CN100454119C - 液晶显示器件、包括其的电子器具、以及其制作方法 - Google Patents

液晶显示器件、包括其的电子器具、以及其制作方法 Download PDF

Info

Publication number
CN100454119C
CN100454119C CNB2004100445919A CN200410044591A CN100454119C CN 100454119 C CN100454119 C CN 100454119C CN B2004100445919 A CNB2004100445919 A CN B2004100445919A CN 200410044591 A CN200410044591 A CN 200410044591A CN 100454119 C CN100454119 C CN 100454119C
Authority
CN
China
Prior art keywords
data line
substrate
sweep trace
laser
spacing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100445919A
Other languages
English (en)
Other versions
CN1550860A (zh
Inventor
山崎舜平
小山润
荒井康行
渡边康子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1550860A publication Critical patent/CN1550860A/zh
Application granted granted Critical
Publication of CN100454119C publication Critical patent/CN100454119C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/104Materials and properties semiconductor poly-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

本发明的目的是提供一种其生产性被提高了的液晶显示器件以及其制作方法。本发明的一个特征是:具有第一衬底;第二衬底;夹在第一衬底和第二衬底之间的液晶层;以及第三衬底,所述第一衬底包括在扫描线中间夹绝缘层和数据线交叉的区域中,以非晶半导体或有机半导体作为沟道部分的第一薄膜晶体管;所述第三衬底包括以晶体半导体为沟道部分的第二薄膜晶体管,其中,晶体半导体的晶粒间界沿着第二薄膜晶体管中的电子或空穴流动的方向延伸;第一衬底和第二衬底被键合在一起,并使第一衬底被暴露出来;第三衬底被粘合在第一衬底的被暴露出来的部分;第三衬底上提供有形成第二薄膜晶体管的第一区域和形成输入输出端子的第二区域,且第三衬底的短边为1-6mm,第一区域的短边为0.5-1mm。

Description

液晶显示器件、包括其的电子器具、以及其制作方法
技术领域
本发明涉及一种具备显示图像或文字等信息的显示部分的液晶显示器件及其制作方法。另外,本发明还涉及一种驱动电路的结构及其制作方法和安装方法,该驱动电路给形成显示部分的像素区域的各个像素传送信号。而且,本发明还涉及具有将薄膜晶体管等的半导体元件以矩阵排列的区域的液晶显示器件,并尤其涉及不在该区域提供的电路的结构及其制作方法和安装方法。
背景技术
在具备液晶层的液晶显示器件中,作为形成显示图像等信息的屏幕的方法,有一种具有将薄膜晶体管(TFT)以矩阵形状排列的像素区域的有源矩阵型显示器件。该显示器件由于有重量轻、厚度薄的优势,被利用到各种各样的电子器具中,包括笔记本式计算机、便携式计算机、手机、液晶电视等。
然而,用非晶半导体形成沟道部分的技术由于该非晶半导体能够以较低造价形成大尺寸的衬底,具有优越的生产性。但是,用非晶半导体形成沟道部分的薄膜晶体管的场效应迁移率最大也只能获得1cm2/Vsec左右。这样的场效应迁移率虽然可以作为提供在像素区域中的用于开关的TFT被利用,但是不能作为构成要求高速工作的驱动电路的元件。
所以,驱动电路在该像素区域的周围用TAB方式(TCP)或COG方式安装用单晶硅衬底制作的IC芯片。TAB方式指的是这样一种方式:用合金连接在台垫(pad)部分形成凸块(bump)的驱动器IC和,在聚酰亚胺上粘接铜箔,在通过照相制版(photoengraving)技术形成电路,然后被渡膜的膜电路后,用树脂密封IC周围以形成封装。COG方式是使IC芯片和在显示器件的衬底上形成的线路的图案吻合,直接粘贴以实现电连接的方式。
COG方式实现安装的驱动电路是在玻璃衬底或石英衬底上形成用非单晶半导体材料制作的多个TFT,并分割成细长形状而形成。之后,将分割的细长形状的驱动电路安装到衬底上(例如参照专利文件1)。
专利文件1
Hei 11-160734
圆形的硅片虽然其尺寸每年都有增加,最大的硅片其直径甚至达到300mm左右,但是能够获取的矩形驱动器IC的数量还是受到限制。而且,常规的驱动器IC的基体为硅片,其和玻璃衬底的温度系数不同,在粘合后会产生弯曲等,并且由于接触电阻的增大等缺陷,以及产生的应力,导致元件的可靠性降低。
发明内容
针对上述问题,本发明有所成就。本发明的目的是在采用TAB方式或COG方式时,通过在矩形玻璃衬底上形成能够高速工作的多个半导体元件,并使用该多个半导体元件形成多个驱动器IC,提供一种生产性被提高了的液晶显示器件及其制作方法。
本发明为了解决上述问题,采用下文中描述的方法。
本发明的结构的特征是:具有在每个像素中布置有薄膜晶体管的像素区域的第一衬底;相应于所述像素区域形成有反向电极的第二衬底;以及形成有扫描线侧驱动电路或数据线侧驱动电路的第三衬底,其中,所述扫描线侧驱动电路和所述数据线侧驱动电路具有用晶体半导体形成沟道形成区域的薄膜晶体管,且该晶体半导体具有在和沟道长方向平行的方向上延伸的晶粒间界(grain boundary),并且,提供在所述扫描线侧驱动电路和所述数据线侧驱动电路中的薄膜晶体管的栅绝缘膜的厚度互相不同。
本发明的一个特征是:一种液晶显示器件,它包括:
第一衬底,其上有配置了第一半导体元件的像素区域;
第二衬底,其上形成有相应于所述像素区域的反向电极;
第三衬底,该衬底提供在所述第一衬底的所述像素区域的外侧,且配置有用晶体半导体形成的多个第二半导体元件,
其中,在所述第一衬底和第二衬底之间夹持有液晶层,
并且其中,所述晶体半导体的晶粒间界沿所述多个第二半导体元件中的电子或空穴流动的方向延伸,并且所述多个第二半导体元件包含用第一厚度的栅绝缘膜形成的薄膜晶体管和用第二厚度的栅绝缘膜形成的薄膜晶体管。
本发明的一个特征是:一种液晶显示器件:它包括:
第一衬底,其上有配置了第一薄膜晶体管的像素区域;
第二衬底,其上形成有相应于所述像素区域的反向电极;
第三衬底,该衬底提供在所述第一衬底的所述像素区域的外侧,且配置有用晶体半导体形成其沟道部分的多个第二薄膜晶体管,
其中,在所述第一衬底和第二衬底之间夹持有液晶层,
并且其中,所述晶体半导体的晶粒间界沿所述多个第二薄膜晶体管中的电子或空穴流动的方向延伸,并且所述多个第二薄膜晶体管包含用第一厚度的栅绝缘膜形成的薄膜晶体管和用第二厚度的栅绝缘膜形成的薄膜晶体管。
本发明的一个特征是:一种液晶显示器件的制作方法,它包括以下步骤:在第一衬底上形成像素区域,该像素区域配置了用非晶半导体或有机半导体形成的第一半导体元件;
在第二衬底上形成和所述像素区域对应的反向电极后,将第一衬底和第二衬底键合在一起;
在第三衬底上形成驱动电路和多个驱动器IC,其中的驱动电路配置了多个用晶体半导体形成的第二半导体元件,且驱动器IC包含属于所述驱动电路的输入端子和输出端子;
然后,将所述多个驱动器IC分割成单个;将所述驱动器IC粘合到形成在所述第一衬底上的所述像素区域的周围,
其中,所述晶体半导体通过照射连续振荡的激光而形成。
另外,所述第三衬底包括形成有所述晶体半导体的第一区域和没有形成所述晶体半导体的第二区域,并且所述第一区域中提供有所述驱动电路,所述第二区域中提供有输入端子和输出端子。
另外,所述第三衬底包括形成有所述晶体半导体的第一区域和没有形成所述晶体半导体的第二区域,并且所述第一区域中提供有所述驱动电路,所述第二区域中提供有输入端子和输出端子,并且,所述第三衬底的短边为1至6mm,所述第一区域的短边为0.5至1mm。
另外,所述第三衬底的短边为1至6mm,提供在所述第三衬底上的输入端子以及输出端子和像素间距以相同间距形成。而且,所述第三衬底的长边和所述像素区域的短边或长边长度相同。
所述晶体半导体通过照射激光而形成,产生该激光的振荡器是连续振荡的固体激光器。具体地说,所述振荡器选自连续振荡的YAG激光器、YVO4激光器、YLF激光器、YAlO3激光器、玻璃激光器、红宝石激光器、翠绿宝石激光器、Ti:蓝宝石激光器中的一种或多种,或者选自连续振荡的受激准分子激光器、Ar激光器、Kr激光器、CO2激光器中的一种或多种。
另外,本发明的一个特征是:使用包括多个激光振荡器和衍射光学元件(Diffractive Optical Element)的装置执行激光晶化。并且,从多个激光振荡器发射出的每个激光束重叠在一起以使能源重叠。该被重叠的激光经衍射光学元件显示出在长轴方向的矩形(锺罩形,top hat)的分布,本发明使用显示该分布的激光来执行激光晶化。根据上述特征,可以使用微结晶区域少的晶体半导体。
如果使用上述装置来发射连续振荡的激光,则可以使用结晶缺陷少且晶粒大的多晶半导体制造出晶体管。而且,由于迁移率和应答速度优越,可以实现高速驱动,从而可以提供元件的工作频率被提高了的液晶显示器件。另外,因为特性不均匀少,所以可以实现高可靠性。另外,为了进一步提高工作的频率,最好使晶体管的沟道长方向和激光的扫描方向一致。这是由于在使用连续振荡激光器的激光晶化工艺中,当晶体管的沟道长方向和激光的相对于衬底的扫描方向基本平行(最好在-30°至30°之间)时,可以获得最高的迁移率。另外,沟道长方向是指在沟道形成区域中电流流动的方向,换言之,沟道长方向和电荷移动方向一致。通过上述步骤制成的晶体管具有晶粒在沟道方向上延伸的多晶半导体构成的激活层,这就意味着晶粒间界基本沿着沟道方向而形成。
本发明还有一个特征是:将包含形成在玻璃衬底上的上述有优良结晶性的晶体半导体的半导体元件使用于驱动器IC。适合使用晶体半导体的电路不仅包括如信号线驱动电路和扫描线驱动电路等的驱动电路,还包括构成电阻器、解码器、计数器、分频电路、存储器等的逻辑电路。另外,由于如果使激光器的激光束的幅宽和驱动器IC的短边的长度相同,则可以提供生产性被提高了的液晶显示器件以及其制作方法,所以该方法是优选的。
本发明还有一个特征是:安排在数据线侧的驱动电路和安排在扫描线侧的驱动电路,其薄膜晶体管的膜的厚度不同。这是为了对应数据线侧和扫描线侧对膜的厚度有各自不同的要求。具体来说,数据线驱动电路由于用3V的驱动电压、50MHz以上(例如65MHz以上)的频率来驱动,所以栅绝缘膜的厚度设定为20至70nm,且沟道长度设定为0.3至1μm。另一方面,扫描线驱动电路由于只用数据线驱动电路的百分之一的100kMHz左右的驱动频率来驱动,所以栅绝缘膜的厚度设定为150至250nm,且沟道长度设定为1至2μm。根据上述结构,可以提供对应于各个驱动电路的工作频率的驱动器IC、以及包含该驱动器IC的液晶显示器件。
具有上述结构的本发明,使用通过照射从连续振荡激光器发射出的激光而形成的特性优良的薄膜晶体管,可以提供一种安装有能够高速工作的驱动器IC的液晶显示器件以及其制作方法。另外,由于可以在矩形的大尺寸衬底上制作多个驱动器IC,所以可以提供低成本的液晶显示器件以及其制作方法。而且,根据本发明,通过采用COG方式或TAB方式来安装驱动器IC,可以提供实现了小型、极薄、轻巧和窄边框的液晶显示器件以及其制作方法。
附图说明
附图中:
图1A至图1E是解释本发明的液晶显示器件及其制作方法的图;
图2A和图2B是解释本发明的液晶显示器件及其制作方法的图;
图3A至图3D是示出驱动器IC的图;
图4A和4B是移位寄存器的掩膜设计图;
图5A和5B是解释本发明的液晶显示器件及其制作方法的图;
图6A至图6C是示出线形束的轮廓的图;
图7A和7B是示出本发明的液晶显示器件的制作方法的图;
图8A至图8D是示出本发明的液晶显示器件的制作方法的图;
图9A至图9E是示出本发明的液晶显示器件的制作方法的图;
图10A至图10D是示出在驱动器IC的输入输出端子上制作突起物的图;
图11A至图11B是解释像素区域以及FPC和驱动器IC的连接的图;
图12A和12B是解释本发明的液晶显示器件的图;
图13是解释本发明的驱动器IC的图;
图14A和14B是像素区域的俯视图和其等效电路图;
图15A至图15C是像素区域所具备的薄膜晶体管的横截面图;
图16A至图16D是像素区域所具备的薄膜晶体管的横截面图;
图17是搭载了本发明的液晶显示器件的电子器具的图;
图18是本发明的液晶显示器件的横截面图;
图19A至图19C是应用了本发明的电子器具图;
图20A至图20D是应用了本发明的电子器具图;
图21A和21B是晶体半导体的照片及其模式图。
本发明的选择图是图1
具体实施方式
下面将参考附图来详细描述本发明的实施方案模式。注意,本发明可以以多种不同形式被执行,并且只要是同一领域工作人员,就很容易了解这样一个事实:可以将本发明的形式和内容更改而不脱离本发明的宗旨和范围。所以,对本发明的解释并不局限于实施方案模式中所记载的内容。另外,在下文中说明的结构中,表示相同部件的符号共同使用于不同的图中。
实施方案模式1
本发明的基本概念将参考图1A的斜视图给于说明。在衬底1001上提供显示文字或图像等信息的像素区域1002。在第三衬底1006上提供有多个驱动电路以及连接该多个驱动电路的输入输出端子。各个驱动电路和对应于该驱动电路的输入端子、输出端子(输入输出端子)组成一个单元(unit),将第三衬底1006分割成细长形状或矩形状,可以获得多个驱动器IC。然后,将该驱动器IC粘贴在第一衬底1001,就完成了液晶显示器件。在图1(A)中表示安装有相当于扫描线驱动电路的驱动器IC 1010和相当于信号线驱动电路的驱动器IC 1009的模式。请注意,理想的是,驱动器IC的结构不同于扫描线侧和信号线侧的结构。
图1B是表示实际粘贴驱动器IC,该驱动器IC内部的输入输出端子和像素区域1002电连接的液晶显示器件的俯视图。在第一衬底1001上形成像素区域1002,在该像素区域1002上中间夹液晶层粘贴形成有反向电极的第二衬底110。在提供有液晶层的情形中,虽然第一衬底1001和第二衬底110的间隔取决于间隙物(spacer),但是在向列型液晶的情况下为3至8μm,在近晶(smetic)液晶的情况下为1至4μm。第一衬底1001和第二衬底110优选使用无碱玻璃,比如铝硼硅酸玻璃或钡硼硅酸玻璃等,由于其厚度是0.3至1.1mm(典型的为0.7mm),所以相对来说,从外观上看液晶层的厚度可以忽略不计。
在像素区域1002中,扫描线群108和数据线群109交叉形成矩形,TFT相应于各个交叉部分而被排列。在此,虽然被排列的TFT的结构没有特殊的限制,但典型的优选使用将非晶硅层作为激活层的反交错排列型的TFT。非晶硅层可以用等离子体CVD法在300℃或更低的温度下形成,例如,即使是外部尺寸为550X650mm的无碱玻璃衬底,也可以在几十秒形成用来形成TFT所需的膜的厚度。像这样的制造技术,在制造大尺寸的显示器件时,相当有效。
在像素区域1002的外侧,安装由驱动电路构成的驱动器IC 1009、1010。1009是数据线侧的驱动电路,1010是扫描线侧的驱动电路。为了形成对应于RGB全色的像素区域,如是XGA(extended graphics array)级数,则数据线的数量为3072条,在扫描线侧需要768条。另外,如是支持高分辨率的UXGA级数,则分别需要4800条和1200条。在本实施方案模式中,由于像素区域1002的一边和驱动器IC的长边设定为相同的长度,所以数据线以及扫描线的间距优选和驱动器IC的输出端子的间距一致。这样做,就没有必要在像素区域1002的边缘以每几块(severalblock)为界形成引出线107,在生产制造上可以以高成品率进行生产。而且,由于安装的驱动器IC的数量减少,其可靠性增大。
并且,这些驱动器IC如果多个制作在矩形形状的第三衬底1006上,由于可以大量形成,所以从提高生产性的观点看是优选的。因此,优选使用大尺寸衬底作为第三衬底1006,例如优选使用单边300mm至1000mm的大尺寸衬底。然后,形成多个将驱动电路部分和输入输出端子组成一个单元的电路图案,最后在进行分割后取出,就完成了驱动器IC。该驱动器IC的短边的长度是1至6mm,长边的长度为10至60mm。
本发明的一个特征是用晶体半导体形成上述驱动器IC,其中所述晶体半导体通过照射连续振荡的激光而形成。所以,作为生成该激光的振荡器,使用连续振荡的固体激光器或气体激光器。另外,本发明将激光焦点的幅宽(具体是1至6mm)设定地和驱动器IC的短边的长度、或者布置在驱动器IC上的驱动电路的短边的长度相同。根据本发明的结构,如果扫描激光的激光束一次,则至少可以形成一个驱动器IC,所以可以提供生产性被提高的液晶显示器件以及其制作方法。
另外,利用如照射连续振荡的激光,在其扫描方向上延伸晶粒间界,为了使晶粒间界的延伸方向和沟道长方向平行,进行半导体层的图案加工。如此,可以形成以获有充分的电特性的晶体半导体为激活层的薄膜晶体管。
图1C是薄膜晶体管被制作在驱动器IC内部的俯视图,表示在结晶晶粒的长轴方向和沟道长方向在同一方向的情况下,进行图案加工的状态。
另外,本发明的一个特征是根据布置在数据线侧的驱动电路和布置在扫描线侧的驱动电路而改变薄膜晶体管的膜的厚度。作为其中的一个例子,图1D表示扫描线侧驱动电路和数据线侧驱动电路的薄膜晶体管的横截面图。这是响应数据线侧和扫描线侧的各自不同的要求的结构,具体地说,数据线驱动电路由于用3V的驱动电压、50MHz或更高(例如65MHz或更高)的频率驱动,所以将数据线驱动电路的栅绝缘膜的厚度设定为20至70nm、沟道长设定为0.3至1μm。另一方面,扫描线驱动电路跟数据线驱动电路相比,由于其仅用数据线驱动电路的百分之一的驱动频率,即100kMHz左右进行驱动,所以将扫描线驱动电路的栅绝缘膜的厚度设定为150至250nm,沟道长1至2μm。依据上述结构,可以提供对应各个驱动电路的工作频率的驱动器IC、以及安装有该驱动器IC的液晶显示器件。
请注意,驱动器IC相对IC芯片,其优越性在于其长边的长度。象这样,通过使用长边15至80mm的驱动器IC,跟使用对应于像素区域而安装所需数量的IC芯片相比,使用的驱动器IC的数量少,所以可以提高生产制造的成品率。另外,本发明是在玻璃衬底上形成驱动器IC,由于不限制作为母体的衬底的形状,所以不会给生产性带来负面影响。这个特点如跟从圆形硅片制作出IC芯片的情况相比,是一个相当大的优势。
分割形成在第三衬底1006上的驱动电路的方法没有特殊限制,可以如图2A所示,在纵横两个方向上进行分割,以从第三衬底1006上获取多个驱动器IC,然后,如图2B所示,在数据线侧和扫描线侧双方粘贴多个驱动器IC。
虽然上述图1、2示出了采用COG方式的液晶显示器件,但本发明也适用于采用TAB方式的液晶显示器件。在此,将参考图5说明采用TAB方式的液晶显示器件的情况。TAB方式的情况中,和像素部分1002电连接的布线被暴露出来,FPC被连接在该暴露出来的布线上,驱动器IC 1007至1009被连接在该FPC上。图5A表示布置多个FPC 1011,并且驱动器IC 1007、1008连接在该FPC 1011上的情况。图5B表示在一个FPC 1012上布置一个驱动器IC 1009的情况。在采用后者的情形中,由于强度的问题,最好一起提供固定驱动器IC 1009的金属片。
注意,作为该驱动器IC的驱动条件,可以在,举一个例子,比如电源电压VDD为-0.5至30V;VDD-VEE为-0.5至28V;VEE为-17至0.5V;输入电压VEE为-0.5至VDD+0.5;输入电流为±10mA;输出电流为±10mA的条件下工作。
实施方案模式2
下文中将参考图说明本发明的实施方案模式。
本发明中使用的驱动器IC的一个特征是,在矩形形状的衬底上形成非晶半导体,并通过使用连续振荡激光器的激光晶化法晶化该非晶半导体以获取晶体半导体,本发明的作为该驱动器IC使用该晶体半导体。在此,将参考图3A说明用激光器照射第三衬底1006上的非晶半导体的情况。另外,本发明将激光焦点的幅宽(具体是1至6mm)设定地和驱动器IC的短边的长度、或者布置在驱动器IC上的驱动电路的短边的长度相同。根据这样的结构,使用第三衬底1006上的晶体半导体,可以形成多个短边的长为1至6mm的驱动器IC。这些驱动器IC是沿着用玻璃划线器划出的加工线分割而形成。所以,一组中的驱动器IC按0.5至1mm的边界空白(margin)被布置。如果使用这样的加工方法,例如即使使用300X400mm的第一生产线的液晶用玻璃衬底,也可以从127X127mm的组中制作出360个2X20mm的驱动器IC,也就是可以从一张衬底获取2160个驱动器IC。
接着,将用图3B说明用激光器照射第三衬底1006上的非晶半导体以形成晶体半导体的情况。通常激光能源密度以聚集成光点形状分布。在大多数情况下,能源密度从激光的聚焦点的中心部分到周围边缘,呈递减状态。所以,中心部分的被聚焦点照射的半导体被良好地晶化,有着优越的电特性。但是,被比中心部分能源密度低的边源范围的激光照射的半导体,由于激光的能源密度不够,不能充分地熔化,因此只能被微晶化。在微晶化的区域中,由于不能获得充分的电特性,所以不适合用作激活层。
在此,如图3C所示,假设中心部分的被能源密度高的激光照射的部分为区域1024,该区域之外的区域为1022、1023时,用区域1024的有良好结晶性的晶体半导体构成驱动电路。并且,除去在区域1022、1023形成的半导体,在该区域形成输入端子1020和输出端子1021。请注意,区域1024的短边为0.5至1mm左右。也就是说,驱动电路的短边的长度和中心部分的能源密度高的区域的长度基本相同。所以,照射激光,在其中心部分制作出有良好结晶性的晶体半导体,并用该有良好结晶性的晶体半导体构成驱动电路。
请注意,构成驱动电路的晶体管的沟道形成区域或源/漏区域用晶体半导体形成,该晶体半导体通过连续振荡激光器形成。并且,在对该晶体半导体进行图案加工时,使所有的薄膜晶体管的沟道长度一致。经过上述图案加工的薄膜晶体管由于结晶晶粒在电子或空穴流动的方向(沟道长方向)上延伸,所以能够高速工作。
图3D是沿图3C中的B-B’线切割的横截面图。以40至100μm的间距形成多个和在像素区域中布置的信号线或扫描线连接的输出端子1021。同样地,形成必要数量的输入端子1020。这些输入端子1020和输出端子1021被形成为一边的长度为30至100μm的正方形或长方形。
接着,参考图4,示出作为驱动电路1025的一个例子的,在制作由多个晶体管构成的移位寄存器时的掩膜设计(mask layout)图。移位寄存器由一个分段的电路纵向连接而构成,在每一个分段,CK和CKB的信号被交替输入。一个分段的电路对应于被布置成矩形状的多个像素中的一个列的像素。所以,一个分段的短边的长度最好设定地和像素间距的长度相同。这样,驱动器IC的输出端子的间距就可以被设定成和扫描线或数据线的间距相同。根据这样的结构,就没有必要在像素区域的边缘以每几块(several block)为界形成引出线,从生产制造的角度,可以以高成品率进行制作。
请注意,在大尺寸的衬底上制作出多个驱动器IC也有其课题,就是曝光技术。驱动器IC的设计规则是0.3至2μm、优选0.35至1μm。在形成驱动器IC时,需要以上述设计规则,高生产率地进行曝光。至于曝光方式,虽然邻近(proximity)方式和投影方式在提高生产率上有优势,但又有其缺点,也就是需要大尺寸、高清晰度的掩膜,且很难获取高分辨率或重叠吻合精度。另一方面,步进(stepper)方式,可以比如用i线(365nm)以0.7μm的分辨率,对44mm角的区域或54X30mm的区域进行一次性的曝光。对应于此,驱动器IC的长边的长度如果设定在该曝光范围内,即使是亚微细粒图案(submicron pattern)也可以高效率地执行曝光。
实施方案模式3
本实施方案模式将说明使用连续振荡激光器(continuous wavelaser)进行激光晶化的情况。
连续振荡激光器最好使用波长550nm或更少的输出稳定性极高的激光器。例如Nd:YVO4激光器的二次谐波、Nd:YAG激光器的二次谐波、Nd:YLF激光器的二次谐波、Nd:玻璃激光器的二次谐波、Nd:YalO3激光器的二次谐波或Ar激光器等。另外,上述激光的更高次谐波、红宝石激光器、翠绿宝石激光器、Ti:蓝宝石激光器、连续振荡的受激准分子激光器、Kr激光器、CO2激光器、连续振荡的氦-镉激光器、铜蒸汽激光器或金蒸汽激光器也可以被使用。或者使用上述激光器中的一种或多种的激光器。
本发明的一个特征是重叠从多个激光振荡器发射出的激光束。通常,激光的能源密度的分布是从中心部分到周围边缘,呈逐渐减少的趋势。本发明的一个特征是通过重叠多个激光束以使该能源密度重叠。通过利用上述特征和衍射光学元件(Diffractive Optical Element),可以形成在长轴方向上显示矩形(锺罩形,top hat)的轮廓(profile),长度为0.5至1mm的线形束。
象这样,为了重叠激光束以进行激光晶化,使用多台配备激光振荡器、λ/2波长板、发射镜、偏光器、由衍射光学元件等构成的均化器(homogenizer)、由圆柱镜(cylindrical lens)等构成的变焦系统、聚光系统等的装置。
从多台激光振荡器发射出的各个激光束具有相同的片光方向。所以,多个激光束中一个或多个激光束透射过λ/2波长板,偏光方向发生90°旋转。然后,用偏光器重叠多个激光束。叠加起来的激光束通过均化器形成线形束,该线形束被照射到衬底上的非晶半导体上。
照射面中的光束轮廓(beam profile)在图6中表示出。图6A是一个斜透视图。从长轴方向上看是矩形(图6B)。另外,从短轴方向上看是近似高斯(Gaussian)形状的轮廓(图6C)。通过使用衍射光学元件的均化器在长轴方向上形成矩形的轮廓。
另外,为了晶化衬底上的半导体膜,将线形束在长轴方向上以适当的照射间距错开,在长轴方向上以垂直方向进行扫描。该操作中,激光振荡器和光学系统(λ/2波长板、反射镜、偏振器、均化器、变焦系统和聚光系统)被固定,并使用X-Y台移动衬底,从而在衬底上扫描线形束。
图21A是一张照片,表示使用上述光学系统和YVO4激光器,被激光晶化了的晶体半导体。图21B是该照片的模式图。激光晶化在以下情况下进行:功率为14.4W;扫描速度为35cm/sec;光束长度为0.75mm。如图21A、21B所示,可以得知,如使用上述光学系统,则几乎没有微结晶区域,可以获得有良好结晶性的晶体半导体。
本发明的一个特征是使用配备多个激光振荡器和衍射光学元件的装置进行激光晶化。并且,本发明还有一个特征是重叠从多个激光振荡器发射出来的各个激光束以使能源分布叠加。该被叠加的激光束借助衍射光学元件在长轴方向上显示矩形(锺罩形,top hat)的分布,本发明的一个特征是使用显示如上所述分布的激光器,进行激光晶化。根据上述特征,可以制作出微结晶区域少的晶体半导体。
本实施方案模式可以和上述实施方案模式任意组合。
实施例
实施例1
本实施例中,将参考图7A至图9E说明使用连续振荡激光器形成薄膜晶体管的制作工艺。
首先,如图7A所示,在衬底300上形成底膜301。使用钡硼硅酸玻璃或铝硼硅酸玻璃等的玻璃衬底、石英衬底、SUS衬底(不锈钢衬底)作为衬底300。另外,塑料等有弯曲性的由合成树脂构成的衬底,虽然一般来说,和上述衬底相比,有耐热温度低的趋向,但是如果能够耐受制作工艺中的处理温度,也可以被利用。
提供底膜301是为了防止包含在衬底300中的Na等碱金属或碱土金属扩散到将要形成在其上的半导体中,从而导致给半导体元件的特性带来负面影响。所以,该底膜301用能够抑制碱金属或碱土金属扩散到要形成在其上的半导体膜的氧化硅或氮化硅、氮化氧化硅等绝缘膜而形成。本实施例借助等离子体CVD法形成厚10-400nm的氮氧化硅膜。
请注意,底膜301可以是单层结构的绝缘膜,也可以是层叠多层绝缘膜而形成的叠层结构。另外,在采用玻璃衬底、SUS衬底或塑料衬底等多少包含碱金属或碱土金属的衬底当作衬底时,从防止杂质扩散的角度看,提供底膜是有效的。但是,在采用石英衬底等杂质扩散不成问题的衬底的情况下,可省去该底膜。
然后,在底膜301上形成半导体膜302。设定该半导体膜的厚度为25至100nm(优选30至60nm)。半导体膜302使用硅或硅锗。之后,进行用于去氢的500℃、1小时的热处理。
接着,采用激光照射装置,晶化非晶半导体膜302,从而形成晶体半导体303。在这种情况下,可以使用能够进行连续振荡的固体激光器,并应用相对于基波的二次谐波至四次谐波,以便获得晶粒尺寸大的晶体。例如,典型地,优选使用Nd:YVO4激光器(基波为1064nm)的二次谐波(532nm)或三次谐波(355nm)。具体地说,用非线性光学元件将从连续振荡型YVO4激光器发射的激光转换成谐波,以获取10W的输出能源。另外还有将YVO4晶体和非线性光学元件置于谐振腔中从而发射谐波的方法。而且,用光学系统将谐波形成为在辐照表面上具有矩形或椭圆形形状的激光,且激光辐照半导体膜302。此时的能量密度需要约为0.01-100MW/cm2(最好是0.1-10MW/cm2)。然后,在以大约10-2000cm/s的速度对应于激光,相对移动非晶半导体,从而达到辐照半导体膜的目的。
接着,按照所希望的图案,蚀刻通过以上步骤获得的晶体半导体,从而形成半导体层304至307。之后,形成覆盖半导体层304至307的栅绝缘膜308。作为栅绝缘膜308,例如用溅射法形成厚30至200nm的含硅的绝缘膜。
其次,将用图8说明和上述方法不同的制作晶体半导体的方法。该方法由于一直到形成非晶半导体膜302的步骤是相同的,所以在此省略掉相关说明。
该方法用旋涂法将含有1-100ppm重量镍的乙酸镍溶液310涂敷在非晶半导体膜302的表面。不用说,添加催化剂的方法不受限于上述方法,也可以采用溅射法、蒸发淀积法、等离子体处理法等来进行添加。
然后,进行400至650度、4至24小时,比如以550度、14小时的加热处理。根据该加热处理,形成了从涂敷有乙酸镍溶的表面朝向衬底300,在纵向方向上晶化被促进了的晶体半导体。虽然在此使用镍(Ni)、作为催化元素,除了镍以外,还可以使用锗(Ge)、铁(Fe)、钯(Pd)、锡(Sn)、铅(Pb)、钴(Co)、铂(Pt)、铜(Cu)、金(Au)等。
然后,如上所述,使用连续振荡的激光器执行激光照射,从而形成晶体半导体311(图8B)。请注意,在使用催化元素的被晶化了的晶体半导体311中,可以认为催化元素(在此为镍(Ni))以大约1×1019atoms/cm3的浓度被包含在其中。在此,随后进行吸取存在于晶体半导体311中的催化元素的吸杂处理。
首先,在晶体半导体311的表面形成氧化膜312(图8C)。形成厚1至10nm左右的氧化膜312,这样可以防止后面的蚀刻工艺中因蚀刻晶体半导体311的表面而引起的粗糙。
可以用众所周知的方法形成氧化膜312。例如用氧化氢溶液与硫酸、盐酸、硝酸等混合的水溶液或臭氧水氧化晶体半导体311的表面,从而形成氧化膜。也可以通过在氧气氛中的等离子体处理、加热处理、或照射紫外光等来形成氧化膜。再或者,用等离子体CVD法、溅射法或蒸发淀积法等单另形成氧化膜。
然后,通过溅射在氧化膜312上形成厚度为25-250nm的半导体313,该半导体313含有浓度为1×1020atoms/cm3或以上的稀有气体元素,是用于吸杂的。为了提高用于吸杂的半导体313的相对于晶体半导体311的蚀刻选择比,用于吸杂的半导体313的膜的密度优选以比晶体半导体311更低。作为稀有气体元素,采用选自氦(He)、氖(Ne)、氩(Ar)、氪(Kr)、氙(Xe)的一种或多种元素。
接着,执行炉退火或RTA的热处理,以实现吸杂工艺。在进行炉退火的情形中,在氮气氛中在450-600℃下进行热处理0.5-12小时。在采用RTA的情形中,用于加热的灯光源点燃1-60秒(优选30-60秒),并重复这个周期1-10次(优选2-6次)。虽然灯光源的发光强度是任意的,但该发光强度要使半导体膜能在瞬间被快速加热到约600-1000℃、优选约700-750℃。
通过加热处理,晶体半导体311内的催化元素通过扩散,如箭头所示那样移动到用于吸杂的半导体313中,也就是实现了吸杂。
吸杂工艺之后,选择性地蚀刻用于吸杂的半导体313以除去该部分。作为蚀刻方法,可进行在不用等离子体的情况下,使用ClF3的干刻蚀、或利用碱溶液如含有肼或氢氧化四乙铵((CH3)4NOH)的水溶液的湿刻蚀。此时,可以用氧化膜312防止晶体半导体311被蚀刻。
然后,用氟酸除去氧化膜312。接着,对晶体半导体311执行图案形成,以形成半导体层314-317(图8D)。之后,形成覆盖半导体层314至317的栅绝缘膜308。例如可以用溅射法形成厚30-200nm的含硅的绝缘膜作为栅绝缘膜308。
另外,本发明中的吸杂工艺不受在本实施例中示出的方法的限制。只要能够减少半导体膜中的催化元素,也可以使用其他的方法。
接着,在栅绝缘膜308上用选自Ta、W、Ti、Mo、Al、Cu、Cr、Nd的元素或包含上述元素作为主要成分的合金材料或化合物材料、掺杂有磷等杂质元素的以多晶硅膜为典型的半导体膜或AgPdCu合金等众所周知的有导电性的材料,来形成厚20-100nm的第一导电膜320(图9A)。然后,形成覆盖第一导电膜320的厚100-400nm的第二导电膜和厚100-400nm的氮化硅膜的叠层。接着,先对氧化硅膜或氮化硅膜等的绝缘膜进行图案加工,以形成绝缘层329-332。更具体地说,如果是氧化硅膜,则用磷酸基的腐蚀液进行图案加工,如果是氮化硅膜,则用氟酸基的腐蚀液进行图案加工。然后,用绝缘层329-332作为掩膜,对第二导电膜进行图案加工,从而形成导电层325-328。
接着,执行掺杂处理。该掺杂处理是在半导体层304至307中以低浓度掺杂磷或砷等属于15族,并赋予N型的杂质。在掺杂之际,导电层325-328以及绝缘层329-332成为相对于赋予N型杂质的掩膜,自动调准地形成杂质区321-324,该杂质区中掺杂有1×1018atoms/cm3至1×1020atoms/cm3浓度范围的赋予N型的杂质元素。
接着,执行各向异性的侧墙蚀刻,使导电层325-328后退,从而形成导电层335-338(图9B)。之后,通过蚀刻将作为掩膜发挥作用的绝缘层329-332去除掉(图9C)。接着,新形成由抗蚀膜构成的掩膜346、347,并用比上述掺杂工艺更高的加速电压进行掺杂处理。用导电层335、337作为相对于杂质元素的掩膜,进行掺杂的结果是,杂质区(N-区域、LDD区域)341、344中掺杂了1×1018atoms/cm3至5×1019atoms/cm3浓度范围的赋予N型的杂质元素,而且杂质区(N+区域)340、343中掺杂了1×1019atoms/cm3至5×1021atoms/cm3浓度范围的赋予N型的杂质元素。另外,沟道形成区342、345被形成。
之后,去除掉由抗蚀膜构成的掩膜346、347,新形成由抗蚀膜构成的掩膜356、357(图9D)。之后,进行掺杂处理,在作为P沟道型TFT的激活层的半导体层形成杂质区,该杂质区中掺杂有赋予和上述第一导电型相反导电型的杂质元素。在本步骤中,用导电层336、338作为针对杂质元素的掩膜,进行掺杂赋予P型杂质元素,结果是,自我调整地形成杂质区(P+区域)350、353;杂质区(P-区域)351、354以及沟道形成区352、355被形成。在此,以1×1019atoms/cm3至5×1021atoms/cm3的浓度掺杂赋予P型的杂质元素。注意,掺杂条件不受上述限制,也可以执行两次以上的多次掺杂处理。
接着,去除掉由抗蚀膜构成的掩膜356、357,用导电层325-328作为掩膜,对第一导电膜320执行各向异性蚀刻,形成导电层360-363(图9E)。通过上述步骤,可以在同一个衬底上形成N沟道型晶体管380、382和P沟道型晶体管381、383。
然后,形成绝缘膜372作为保护膜。使用等离子体CVD法或溅射法,以单层或叠层结构形成厚100-200nm的含硅的绝缘膜作为该绝缘膜372。本实施例中,用等离子体CVD法形成厚100nm的氧氮化硅膜。然后进行加热处理,以恢复半导体层结晶性,或激活掺杂在半导体层中的杂质元素。
然后在绝缘膜372上形成有机绝缘膜373。有机绝缘膜373使用通过SOG法被涂敷的氧化硅膜、聚酰亚胺、聚酰胺、丙烯酸树脂等有机绝缘膜。有机绝缘膜373缓和由在衬底300上形成的TFT导致的凸凹不平,其作为平整的作用大,所以有机绝缘膜373优选使用有平整性的膜。
然后,用光刻蚀法,对绝缘膜372和有机绝缘膜373进行图案加工,以形成到达杂质区340、343、350以及353的接触孔。接着,用导电性材料形成导电膜,对该导电膜进行图案加工,从而形成布线364-371。之后,形成作为保护膜的绝缘膜374,就完成了如图所示的液晶显示器件。
用于驱动电路或CPU等功能电路的晶体管优选LDD结构或GOLD结构,为了实现高速化,理想的是,实现晶体管的微细化。根据本实施例完成的晶体管380-383,由于是LDD结构,所以适合用于需要高速工作的驱动电路。另外,伴随着微细化,栅绝缘膜308的薄膜化成为不可欠缺的因素,在本实施例的工艺中,掺杂工艺是在栅绝缘膜308被第一导电膜覆盖的状态下执行,由于该栅绝缘膜308是被保护着的,所以对实现微细化来说,可以说该方法是有效的制作方法。
本实施例可以任意和上述实施方案模式组合而实施。
实施例2
本实施例将就在驱动器IC的输入输出端子中形成突起物(bump)的形成方法加以说明。突起物是为了用COG方式安装驱动器IC而提供的。该突起物可以用熟知的方法形成,下文中将参考图10说明其中的一个例子。
在形成于和源或漏布线的相同层中的输入输出端子603上形成障碍金属层(barrier metal layer)605(图10A),该障碍金属层是层叠Ti和Pd或Cr和Cu而形成的。溅射法或蒸发淀积法等适合用来形成该障碍金属层605。接着,形成抗蚀膜掩膜606。
接着,用Au通过电镀形成厚5-20μm的突起物607(图10B)。之后,除去不要的抗蚀膜掩膜606,重新在突起物607上涂敷抗蚀膜以形成为对障碍金属层执行蚀刻而形成的抗蚀膜掩膜608(图10C)。
为形成抗蚀膜掩膜608的光刻蚀工艺由于是夹着突起物而执行的,所以不能获得高分辨度。因此,抗蚀膜掩膜608覆盖突起物及其周边而形成。如果利用该抗蚀膜掩膜608来执行障碍金属层的蚀刻,则形成障碍金属层609(图10D)。之后,进行200-300℃的加热处理以提高突起物和障碍金属层之间的密接性。通过上述步骤,可以完成在输入输出端子中形成有突起物的驱动器IC。
本实施例可以任意和上述实施方案模式、实施例组合实施。
实施例3
本实施例将参考图11A-11E、18给出驱动器IC的安装方法的说明。作为安装方法,可以采用使用各向异性导电材料的连接方法或电线结合(wire bonding)方式等,下文中将用图11A-11E说明其中的一个例子。
以下将说明在第一衬底201上通过各向异性导电材料安装驱动器IC208的实例(图11A)。在第一衬底201上提供像素区域202、引出线206、连接布线以及输入输出端子207。第二衬底203和第一衬底201通过密封材料204连接在一起,二者之间夹着液晶层205。
通过各向异性导电材料,FPC 212被连接在连接布线以及输入输出端子207的一方的边缘。各向异性导电材料由树脂215和表面涂渡的Au等的直径为几十至几百μm的导电性颗粒214构成,借助该导电性颗粒214,连接布线以及输入输出端子207和形成在FPC 212的布线213电连接在一起。驱动器IC 208也通过各向异性导电材料和第一衬底201连接,并且通过混合在树脂211中的导电性颗粒210,提供在驱动器IC 208中的输入输出端子209和引出线206或连接线以及输入输出端子207电连接在一起。
关于使用该方式的驱动器IC 208的安装方法,将参考图11C给于说明。驱动器IC 224中提供有输入输出端子225,在该端子的周围形成有保护绝缘膜226。如图所示,在第一衬底220上形成第一导电层221、第二导电层223、以及绝缘层222,在此,用第一导电层221和第二导电层223形成引出线或连接布线。
在第一衬底220上形成的这些导电层以及绝缘层和像素区域的像素TFT在同一个工艺中形成。例如,在以反交错排列型形成像素TFT时,第一导电层221和栅电极在同一个层中用Ta、Cr、Ti、Al等材料形成。通常栅电极上形成栅绝缘膜,且绝缘层222用与此相同的层形成。第一导电层221上重叠提供的第二导电层223和像素电极用同样的透明导电膜形成,且使其和导电性颗粒形成良好的接触。通过将树脂228中混合的导电性颗粒227的大小、密度设定为合适的值,可以以上述模式将驱动器IC和第一衬底220电连接起来。
其次,图11D示出了利用树脂的收缩力的COG方式的例子。在驱动器IC 224侧形成Ta或Ti等形成的阻挡层229,然后在该阻挡层上借助化学渡法等用Au形成约20μm的突起物230。然后,在驱动器IC和第一衬底220之间夹持光硬性绝缘膜231,利用因光硬化而凝固的树脂的收缩力压紧电极之间从而实现电连接。
其次,图11E示出了中间夹导电颗粒214提供FPC 212上的布线213和驱动器IC 208的例子,该结构在用于便携终端等躯体体积被限制的电子器具时,极其有效。
另外,图11B示出了在第一衬底201上用粘合剂216固定驱动器IC208,并用Au电线217连接驱动器IC 208的输入输出端子和引出线或连接布线时的情况。在此用密封树脂218进行密封。另外,驱动器IC 208的安装方法没有特别的限制,可以使用熟知的COG方式或电线结合法,或者TAB方法。
通过将驱动器IC的厚度形成得和形成有反向电极的第二衬底一样厚,两者之间的高度变得基本相同,这样,就对实现显示器件整体的轻巧化有所贡献。另外,用相同性质材料制作各自的衬底,即使液晶显示器件发生温度变化,也不会产生热应力,其结果是不会损伤由TFT制作的电路的特性。其他的还有,如本实施例所示,通过用比IC芯片长度长的驱动器IC安装驱动电路,相对于一个像素区域,可以减少安装的驱动器IC的数量。
注意,驱动器IC 208是由在玻璃或石英等衬底上相当于驱动电路的薄膜构成的元件组形成。其中,不一定必须使用所述衬底,也可以剥离除去掉该衬底。下面将简单地说明这样的方法。
首先说明第一个方法,在用石英或玻璃构成的衬底上形成由薄膜构成的元件组和输入输出端子。这种情况下,在元件组和衬底之间提供粘合剂。然后,在用突起物电连接驱动器IC和引出线之后,在衬底上粘贴双面胶带,并用物理方式剥离衬底。
其次说明第二个方法,在用石英或玻璃构成的第一衬底上形成由薄膜构成的元件组和输入输出端子。在该元件组上形成绝缘膜,然后在该绝缘膜上形成粘合剂,然后在该粘合剂上粘贴双面胶带,然后在该双面胶带上粘贴第二衬底。之后,剥离第一衬底,暴露出形成在元件组下面的底膜。接着,在暴露出的底膜上形成粘合剂,然后粘贴该粘合剂和突起物、以及引出布线和连接布线。最后,剥离第二衬底。
如以上所述,驱动器IC不一定必须在衬底上被制作,也可以剥离衬底,仅仅电连接元件组。这样的驱动器IC也被称为粘晶(stick crystal)。图18示出了这种情况的横截面图,如果象这样剥离掉构成驱动器IC的衬底,则可以实现轻巧化,在将该驱动器IC搭载到便携终端时,尤其有效。
本实施例可以任意和上述实施方案模式、实施例组合实施。
实施例4
本实施例将用图说明驱动器IC的结构。
如上所述,驱动器IC作为液晶显示器件的驱动电路被利用。图12示出了在这种情况下的显示器件的方框图。像素区域1601由多个扫描线和数据线形成,像素区域1601可以是提供有TFT的有源矩阵类型,也可以是无源矩阵类型。像素区域1601的周边提供有相当于驱动器IC的扫描线驱动电路1602以及数据线驱动电路1603。
从外界输入进来的时钟、起动脉冲1607和图像信号1608被输入到控制器电路1605以转换驱动器IC的输入规格,在控制器电路被转换为各自的计时规格。另外,电源1609、由运算放大器构成的电源电路1606由外部电路提供。上述控制器电路1605和电源电路1606如用TAB方式安装,则对实现显示器件的轻巧化有效。
虽然控制器电路1605向扫描线和数据线分别输出信号,但是信号分割电路(signal dividing circuit)1604将输入数字信号分成m个后供给数据线。分割数m是2或更多的自然数,实际上分割成2-16是合适的。这种情形中,输入数字信号线1610的个数和修复数字信号线1620的个数不同。信号分割电路1604可以由IC芯片构成,也可以由驱动器IC构成。
驱动器IC的电路结构在扫描线侧和数据线侧不同。图12B示出了其中的一个例子。扫描线驱动电路1602由移位寄存电路123、电平转移电路124、以及缓冲电路125构成。另一方面,数据线驱动电路1603由移位寄存电路126、锁存电路127、电平转移电路128、以及D/A转换电路129构成。
另外,图13示出了和上述不同的,在数据线侧提供驱动器IC的一个实例。其电路结构是:从输入侧的移位寄存电路1801、锁存电路1804、1805、电平转移电路1806、以及D/A转换电路1807构成。
本实施例可以任意和上述实施方案模式、实施例组合实施。
实施例5
本实施例将说明提供在安装驱动器IC的衬底上的像素区域的结构。更具体地说,将说明在一对电极之间包含液晶材料的情况。
图14A是包含液晶层的像素区域的俯视图(掩膜设计图)。扫描线651和数据线655交叉,像素TFT 658形成在该交叉点上。像素TFT 658是底栅型,源/漏电极656的一方和数据线655,另一方和像素电极657连接。驱动液晶所需的存储电容器659中间夹用和栅绝缘膜相同层形成的绝缘膜形成在电容布线653和像素电极657之间,其中,电容布线653用和栅电极652相同的层形成。图14B表示像素部分的等效电路。
像素TFT的结构没有特殊限制,例如,可以用如图15A所示的沟道蚀刻型的底栅型TFT来形成。具体地说,在衬底660上形成由Ta、Cr、Mo、Al等构成的栅电极661。之后,用氮化硅膜、氧化硅膜、或氧化钛膜等形成栅绝缘膜662。然后,在其上形成岛形状(island-like)的有非晶结构的半导体层663,并使该半导体层和栅电极661的一部分重叠。有非晶结构的半导体层663的典型材料是非晶硅,用等离子体CVD法形成厚100-250nm的半导体层663。提供掺杂了n型或p型杂质的半导体层664,并使其和有非晶结构的半导体层663重叠。
之后,用透明导电膜形成像素电极665。透明导电膜使用氧化铟/锡(In2O3:SnO2、ITO)或氧化锌(ZnO)、氧化铟/锡和氧化锌的化合物、掺杂了氧化镓(Ga2O3)的氧化锌等。然后用Cr、Ti、Ta等形成源/漏电极666。用该源/漏电极666作为掩膜对掺杂了n型或p型杂质的半导体层664执行蚀刻,以将其分成两个区域。该蚀刻处理由于不能对有非晶结构半导体层663执行选择加工,所以有非晶结构半导体层663的一部分也被蚀刻清除掉。最后,形成氮化硅或氧化硅等保护膜667,就完成了像素TFT。
图15B示出了沟道保护膜型的结构。该结构在有非晶结构的半导体层668上提供用氮化硅等形成的沟道保护层669,这样的结构可以在执行形成源/漏区域的蚀刻加工时,使有非晶结构的半导体层668不被蚀刻。
图15C表示一种结构,该结构在保护膜670之上形成用丙烯酸等有机树脂材料形成的平整膜671,并在平整膜671之上形成像素电极672。通过用接触孔连接像素电极和像素TFT的结构,可以提高开口率,而且,通过平整表面可以减少向错(disclination)等的液晶定向的混乱。
在此,虽然示出了以底栅型TFT作为像素TFT的例子,但是使用顶栅型TFT也没有任何问题。虽然从TFT的特性和制造成本的观点看,使用底栅型的TFT的情况更多,但是本发明的驱动器IC也可以应用到用组合钛和氧化钛而形成的MIM型元件来形成像素区域。
上述图14A和14B示出了构成像素区域的半导体元件用非晶半导体来形成的情况,但是也可以使用由有机半导体形成的半导体元件。下文中将说明用有机半导体形成半导体元件的情况。
由有机半导体形成的半导体元件有三种类型:一种是在衬底400上按栅电极401、栅绝缘膜402、源/漏电极403以及有机半导体404的顺序层叠的平面结构(planer structure)(图16A);一种是在衬底400上按栅电极401、栅绝缘膜402、有机半导体404以及源/漏电极403的顺序层叠的反交错排列结构(inverse staggered structure)(图16B);一种是在衬底400上按源/漏电极403、有机半导体404、栅绝缘膜402、以及栅电极401的顺序层叠的交错排列结构(staggered structure)(图16C)。像素区域可以使用任何一种类型的薄膜晶体管。但是,由上述有机半导体形成的半导体元件(有机晶体管)的栅绝缘膜402优选使用高介电材料的Ta2O5。这是由于Ta2O5的介电率为24左右,比通常使用的氧化硅高大约6倍。如果介电常数高,则沟道层中被感应的电荷多,所以导通电流(on state current)就会增加。另外,将载流子迁移率高的材料并五苯(pentacene)使用于沟道层较合适。迁移率增加多高,导通电流也可以被提高多高。
接着,参考图16D说明使用有机晶体管的液晶显示器件的横截面结构。衬底410上按顺序依次层叠形成栅电极423、412;栅绝缘膜413、417;厚100nm左右的并五苯层414;厚2-3nm左右的Al层415、416;聚乙烯醇419;紫外线固化树脂420,且在衬底411上形成ITO膜422。然后,将形成有上述薄膜的衬底410和衬底411粘合,并在两个衬底之间注入液晶层421,这样就完成了液晶显示器件。
本实施例可以任意和上述实施方案模式、实施例组合实施。
实施例6
本实施例将参考图17说明将安装了驱动器IC的显示器件搭载到电子器具的方法。
图17中,显示器件在安装有像素区域702的衬底701的边缘安装驱动器IC 710。并且,用包含间隙物(spacer)706的密封材料707粘合反向衬底703,并且提供偏光片708、709。最后用粘合剂723固定框架724。
驱动器IC 710在其输入输出端子711中,通过含有导电性颗粒712的树脂713,以实现和形成在衬底701上的输入输出布线705、714的连接。柔性印刷线路板717(FPC 717)通过含有导电性颗粒715的树脂716和输入输出布线714的一方的边缘连接在一起。FPC 717和提供有信号处理电路、放大电路以及电源电路等的印刷衬底719上的输入输出布线720也用相同的方式(含有导电性颗粒721的树脂722)连接,并将图像显示所需要的信号传送给安装有驱动器IC的显示器件。并且,显示器件如果是透射型液晶显示器件,则在反向衬底703一侧提供光源和光导体,以及背景光718。
在此描述的显示器件的安装方法是其中的一个例子,是依据电子设备的模式适当地组合而成的。应用本发明而制作的电子器具可以举出以下例子:摄像机、数码相机、护目镜式显示器等的声频播放设备;笔记本式电脑、游戏机、便携式信息终端(便携式计算机、手机等)、家庭用游戏机等的配备记录媒体的图像播放设备等。这些电子器具的具体例子在图19A-19C、20A-20D中表示。
图19A表示大尺寸(40英寸左右)液晶电视,包括显示部分2001、外壳2002以及声频输出部分2003等。图19B表示液晶显示器,包括外壳2011、声频输出部分2012以及显示部分2013等。图19C表示折叠式便携终端,包括第一显示屏幕2021、操作按钮2022、第二显示屏幕2023、操作按钮2024、外壳2025以及镜头2026等。本发明适用于上述电子器具中的显示部分2001、2013、第一显示屏幕2021、第二显示屏幕2023的制作。
图20A表示个人数字助理PDA(personal digital assistant),包括外部接口2031、触笔(stylus)2033、显示部分2034以及操作按钮2035等。图20B表示便携式游戏机,包括显示部分2041、以及操作按钮2043、2044等。图20C表示数码摄像机,包括目镜2051、操作开关2052、显示部分2056、显示部分2053以及电池2055等。图20D表示笔记本式个人电脑,包括外壳2061、显示部分2062以及键盘2064。本发明适用于上述电子器具中的显示部分2034、2041、2053、2056、2062的制作。
本实施例可以任意和上述实施方案模式、实施例组合实施。
实施例7
显示器件在显示多分级的图像时的驱动方式包括模拟驱动和数字驱动。这两种方式的不同点在于在显示元件的发光、非发光的各自的状态中控制该发光元件的方法。前者的模拟驱动通过控制流动到显示元件的电流而显示分级。而后者的数字驱动仅仅通过显示元件的导通状态(亮度基本为100%的状态)和截止状态(亮度基本为0%的状态)的两个状态来显示分级。数字驱动如仅使用导通和截止两个状态,则只能显示2个分级,所以又有和其他的方式组合而显示多分级图像的驱动方法,包括例如面积分级(area gray scale)方式,时间分级方式。
本发明的显示器件不管是液晶面板(liquid crystal panel)还是发光面板(light emitting panel),适用于模拟驱动和数字驱动中的任何一种。另外,在数字驱动中,本发明的显示器件适用于面积分级方式或时间分级方式中的任何一种。另外,本发明的显示器件还适用于液晶应答速度被改善了的超速传动方式等其他方式。
另外,如上所述,本发明的显示器件可以是有源矩阵类型也可以是无源矩阵类型。但是当有源矩阵类型应用于发光面板时,由于发光元件是电流驱动型元件,当像素内的晶体管之间的不均匀较少时,模拟驱动是合适的。另外,即使是数字驱动也可以通过使驱动用的晶体管在饱和区工作,以一定的电流量供给发光元件而适用。总之,只要是使用电流驱动型元件,优选使用能够供应一定电流量的像素结构,并使用相应的最合适的驱动方法。
本实施例将简单说明上述驱动方式中的时间分级方式。用在诸如液晶显示和发光装置等的显示器件中的帧频率通常在60Hz的数量级。即,屏幕绘制以每秒60次的数量级进行,这样有可能进行显示而人眼不觉得屏幕闪烁。这种情形中,进行一次屏幕绘制的周期在这里称作一个帧周期。而且,时间分级方式中一个帧周期分成多个子帧周期。这个分割的数目等于分级位的数目的情况较多,在此因简便起见,说明分割的数目等于分级位的数目的情况。在这里因为使用3位分级,所以说明一个帧周期分成三个子帧周期SF1-SF3的情况。
此外,每个子帧周期有一个寻址(写)周期Ta和一个持续(发光)周期Ts。寻址(写)周期是用于向像素写数字图像信号的周期,且每个子帧周期有相同的长度。持续周期是其中发光元件基于在寻址(写)周期中写到像素中的数字图像信号发光的周期。持续(发光)周期Ts1-Ts3具有满足Ts1∶Ts2∶Ts3=4∶2∶1的长度比。换句话说,对于n位分级表示,n持续(发光)周期具有2n-1∶2n-2∶..∶21∶20的长度比。在一个像素周期中每个像素的发光周期长度由发光元件发光的周期中具体的持续(发光)周期决定。这样进行分级表示。
换言之,通过对于持续(发光)周期Ts1-Ts3采取发光状态或不发光状态,并利用总发光时间的长度,可表示具有0%、14%、28%、43%、57%、71%、86%和100%亮度的8个分级。如果在Ts1中有发光且在Ts2和Ts3中没有发光,亮度是57%,当亮度是71%时,发光发生在Ts1和Ts3中而不发生在Ts2中。也就是在用时间分级法的情形中,同样的分级用总发光时间的71%长的时间的发光来表示。
当用这种方法增加显示分级的数目时,可以增加子帧周期的数目。另外,对于子帧周期不总是必须从最上位到最小位顺序出现,子帧周期可以在帧周期中任意排列。此外,顺序也可以在每个帧周期中变化。
本实施例可以任意和上述实施方案模式、实施例组合实施。
实施例8
上述实施方案模式3中说明了使用连续振荡激光器进行激光晶化的情况,但是本发明不仅仅限于连续振荡激光器,本发明还可以使用脉冲激光器来进行激光晶化。这是由于即使是脉冲输出的能源束(脉冲束),半导体依据激光束从熔化到凝固,只要振动出能够照射下一个脉冲激光束的振荡频率的激光,就可以获取在扫描方向上连续成长的结晶晶粒。也就是说,即使是脉冲激光器,也可以获得和使用连续振荡激光器时相同的效果。
所以,使用规定了振荡频率最小极限的脉冲束以使脉冲振荡的周期比从半导体膜熔化开始到完全凝固的时间还要短。具体地说,脉冲激光器的振荡频率为10MHz或更多,优选60-100MHz,使用比作为一般脉冲激光器的振荡频率而使用的几十Hz-几百Hz的频带(frequencyband)显然高很多的频带。
如果使用上述频带,则可以在半导体膜凭借激光束从熔化到凝固的时间内执行下一个脉冲激光的照射。所以,跟使用常规频带的脉冲振荡的激光时的情况不同,因为可以连续移动半导体膜中的固液界面,所以可以形成在扫描方向上有连续成长晶粒的半导体膜。更具体地说,可以形成在扫描方向上的幅宽为10-30μm左右、在垂直于扫描方向上的幅宽为1-5μm左右的晶粒的聚集体,也就是可以获得和连续振荡激光器相同程度的结晶晶粒。而且,通过形成沿着扫描方向延伸的单晶晶粒,可以形成至少在TFT的沟道方向上几乎没有晶粒间界的半导体膜。
作为脉冲激光器,可以使用用上述频率能够振荡的Ar激光器、Kr激光器、受激准分子激光器、CO2激光器、YAG激光器、Y2O3激光器、YVO4激光器、YLF激光器、YAlO3激光器、玻璃激光器、红宝石激光器、翠绿宝石激光器、Ti:蓝宝石激光器、铜蒸汽激光器或金蒸汽激光器。
具有上述结构的本发明,使用通过照射从连续振荡激光器发射出的激光而形成的特性优良的薄膜集成电路,则可以提供一种安装有能够高速工作的驱动器IC的液晶显示器件以及其制作方法。另外,通过将激光器的激光束的幅宽和驱动器IC的短边长度设定为相同的值,可以提供生产性被提高了的液晶显示器件以及其制作方法,而且,由于可以在矩形的大尺寸衬底上制作多个驱动器IC,所以可以提供低成本的液晶显示器件以及其制作方法。而且,根据本发明,通过采用COG方式来安装驱动器IC,可以提供实现了小尺寸、薄厚度、轻重量和窄边框的液晶显示器件以及其制作方法。

Claims (34)

1.一种液晶显示器件,包括:
具有第一薄膜晶体管的第一衬底,所述第一薄膜晶体管包括非晶半导体或有机半导体用于沟道部分,并在扫描线和数据线相互交叉且其间夹有绝缘层的区域中;
具有反向电极的第二衬底;
提供在所述第一衬底和第二衬底之间的液晶层;以及
具有包括晶体半导体用于沟道部分的第二薄膜晶体管的第三衬底,
其中所述晶体半导体包括沿所述第二薄膜晶体管中的电子或空穴的流动延伸的晶粒间界;
其中所述第一衬底和所述第二衬底以所述第一衬底被暴露的方式彼此粘合;
其中所述第三衬底与所述第一衬底上的暴露区域粘合;
其中形成所述第二薄膜晶体管的第一区域和形成输入端子和输出端子的第二区域形成在所述第三衬底上;以及
其中所述第三衬底的短边长度在1~6mm的范围内,并且所述第一区域的短边长度在0.5~1mm的范围内。
2.根据权利要求1的液晶显示器件,其中所述第三衬底的长边与排列有所述第一薄膜晶体管的像素区域的短边或长边的长度相同。
3.根据权利要求1的液晶显示器件,其中所述第一衬底至第三衬底是由相同材料制成的。
4.根据权利要求1的液晶显示器件,其中所述第一衬底至第三衬底是由玻璃或石英制成的。
5.根据权利要求1的液晶显示器件,其中所述晶体半导体通过照射激光形成,并且用于产生所述激光的振荡器是选自连续波的YAG激光器、YVO4激光器、YLF激光器、YAlO3激光器、玻璃激光器、红宝石激光器、翠绿宝石激光器、Ti:蓝宝石激光器、Nd3+:Y2O5激光器、受激准分子激光器、Ar激光器、和Kr激光器中的至少一种激光器。
6.根据权利要求1的液晶显示器件,其中所述第一薄膜晶体管是底栅薄膜晶体管并且所述第二薄膜晶体管是顶栅薄膜晶体管。
7.根据权利要求1的液晶显示器件,
其中所述输入端子是第一输入端子,所述扫描线是第一扫描线,以及所述数据线是第一数据线,以及
其中第一输入端子和与第一输入端子相邻的第二输入端子之间的间距与第一扫描线和与第一扫描线相邻的第二扫描线之间的间距或第一数据线和与第一数据线相邻的第二数据线之间的间距相同。
8.根据权利要求1的液晶显示器件,
其中所述输入端子是第一输入端子,所述扫描线是第一扫描线,以及所述数据线是第一数据线,以及
其中第一输入端子和与第一输入端子相邻的第二输入端子之间的间距与第一扫描线和与第一扫描线相邻的第二扫描线之间的间距或第一数据线和与第一数据线相邻的第二数据线之间的间距相同,并且第一输入端子和第二输入端子之间的所述间距是30~150μm。
9.根据权利要求1的液晶显示器件,
其中所述输出端子是第一输出端子,所述扫描线是第一扫描线,以及所述数据线是第一数据线,以及
其中第一输出端子和与第一输出端子相邻的第二输出端子之间的间距与第一扫描线和与第一扫描线相邻的第二扫描线之间的间距或第一数据线和与第一数据线相邻的第二数据线之间的间距相同。
10.根据权利要求1的液晶显示器件,
其中所述输出端子是第一输出端子,所述扫描线是第一扫描线,以及所述数据线是第一数据线,以及
其中第一输出端子和与第一输出端子相邻的第二输出端子之间的间距与第一扫描线和与第一扫描线相邻的第二扫描线之间的间距或第一数据线和与第一数据线相邻的第二数据线之间的间距相同,并且第一输出端子和第二输出端子之间的所述间距是30~150μm。
11.一种具有根据权利要求1的液晶显示器件的电子器具,其中所述电子器具是从包括液晶电视、液晶监视器、电话、个人数字助理、游戏机、数码摄像机、和个人计算机的组中选择的。
12.一种液晶显示器件的制作方法,包括以下步骤:
在第一衬底上形成包括非晶半导体或有机半导体用于沟道部分的第一薄膜晶体管;
以中间夹有液晶层的方式将所述第一衬底与具有反向电极的第二衬底粘合;
通过照射连续波激光在第三衬底上形成晶体半导体;
形成具有所述晶体半导体用于沟道部分的第二薄膜晶体管,其后分割所述第三衬底以形成多个驱动器IC;以及
将所述驱动器IC粘贴到所述第一衬底上的暴露区域。
13.根据权利要求12的液晶显示器件的制作方法,其中所述激光的聚焦点宽度和所述驱动器IC的短边长度相同。
14.根据权利要求12的液晶显示器件的制作方法,其中所述晶体半导体通过使用选自连续波的YAG激光器、YVO4激光器、YLF激光器、YAlO3激光器、玻璃激光器、红宝石激光器、翠绿宝石激光器、Ti:蓝宝石激光器、Nd3+:Y2O5激光器、受激准分子激光器、Ar激光器、和Kr激光器中的至少一种激光器形成。
15.一种半导体器件,包括:
具有第一薄膜晶体管的第一衬底,所述第一薄膜晶体管包括非晶半导体用于沟道部分,并在扫描线和数据线相互交叉且其间夹有绝缘层的区域中;
具有反向电板的第二衬底;以及
具有包括晶体半导体用于沟道部分的第二薄膜晶体管的第三衬底,
其中所述晶体半导体包括沿所述第二薄膜晶体管中的电子或空穴的流动延伸的晶粒间界;
其中所述第一衬底和所述第二衬底以所述第一衬底被暴露的方式彼此粘合;
其中所述第三衬底与所述第一衬底上的暴露区域粘合;
其中形成所述第二薄膜晶体管的第一区域和形成输入端子和输出端子的第二区域形成在所述第三衬底上;以及
其中所述第三衬底的短边长度在1~6mm的范围内,并且所述第一区域的短边长度在0.5~1mm的范围内。
16.根据权利要求15的半导体器件,其中所述第三衬底的长边与排列有所述第一薄膜晶体管的像素区域的短边或长边的长度相同。
17.根据权利要求15的半导体器件,其中所述第一衬底至第三衬底是由相同材料制成的。
18.根据权利要求15的半导体器件,其中所述第一衬底至第三衬底是由玻璃或石英制成的。
19.根据权利要求15的半导体器件,其中所述晶体半导体通过照射激光形成,并且用于产生所述激光的振荡器是选自连续波的YAG激光器、YVO4激光器、YLF激光器、YAlO3激光器、玻璃激光器、红宝石激光器、翠绿宝石激光器、Ti:蓝宝石激光器、Nd3+:Y2O5激光器、受激准分子激光器、Ar激光器、和Kr激光器中的至少一种激光器。
20.根据权利要求15的半导体器件,其中所述第一薄膜晶体管是底栅薄膜晶体管并且所述第二薄膜晶体管是顶栅薄膜晶体管。
21.根据权利要求15的半导体器件,
其中所述输入端于是第一输入端子,所述扫描线是第一扫描线,以及所述数据线是第一数据线,以及
其中第一输入端子和与第一输入端子相邻的第二输入端子之间的间距与第一扫描线和与第一扫描线相邻的第二扫描线之间的间距或第一数据线和与第一数据线相邻的第二数据线之间的间距相同。
22.根据权利要求15的半导体器件,
其中所述输入端子是第一输入端子,所述扫描线是第一扫描线,以及所述数据线是第一数据线,以及
其中第一输入端子和与第一输入端子相邻的第二输入端子之间的间距与第一扫描线和与第一扫描线相邻的第二扫描线之间的间距或第一数据线和与第一数据线相邻的第二数据线之间的间距相同,并且第一输入端子和第二输入端子之间的所述间距是30~150μm。
23.根据权利要求15的半导体器件,
其中所述输出端子是第一输出端子,所述扫描线是第一扫描线,以及所述数据线是第一数据线,以及
其中第一输出端子和与第一输出端子相邻的第二输出端子之间的间距与第一扫描线和与第一扫描线相邻的第二扫描线之间的间距或第一数据线和与第一数据线相邻的第二数据线之间的间距相同。
24.根据权利要求15的半导体器件,
其中所述输出端子是第一输出端子,所述扫描线是第一扫描线,以及所述数据线是第一数据线,以及
其中第一输出端子和与第一输出端子相邻的第二输出端子之间的间距与第一扫描线和与第一扫描线相邻的第二扫描线之间的间距或第一数据线和与第一数据线相邻的第二数据线之间的间距相同,并且第一输出端子和第二输出端子之间的所述间距是30~150μm。
25.一种半导体器件,包括:
具有第一薄膜晶体管的第一衬底,所述第一薄膜晶体管包括有机半导体用于沟道部分,并在扫描线和数据线相互交叉且其间夹有绝缘层的区域中;
具有反向电极的第二衬底;以及
具有包括晶体半导体用于沟道部分的第二薄膜晶体管的第三衬底,
其中所述晶体半导体包括沿所述第二薄膜晶体管中的电子或空穴的流动延伸的晶粒间界;
其中所述第三衬底与所述第一衬底上的暴露区域粘合;
其中形成所述第二薄膜晶体管的第一区域和形成输入端子和输出端子的第二区域形成在所述第三衬底上;以及
其中所述第三衬底的短边长度在1~6mm的范围内,并且所述第一区域的短边长度在0.5~1mm的范围内。
26.根据权利要求25的半导体器件,其中所述第三衬底的长边与排列有所述第一薄膜晶体管的像素区域的短边或长边的长度相同。
27.根据权利要求25的半导体器件,其中所述第一衬底至第三衬底是由相同材料制成的。
28.根据权利要求25的半导体器件,其中所述第一衬底至第三衬底是由玻璃或石英制成的。
29.根据权利要求25的半导体器件,其中所述晶体半导体通过照射激光形成,并且用于产生所述激光的振荡器是选自连续波的YAG激光器、YVO4激光器、YLF激光器、YAlO3激光器、玻璃激光器、红宝石激光器、翠绿宝石激光器、Ti:蓝宝石激光器、Nd3+:Y2O5激光器、受激准分子激光器、Ar激光器、和Kr激光器中的至少一种激光器。
30.根据权利要求25的半导体器件,其中所述第一薄膜晶体管是底栅薄膜晶体管并且所述第二薄膜晶体管是顶栅薄膜晶体管。
31.根据权利要求25的半导体器件,
其中所述输入端子是第一输入端子,所述扫描线是第一扫描线,以及所述数据线是第一数据线,以及
其中第一输入端子和与第一输入端子相邻的第二输入端子之间的间距与第一扫描线和与第一扫描线相邻的第二扫描线之间的间距或第一数据线和与第一数据线相邻的第二数据线之间的间距相同。
32.根据权利要求25的半导体器件,
其中所述输入端子是第一输入端子,所述扫描线是第一扫描线,以及所述数据线是第一数据线,以及
其中第一输入端子和与第一输入端子相邻的第二输入端子之间的间距与第一扫描线和与第一扫描线相邻的第二扫描线之间的间距或第一数据线和与第一数据线相邻的第二数据线之间的间距相同,并且第一输入端子和第二输入端子之间的所述间距是30~150μm。
33.根据权利要求25的半导体器件,
其中所述输出端子是第一输出端子,所述扫描线是第一扫描线,以及所述数据线是第一数据线,以及
其中第一输出端子和与第一输出端子相邻的第二输出端子之间的间距与第一扫描线和与第一扫描线相邻的第二扫描线之间的间距或第一数据线和与第一数据线相邻的第二数据线之间的间距相同。
34.根据权利要求25的半导体器件,
其中所述输出端子是第一输出端子,所述扫描线是第一扫描线,以及所述数据线是第一数据线,以及
其中第一输出端子和与第一输出端子相邻的第二输出端子之间的间距与第一扫描线和与第一扫描线相邻的第二扫描线之间的间距或第一数据线和与第一数据线相邻的第二数据线之间的间距相同,并且第一输出端子和第二输出端子之间的所述间距是30~150μm。
CNB2004100445919A 2003-05-12 2004-05-12 液晶显示器件、包括其的电子器具、以及其制作方法 Expired - Fee Related CN100454119C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP133631/2003 2003-05-12
JP2003133631 2003-05-12
JP133631/03 2003-05-12

Publications (2)

Publication Number Publication Date
CN1550860A CN1550860A (zh) 2004-12-01
CN100454119C true CN100454119C (zh) 2009-01-21

Family

ID=33549124

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100445919A Expired - Fee Related CN100454119C (zh) 2003-05-12 2004-05-12 液晶显示器件、包括其的电子器具、以及其制作方法

Country Status (3)

Country Link
US (3) US7123332B2 (zh)
JP (1) JP5211145B2 (zh)
CN (1) CN100454119C (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005215584A (ja) * 2004-02-02 2005-08-11 Ricoh Co Ltd 画像表示装置、交流化駆動方法
KR100592503B1 (ko) * 2004-02-10 2006-06-23 진 장 유기 반도체의 선택적 증착을 통한 박막트랜지스터 어레이제조 방법
KR100544144B1 (ko) * 2004-05-22 2006-01-23 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 구비한 평판표시장치
JP2006116767A (ja) * 2004-10-20 2006-05-11 Seiko Epson Corp 液滴吐出ヘッド、液滴吐出装置
CN101141848A (zh) * 2006-09-05 2008-03-12 三井金属矿业株式会社 印刷电路板
KR101448903B1 (ko) 2007-10-23 2014-10-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치 및 그의 제작방법
KR102150275B1 (ko) 2008-09-19 2020-09-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치
US8780061B2 (en) * 2010-02-11 2014-07-15 Lg Display Co., Ltd. Electrostatic capacity type touch screen panel and method of manufacturing the same
US8970508B2 (en) * 2010-02-11 2015-03-03 Lg Display Co., Ltd. Touch screen panel
US10651252B2 (en) 2014-03-26 2020-05-12 International Business Machines Corporation Vertically integrated active matrix backplane
US9436787B2 (en) * 2014-04-14 2016-09-06 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating an integrated circuit with optimized pattern density uniformity
JP2016194581A (ja) * 2015-03-31 2016-11-17 デクセリアルズ株式会社 異方性導電接続体、及びこれを用いた表示装置
CN209417489U (zh) * 2018-11-12 2019-09-20 惠科股份有限公司 一种显示面板及其加工设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834327A (en) * 1995-03-18 1998-11-10 Semiconductor Energy Laboratory Co., Ltd. Method for producing display device
JPH11160734A (ja) * 1997-11-28 1999-06-18 Semiconductor Energy Lab Co Ltd 液晶電気光学装置
US5953597A (en) * 1995-02-21 1999-09-14 Semicondutor Energy Laboratory Co., Ltd. Method for producing insulated gate thin film semiconductor device
CN1242855A (zh) * 1997-08-21 2000-01-26 精工爱普生株式会社 有源矩阵型显示装置
CN1305119A (zh) * 1999-10-21 2001-07-25 夏普公司 液晶显示装置
JP2001330860A (ja) * 2000-02-28 2001-11-30 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
US20030035219A1 (en) * 2001-08-17 2003-02-20 Semiconductor Energy Labporatory Co., Ltd. Laser, irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
CN1412856A (zh) * 2001-10-09 2003-04-23 株式会社半导体能源研究所 开关元件、显示装置、发光装置及半导体装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864824A (ja) * 1994-08-24 1996-03-08 Toshiba Corp 薄膜トランジスタおよびその製造方法
JPH09146108A (ja) * 1995-11-17 1997-06-06 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその駆動方法
JP4179483B2 (ja) * 1996-02-13 2008-11-12 株式会社半導体エネルギー研究所 表示装置の作製方法
JP4397439B2 (ja) 1997-09-30 2010-01-13 株式会社半導体エネルギー研究所 半導体装置
US6013930A (en) * 1997-09-24 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having laminated source and drain regions and method for producing the same
JP2001044133A (ja) 1999-08-02 2001-02-16 Sharp Corp レーザ照射方法及び半導体装置の製造方法
WO2001018864A1 (fr) * 1999-09-03 2001-03-15 Seiko Epson Corporation Dispositif a semi-conducteurs, son procede de fabrication, carte de circuit et dispositif electronique
JP2001201759A (ja) 2000-01-20 2001-07-27 Sanyo Electric Co Ltd 液晶表示装置
US6882012B2 (en) * 2000-02-28 2005-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method of manufacturing the same
JP4700160B2 (ja) 2000-03-13 2011-06-15 株式会社半導体エネルギー研究所 半導体装置
JP4531923B2 (ja) 2000-04-25 2010-08-25 株式会社半導体エネルギー研究所 半導体装置
US6956324B2 (en) * 2000-08-04 2005-10-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US7253032B2 (en) * 2001-04-20 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Method of flattening a crystallized semiconductor film surface by using a plate
JP4439789B2 (ja) 2001-04-20 2010-03-24 株式会社半導体エネルギー研究所 レーザ照射装置、並びに半導体装置の作製方法
JP4841751B2 (ja) 2001-06-01 2011-12-21 株式会社半導体エネルギー研究所 有機半導体装置及びその作製方法
US7589032B2 (en) 2001-09-10 2009-09-15 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, semiconductor manufacturing method, semiconductor device, and electronic equipment
TWI285515B (en) * 2002-02-22 2007-08-11 Semiconductor Energy Lab Light-emitting device and method of manufacturing the same, and method of operating manufacturing apparatus
US6847050B2 (en) 2002-03-15 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and semiconductor device comprising the same
US6838022B2 (en) * 2002-07-25 2005-01-04 Nexaura Systems, Llc Anisotropic conductive compound
JP2004145129A (ja) * 2002-10-25 2004-05-20 Advanced Display Inc 表示装置およびその製造方法ならびに表示装置の製造装置
JP4059750B2 (ja) * 2002-10-28 2008-03-12 シャープ株式会社 電子モジュールおよびその製造方法
TWI336921B (en) * 2003-07-18 2011-02-01 Semiconductor Energy Lab Method for manufacturing semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953597A (en) * 1995-02-21 1999-09-14 Semicondutor Energy Laboratory Co., Ltd. Method for producing insulated gate thin film semiconductor device
US5834327A (en) * 1995-03-18 1998-11-10 Semiconductor Energy Laboratory Co., Ltd. Method for producing display device
CN1242855A (zh) * 1997-08-21 2000-01-26 精工爱普生株式会社 有源矩阵型显示装置
JPH11160734A (ja) * 1997-11-28 1999-06-18 Semiconductor Energy Lab Co Ltd 液晶電気光学装置
CN1305119A (zh) * 1999-10-21 2001-07-25 夏普公司 液晶显示装置
JP2001330860A (ja) * 2000-02-28 2001-11-30 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
US20030035219A1 (en) * 2001-08-17 2003-02-20 Semiconductor Energy Labporatory Co., Ltd. Laser, irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
CN1412856A (zh) * 2001-10-09 2003-04-23 株式会社半导体能源研究所 开关元件、显示装置、发光装置及半导体装置

Also Published As

Publication number Publication date
US8305509B2 (en) 2012-11-06
JP2011123495A (ja) 2011-06-23
US20070052907A1 (en) 2007-03-08
US7843521B2 (en) 2010-11-30
CN1550860A (zh) 2004-12-01
JP5211145B2 (ja) 2013-06-12
US20110031495A1 (en) 2011-02-10
US20050001968A1 (en) 2005-01-06
US7123332B2 (en) 2006-10-17

Similar Documents

Publication Publication Date Title
JP5211145B2 (ja) 液晶表示装置の作製方法
US20200294848A1 (en) Semiconductor device and method of manufacturing the same
US11269214B2 (en) Display device and manufacturing method thereof
US6882012B2 (en) Semiconductor device and a method of manufacturing the same
TW495854B (en) Semiconductor device and manufacturing method thereof
US6657260B2 (en) Thin film transistors having source wiring and terminal portion made of the same material as the gate electrodes
US20070218674A1 (en) Methods for Forming Wiring and Manufacturing Thin Film Transistor and Droplet Discharging Method
JP2002033464A (ja) 半導体装置の作製方法
US7329440B2 (en) Liquid crystal composition and liquid crystal electro-optical device
JP2004361937A (ja) 液晶表示装置及びその作製方法
JP5264132B2 (ja) 半導体装置の作製方法
JP2004327809A (ja) 半導体装置及びその作製方法
JP5094006B2 (ja) 液晶組成物及び液晶電気光学装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090121

Termination date: 20180512