CN108865079B - 一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法 - Google Patents

一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法 Download PDF

Info

Publication number
CN108865079B
CN108865079B CN201810962301.0A CN201810962301A CN108865079B CN 108865079 B CN108865079 B CN 108865079B CN 201810962301 A CN201810962301 A CN 201810962301A CN 108865079 B CN108865079 B CN 108865079B
Authority
CN
China
Prior art keywords
inorganic glass
particles
glass powder
molten salt
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810962301.0A
Other languages
English (en)
Other versions
CN108865079A (zh
Inventor
郝俊杰
邓占峰
卢昀坤
任中凯
张高群
杨岑玉
徐桂芝
常亮
杜兆龙
王天昊
吴彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
University of Science and Technology Beijing USTB
Global Energy Interconnection Research Institute
Electric Power Research Institute of State Grid Tianjin Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
University of Science and Technology Beijing USTB
Global Energy Interconnection Research Institute
Electric Power Research Institute of State Grid Tianjin Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, University of Science and Technology Beijing USTB, Global Energy Interconnection Research Institute, Electric Power Research Institute of State Grid Tianjin Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201810962301.0A priority Critical patent/CN108865079B/zh
Publication of CN108865079A publication Critical patent/CN108865079A/zh
Application granted granted Critical
Publication of CN108865079B publication Critical patent/CN108865079B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本发明涉及相变储热材料技术领域,提供了一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法,采用无机玻璃作为封装材料,对熔盐颗粒进行包覆封装,然后与陶瓷基体进行复合压制,制备出熔盐‑陶瓷相变储热材料。本发明利用无机玻璃粉对熔盐颗粒进行微胶囊封装,并且将封装后的颗粒与陶瓷基体材料复合烧结,通过对熔盐颗粒的封装以及与基体材料的混合压制,无机玻璃粉的熔融成型既起到防潮的作用,又可以为结构材料提供粘结的作用;本发明制备方法简单,成本较低,易大规模生产;解决了高温熔盐相变材料的吸湿性强、高温结构强度弱的问题,对高温相变储热材料扩大使用环境具有重要意义。

Description

一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法
技术领域
本发明涉及相变储热材料技术领域,特别涉及一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法及熔盐-陶瓷相变储热材料。
背景技术
随着我国经济的迅速发展,对能源的需求日益增强,但是目前80%的能源来源于不可再生的化石能源,例如煤炭、石油、天然气等。煤炭与石油不但资源稀缺,而且在应用过程中会对环境导致严重污染。近年来,我国大气污染严重,特别在冬季供暖过程中,煤炭燃烧后的污染物排放对大气造成巨大的影响,同时也是导致雾霾的重要因素。虽然煤改气可以缓解采暖污染问题,但是天然气同样是化石能源,并且我国天然气供应不足,价格逐步增加,故寻求新能源代替化石能源迫在眉睫。电采暖是一种清洁、安全的采暖方式,通过电价政策的调节,推行居民峰谷分时电价,使得具有能量存储的电采暖方式是必要的,可以进一步提高电采暖的经济性,“削峰填谷”是降低电网的高峰负荷,提高低谷负荷,平滑负荷曲线,稳定电网运行的重要手段。储热材料是把在一段时间或一定空间暂时不用的多余能量通过某种途径收集并存储起来,在能量需求高峰期再将其释放出来。相变储热材料能通过两相转变储存或释放大量热能,达到电采暖中“削峰填谷”的目的。并且具有安全性好、易于运行控制和管理等优点。
熔盐相变储热材料以其储热密度高,成本低等优点广泛应用在国内外相变储热领域。但是熔盐相变储热材料依旧存在对吸湿性严重,熔盐泄露以及高温结构强度低的问题,这些问题限制了熔盐相变储热材料的应用范围,所以解决这些问题是紧急、必要的。
国内外研究人员主要采取了整体封装的方法解决此问题,Ryo Fukahori(Fukahori R, Nomura T, Zhu C, Sheng N, Okinaka N, Akiyama T. Macro-encapsulation ofmetallic phase change material using cylindrical-type ceramiccontainers for hightemperature thermal energy storage[J]. Appl Energy 2016;170:324-8)采用陶瓷杯封装熔盐,将熔盐放置进陶瓷杯体中在外层加盖封装,这种方法可以隔绝湿度环境和提供支撑的结构,杯体的空间可以为熔盐留出膨胀空间解决了熔盐膨胀系数大的问题,但是这种方式制备繁琐,成本高;陶瓷杯与杯盖之间的粘结随循环次数的增加会出现脱落老化现象。
Pau Gimenez(Gimenez P, Fereres S. Glass encapsulated phase changematerials for high temperature thermal energy storage[J]. Renewable Energy,2017, 107:497-507.) 采取将NaNO3注入玻璃球体从而起到封装和支撑的作用,虽然这种办法可以采用一体化的方式完全解决熔盐的吸湿性问题并且在常温环境提供支撑结构,但是工艺困难,并且在高温下,玻璃存在软化现象,而软化后的玻璃无法承受熔盐的重量进而导致熔盐从底部泄露的问题,不但无法起到结构支撑作用,而且会使整个材料失效。
TEAP与EPS Ltd (Pendyala S. Macroencapsulation of Phase ChangeMaterials for Thermal Energy Storage[J]. Dissertations & Theses - Gradworks,2012.)分别利用聚合物和金属材料将熔盐封装进球体中,可以使熔盐与外界湿度环境隔离并且提供一个稳定的结构形状,但是这种方法不单使制备成本加大和工艺复杂,而且聚合物的较低的使用温度范围、金属材料的高导电性严重限制了在电采暖的应用环境。
Bhardwaj(Bhardwaj A. Metallic Encapsulation for High Temperature (>500 °C) Thermal Energy Storage Applications[J]. 2015.)采用碳钢与镍对NaCl-KCl共晶盐进行封装造粒,将碳素钢筒涂抹镍,将熔盐放置在碳素钢筒里,这种方法制备的材料具有良好的导热性与热稳定性,在580℃到680℃之间可以经受1700次的热循环,制作工艺简单,但是这种方式中模具的制备成本高,碳钢在湿度环境下很容易生锈,虽然阻止熔盐吸湿,但是容器生锈依旧会导致失效,并且碳钢与镍也具有导电性,在电采暖环境下易导致短路。
Noemí Arconada(Arconada N, Arribas L, Lucio B, et al.Macroencapsulation of sodium chloride as phase change materials for thermalenergy storage[J]. Solar Energy, 2018, 167:1–9.) 使用TiO2与SiO2作为封装材料,使用溶胶凝胶法对NaCl熔盐柱体进行包覆制取微胶囊颗粒,此方法可以在湿度环境下使熔盐与外界环境隔离,避免吸湿问题的产生,但是这种方法制备工艺复杂,成本高,工业化生产较难实现,而且SiO2的导热较差,所以虽然解决了吸湿性问题,但是降低了其储热性能。
Li et al.(Li J, Lu W, Luo Z, et al. Synthesis and thermal propertiesof novel sodium nitrate microcapsules for high-temperature thermal energystorage[J]. Solar Energy Materials & Solar Cells, 2017, 159:440-446.) 采用聚硅氮烷利用超声微波的方式对NaNO3进行微胶囊封装,这种方法可以制备出比较均匀的颗粒,并且熔点与储热能力无明显变化,但是不但制备工艺复杂,而且封装材料聚硅氮烷的熔点低,不适用中高温熔盐相变储热材料。
Leng G等(Leng G, Qiao G, Jiang Z, et al. Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage[J].Applied Energy, 2018, 217:212-220.)采用硅藻土对NaCl-KCl共晶盐颗粒进行封装,利用喷镀硅藻土的方法将熔盐颗粒封装,并且使用硅藻土作为基体材料,为砖体提供结构支撑,这种方法是目前较为先进的方法,不但可以降低熔盐与湿度环境的接触面积,而且可以为块体提供一个结构基体材料,但是此方法虽然降低了熔盐与空气的接触面积依,却因砖体的烧结温度远远低于硅藻土的烧结温度,所以经过烧结后的块体内部不致密,所以水分依旧可以穿过块体中的缝隙与熔盐接触。
发明内容
本发明的目的就是克服现有技术的不足,提供了一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法及熔盐-陶瓷相变储热材料。
本发明针对熔盐相变储热材料(卤化物、硝酸盐、硫酸盐、碳酸盐以及多元共晶盐)在湿度环境失效的问题,利用无机玻璃粉对熔盐颗粒进行包覆,并且混入陶瓷基体材料(MgO、Al2O3)进行烧结。烧结过程中熔盐颗粒表面的无机玻璃粉形成玻璃态,将熔盐颗粒完整的包覆在其中,使熔盐颗粒与外界环境彻底隔离,解决吸湿问题。并且基体材料可以提供稳定的结构,在高温条件下可以形成较为稳定的形态,无机玻璃粉在软化过程中不但可以封装熔盐颗粒而且可以填充基体的空隙,使材料致密,并且无机玻璃粉的导热系数大于SiO2与硅藻土,对储热性能影响低,最终可以制备防吸湿,高性能的相变储热材料。
本发明采用如下技术方案:
一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法,采用无机玻璃作为封装材料,对熔盐颗粒进行包覆封装。
进一步的,包括如下步骤:
步骤一、将卤化物、硝酸盐、硫酸盐、碳酸盐和多元共晶盐粉料的一种或几种均匀混合制得混合物;
步骤二、将步骤一制得的所述混合物升温至混合物熔融温度或以上,使所述混合物变成液态熔盐,保温一定时间后冷却破碎,制备颗粒;或者,将步骤一制得的混合物溶于水后,进行烘干,烘干后破碎制备颗粒;
步骤三、将步骤二制得的颗粒表面包覆无机玻璃粉,并且将包覆后的颗粒进行烧结,制备出由无机玻璃粉包覆的颗粒;
步骤四、将步骤三制得的颗粒与陶瓷基体进行复合压制,制备出熔盐-陶瓷相变储热材料。
进一步的,步骤一中,
卤化物包括:NaCl、MgCl2、CaCl2、KCl、BaCl2、LiCl等;
硝酸盐包括:NaNO3、KNO3、LiNO3等;
硫酸盐包括:Na2SO4、K2SO4等;
碳酸盐包括Na2CO3、K2CO3、BaCO3、CaCO3、Li2CO3等;
多元共晶盐包括:NaNO3-KNO3、Na2CO3-K2CO3、NaNO3-LiNO3、Na2CO3-Li2CO3等。
进一步的,步骤四中,陶瓷基体材料包括:MgO、Al2O3、SiO2等。
需要说明的是,卤化物、硝酸盐、硫酸盐、碳酸盐和多元共晶盐并不仅限上述所列,应用本发明思想的其他没有列出的熔盐,均包含在本发明的保护范围之内。
进一步的,步骤二中制备的颗粒粒径范围在0.1mm-10mm之间。
进一步的,步骤二中,制备颗粒的方法包括:压制制备,造粒制备,破碎制备。
进一步的,步骤三中,包覆无机玻璃粉的颗粒的烧结温度大于无机玻璃粉的软化点,小于熔盐颗粒的相变点。
本发明还提供了一种熔盐-陶瓷相变储热材料,该相变储热材料采用无机玻璃作为封装材料,对熔盐颗粒进行包覆封装,并与陶瓷基体进行复合压制。
进一步的,该熔盐-陶瓷相变储热材料使用前述的方法制备而成。
本发明的有益效果为:利用无机玻璃粉对熔盐颗粒进行微胶囊封装,并且将封装后的颗粒与陶瓷基体材料复合烧结,通过对熔盐颗粒的封装以及与基体材料的混合压制,无机玻璃粉的熔融成型既起到防潮的作用,又可以为结构材料提供粘结的作用;本发明制备方法简单,成本较低,易大规模生产;解决了高温熔盐相变材料的吸湿性强、高温结构强度弱的问题,对高温相变储热材料扩大使用环境具有重要意义。
附图说明
图1所示为本发明实施例一种熔盐-陶瓷相变储热材料的结构示意图。
图2所示为本发明实施例一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法的流程示意图。
图3所示为实施例1中结果与无无机玻璃包覆样品的对比图(图为无机玻璃包覆熔盐与无无机玻璃包覆熔盐样品在80%湿度,25℃环境下放置3天的增重情况)。
具体实施方式
下文将结合具体附图详细描述本发明具体实施例。应当注意的是,下述实施例中描述的技术特征或者技术特征的组合不应当被认为是孤立的,它们可以被相互组合从而达到更好的技术效果。在下述实施例的附图中,各附图所出现的相同标号代表相同的特征或者部件,可应用于不同实施例中。
本发明实施例一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法,采用无机玻璃作为封装材料,对熔盐颗粒进行包覆封装。解决了高温熔盐相变材料的吸湿性强、高温结构强度弱的问题。
实施例1
一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法,包括:
步骤一、制备高温熔盐颗粒
步骤1.1、选择Na2CO3与K2CO3作为储热介质,将以52:48的比例混合,用球磨机以球料比1:1,110转/分钟的速度球磨30min,使Na2CO3与K2CO3混合均匀以用来制备水合共晶盐。
步骤1.2、将混合后的混合物溶于水中,搅拌均匀后放置在烘箱中,烘干72小时,制备出水合共晶盐;
步骤1.3、将制备好的水合共晶盐破碎、研磨至粉末,将粉末放置在不同直径的球形磨具中加入微量的水,采取10Mpa的压强进行压制,在680℃的条件下烧结,制备出不同粒径的熔盐颗粒,以备使用。
步骤二、制备细无机玻璃粉末
步骤2.1、根据共晶盐的熔点调至无机玻璃配方,无机玻璃软化温度选择在低于熔盐温度50℃左右,故为650℃,将配方比例精确称量后进行一次混料并且进行过筛处理,过筛后进行二次混料,然后进行搅拌熔炼、淬火制备出无机玻璃
步骤2.2、将无机玻璃颗粒混入无水乙醇,使无水乙醇完全浸没无机玻璃,放入行星式球磨机中以3:1的球料比,80转/分钟的速率球磨48小时。
步骤2.3、将球磨后的粉末进行常温烘干24小时,制备出粒径为2μm的无机玻璃粉末。
步骤三、对熔盐颗粒进行无机玻璃粉封装
步骤3.1、将制备后的无机玻璃粉与熔盐颗粒进行混合,用球磨机以1:1的球料比混合90分钟,使熔盐被无机玻璃粉完全包覆。
步骤3.2、将球磨后的颗粒进行室温烘干,并且放入马弗炉中在670℃的温度环境下进行预烧,使无机玻璃粉软化形成无机玻璃态,因未达到熔盐的相变点,故熔盐依旧为固态,所以无机玻璃粉可以将熔盐颗粒完全包覆在无机玻璃态中。
步骤四、对熔盐相变材料试样进行压制烧结
步骤4.1、将包覆后的颗粒以60%的比例混入结构材料MgO中,加入总质量1/20的水,以1:1的球料比,120转/分钟的转速球磨90分钟。
步骤4.2、将球磨均匀后后的材料进行过筛,制得混合均匀的颗粒粉末。
步骤4.3、将颗粒粉末放入模具中,施加2000N的压力,保压5分钟后脱模,制备出块体材料
步骤4.4、将块体材料放入马弗炉中,烧结温度设置为720℃,升温速率为室温60分钟到100℃,然后90分钟升温到410℃后120分钟升温至650℃,最后120分钟升温至720℃,保温120分钟后,随炉冷却。
图3为本实施例中无机玻璃包覆熔盐与无无机玻璃包覆熔盐样品在80%湿度,25℃环境下放置3天的增重情况,由图中可知,经过无机玻璃包覆熔盐后制备的试样的吸湿情况较没有无机玻璃包覆熔盐制备的试样有了大幅度改善,没有无机玻璃包覆熔盐制备的试样经过3天的湿度放置增重了5.98g,而经过无机玻璃包覆熔盐后制备的试样仅仅增重1.56g。
实施例2
一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法,包括:
步骤一、制备高温熔盐颗粒
步骤1.1、选择Na2CO3与K2CO3作为储热介质,将以52:48的比例混合,用球磨机以球料比1:1,110转/分钟的速度球磨30min,使Na2CO3与K2CO3混合均匀以用来制备水合共晶盐;
步骤1.2、将混合后的混合物溶于水中,搅拌均匀后放置在烘箱中,烘干72小时,制备出水合共晶盐;
步骤1.3、将制备好的水合共晶盐破碎、研磨、过筛,选择粉末粒径在70目到100目之间的颗粒以备使用。
步骤二、制备细无机玻璃粉末
步骤2.1、根据共晶盐的熔点调至无机玻璃配方,无机玻璃软化温度选择在低于熔盐温度50℃左右,故为650℃,将配方比例精确称量后进行一次混料并且进行过筛处理,过筛后进行二次混料,然后进行搅拌熔炼、淬火制备出无机玻璃
步骤2.2、将无机玻璃颗粒混入无水乙醇,使无水乙醇完全浸没无机玻璃,放入行星式球磨机中以3:1的球料比,80转/分钟的速率球磨48小时。
步骤2.3、将球磨后的粉末进行常温烘干24小时,制备出粒径为2μm的无机玻璃粉末。
步骤三、对熔盐颗粒进行无机玻璃粉封装
步骤3.1、将制备后的无机玻璃粉与熔盐颗粒进行混合,用球磨机以1:1的球料比混合90分钟,使熔盐被无机玻璃粉完全包覆。
步骤3.2、将球磨后的颗粒进行室温烘干,并且放入马弗炉中在670℃的温度环境下进行预烧,使无机玻璃粉软化形成玻璃态,因未达到熔盐的相变点,故熔盐依旧为固态,所以无机玻璃粉可以将熔盐颗粒完全包覆在无机玻璃态中。
步骤四、对熔盐相变材料试样进行压制烧结
步骤4.1、将包覆后的颗粒以60%的比例混入结构材料MgO中,加入总质量1/20的水,以1:1的球料比,120转/分钟的转速球磨90分钟。
步骤4.2、将球磨均匀后后的材料进行过筛,制得混合均匀的颗粒粉末。
步骤4.3、将颗粒粉末放入模具中,施加2000N的压力,保压5分钟后脱模,制备出块体材料
步骤4.4、将块体材料放入马弗炉中,烧结温度设置为720℃,升温速率为室温60分钟到100℃,然后90分钟升温到410℃后120分钟升温至650℃,最后120分钟升温至720℃,保温120分钟后,随炉冷却。
实施例3
一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法,包括:
步骤一、制备高温熔盐颗粒
步骤1.1、选择KCl与NaCl作为储热介质,将以49.4::50.6的比例混合,用球磨机以球料比1:1,110转/分钟的速度球磨30min,使KCl与NaCl混合均匀以用来制备共晶盐;
步骤1.2、将混合后的混合物进行预烧,烧结温度为680℃,制备熔融共晶盐;
步骤1.3、将制备好的共晶盐破碎、研磨、过筛,选择粉末粒径在70目到100目之间的颗粒以备使用。
步骤二、制备细无机玻璃粉末
步骤2.1、根据共晶盐的熔点调至无机玻璃配方,无机玻璃软化温度选择在低于熔盐温度50℃左右,故为600℃,将配方比例精确称量后进行一次混料并且进行过筛处理,过筛后进行二次混料,然后进行搅拌熔炼、淬火制备出无机玻璃
步骤2.2、将无机玻璃颗粒混入无水乙醇,使无水乙醇完全浸没无机玻璃,放入行星式球磨机中以3:1的球料比,80转/分钟的速率球磨48小时。
步骤2.3、将球磨后的粉末进行常温烘干24小时,制备出粒径为2μm的无机玻璃粉末。
步骤三、对熔盐颗粒进行无机玻璃粉封装
步骤3.1、将制备后的无机玻璃粉与熔盐颗粒进行混合,用球磨机以1:1的球料比混合90分钟,使熔盐被无机玻璃粉完全包覆。
步骤3.2、将球磨后的颗粒进行室温烘干,并且放入马弗炉中在610℃的温度环境下进行预烧,使无机玻璃粉软化形成玻璃态,因未达到熔盐的相变点,故熔盐依旧为固态,所以无机玻璃粉可以将熔盐颗粒完全包覆在玻璃态中。
步骤四、对熔盐相变材料试样进行压制烧结
步骤4.1、将包覆后的颗粒以60%的比例混入结构材料MgO中,加入总质量1/20的水,以1:1的球料比,120转/分钟的转速球磨90分钟。
步骤4.2、将球磨均匀后后的材料进行过筛,制得混合均匀的颗粒粉末。
步骤4.3、将颗粒粉末放入模具中,施加2000N的压力,保压5分钟后脱模,制备出块体材料
步骤4.4、将块体材料放入马弗炉中,烧结温度设置为720℃,升温速率为室温60分钟到100℃,然后90分钟升温到410℃后120分钟升温至650℃,最后120分钟升温至720℃,保温120分钟后,随炉冷却。
实施例4
一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法,包括:
步骤一、制备高温熔盐颗粒
步骤1.1、选择Na2CO3与K2CO3作为储热介质,将以52:48的比例混合,用球磨机以球料比1:1,110转/分钟的速度球磨30min,使Na2CO3与K2CO3混合均匀以用来制备水合共晶盐。
步骤1.2、将混合后的混合物溶于水中,搅拌均匀后放置在烘箱中,烘干72小时,制备出水合共晶盐;
步骤1.3、将制备好的水合共晶盐破碎、研磨至粉末,将粉末放置在不同直径的球形磨具中加入微量的水,采取10Mpa的压强进行压制,在680℃的条件下烧结,制备出不同粒径的熔盐颗粒,以备使用。
步骤二、制备细无机玻璃粉末
步骤2.1、根据共晶盐的熔点调至无机玻璃配方,无机玻璃软化温度选择在低于熔盐温度50℃左右,故为650℃,将配方比例精确称量后进行一次混料并且进行过筛处理,过筛后进行二次混料,然后进行搅拌熔炼、淬火制备出无机玻璃
步骤2.2、将无机玻璃颗粒混入无水乙醇,使无水乙醇完全浸没无机玻璃,放入行星式球磨机中以3:1的球料比,80转/分钟的速率球磨48小时。
步骤2.3、将球磨后的粉末进行常温烘干24小时,制备出粒径为2μm的无机玻璃粉末。
步骤三、对熔盐颗粒进行无机玻璃粉封装
步骤3.1、将制备后的无机玻璃粉与熔盐颗粒进行混合,用球磨机以1:1的球料比混合90分钟,使熔盐被无机玻璃粉完全包覆。
步骤3.2、将球磨后的颗粒进行室温烘干,并且放入马弗炉中在670℃的温度环境下进行预烧,使无机玻璃粉软化形成玻璃态,因未达到熔盐的相变点,故熔盐依旧为固态,所以无机玻璃粉可以将熔盐颗粒完全包覆在玻璃态中。
步骤四、对熔盐相变材料试样进行压制烧结
步骤4.1、将包覆后的颗粒以60%的比例混入结构材料Al2O3中,加入总质量1/20的水,以1:1的球料比,120转/分钟的转速球磨90分钟。
步骤4.2、将球磨均匀后后的材料进行过筛,制得混合均匀的颗粒粉末。
步骤4.3、将颗粒粉末放入模具中,施加2000N的压力,保压5分钟后脱模,制备出块体材料
步骤4.4、将块体材料放入马弗炉中,烧结温度设置为720℃,升温速率为室温60分钟到100℃,然后90分钟升温到410℃后120分钟升温至650℃,最后120分钟升温至720℃,保温120分钟后,随炉冷却。
本发明的复合相变储热材料可以在湿度环境下工作不会出现结构失效的现象,在高温环境具有一定的结构强度,由于无机玻璃封装结构特点,降低了熔盐泄露问题以及对周围环境的腐蚀问题。
本文虽然已经给出了本发明的几个实施例,但是本领域的技术人员应当理解,在不脱离本发明精神的情况下,可以对本文的实施例进行改变。上述实施例只是示例性的,不应以本文的实施例作为本发明权利范围的限定。

Claims (6)

1.一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法,其特征在于,采用无机玻璃作为封装材料,对熔盐颗粒进行包覆封装;
所述方法包括如下步骤:
步骤一、将卤化物、硝酸盐、硫酸盐、碳酸盐和多元共晶盐粉料的一种或几种均匀混合制得混合物;
步骤二、将步骤一制得的所述混合物升温至混合物熔融温度或以上,使所述混合物变成液态熔盐,保温一定时间后冷却破碎,制备颗粒;或者,将步骤一制得的混合物溶于水后,进行烘干,烘干后破碎制备颗粒;
步骤三、将步骤二制得的颗粒表面包覆无机玻璃粉,并且将包覆后的颗粒进行烧结,制备出由无机玻璃粉包覆的颗粒;包覆无机玻璃粉的颗粒的烧结温度大于无机玻璃粉的软化点,小于熔盐颗粒的相变点;
步骤四、将步骤三制得的颗粒与陶瓷基体进行复合压制,制备出熔盐-陶瓷相变储热材料。
2.如权利要求1所述的方法,其特征在于,步骤一中,
卤化物包括:NaCl、MgCl2、CaCl2、KCl、BaCl2、LiCl;
硝酸盐包括:NaNO3、KNO3、LiNO3
硫酸盐包括:Na2SO4、K2SO4
碳酸盐包括Na2CO3、K2CO3、BaCO3、CaCO3、Li2CO3
多元共晶盐包括:NaNO3-KNO3、Na2CO3-K2CO3、NaNO3-LiNO3、Na2CO3-Li2CO3
3.如权利要求1所述的方法,其特征在于,步骤四中,陶瓷基体材料包括:MgO、Al2O3、SiO2
4.如权利要求1所述的方法,其特征在于,步骤二中制备的颗粒粒径范围在0.1mm-10mm之间。
5.如权利要求1所述的方法,其特征在于,步骤二中,制备颗粒的方法包括:压制制备,造粒制备,破碎制备。
6.一种熔盐-陶瓷相变储热材料,其特征在于,使用如权利要求1-5任一项所述的方法制备而成。
CN201810962301.0A 2018-08-22 2018-08-22 一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法 Expired - Fee Related CN108865079B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810962301.0A CN108865079B (zh) 2018-08-22 2018-08-22 一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810962301.0A CN108865079B (zh) 2018-08-22 2018-08-22 一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法

Publications (2)

Publication Number Publication Date
CN108865079A CN108865079A (zh) 2018-11-23
CN108865079B true CN108865079B (zh) 2020-12-22

Family

ID=64321555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810962301.0A Expired - Fee Related CN108865079B (zh) 2018-08-22 2018-08-22 一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法

Country Status (1)

Country Link
CN (1) CN108865079B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109777369B (zh) * 2019-03-22 2020-09-08 中国科学院过程工程研究所 一种两段式微封装复合储热材料及其制备方法与用途
CN111334258B (zh) * 2020-03-19 2021-12-24 中国科学院上海应用物理研究所 一种熔盐相变蓄热元件及其制备方法
CN111909664A (zh) * 2020-07-14 2020-11-10 中盐金坛盐化有限责任公司 无机纤维复合氯系熔盐储热材料及其制备方法和应用
CN113717695B (zh) * 2021-09-10 2022-09-09 中国矿业大学 一种熔融盐基复合相变储热大胶囊的制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803965A (zh) * 2005-12-15 2006-07-19 广东工业大学 一种无机盐/陶瓷基高温相变储能材料的制备工艺
WO2014086503A1 (de) * 2012-12-06 2014-06-12 Basf Se Pcm-komposit zur kühlenden oberflächenausrüstung von bauteilen in photovoltaikanlagen
CN105349112A (zh) * 2014-08-18 2016-02-24 武汉理工大学 一种高温用熔盐/陶瓷复合蓄热体及其制备方法
CN105647484A (zh) * 2016-02-02 2016-06-08 常州达奥新材料科技有限公司 一种包覆型无机盐陶瓷基复合相变储能材料的制备方法
CN108017403A (zh) * 2017-12-12 2018-05-11 天津琪臻节能科技有限公司 一种高温相变复合储热陶瓷基材料及其制备方法
CN109232011A (zh) * 2018-08-09 2019-01-18 河南思特瑞节能科技有限公司 一种封装相变材料的蜂窝陶瓷及其封装方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU230796B1 (hu) * 2014-12-16 2018-05-28 Pannon Egyetem Kongruens fázisváltást biztosító hőtároló mikrokapszulák, eljárás előállításukra és alkalmazásuk

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803965A (zh) * 2005-12-15 2006-07-19 广东工业大学 一种无机盐/陶瓷基高温相变储能材料的制备工艺
WO2014086503A1 (de) * 2012-12-06 2014-06-12 Basf Se Pcm-komposit zur kühlenden oberflächenausrüstung von bauteilen in photovoltaikanlagen
CN105349112A (zh) * 2014-08-18 2016-02-24 武汉理工大学 一种高温用熔盐/陶瓷复合蓄热体及其制备方法
CN105647484A (zh) * 2016-02-02 2016-06-08 常州达奥新材料科技有限公司 一种包覆型无机盐陶瓷基复合相变储能材料的制备方法
CN108017403A (zh) * 2017-12-12 2018-05-11 天津琪臻节能科技有限公司 一种高温相变复合储热陶瓷基材料及其制备方法
CN109232011A (zh) * 2018-08-09 2019-01-18 河南思特瑞节能科技有限公司 一种封装相变材料的蜂窝陶瓷及其封装方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Glass encapsulated phase change materials for high temperature thermal energy storage;Gimenez P、Fereres S;《Renewable Energy》;20170204;摘要部分,第2.3节第1段第1-2行、第4段第3-4行,表2 *

Also Published As

Publication number Publication date
CN108865079A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
CN108865079B (zh) 一种利用无机玻璃粉封装高温熔盐颗粒相变材料的方法
CN109233746A (zh) 无机玻璃封装熔盐-多孔材料的复合相变储热体及其制备
CN109135683B (zh) 一种制备熔盐-陶瓷相变储热材料的方法
Leng et al. Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage
Chang et al. Review on ceramic-based composite phase change materials: Preparation, characterization and application
CN103733420A (zh) 一种实现锂电池电芯内部温度控制的方法
CN103911121A (zh) 二元硝酸纳米熔盐传热蓄热介质及其制备方法
CN103923614A (zh) 一种有序多孔基定形复合相变材料的制备方法
Li et al. Inorganic salt based shape-stabilized composite phase change materials for medium and high temperature thermal energy storage: ingredients selection, fabrication, microstructural characteristics and development, and applications
CN113717695B (zh) 一种熔融盐基复合相变储热大胶囊的制备方法与应用
CN111334258A (zh) 一种熔盐相变蓄热元件及其制备方法
CN106867466B (zh) 利用粉煤灰和水合无机盐合成无机相变储能材料的方法
Yan et al. Construction strategies and thermal energy storage applications of shape‐stabilized phase change materials
CN109401729A (zh) 一种电池热管理系统用导热定型相变材料及其制备方法
CN109233751B (zh) 一种碳基复合相变储能材料及其制备方法
CN106118610A (zh) 聚乙二醇/石墨烯定型相变材料的制备方法
CN101613593A (zh) 一种氟盐基纳米高温相变蓄热复合材料及其制备方法
CN111205827A (zh) 一种利用活性炭防止熔盐相变储热材料流失的方法
CN108251073A (zh) 一种具有核壳结构的相变蓄热材料及其制备方法
Man et al. Review on the thermal property enhancement of inorganic salt hydrate phase change materials
US20210384426A1 (en) Phase change thermal storage ceramic and preparation method thereof
CN107245326A (zh) 一种高温相变蓄热微胶囊及其制备方法
Chen et al. Review on Porous Ceramic‐Based Form‐Stable Phase Change Materials: Preparation, Enhance Thermal Conductivity, and Application
CN105838331B (zh) 一种硅藻土基复合相变储热球、制备方法和用途
CN109021931A (zh) 一种以无机玻璃作为储热介质的相变储热材料制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201222

Termination date: 20210822