CN100455546C - 一种超多孔陶瓷基蓄热材料及其制备方法 - Google Patents

一种超多孔陶瓷基蓄热材料及其制备方法 Download PDF

Info

Publication number
CN100455546C
CN100455546C CNB2007100262199A CN200710026219A CN100455546C CN 100455546 C CN100455546 C CN 100455546C CN B2007100262199 A CNB2007100262199 A CN B2007100262199A CN 200710026219 A CN200710026219 A CN 200710026219A CN 100455546 C CN100455546 C CN 100455546C
Authority
CN
China
Prior art keywords
ceramic
alum
preparation
phase change
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007100262199A
Other languages
English (en)
Other versions
CN100999414A (zh
Inventor
曾令可
任雪潭
王慧
税安泽
程小苏
宋婧
刘平安
刘艳春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CNB2007100262199A priority Critical patent/CN100455546C/zh
Publication of CN100999414A publication Critical patent/CN100999414A/zh
Application granted granted Critical
Publication of CN100455546C publication Critical patent/CN100455546C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种超多孔陶瓷基蓄热材料及其制备方法。本发明材料由陶瓷基体和相变材料组成,陶瓷基体由陶瓷纤维组成,具有三维网状结构,其气孔率为96%以上;相变材料为无机水合盐,包括明矾、以及明矾和六水合氯化镁的混合物,其熔解热大于220J/g。其制备方法包括:超多孔陶瓷基体的制备;相变材料的改性;将相变材料加热融化,浸渗入陶瓷基体中。本发明超多孔陶瓷基体气孔率高(可达96%以上),远高于传统的多孔陶瓷(气孔率一般在40~80%);本发明还充分发挥超多孔陶瓷显气孔率高及明矾盐溶解热大的优良性能,提供了一种高储能密度的定形相变储能材料,该材料可以用于蓄热取暖及其他节能领域。

Description

一种超多孔陶瓷基蓄热材料及其制备方法
技术领域
本发明涉及材料和能源利用领域,更具体的说是涉及一种超多孔陶瓷基蓄热材料及其制备方法。
背景技术
目前国内外对相变材料储热性能的研究越来越多,相变材料具有独特的热性能:它在其物相变化过程中,可以从环境吸收热(冷)量或向环境放出热(冷)量,从而达到热量储存和释放的目的。利用此特性不仅可制造出各种提高能源利用率的设施,同时由于其相变时温度近似恒定,可以用于调整控制周围环境的温度,并且可以多次重复使用。
传统的固-液相变贮能材料在发生相变时,由于其存在固-液态转变过程,故在实际应用中需要加以封装或使用专门的容器,以防止其泄露。这不仅会增加传热介质与相变材料之间的热阻,降低传热效率,而且会增加成本。定形相变材料则可以有效地解决上述问题,定形相变材料由支撑材料(基体)和相变材料组成,相变材料填充于基体材料的孔隙之中,这种定形相变材料在发生相变前后均呈固态状,形状保持不变。定形相变材料由于在宏观上不发生由固态向液态的转变,从而保持其原有形状。
发明内容
本发明的目的在于提供一种既可以利用材料的显热又可以利用材料的潜热,具有高的储能密度和稳定的形状,可作为储能材料使用到相关行业的超多孔陶瓷基蓄热材料。
本发明的另一个目的在于提供一种超多孔陶瓷基蓄热材料的制备方法。
本发明的目的通过如下技术方案实现:
一种超多孔陶瓷基蓄热材料,由陶瓷基体和相变材料组成,所述陶瓷基体由陶瓷纤维组成,具有三维网状结构,其气孔率达到96%以上;所述相变材料为无机水合盐。
相变材料为无机水合盐明矾,其熔解热大于220J/g。
所述无机水合盐可以是明矾和六水合氯化镁的混合物,亦可以是明矾和硝酸铵的混合物。所述明矾和六水合氯化镁的质量比为9∶1。
一种超多孔陶瓷基蓄热材料的制备方法,包括以下步骤:
(1)超多孔陶瓷基体的制备:将氢氧化铝粉和磷酸溶液按P/Al=23的摩尔比例混合,加热搅拌,使之形成无色透明的粘结剂溶液,加入蒸馏水稀释到质量百分比浓度为10%,将陶瓷纤维和粘结剂溶液混合,采用加压排水法,将陶瓷纤维成形为需要的形状,干燥后在高温电炉中烧成为多孔陶瓷烧结体。所得纤维多孔陶瓷其气孔率达到96%以上;
(2)相变材料的浸渗:
可以直接将无机水合盐明矾浸渗入纤维多孔陶瓷基体内,制得蓄热材料;
也可以先将适量碳粉和钛酸脂偶联剂加入粘结剂溶液后填充于纤维多孔陶瓷基体内,经过干燥处理后再进行明矾盐溶液的浸渗,制得蓄热材料;
亦可以将明矾和六水合氯化镁混合后浸渗入纤维多孔陶瓷基体内制得蓄热材料。
本发明与现有技术相比具有如下优点:
1、超多孔陶瓷基体气孔率高(可达96%以上),远高于传统的多孔陶瓷(气孔率一般在40~80%),由于无机盐陶瓷基复合材料的蓄热能力主要由相变材料决定,所以多孔陶瓷的显气孔率直接决定了储能材料蓄热能力的大小;
2、本发明充分发挥超多孔陶瓷显气孔率高及明矾盐溶解热大的优良性能,提供了一种高储能密度的定形相变储能材料,所述材料可以用于蓄热取暖及其他节能领域。
附图及说明
图1是本发明测试实验的示意图;
图2是本发明实施例2所采用的超多孔陶瓷的扫描电镜微观结构照片。
具体实施方式
为更好理解本发明,下面结合附图和实施例对本发明做进一步地详细说明,但是本发明要求保护的范围并不局限于实施例表示的范围。
实施例1:超多孔陶瓷基体的制备
将氢氧化铝粉和磷酸溶液按P/Al=23的摩尔比例混合,加热搅拌,使之形成无色透明的粘结剂溶液,加入蒸馏水稀释到质量百分比浓度为10%,将陶瓷纤维和粘结剂溶液混合,采用加压排水法,将陶瓷纤维成形为需要的形状,干燥后在高温电炉中烧成为多孔陶瓷烧结体。所得纤维多孔陶瓷其气孔率达到96%以上。
实施例2
称取明矾150g,实施例1制备的超多孔陶瓷基体一块(以重量计20.6g),将明矾覆盖于多孔陶瓷基体上,放在容器内,在烘箱内加热干燥,干燥温度为100~120℃,并保温30分钟,将浸渗了盐溶液的多孔陶瓷取出,冷至室温,去除表面多余的物质,即得相变蓄热体。超多孔陶瓷基体的扫描电镜图如图2所示,由放大2000倍的扫描电镜图片可以看出,陶瓷纤维相互搭链形成了三维网状结构,纤维之间形成的孔隙在十几个微米左右。这种微米级的孔所形成的毛细管力可以使熔盐保持在陶瓷基体中而不会流出。
实施例3
称取超细碳粉1g,加入40ml质量百分比浓度为10%的A23溶液中,其中A23由氢氧化铝粉和磷酸按1∶23的摩尔比配置而成。由于碳粉表面憎水,加入0.1%(以碳粉质量计)的钛酸酯偶联剂进行表面改性处理,使其均匀分散于A23溶液中,将实施例1制备的超多孔陶瓷基体浸入该混合液中,在100~150℃左右烘干,得到含了碳粉的多孔陶瓷基体。称取明矾150g,超多孔陶瓷基体一块,将明矾覆盖于多孔陶瓷基体上,放在容器内,在烘箱内加热至120℃,并保温30分钟,将浸渗了盐溶液的多孔陶瓷取出,冷至室温,去除表面多余的物质,即得相变蓄热体。
实施例4
称取明矾135g,六水合氯化镁15g,超多孔陶瓷基体一块(以重量计20.6g)。将明矾和六水合氯化镁混合均匀,覆盖于实施例1制备的多孔陶瓷基体上,放在容器内,在烘箱内加热至100~120℃,并保温30分钟。将浸渗了盐溶液的多孔陶瓷取出,冷至室温,去除表面多余的物质。
实施例1和实施例2无机水合盐相变材料的浸渗效果如表1所示。
表1
由表1可以看出,实施例2的超多孔陶瓷基材料重量由浸渗前的20.6g增加到147g,无机盐的浸渗率达到86%,实施例3的无机盐浸渗率达到81.3%。
比较实施例
如图1所示,将实施例1~2的样品分别放置于电加热的咖啡壶上,并连接电流表和电压表,接通电源进行蓄热性能的实际考核。通过记录电加热咖啡壶单位时间的通断电次数,以衡量其节能效果如表2所示。
表2
Figure C20071002621900062
注:0#代表未使用蓄热材料
由表2可以看出,采用制备的蓄热材料后,电加热咖啡壶的在一小时内的通断电次数由未加前的22次分别降到了实施例1和实施例2的9次和12次,可见其一小时内加热时间被大大缩短,达到缩短一半时间以上,节能效果十分明显。

Claims (3)

1、一种超多孔陶瓷基蓄热材料,由陶瓷基体和相变材料组成,其特征在于,所述陶瓷基体由陶瓷纤维组成,具有三维网状结构,其气孔率为96%以上;所述相变材料为明矾或者是明矾和六水合氯化镁的混合物;所述明矾和六水合氯化镁的质量比为9∶1。
2、权利要求1所述一种超多孔陶瓷基蓄热材料的制备方法,其特征在于包括以下步骤:
(1)超多孔陶瓷基体的制备:将氢氧化铝粉和磷酸溶液按P与Al的摩尔比为23∶1的比例进行秤料混合,加热搅拌,使之形成无色透明的粘结剂溶液,加入蒸馏水稀释到质量百分比浓度为10%,将陶瓷纤维和粘结剂溶液混合,采用加压排水法,将陶瓷纤维成形为需要的形状,干燥后在高温电炉中烧成为多孔陶瓷烧结体,所得纤维多孔陶瓷其气孔率达到96%以上;
(2)相变材料的浸渗:直接将明矾浸渗入纤维多孔陶瓷基体内,制得蓄热材料。
3、根据权利要求2所述一种超多孔陶瓷基蓄热材料的制备方法,其特征在于所述步骤(2)是将明矾和六水合氯化镁混合后浸渗入纤维多孔陶瓷基体内制得蓄热材料。
CNB2007100262199A 2007-01-05 2007-01-05 一种超多孔陶瓷基蓄热材料及其制备方法 Expired - Fee Related CN100455546C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007100262199A CN100455546C (zh) 2007-01-05 2007-01-05 一种超多孔陶瓷基蓄热材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007100262199A CN100455546C (zh) 2007-01-05 2007-01-05 一种超多孔陶瓷基蓄热材料及其制备方法

Publications (2)

Publication Number Publication Date
CN100999414A CN100999414A (zh) 2007-07-18
CN100455546C true CN100455546C (zh) 2009-01-28

Family

ID=38258250

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100262199A Expired - Fee Related CN100455546C (zh) 2007-01-05 2007-01-05 一种超多孔陶瓷基蓄热材料及其制备方法

Country Status (1)

Country Link
CN (1) CN100455546C (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102093036B (zh) * 2009-12-09 2013-06-05 沈阳临德陶瓷研发有限公司 MgO陶瓷基复合相变蓄热材料及其自固化成型制备工艺
CN102061403A (zh) * 2010-10-28 2011-05-18 华南理工大学 多孔材料基体和复合相变蓄热材料及其制备方法
ES2353299B2 (es) * 2011-01-14 2011-09-16 Ceracasa, S.A Producto cerámico que comprende al menos un material de cambio de fase.
CN102827587A (zh) * 2012-09-18 2012-12-19 中国科学院上海硅酸盐研究所 相变储能材料/石墨烯/多孔陶瓷复合热管理材料及其制备方法和应用
CN104629691A (zh) * 2015-01-13 2015-05-20 天津市建筑科学研究院有限公司 一种用于地采暖蓄热的定型相变材料
CN107337436B (zh) * 2017-05-18 2020-03-10 全球能源互联网研究院有限公司 一种相变储热材料及其制备方法
JP7296207B2 (ja) * 2018-12-20 2023-06-22 三菱重工業株式会社 板状化学蓄熱体
CN111792911B (zh) * 2020-07-13 2022-08-30 广东萨米特陶瓷有限公司 一种智能调温装饰陶瓷板材及其制备方法
CN111909664A (zh) * 2020-07-14 2020-11-10 中盐金坛盐化有限责任公司 无机纤维复合氯系熔盐储热材料及其制备方法和应用
CN112268476A (zh) * 2020-10-13 2021-01-26 鲁励成 一种耐高温蓄放热保温箱

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483845A (zh) * 2003-07-23 2004-03-24 西北工业大学 高含量Si/Al复合材料的无压浸渗制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483845A (zh) * 2003-07-23 2004-03-24 西北工业大学 高含量Si/Al复合材料的无压浸渗制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
无机盐/陶瓷基超微结构多孔介质熔化过程传热研究. 柯秀芳等.工程热物理学报,第26卷第1期. 2005
无机盐/陶瓷基超微结构多孔介质熔化过程传热研究. 柯秀芳等.工程热物理学报,第26卷第1期. 2005 *
蓄热诸能多孔材料. 任雪潭等.陶瓷学报,第27卷第2期. 2006
蓄热诸能多孔材料. 任雪潭等.陶瓷学报,第27卷第2期. 2006 *

Also Published As

Publication number Publication date
CN100999414A (zh) 2007-07-18

Similar Documents

Publication Publication Date Title
CN100455546C (zh) 一种超多孔陶瓷基蓄热材料及其制备方法
Li et al. N-eicosane/expanded graphite as composite phase change materials for electro-driven thermal energy storage
Rathore et al. Potential of macroencapsulated PCM for thermal energy storage in buildings: A comprehensive review
Huang et al. Advances and applications of phase change materials (PCMs) and PCMs-based technologies
CN104559936B (zh) 一种中温用相变蓄热材料及其制备方法
CN101239798A (zh) 有机物/膨胀石墨复合相变储热建筑材料及其制备方法
Du et al. Development of capric acid-stearic acid-palmitic acid low-eutectic phase change material with expanded graphite for thermal energy storage
CN112094625A (zh) 一种氮化硼纳米管气凝胶/相变导热复合材料及其制备方法
CN109233746A (zh) 无机玻璃封装熔盐-多孔材料的复合相变储热体及其制备
CN112521153A (zh) 一种生物形态碳化硅陶瓷高温光热储存材料
CN102277139B (zh) 显热-潜热复合中温储热材料及制备方法
CN102660230A (zh) 超导热复合相变储能材料
CN106118610B (zh) 聚乙二醇/石墨烯定型相变材料的制备方法
CN103351850B (zh) 一种应用于热泵热水器的相变储热材料及其制备方法
CN112521158B (zh) 一种仿骨头等级孔陶瓷基光热储存材料及制备方法
CN107502297A (zh) 一种多元硝酸盐/石墨烯/纳米颗粒定型复合相变储热材料及其制备方法
CN110257019A (zh) 一种具有光热转换功能的相变复合材料及其制备方法
Zhang et al. Enhanced properties of mica-based composite phase change materials for thermal energy storage
CN107337436A (zh) 一种相变储热材料及其制备方法
CN108865079B (zh) 一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法
Ling et al. A shape-stabilized MgCl 2· 6H 2 O–Mg (NO 3) 2· 6H 2 O/expanded graphite composite phase change material with high thermal conductivity and stability
CN114292628A (zh) 仿竹子相变储热材料及制备方法
Ma et al. Nano‐Ag modified bio‐based shape‐stable phase change material for thermal energy storage
CN104697373A (zh) 一种泡沫金属换热结构
Xu et al. Preparation of composite microencapsulated phase change material based on phosphogypsum for passive building applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090128

Termination date: 20200105

CF01 Termination of patent right due to non-payment of annual fee