大约0.84或者更大发射率且波长介于大约600nm和大约1000nm之间的电磁辐射条件下,在该层沉积大约
Figure C20048002874700061
到大约2.5μm的厚度,然后进行激光退火。
在一实施方式中,该层包括无定型碳和氢。一方面,该层为主要具有SP3(不对称碳)耦合的无定型碳并包括碳原子和氢原子。在另一实施方式中,该层包括无定型碳、氢和选自由氮、硼、磷、氟或者其组合构成的组的掺杂剂。一方面,该层为包括碳原子、氢原子、选自由氮、硼、磷、氟或者其组合构成的组的掺杂原子的掺杂无定型碳层。在一实施方式中,该层为具有主要为SP2耦合的氮掺杂无定型石墨层。在所有实施方式中,优选的,该层不包括金属或者基本不包括金属。通过包括碳源的气体混和物进行等离子增强化学汽相沉积(PECVD)沉积该层。优选的,该碳源为气态碳氢化合物,诸如直链烃碳氢化合物。例如,该碳源可以是丙稀(C3H6)。该气体混合物可以由作为液态前体或者气态前体的碳源构成。在一实施方式中,液态前体用于改善设备的侧壁和边角覆盖范围或者衬底上的特征。该气体混合物还包括载气,诸如(He)。在普通转让美国专利6,573,030中提供了碳源和沉积层处理条件的进一步实施例,在此引入作为参考。该层沉积厚度可以介于大约
Figure C20048002874700062
到大约
Figure C20048002874700063
之间。优选的,该层沉积厚度介于大约到大约
Figure C20048002874700065
之间,诸如大约
Figure C20048002874700066
在任何执行PECVD的腔室中都可以沉积该层。在一实施方式中,在高密度等离子体条件下沉积该层以改善设备之间层的添隙能力或者衬底上的特征。一个可用的腔室实施例为由Applied Materials,Inc.,of Santa Clara,CA提供的DSMAPF腔室。
图1所示为平行板CVD处理腔室10的垂直截面图。该腔室10包括高真空区域15和具有用于将工艺气体通过其本身分散到衬底(未示出)上的穿孔的气体分布歧管11。该衬底位于衬底支撑板或者基座12上。在将基座12连接到升降电动机14上的支撑杆13上安装该基座12。该升降电动机14在工艺处理位置和下部衬底加载位置之间提升和降低该基座12使得基座12(以及由基座12上表面支撑的衬底)可以在下部加载/卸载位置和上部工艺处理位置之间可控移动,其中该上部工艺处理位置和歧管11紧邻。当处于上部工艺处理位置时绝热器17环绕该基座12和衬底。
在衬底表面上均匀而迅速的分配导入歧管11的气体。具有截流阀的真空泵32控制气体通过歧管24从腔室10的排放速率。如果需要的话,沉积物和载气从气体管线18流入混和系统19,然后进入歧管11。通常,各工艺气体供应线18均包括(i)可以用于自动或者手动关闭流入腔室的工艺气体的安全截止阀(未示出),以及(ii)测量经过气体管线18的气体流量的控制器。当在工艺中使用有毒气体时,以通用结构在每个气体管线18上设置多个安全截止阀。
通常通过采用RF电源25向气体分布歧管11施加RF能量靠近衬底形成受控等离子体。可选择地,可以向基座12施加RF功率。可以循环或者脉冲调制施加给沉积腔室的RF功率。该等离子体的功率密度介于大约0.0016W/cm2和大约155W/cm2之间,该功率密度和大约1.1W到大约100W的300mm衬底的RF功率级相对应。
该RF电源25能够提供介于0.01MHz和300MHz之间的单频率RF功率,诸如13.56MHz。可选择地,可以采用混和、同步频率传送该RF功率从而增强引入高真空区域15的反应物质的分解。一方面,混和频率为大约12kHz的较低频和大约13.56kHz的较高频率。另一方面,该较低频率可以在大约300Hz到1000kHz之间范围内变化,并且该较高频率可以在大约5MHz到50MHz之间范围变化。
通常,某些或者所有腔室内衬、分布歧管11、基座12、和各种其他反应器硬件都由诸如铝和阳极氧化铝材料构成。在美国专利No.5,000,113中描述了CVD反应器的实施例,其题目为“A Thermal CVD/PECVD Reactor and Use forThermal Chemical Vapor Deposition of Silicon Dioxide and In-situ Multi-stepplanarized process,”在此引入作为参考。
系统控制器34控制发动机14、气体混和系统19、以及通过控制线36与控制器34连接的RF电源25。该系统控制器34控制该CVD反应器的工作并通常包括硬盘驱动器、软盘驱动器和插件架。该插件架包含单板机(SBC)、模拟数字输入/输出板,接口板、步进电动机控制板。该系统控制器34符合限定板、插件架和连接器尺寸和类型的凡尔赛标准组件欧洲(VME)标准。该VME标准还限定了具有16位数据总线和24位地址总线的总线结构。
以介于大约30sccm和大约3000sccm之间的速率将碳源引入混和系统19,并以大约100sccm和大约5000sccm的速率将载气引入腔室。在沉积期间,衬底温度保持在大约200℃和大约1500℃之间,诸如大约300℃和700℃之间的温度。优选的,该衬底温度可以保持在大约350℃和大约550℃之间。例如,该衬底温度保持在大约550℃。沉积压力通常在大约5Torr和50Torr之间,诸如7Torr。在腔室中以大约13.56MHz的频率施加大约500W和大约1500W之间的RF功率。
在一实施方式中,使用以下处理条件:衬底温度保持在大约350℃和大约550℃之间;压力处于大约6Torr和大约8Torr之间;施加2W/cm2和大约3W/cm2之间RF功率;以大约3sccm/cm2和大约5sccm/cm2之间速率将丙稀引入混和系统,并以2sccm/cm2和大约3sccm/cm2之间速率将氦引入混和系统;并且腔室喷嘴和衬底支座之间间隔在大约250密耳和300密耳之间。
在另一实施方式中,该层包括无定型碳和氮。通过具有气体混合物的PECVD沉积该层,该混和气体包括碳源和选自由氮源、硼源、磷源、氟源以及其组合构成的组的掺杂剂源。优选的,氮源为氮气(N2)。该气体混合物还可以包括载气,诸如氦(He)。可以以大约30sccm和大约3000sccm之间的速率向混和系统19中引入碳源,可以以大约30sccm和大约5000sccm之间的速率向混和系统19中引入掺杂剂源,并且可以以大约160sccm和大约5000sccm之间的速率向混和系统19中引入载气。该层的沉积厚度在大约
Figure C20048002874700081
Figure C20048002874700082
之间,诸如大约
Figure C20048002874700083
的厚度。在沉积期间,该衬底温度可以保持在介于大约200℃和大约1500℃之间。例如衬底温度保持在大约250℃和大约450℃之间。例如,该衬底温度保持在大约400℃。沉积压力通常介于大约5Torr和50Torr之间,诸如7Torr。
在一实施方式中,使用以下工艺条件:衬底温度保持在大约250℃和大约450℃之间;压力处于大约6Torr和大约8Torr之间;施加大约3W/cm2和大约5W/cm2之间RF功率;以大约0.8sccm/cm2和大约1.5sccm/cm2之间速率将丙稀引入混和系统,并以大约8sccm/cm2和大约12sccm/cm2之间速率向混和系统中引入氮气;并且腔室喷嘴和衬底支座之间间隔在大约300密耳和400密耳之间。
包括无定型碳和可选氮气的层既耐用又易于从衬底上去除。该层通常可以承受大于1200℃的工艺温度并且可以通过氧气灰化工艺从衬底上去除。
在衬底上沉积该层后,在将该层充分加热到至少300℃温度的条件下将该衬底暴露于具有大约600nm到大约1000nm之间一个或者多个波长的电磁辐射下。优选的,通过从激光发出的连续波长电磁辐射激光退火该衬底。如这里所限定的,“连续波长电磁辐射”是连续发送即没有分段或者脉冲的辐射。可选择地,可以通过电磁辐射脉冲激光退火该衬底。在另一实施方式中,通过诸如氙弧灯的宽范围电磁辐射源提供电磁辐射。
在一实施方式中,电磁辐射的波长为大约600nm到大约1000nm之间。在优选实施方式中,该电磁辐射的波长介于大约808nm到大约810nm之间。优选的,在介于大约808nm到大约810nm之间的波长下该层的消光系数大约0.01到2.0。通常,由激光发出的电磁辐射的功率密度介于大约10W/cm2和大约200W/cm2之间,诸如大约90W/cm2
在激光退火期间,通过由激光发射的辐射线扫描该衬底。该电磁辐射线宽度在大约3μm到大约500μm之间,诸如大约35μm。
该层基本上可以吸收由激光发射的电磁辐射或者宽范围电磁辐射源。该层几乎不对由激光发射的电磁辐射或者宽范围电磁辐射源进行反射。因此既可以将该层描述为吸收层又可以将其描述为抗反射涂层。然后该层向该层所在的衬底传输通过吸收的电磁辐射产生的热能。并且加热并退火该衬底。优选的,仅加热并退火衬底的上表面,诸如面向激光的衬底表面上部15μm。因此,在一实施方式中,该退火工艺是动态表面退火(DSA)工艺。在一实施方式中,将衬底的上表面加热到介于大约1100℃和1410℃之间的温度并以大约1毫秒的时间降低到接近环境温度。
图2所示为可以结合所述实施方式使用的激光装置200的实施例。该装置200包括连续波电磁辐射模块201、配置用于在衬底上承载衬底214的平台216、平移机械装置218。该连续波电磁辐射模块201包括连续波电磁辐射源202和位于连续波电磁辐射源202和平台216之间的聚焦光学器件220。
在优选实施方式中,连续波电磁辐射源202可以在至少15秒内进行连续辐射。而且,在优选实施方式中,该连续波电磁辐射源202包括多激光二极管,每个多激光二极管均可以产生均匀而且具有同样波长的空间相干光。在再一优选实施方式中,该激光二极管的功率在0.5KW到50KW范围内变化,但是优选大约2KW。由Coherent Inc.of Santa Clara,Clafornia;Spectra-Physics ofCalifornia;或者由Cutting Edge Optronics,Inc.of St.Charles Missouri.制造适用激光二极管。Cutting Edge Optronics制造优选激光二极管,另一种适用激光二极管为Spectra Physics’MONSOON
Figure C20048002874700101
多梳栉模块(MBM),该模块中每个激光二极管模块具有40-480瓦特的连续波功率。
聚焦光学器件220优选包括一个或者多个校准仪206,该校准仪将来自连续波电磁辐射源的202的辐射204校准为基本平行的光束208。然后通过至少一个透镜210将该校准辐射208聚焦为位于衬底214上表面224的辐射线222。
透镜210为能够将辐射聚焦为一条线的任意适用透镜、或者多级透镜。在一优选实施方式中,透镜210为柱面透镜。可以选择地,透镜210可以是一个或者多个凹透镜、凸透镜、平面镜、凹面镜、凸面镜、折射透镜、衍射透镜、菲涅耳透镜、梯度指数透镜等。
如下所述,平台216是在平移期间任意可以安全地固定衬底214的平台或者卡盘。在优选实施方式中,该平台216包括用于固定衬底的装置,诸如摩擦的、重力的、机械的或者电子系统。用于固定的适用装置实施例包括机械夹具、静电或者真空卡盘等。
该装置200还包括配置用于使该平台216和辐射线222彼此相对平移的平移机械装置218。在一实施方式中,该平移机械装置218连接到平台216上以相对于连续波电磁辐射源202和/或聚焦光学器件220移动平台216。在另一实施方式中,将平移机械装置218连接到连续波电磁辐射源202和/或聚焦光学器件220上以相对于平台216移动连续波电磁辐射源202和/或聚焦光学器件220。在又一实施方式中,该平移机械装置218既移动连续波电磁辐射源202和/或聚焦光学器件220又移动平台216。可以使用任何使用的平移机械装置,诸如运输机系统、托架和齿轮系统等。
该平移机械装置218优选地连接到控制器226上以控制平台216和辐射线222相对移动的扫描速度。此外,平台216和辐射线222相对移动优选地沿着垂直于辐射线222并平行于衬底214的上表面224的路径移动。在一优选实施方式中,该平移机械装置218以固定速度移动。优选地,对于宽度为35微米的线来说该固定速度接近2cm/s。在另一实施方式中,平台216和辐射线222相对移动没有沿垂直于辐射线222的路径移动。
在2002年4月18日提交的转让美国专利申请序列No.10/126,419中进一步描述了图2所示和所述的激光和可以结合所述实施方式使用的激光的其他实施方式,该申请题目为“Thermal Flux Process by Scanning,”在此引入作为参考。
在对衬底进行退火以后,可以从该衬底上去除该层。在该层包括无定型碳或者无定型碳和选自由氮、硼、磷、氟或者其组合构成的组的掺杂剂的实施方式中,可以通过氧灰化工艺从该衬底上去除该层。可以在光刻胶灰化工艺中执行该氧灰化工艺。优选地,在进行氧灰化工艺后,通过诸如稀释HF清洗或者SC1+DI/O3清洗的湿法清洗处理该衬底以去除来自灰化工艺的残留物。
以下关于图3A-3F详细说明根据发明实施方式的典型衬底处理工艺顺序。如图3A所示,提供一含有硅的衬底300。如图3B所示,根据传统方法在衬底300上沉积并构图场氧化层302、栅绝缘层304以及栅极306以在衬底300中形成栅源区域303和栅漏区域305。然后如图3C所示,向该衬底300注入掺杂离子以形成栅源308和栅漏310。如图3D所示,然后根据本发明的实施方式在衬底300上沉积包括无定型碳和选择掺杂剂的层312。然后如图3E所示,根据本发明的实施方式对衬底300进行激光退火。然后如图3F所示,通过诸如氧灰化工艺从衬底上去除312层。
尽管图3A-3F仅示出衬底上的一个栅器件,但是应该认识到在包括多种不同尺寸、类型、材料以及在衬底表面上以不同浓度间隔的器件的衬底上通常可以形成这里所述的层。尽管在衬底表面上具有不同的器件形态但是应该认识到该层在衬底退火期间使整个衬底表面的加热更加均匀。特别是,人们认为该层对于波长在大约808nm和大约810nm的电磁辐射具有高发射率,在该衬底暴露于波长在大约808nm和大约810nm的电磁辐射下的激光退火期间提高了整个衬底表面加热的均匀性。
实施例
实施例1-9
在PECVD腔室中的9个硅衬底上沉积包括无定型碳的层,具体工艺条件如下:550℃、7Torr、频率为13.56MHz的700瓦特RF功率、1200sccm的C3H6、650sccm的氦,并且在腔室喷嘴和衬底基座之间距离为270密耳。在实施例1-7中没有阴影环的情况沉积该层。在实施例8和9中存在腔室阴影环的情况沉积该层。根据这里提供的实施方式激光退火该衬底。在表1中示出沉积层的厚度、沉积时间和该层对810nm电磁辐射的发射率。
表1
Figure C20048002874700121
实施例10-17
在PECVD腔室中的8个硅衬底上沉积包括无定型碳和氮的层,具体工艺条件如下:400℃、7Torr、频率为13.56MHz的1200瓦特RF功率、350sccm的C3H6、3400sccm的氮气,并且在腔室气嘴和衬底基座之间距离为270密耳。在实施例10-15中没有阴影环的情况沉积该层。在实施例16和17中存在腔室阴影环的情况沉积该层。然后根据这里提供的实施方式激光退火该衬底。在表2中示出沉积层的厚度、沉积时间和该层对810nm电磁辐射的发射率。
表2
Figure C20048002874700122
  11   900   0.95   19
  12   1000   0.98   21
  13   1100   0.99   24
  14   1200   0.99   26
  15   1300   0.97   28
  16   850   0.94   17
  17   1200   0.98   25
如表1和2所示,包括无定型碳以及无定型碳和氮且厚度在大约
Figure C20048002874700131
到大约
Figure C20048002874700132
之间的层对于波长在诸如大约808nm和大约810nm的介于大约600nm到大约1000nm之间例如810nm的电磁辐射具有0.84或者更大的发射率。人们出乎预料的发现包含无定型碳和氮的层和相当厚度的包括无定型碳但不包括氮的层比较具有更高的发射率。人们认为氮提高了无定型碳的热传导率,原因在于通过PECVD沉积的无定型碳的能带隙通常大约为1.4ev,而包括氮的无定型碳的能带隙通常大约为0.6ev。
图4所示为具有不同吸光系数K包括无定型碳或者无定型碳和氮的层对于波长为810nm辐射的吸收百分比。图4显示和包括无定型碳但不包括氮的层相比,包括无定型碳和氮的层可以吸收更大量的810nm波长电磁辐射。因此人们认为向无定型碳层中添加氮可以提高对于诸如大约808nm和大约810nm的介于大约600nm到大约1000nm之间波长电磁辐射的吸收量。
还应该认识到包含无定型碳和氮的层的其他优点。例如,可以在诸如大约400℃的低温下沉积具有诸如大约厚度的包含无定型碳和氮的层从而对于大约700nm到大约1mm之间波长的电磁辐射实现较好的吸收,而包括无定型碳但不包括氮的层通常必须在诸如550℃的高温下沉积到大约
Figure C20048002874700134
的厚度才能实现对于大约808nm和大约810mm波长电磁辐射的良好吸收。这里优选低沉积温度,由于这样可以将衬底暴露于可能导致对衬底中的硅进行不良再结晶的温度降到最小程度。
尽管前述主要针对本发明的实施方式,但是在不脱离本发明衬底范围以及由以下权利要求确定的范围的情况下,可以设计本发明其他和更多实施方式。

Claims (20)

1、一种处理衬底的方法,包括:
在所述衬底上沉积一包括无定形碳的层;然后
在足够将所述层加热到至少300℃的温度条件下,将所述衬底暴露在电磁辐射中,所述电磁辐射具有一种或者多种介于600nm到1000nm波长,其中将所述衬底暴露至电磁辐射包含通过将连续波长电磁辐射聚焦成延伸穿过所述衬底表面的线而退火所述衬底。
2、如权利要求1所述的方法,其特征在于,通过等离子增强化学气相沉积来沉积所述包括无定形碳的层。
3、如权利要求1所述的方法,其特征在于,进一步包括在将所述衬底暴露在电磁辐射中之后,从所述衬底上去除所述层。
4、如权利要求1所述的方法,其特征在于,进一步包括在沉积一包括无定形碳的层之前,将掺杂离子注入所述衬底。
5、如权利要求4所述的方法,其特征在于,所述衬底暴露在所述电磁辐射中持续一时间段足够激活所述注入的掺杂离子。
6、一种处理衬底的方法,包括:
在所述衬底上沉积一包括无定形碳和选自包含氮、硼、磷、氟或者其组合的组的掺杂剂的层;然后
在足够将所述层加热到至少300℃的温度条件下,将所述衬底暴露在电磁辐射中,所述电磁辐射具有一种或者多种介于600nm到1000nm波长,其中将所述衬底暴露至电磁辐射包含通过将连续波长电磁辐射聚焦成延伸穿过所述衬底表面的线而退火所述衬底。
7、如权利要求6所述的方法,其特征在于,所述掺杂剂为氮。
8、如权利要求6所述的方法,其特征在于,所述层在介于250℃至450℃的温度下沉积。
9、如权利要求6所述的方法,其特征在于,通过等离子增强化学汽相沉积来沉积所述层。
10、如权利要求6所述的方法,其特征在于,进一步包括在将所述衬底暴露在电磁辐射中之后,从所述衬底上去除所述层。
11、如权利要求6所述的方法,其特征在于,进一步包括在沉积一包括无定形碳的层之前,将掺杂离子注入所述衬底。
12、如权利要求11所述的方法,其特征在于,所述衬底暴露在所述电磁辐射中持续一时间段足够激活所述注入的掺杂离子。
13、一种处理含硅衬底的方法,包括:
沉积厚度介于
Figure C2004800287470003C1
至2.5μm并且对波长介于600nm和1000nm的电磁辐射具有0.84或更大的发射率的层;然后
通过将连续波长电磁辐射聚焦成延伸穿过所述衬底表面的线而激光退火所述衬底。
14、如权利要求13所述的方法,其特征在于,所述层包括无定形碳。
15、如权利要求14所述的方法,其特征在于,所述层进一步包括选自包含氮、硼、磷、氟或者其组合的组的掺杂剂。
16、如权利要求14所述的方法,其特征在于,所述层进一步包括氮。
17、如权利要求13所述的方法,其特征在于,所述层具有介于
Figure C2004800287470003C2
Figure C2004800287470003C3
的厚度,并且对应于波长介于808nm至810nm的电磁辐射具有0.84或更大的发射率。
18、如权利要求13所述的方法,其特征在于,进一步包括在沉积一包括无定形碳的层之前,将掺杂离子注入所述衬底。
19、如权利要求18所述的方法,其特征在于,进一步包括在所述注入之前,在所述衬底上形成一栅源区和一栅漏区。
20、如权利要求19所述的方法,其特征在于,在足以激活所述注入的掺杂离子的时间段内激光退火所述衬底。
CNB2004800287472A 2003-10-03 2004-10-01 用于动态表面退火工艺的吸收层 Expired - Fee Related CN100459050C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/679,189 US7109087B2 (en) 2003-10-03 2003-10-03 Absorber layer for DSA processing
US10/679,189 2003-10-03
US10/758,758 2004-01-15

Publications (2)

Publication Number Publication Date
CN1864247A CN1864247A (zh) 2006-11-15
CN100459050C true CN100459050C (zh) 2009-02-04

Family

ID=34394118

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800287472A Expired - Fee Related CN100459050C (zh) 2003-10-03 2004-10-01 用于动态表面退火工艺的吸收层

Country Status (4)

Country Link
US (4) US7109087B2 (zh)
JP (1) JP5351450B2 (zh)
KR (2) KR101292314B1 (zh)
CN (1) CN100459050C (zh)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7812423B2 (en) * 2003-08-12 2010-10-12 Massachusetts Institute Of Technology Optical device comprising crystalline semiconductor layer and reflective element
US7109087B2 (en) * 2003-10-03 2006-09-19 Applied Materials, Inc. Absorber layer for DSA processing
EP1676300B1 (en) * 2003-10-03 2014-10-01 Applied Materials, Inc. Method for annealing a substrate comprising an absorber layer
US8023536B1 (en) 2004-05-24 2011-09-20 Lockheed Martin Corporation Weapon system and method for beam containment and beamwalk maintenance utilizing optical fibers
US7806988B2 (en) * 2004-09-28 2010-10-05 Micron Technology, Inc. Method to address carbon incorporation in an interpoly oxide
US7642205B2 (en) 2005-04-08 2010-01-05 Mattson Technology, Inc. Rapid thermal processing using energy transfer layers
US20060260545A1 (en) * 2005-05-17 2006-11-23 Kartik Ramaswamy Low temperature absorption layer deposition and high speed optical annealing system
US7312162B2 (en) * 2005-05-17 2007-12-25 Applied Materials, Inc. Low temperature plasma deposition process for carbon layer deposition
US7422775B2 (en) * 2005-05-17 2008-09-09 Applied Materials, Inc. Process for low temperature plasma deposition of an optical absorption layer and high speed optical annealing
US7323401B2 (en) * 2005-08-08 2008-01-29 Applied Materials, Inc. Semiconductor substrate process using a low temperature deposited carbon-containing hard mask
US7335611B2 (en) * 2005-08-08 2008-02-26 Applied Materials, Inc. Copper conductor annealing process employing high speed optical annealing with a low temperature-deposited optical absorber layer
US7429532B2 (en) * 2005-08-08 2008-09-30 Applied Materials, Inc. Semiconductor substrate process using an optically writable carbon-containing mask
US7312148B2 (en) * 2005-08-08 2007-12-25 Applied Materials, Inc. Copper barrier reflow process employing high speed optical annealing
KR20090029221A (ko) * 2006-06-21 2009-03-20 가부시끼가이샤 하이테크 시스템즈 반도체의 열처리방법
US7514125B2 (en) * 2006-06-23 2009-04-07 Applied Materials, Inc. Methods to improve the in-film defectivity of PECVD amorphous carbon films
US7795124B2 (en) 2006-06-23 2010-09-14 Applied Materials, Inc. Methods for contact resistance reduction of advanced CMOS devices
US7588990B2 (en) * 2006-08-31 2009-09-15 Applied Materials, Inc. Dynamic surface annealing of implanted dopants with low temperature HDPCVD process for depositing a high extinction coefficient optical absorber layer
US7989366B2 (en) * 2006-08-31 2011-08-02 Applied Materials, Inc. Dopant activation in doped semiconductor substrates
US7968473B2 (en) * 2006-11-03 2011-06-28 Applied Materials, Inc. Low temperature process for depositing a high extinction coefficient non-peeling optical absorber for a scanning laser surface anneal of implanted dopants
KR101397567B1 (ko) * 2007-01-24 2014-05-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체막의 결정화 방법 및 반도체장치의 제작방법
US7867868B2 (en) 2007-03-02 2011-01-11 Applied Materials, Inc. Absorber layer candidates and techniques for application
US7772064B2 (en) * 2007-03-05 2010-08-10 United Microelectronics Corp. Method of fabricating self-aligned contact
US7804042B2 (en) * 2007-06-18 2010-09-28 Applied Materials, Inc. Pryometer for laser annealing system compatible with amorphous carbon optical absorber layer
US7795104B2 (en) 2008-02-13 2010-09-14 Chartered Semiconductor Manufacturing Ltd. Method for fabricating device structures having a variation in electrical conductivity
US8110476B2 (en) 2008-04-11 2012-02-07 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
US7947584B2 (en) * 2008-05-02 2011-05-24 Applied Materials, Inc. Suitably short wavelength light for laser annealing of silicon in DSA type systems
US7838431B2 (en) * 2008-06-14 2010-11-23 Applied Materials, Inc. Method for surface treatment of semiconductor substrates
US20100032639A1 (en) * 2008-08-07 2010-02-11 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
FR2958075B1 (fr) * 2010-03-24 2012-03-23 Univ Paris Curie Procede de realisation d'une electrode metallique a la surface d'un materiau hydrophobe
CN101866839B (zh) * 2010-05-24 2012-05-16 南通大学 一种应用掩膜保护进行激光快速加热方法
JP2012069748A (ja) * 2010-09-24 2012-04-05 Sumitomo Heavy Ind Ltd レーザアニール方法及びレーザアニール装置
US8580646B2 (en) 2010-11-18 2013-11-12 International Business Machines Corporation Method of fabricating field effect transistors with low k sidewall spacers
JP5569376B2 (ja) * 2010-12-07 2014-08-13 住友電気工業株式会社 半導体装置の製造方法
CN102169810B (zh) * 2010-12-27 2013-07-03 清华大学 一种使用真空腔的激光处理装置和处理方法
US8927423B2 (en) 2011-12-16 2015-01-06 Applied Materials, Inc. Methods for annealing a contact metal layer to form a metal silicidation layer
US8586479B2 (en) 2012-01-23 2013-11-19 Applied Materials, Inc. Methods for forming a contact metal layer in semiconductor devices
US8900883B1 (en) 2012-03-22 2014-12-02 Iii Holdings 1, Llc Methods for manufacturing carbon ribbons for magnetic devices
US9330939B2 (en) 2012-03-28 2016-05-03 Applied Materials, Inc. Method of enabling seamless cobalt gap-fill
CN102637581A (zh) * 2012-04-06 2012-08-15 上海华力微电子有限公司 一种防止硼掺杂层释气的方法
TWI720422B (zh) 2013-09-27 2021-03-01 美商應用材料股份有限公司 實現無縫鈷間隙填充之方法
CN103489763A (zh) * 2013-09-29 2014-01-01 武汉新芯集成电路制造有限公司 一种避免离子注入掺杂离子释气的方法
US9679773B1 (en) * 2016-03-14 2017-06-13 Infineon Technologies Ag Method for thermal annealing and a semiconductor device formed by the method
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
CN111095513B (zh) 2017-08-18 2023-10-31 应用材料公司 高压高温退火腔室
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
CN107564801A (zh) * 2017-08-31 2018-01-09 长江存储科技有限责任公司 一种退火方法
CN117936417A (zh) 2017-11-11 2024-04-26 微材料有限责任公司 用于高压处理腔室的气体输送系统
WO2019099255A2 (en) 2017-11-17 2019-05-23 Applied Materials, Inc. Condenser system for high pressure processing system
WO2019173006A1 (en) 2018-03-09 2019-09-12 Applied Materials, Inc. High pressure annealing process for metal containing materials
US10950429B2 (en) 2018-05-08 2021-03-16 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
WO2020117462A1 (en) 2018-12-07 2020-06-11 Applied Materials, Inc. Semiconductor processing system
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020160592A1 (en) * 2001-04-30 2002-10-31 Yong Sun Sohn Method for forming ultra-shallow junctions using laser annealing

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548926A (en) * 1978-10-02 1980-04-08 Hitachi Ltd Preparation of semiconductor device
US4370510A (en) * 1980-09-26 1983-01-25 California Institute Of Technology Gallium arsenide single crystal solar cell structure and method of making
JPS58116730A (ja) * 1981-12-30 1983-07-12 Fujitsu Ltd 半導体装置の製造方法
US5000113A (en) * 1986-12-19 1991-03-19 Applied Materials, Inc. Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process
US5000831A (en) * 1987-03-09 1991-03-19 Minolta Camera Kabushiki Kaisha Method of production of amorphous hydrogenated carbon layer
EP0365875B1 (en) * 1988-10-28 1995-08-09 Texas Instruments Incorporated Capped anneal
JP3211377B2 (ja) * 1992-06-17 2001-09-25 ソニー株式会社 半導体装置の製造方法
JP3214931B2 (ja) * 1992-10-22 2001-10-02 鐘淵化学工業株式会社 多結晶シリコン薄膜およびその形成法
US5470661A (en) * 1993-01-07 1995-11-28 International Business Machines Corporation Diamond-like carbon films from a hydrocarbon helium plasma
US5599590A (en) * 1993-07-16 1997-02-04 Kobe Steel Usa Inc. Texture treatment for carbon substrate and for carbon overcoat layer of magnetic disks
US5559367A (en) * 1994-07-12 1996-09-24 International Business Machines Corporation Diamond-like carbon for use in VLSI and ULSI interconnect systems
FR2737806B1 (fr) * 1995-08-11 1997-09-12 Soc D Production Et De Rech Ap Dispositif et procede de traitement de surface par laser
US6103305A (en) * 1997-11-26 2000-08-15 Sandia Corporation Method of forming a stress relieved amorphous tetrahedrally-coordinated carbon film
JPH11266068A (ja) * 1998-01-14 1999-09-28 Canon Inc 配線基板及び配線基板の製造方法
US5956603A (en) * 1998-08-27 1999-09-21 Ultratech Stepper, Inc. Gas immersion laser annealing method suitable for use in the fabrication of reduced-dimension integrated circuits
JP4588153B2 (ja) * 1999-03-08 2010-11-24 株式会社半導体エネルギー研究所 レーザー照射装置
TW445545B (en) * 1999-03-10 2001-07-11 Mitsubishi Electric Corp Laser heat treatment method, laser heat treatment apparatus and semiconductor device
US6245692B1 (en) * 1999-11-23 2001-06-12 Agere Systems Guardian Corp. Method to selectively heat semiconductor wafers
US6573030B1 (en) * 2000-02-17 2003-06-03 Applied Materials, Inc. Method for depositing an amorphous carbon layer
US6303476B1 (en) * 2000-06-12 2001-10-16 Ultratech Stepper, Inc. Thermally induced reflectivity switch for laser thermal processing
US7491642B2 (en) * 2000-07-12 2009-02-17 The California Institute Of Technology Electrical passivation of silicon-containing surfaces using organic layers
TW523791B (en) * 2000-09-01 2003-03-11 Semiconductor Energy Lab Method of processing beam, laser irradiation apparatus, and method of manufacturing semiconductor device
US6479821B1 (en) * 2000-09-11 2002-11-12 Ultratech Stepper, Inc. Thermally induced phase switch for laser thermal processing
US6635541B1 (en) * 2000-09-11 2003-10-21 Ultratech Stepper, Inc. Method for annealing using partial absorber layer exposed to radiant energy and article made with partial absorber layer
TW497098B (en) * 2000-11-04 2002-08-01 Li-Shin Jou Optical recording medium and recording method
US7015422B2 (en) * 2000-12-21 2006-03-21 Mattson Technology, Inc. System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy
WO2002088884A2 (en) * 2001-04-30 2002-11-07 Finisar Corporation In-line power tap device for ethernet data signal
KR100375093B1 (ko) * 2001-05-07 2003-03-08 엘지.필립스 엘시디 주식회사 유전막 제조방법
US6747282B2 (en) * 2001-06-13 2004-06-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
JP2003059854A (ja) * 2001-08-13 2003-02-28 Toshiba Corp 光加熱装置、光加熱方法及び半導体装置の製造方法
JP3980465B2 (ja) * 2001-11-09 2007-09-26 株式会社半導体エネルギー研究所 半導体装置の作製方法
TWI309074B (en) * 2002-02-07 2009-04-21 Advanced Epitaxy Technology Method of forming semiconductor device
US6849831B2 (en) * 2002-03-29 2005-02-01 Mattson Technology, Inc. Pulsed processing semiconductor heating methods using combinations of heating sources
US7005601B2 (en) * 2002-04-18 2006-02-28 Applied Materials, Inc. Thermal flux processing by scanning
US6559017B1 (en) * 2002-06-13 2003-05-06 Advanced Micro Devices, Inc. Method of using amorphous carbon as spacer material in a disposable spacer process
US7126198B2 (en) * 2002-09-03 2006-10-24 Agere Systems Inc. Protruding spacers for self-aligned contacts
US7196013B2 (en) * 2002-12-12 2007-03-27 Intel Corporation Capping layer for a semiconductor device and a method of fabrication
US7129180B2 (en) * 2003-09-12 2006-10-31 Micron Technology, Inc. Masking structure having multiple layers including an amorphous carbon layer
US7109087B2 (en) * 2003-10-03 2006-09-19 Applied Materials, Inc. Absorber layer for DSA processing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020160592A1 (en) * 2001-04-30 2002-10-31 Yong Sun Sohn Method for forming ultra-shallow junctions using laser annealing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Growth and characterisation of amorphouscarbon films doped with nitrogen. N.P.Barradas,R.U.A.Khan,J.V.Anguita,S.R.P.Silva,U.Kreissig.Nuclear instruments and methods in physics research B,Vol.161-163 . 2000
Growth and characterisation of amorphouscarbon films doped with nitrogen. N.P.Barradas,R.U.A.Khan,J.V.Anguita,S.R.P.Silva,U.Kreissig.Nuclear instruments and methods in physics research B,Vol.161-163 . 2000 *

Also Published As

Publication number Publication date
US7262106B2 (en) 2007-08-28
KR20120024943A (ko) 2012-03-14
JP5351450B2 (ja) 2013-11-27
US20060292808A1 (en) 2006-12-28
KR101292314B1 (ko) 2013-07-31
US7109087B2 (en) 2006-09-19
KR20130038943A (ko) 2013-04-18
JP2009033150A (ja) 2009-02-12
US20080230154A1 (en) 2008-09-25
US20050074986A1 (en) 2005-04-07
CN1864247A (zh) 2006-11-15
US20050074956A1 (en) 2005-04-07
KR101292514B1 (ko) 2013-07-31

Similar Documents

Publication Publication Date Title
CN100459050C (zh) 用于动态表面退火工艺的吸收层
US20070243721A1 (en) Absorber layer for dsa processing
JP4365459B2 (ja) ドープ酸化シリコン膜を用いて超薄ドープ領域を形成する方法
KR20080007275A (ko) 탄소 층 증착을 위한 저온 플라즈마 증착 프로세스
US7947561B2 (en) Methods for oxidation of a semiconductor device
KR20080034976A (ko) 저온 증착되는 탄소 함유 하드 마스크를 이용하는 반도체기판 프로세스
KR20080012930A (ko) 저온 흡수 층 증착 및 고속 광학 어닐링 시스템
KR20080011421A (ko) 광 흡수 층의 저온 플라즈마 증착 및 고속 광학 어닐링을포함하는 반도체 접합 형성 프로세스
JP2008541485A (ja) 光吸収層を低温プラズマ堆積させるプロセスおよび高速光アニーリング
CN102652186A (zh) 利用持续的等离子体的pecvd多重步骤处理
CN1912178A (zh) 双频率偏压化学气相沉积室和用其制造光掩模的方法
CN101517708A (zh) 用于固化电介质膜的多步系统和方法
JP6721695B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
US7588990B2 (en) Dynamic surface annealing of implanted dopants with low temperature HDPCVD process for depositing a high extinction coefficient optical absorber layer
US7270724B2 (en) Scanning plasma reactor
Schwarz-Selinger et al. Micron-Scale Modifications of Silicon Surface Morphology by Pulsed-Laser Texturing
Moore et al. Laser and electron beam assisted processing
TW202043527A (zh) 用於製造腔室部件的方法
TW202433643A (zh) 用於形成過渡金屬材料的群集處理系統

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: American California

Patentee after: Applied Materials Inc.

Address before: American California

Patentee before: Applied Materials Inc.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090204

Termination date: 20151001

EXPY Termination of patent right or utility model