CN100450647C - 辉光放电产生的化学气相沉积 - Google Patents

辉光放电产生的化学气相沉积 Download PDF

Info

Publication number
CN100450647C
CN100450647C CNB2004800250618A CN200480025061A CN100450647C CN 100450647 C CN100450647 C CN 100450647C CN B2004800250618 A CNB2004800250618 A CN B2004800250618A CN 200480025061 A CN200480025061 A CN 200480025061A CN 100450647 C CN100450647 C CN 100450647C
Authority
CN
China
Prior art keywords
electrode
gas
glow discharge
original silica
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800250618A
Other languages
English (en)
Other versions
CN1845797A (zh
Inventor
A·M·加贝尔尼克
C·兰伯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Publication of CN1845797A publication Critical patent/CN1845797A/zh
Application granted granted Critical
Publication of CN100450647C publication Critical patent/CN100450647C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/4697Generating plasma using glow discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种使用辉光放电在基材上产生等离子聚合沉积的方法。在电极和对电极之间产生辉光放电。使平衡气体和四烷基原硅酸酯的混合物通过辉光放电流到基材上以便在基材上沉积作为光学透明涂层的涂层或产生表面改性。优选在大气压或近似大气压下进行的该方法可用于产生光学透明的无粉或几乎无粉的涂层。

Description

辉光放电产生的化学气相沉积
优先权
本申请要求2003年9月9日提交的美国临时申请60/501,477的优先权。
技术领域
本发明涉及使用辉光放电产生的化学气相沉积进行基材涂布或改性。
背景技术
聚烯烃之类的广泛供应且廉价的聚合物的应用通常受到这些聚合物不合意的低表面能的限制。因此,在需要表面润湿性和/或粘合性的情况下,通常使用更贵的具有更高表面能的材料。近年来,已经开发出一种替代方法,也就是使用电晕或等离子放电(此处称作“辉光放电”)进行的低表面能聚合物的表面改性。
例如,美国专利5,576,076(Slootman等)描述了,可以在大气压下在硅烷(例如SiH4)、载气和氧或能够产生氧的气体存在的情况下对基材进行辉光放电,由此通过在移动基材上产生二氧化硅沉积物来改进聚烯烃膜的性能。尽管Slootman等描述的方法确实使聚合物表面的可湿性更高,但其仍然受到至少两个缺点的困扰。首先,优选的工作气体(SiH4)是在空气中会自燃的极其危险的材料,其次,二氧化硅的沉淀容易变成粉末形式,它的产生限制了可能的应用范围,并可能堵塞设备。
已经使用辉光放电等离子体增强的化学气相沉积(PECVD)在基材上产生涂层以提高它们的耐化学性、耐磨性、抗磨蚀性、抗刮性和透气性。例如,在美国专利6,106,659中,Spence等描述了气缸套电极组装件,其以RF谐振激励模式或脉冲电压激励模式产生等离子体放电。该装置以低真空模式运作,其中工作气体压力为大约10至大约760托。以低真空压力运作据说优于以绝对大气压运作,因为与绝对大气压运作相比所需的供应气体流量明显降低,这样可以节约使用较昂贵的特种气体。此外,生成的涂层与使用在低压或高压下工作的传统辉光放电系统形成的涂层相比,具有更好的性质。
Spence等人所描述的方法受到低真空要求的困扰,这在商业上不如绝对大气压法。由此,能够在大气压下产生连续(也就是不形成粉末,即涂膜)涂层在PECVD领域是一个优点。
发明内容
本发明通过提供一种在基材的暴露面上沉积涂膜的方法来解决本领域的缺点,该方法的特征在于下列步骤:(a)在电极和对电极之间的区域产生辉光放电;和(b)使含有平衡气体、四烷基原硅酸酯和任选的用于四烷基原硅酸酯的载气的混合物以大约0.05米/秒至大约5米/秒的流速流过辉光放电区域并流到所述基材的至少一个表面上或该表面附近,该混合物中四烷基原硅酸酯的浓度为超过2000ppm至大约10000ppm以便在基材上形成涂膜。
附图说明
图1是使用中空多孔电极和鼓形对电极的本发明的方法中使用的优选装置示意图。
图2是图1的装置的电极和对电极的侧视图。
图3是图1的中空电极的更详细的示意图。
图4是含有孔作为出口的中空电极结构的示意图。
图5是使用中空多孔电极和平面对电极的本发明的方法中使用的另一优选装置示意图。
图6是图5的装置的电极和对电极的侧视图。
具体实施方式
在本发明的方法中,向电极施加足够的功率密度和频率以便在电极和对电极(其优选为移动对电极)之间的间距处产生和保持辉光放电。功率密度优选为至少1W/cm2(每平方厘米与对电极相邻的电极),更优选至少5W/cm2,最优选至少10W/cm2;且优选不超过200W/cm2,更优选不超过100W/cm2,最优选不超过50W/cm2。频率优选至少2kHz,更优选至少5kHz,最优选至少10kHz;且优选不超过100kHz,更优选不超过60kHz,最优选不超过40kHz。
电极与对电极之间的间距足以实现和保持辉光放电,优选至少0.1mm,更优选至少1mm,且优选不超过50mm,更优选不超过20mm,最优选不超过10mm。对电极可以是优选配有介电套筒的转鼓,并且待涂布基材优选沿着转鼓输送。或者,对电极可以是优选配有介电罩(cover)的平面电极,并且待涂布基材优选由平面对电极输送。对于本发明,术语电极和对电极方便地用于指第一电极和第二电极,对其中任一个供电,并对另一个供电或接地。电极可以有一些穿孔,这些穿孔穿过电极或进入电极并且可以是,例如但不限于,槽或孔形。
包含平衡气体和四烷基原硅酸酯(更优选四乙基原硅酸酯)以及任选包含用于四烷基原硅酸酯的载气的气体混合物(统称为,总气体混合物)流入辉光放电区域并流到待涂布基材上。
此处所用的“载气”是指优选为非反应性气体的气体,其提供了一种方便的将平衡气体与四烷基原硅酸酯合并的手段。优选的载气包括氮气、氦气和氩气。
此处所用的术语“平衡气体”是携带工作气体通过电极穿孔并最终到达基材的反应性或非反应性气体。合适的平衡气体的例子包括空气、氧气、CO2、O3、NO、氮气、氦气和氩气,以及它们的混合物。总气体混合物的流量足够高以驱使等离子聚合的四烷基原硅酸酯沉积到基材上形成膜状涂层,而非表面粗糙的不连续涂层或粉末。优选地,总气体混合物的流量使得通过穿孔的气体速度为至少大约0.05米/秒,更优选至少大约0.1米/秒,最优选至少大约0.2米/秒;且优选不超过大约10米/秒,更优选不超过大约5米/秒,最优选不超过大约2米/秒。通过多孔电极的穿孔的气体流速的测定如下:将气体流量(单位是立方米/秒)除以穿孔的总面积(单位是平方米)。通过电极和对电极之间间隙的气体流速的测定如下:将气体流量(单位是立方米/秒)除以间隙的总面积(单位是平方米)。
此处所述的“电极”是指单个导电多孔元件或多个分隔开(以产生一个或多个间隙)的导电元件。应该理解的是,本发明的气体可以流入电极和对电极之间的间隙或电极对之间的间隙并流到基材上。
除了流量控制的重要性,对平衡气体与四烷基原硅酸酷的相对流量(其决定了总气体混合物中四烷基原硅酸酯的浓度)的控制也有益于在基材上形成的涂层的质量。进入辉光放电区域的总气体混合物中四烷基原硅酸酯的浓度足以以最小气相成核产生沉积物,优选光学透明的涂膜。气相成核导致涂层中形成颗粒和粉末,这造成其物理性质降低以及设备结垢,从而导致昂贵的停工期。总气体混合物中四烷基原硅酸酯的浓度当然取决于形成总气体混合物的各个流的相对流量。
意外地,已经发现,可以以相对较低的流速使用异常高浓度的四烷基原硅酸酯而不会明显形成粉末。四烷基原硅酸酯的浓度为至少大约2000ppm,优选至少大约2200ppm,更优选至少大约3500ppm;且不超过大约10000ppm,优选不超过大约8000ppm,更优选不超过7000ppm。尽管可以通过在辉光放电区域(也就是形成辉光放电的区域)施加真空或部分真空来进行本发明的方法,该方法优选的进行方式是不对辉光放电区域施加任何明显的真空或部分真空,也就是,该方法优选在大气压下进行。
通过本发明的方法进行的在辉光放电区域的等离子聚合通常产生光学透明的涂布基材或表面改性的基材。术语“光学透明”此处用于描述具有至少70%,更优选至少90%,最优选至少98%的光学透明度和不超过10%,更优选不超过2%,最优选不超过1%的浊度值的涂膜。光学透明度是透射-不散射光对透射-不散射和透射-散射光(<2.5°)总和的比率。浊度是透射-散射光(>2.5°)对总透射光的比率。(参看,例如,ASTM D 1003-97)。涂膜可以是,例如,表面改性涂层,例如助粘剂或防雾涂层;光学涂层,例如反射涂层或抗反射涂层;透射增强涂层;耐磨涂层;或用于包装的气体屏蔽涂层。
对本发明中使用的基材没有限制。基材的例子包括玻璃、金属、陶瓷、纸、织物和塑料,包括无纺塑料,例如聚烯烃(包括聚乙烯和聚丙烯)、聚苯乙烯、聚碳酸酯、聚酯(包括聚对苯二甲酸乙二醇酯、polyactic acid和聚对苯二甲酸丁二醇酯)、和热塑性高吸水性高分子(包括美国专利公开20020039869中描述的那些)。
图1提供了用于进行本发明的优选方法的优选装置示意图。现在参看图1,从四烷基原硅酸酯的封闭(contained)挥发性液体(10a)的顶空产生四烷基原硅酸酯(10)并被载气(12)带离顶空并与平衡气体(14)合并进入中空电极(16)。载气(12)与平衡气体(14)驱使四烷基原硅酸酯(10)通过电极(16),更具体地说,通过电极(16)的至少一个入口(18),并通过穿孔(20),这些穿孔通常是狭缝或孔形式或多个导电元件之间的间隙。向电极(16)供电以便在电极(16)和对电极(24)之间产生辉光放电(22),对电极是优选配有介电套筒(26)的圆柱形辊。基材(28)沿着介电套筒(26)连续通过并被等离子聚合的四烷基原硅酸酯(其优选是聚合硅氧烷)涂布。
图2是电极(16)、对电极(24)和辉光放电区域(22)的侧视图。当基材是导电性的时,可以在电极(16)上放置介电层(26)。
图3是电极穿孔(20)的优选具体实施方式示意图,这些穿孔是平行或基本平行的,基本均匀间隔的狭缝形式,它们大致沿着电极长度方向延伸。狭缝宽度优选不低于0.1mm,更优选不低于0.2mm,最优选不低于0.5mm;且优选不超过10mm,更优选不超过5mm,最优选不超过2mm。
图4是电极穿孔(20)的另一优选几何构造和间距的示意图,这些穿孔是大致圆形的小孔。如果使用该几何构造来实施本发明的方法,出口直径优选不低于0.05mm,更优选不低于0.1mm,最优选不低于0.2mm;且优选不超过10mm,更优选不超过5mm,最优选不超过1mm。
图5提供了用于进行本发明的优选方法的另一优选装置示意图。现在参看图5,从四烷基原硅酸酯的封闭(contained)挥发性液体(10ab)的顶空产生四烷基原硅酸酯(10b)并被载气(12b)带离顶空并与平衡气体(14b)合并进入中空电极(16b)。载气(12b)与平衡气体(14b)驱使四烷基原硅酸酯(10b)通过电极(16b),更具体地说,通过电极(16b)的至少一个入口(18b),并通过穿孔(20b),这些穿孔通常是狭缝或孔形式或多个导电元件之间的间隙。向电极(16b)供电以便在电极(16b)和对电极(24b)之间产生辉光放电(22b),对电极是优选配有介电罩(26b)的平面形状。基材(28b)沿着介电罩(26b)连续通过并被等离子聚合的四烷基原硅酸酯(其优选是聚合硅氧烷)涂布。
图6是电极(16b)、对电极(24b)和辉光放电区域(22b)的侧视图。当基材是导电性的时,可以在电极(16b)上放置介电罩(26b)。
已经意外地发现,使用本发明的方法,可以在基材上迅速连续沉积无粉或者基本无粉的基本整体的光学透明连续SiOx涂膜。确实,通过明显提高四烷基原硅酸酯的浓度和明显降低总气体混合物通过电极穿孔的流速,已经将沉积速率提高了10倍。此外,可以调整工艺参数以形成具有表面改性的基材以产生例如助粘性和防雾性。
下列实施例用于举例说明而不是为了以任何方式限制本发明。
实施例1
使用基本如图1所示的装置制备涂层。对电极和电源(固定在30kHz)获自Corotec Industries,Farmington,CT。设计12″长×6″宽×6″高的电极,使其在陶瓷覆盖的铝电极之间的间隙处有一个入口和七个出口孔。
基材是厚度为7密耳(0.18mm)的聚碳酸酯膜。将四乙基原硅酸酯(TEOS)加热至110℃并以17%v/v的浓度携带在氮气中并与平衡气体(空气)混合。TEOS的调整后的流量为510sccm且平衡气体的流量为5scfm(142000sccm),且TEOS在总气体混合物中的浓度计算值为3530ppm。流向基材的总气体速度计算值为0.25米/秒。在1秒的沉积时间之后,所得涂层具有SiOx的化学组成。所得涂布膜与未涂布的膜相比,表现出高得多的润湿性。涂层在基材上的沉积速率为1.8微米/分钟。
实施例2
使用2100ppm的TEOS浓度重复实施例1的方法。涂层在基材上的沉积速率为1微米/分钟。
实施例3
使用基本如实施例1所示的装置制备涂层。基材是18gsm聚丙烯无纺板。将TEOS加热至110℃并以17%v/v的浓度携带在氮气中并与平衡气体(空气)混合。TEOS的调整后的流量为850sccm且平衡气体的流量为5scfm(142000sccm),且TEOS在总气体混合物中的浓度计算值为5780ppm。聚丙烯无纺板以3至80米/分钟的速度通过该系统。未涂布基材的表面能实测值为35达因/厘米,涂布基材的表面能实测值为72达因/厘米。
实施例4
使用基本如实施例1所示的装置制备涂层。基材是7密耳厚的取向聚苯乙烯薄膜。将TEOS加热至110℃并以17%v/v的浓度携带在氮气中并与平衡气体(空气)混合。TEOS的调整后的流量为425sccm且平衡气体的流量为5scfm(142000sccm),且TEOS在总气体混合物中的浓度计算值为2941ppm。将取向聚苯乙烯薄膜涂布10秒。所得涂布膜与未涂布薄膜相比,表现出高得多的防雾性。所得涂布膜具有高于50达因/厘米的表面能。
实施例5
使用基本如实施例1所示的装置制备涂层。基材是厚度为4密耳(0.10mm)热塑性高吸水性高分子(TSAP)复合薄膜(Dow ChemicalCompany制造)。TSAP是热塑性聚合物与高吸水性高分子的热熔混合掺合物。具体而言,热塑性聚合物是乙烯和丙烯酸共聚物,含有9wt%至20wt%的酸,高吸水性高分子是部分中和的交联聚丙烯酸酯聚合物。其它热塑性聚合物和高吸水性高分子可以如WO 02/07791 A2和US20020039869所述使用。将混合掺合物压丸,然后使用标准吹塑和平挤薄膜挤塑法将这些丸粒制造成单层或复合薄膜。
将四乙基原硅酸酯(TEOS)加热至110℃并以17%v/v的浓度携带在氮气中并与平衡气体(空气)混合。TEOS的调整后的流量为510sccm且平衡气体的流量为5scfm(142000sccm),且TEOS在总气体混合物中的浓度计算值为3530ppm。在1秒的沉积时间之后,所得涂层具有SiOx的化学组成。所得TSAP涂布膜与未涂布的TSAP膜相比,表现出高得多的润湿性。
实施例6
使用基本如实施例1所示的装置制备涂层。基材是如下制备的聚合物泡沫:将乙烯/1-辛烯共聚物的水分散体在常规混合罐中与发泡表面活性剂和羟烷基纤维素醚的水溶液掺合。在制备初始掺合物后,使用配有搅打器的Hobart型立式混合器(KitchenAid Professional混合器型号KSM50PWH)通过机械发泡带入空气。用大约3至10分钟使混合器速度从低速提到高速直至形成粘稠(stiff)泡沫。将装满泡沫的3盎司(89毫升)纸杯称重并在达到大约80至90克/升的所需密度时停止搅打,由此测量泡沫密度。将泡沫铺在由硬纸支承的脱膜纸上并弄平至0.05英寸的高度。将泡沫置于Blue M强制通风炉中,在大约75℃的干燥温度下干燥大约10分钟。回收干燥的泡沫板(0.04英寸厚)并产生在外表面具有大约30至200微米的小孔度而在内部主表面具有大约250至800微米的较大孔度的耐久性泡沫体。
将四乙基原硅酸酯(TEOS)加热至110℃并以17%v/v的浓度携带在氮气中并与平衡气体(空气)混合。TEOS的调整后的流量为510sccm且平衡气体的流量为5scfm(142000sccm),且TEOS在总气体混合物中的浓度计算值为3530ppm。在5秒的沉积时间之后,所得涂层具有SiOx的化学组成。所得涂布泡沫体与未涂布的聚合物泡沫体相比,表现出改进的垂直芯吸和改进的芯吸均匀性。

Claims (10)

1.在基材的暴露面上沉积涂膜的方法,其特征在于下列步骤:(a)在电极和对电极之间的区域产生辉光放电;和(b)使含有平衡气体、四烷基原硅酸酯和任选的用于四烷基原硅酸酯的载气的混合物以0.05米/秒至5米/秒的流速流过辉光放电区域并流到所述基材的至少一个表面上或该表面附近,该混合物中四烷基原硅酸酯的浓度为3500ppm至10000ppm,并且其中辉光放电区域的压力保持在大气压。
2.如权利要求1所述的方法,其中电极是其中含有穿孔的多孔电极,且平衡气体与四烷基原硅酸酯以及任选的用于四烷基原硅酸酯的载气的混合物流过这些穿孔。
3.如权利要求2所述的方法,其中该方法是连续的,且对电极支承着移动基材。
4.如权利要求3所述的方法,其中对电极被介电套筒包裹。
5.如权利要求2所述的方法,其中四烷基原硅酸酯是四乙基原硅酸酯。
6.如权利要求2所述的方法,其中平衡气体是空气、氧气、氮气、氦气、氩气或它们的混合物。
7.如权利要求1所述的方法,其中平衡气体、四乙基原硅酸酯和载气通过穿孔的流速为0.1米/秒至2米/秒。
8.如权利要求1所述的方法,其中涂层具有至少98%的光学透明度和不超过2%的浊度值。
9.如权利要求1所述的方法,其中涂膜是透明涂膜。
10.如权利要求1所述的方法,其中涂膜具有超过50达因/厘米的表面能。
CNB2004800250618A 2003-09-09 2004-09-07 辉光放电产生的化学气相沉积 Expired - Fee Related CN100450647C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50147703P 2003-09-09 2003-09-09
US60/501,477 2003-09-09

Publications (2)

Publication Number Publication Date
CN1845797A CN1845797A (zh) 2006-10-11
CN100450647C true CN100450647C (zh) 2009-01-14

Family

ID=34619293

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800250618A Expired - Fee Related CN100450647C (zh) 2003-09-09 2004-09-07 辉光放电产生的化学气相沉积

Country Status (9)

Country Link
US (1) US20060222779A1 (zh)
EP (1) EP1663518A2 (zh)
JP (1) JP2007505219A (zh)
KR (1) KR20060082858A (zh)
CN (1) CN100450647C (zh)
BR (1) BRPI0413769A (zh)
CA (1) CA2537075A1 (zh)
MX (1) MXPA06002679A (zh)
WO (1) WO2005049228A2 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518109A (ja) * 2004-10-29 2008-05-29 ダウ グローバル テクノロジーズ インコーポレイティド プラズマ増強化学蒸着法による耐摩耗性被膜
US8323753B2 (en) 2006-05-30 2012-12-04 Fujifilm Manufacturing Europe B.V. Method for deposition using pulsed atmospheric pressure glow discharge
WO2008100139A1 (en) 2007-02-13 2008-08-21 Fujifilm Manufacturing Europe B.V. Substrate plasma treatment using magnetic mask device
JP5543915B2 (ja) * 2007-05-21 2014-07-09 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド ポリウレタンポリマー
US20100323127A1 (en) * 2007-07-30 2010-12-23 Christina Ann Rhoton Atmospheric pressure plasma enhanced chemical vapor deposition process
US20100255216A1 (en) * 2007-11-29 2010-10-07 Haley Jr Robert P Process and apparatus for atmospheric pressure plasma enhanced chemical vapor deposition coating of a substrate
WO2009096785A1 (en) 2008-02-01 2009-08-06 Fujifilm Manufacturing Europe B.V. Method and apparatus for plasma surface treatment of a moving substrate
WO2009099325A1 (en) 2008-02-08 2009-08-13 Fujifilm Manufacturing Europe B.V. Method for manufacturing a multi_layer stack structure with improved wvtr barrier property
US20110014424A1 (en) 2008-02-21 2011-01-20 Fujifilm Manufacturing Europe B.V. Plasma treatment apparatus and method for treatment of a substrate with atmospheric pressure glow discharge electrode configuration
US8609203B2 (en) * 2008-06-06 2013-12-17 Fujifilm Manufacturing Europe B.V. Method and apparatus for plasma surface treatment of moving substrate
DE102009006484A1 (de) * 2009-01-28 2010-07-29 Ahlbrandt System Gmbh Vorrichtung zum Modifizieren der Oberflächen von Bahn-, Platten- und Bogenware mit einer Einrichtung zur Erzeugung eines Plasmas
EP2396451B1 (en) 2009-02-12 2012-11-07 Fujifilm Manufacturing Europe BV Two layer barrier on polymeric substrate
CN111085411B (zh) * 2020-01-07 2022-05-13 大连交通大学 一种高绝缘电阻二氧化硅薄膜材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0617142A1 (en) * 1993-03-26 1994-09-28 Shin-Etsu Chemical Co., Ltd. Preparation of silica thin films
WO2000070117A1 (en) * 1999-05-14 2000-11-23 The Regents Of The University Of California Low-temperature compatible wide-pressure-range plasma flow device
CN1320062A (zh) * 1998-07-24 2001-10-31 英国国防部 表面涂层
WO2003066932A1 (en) * 2002-02-05 2003-08-14 Dow Global Technologies Inc. Corona-generated chemical vapor deposition on a substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2990608B2 (ja) * 1989-12-13 1999-12-13 株式会社ブリヂストン 表面処理方法
US5344462A (en) * 1992-04-06 1994-09-06 Plasma Plus Gas plasma treatment for modification of surface wetting properties
FR2704558B1 (fr) * 1993-04-29 1995-06-23 Air Liquide Procede et dispositif pour creer un depot d'oxyde de silicium sur un substrat solide en defilement.
US5372876A (en) * 1993-06-02 1994-12-13 Appleton Mills Papermaking felt with hydrophobic layer
US6106659A (en) * 1997-07-14 2000-08-22 The University Of Tennessee Research Corporation Treater systems and methods for generating moderate-to-high-pressure plasma discharges for treating materials and related treated materials
US6118218A (en) * 1999-02-01 2000-09-12 Sigma Technologies International, Inc. Steady-state glow-discharge plasma at atmospheric pressure
US20020039869A1 (en) * 2000-07-24 2002-04-04 Felix Achille Thermoplastic superabsorbent polymer blend compositions and their preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0617142A1 (en) * 1993-03-26 1994-09-28 Shin-Etsu Chemical Co., Ltd. Preparation of silica thin films
CN1320062A (zh) * 1998-07-24 2001-10-31 英国国防部 表面涂层
WO2000070117A1 (en) * 1999-05-14 2000-11-23 The Regents Of The University Of California Low-temperature compatible wide-pressure-range plasma flow device
WO2003066932A1 (en) * 2002-02-05 2003-08-14 Dow Global Technologies Inc. Corona-generated chemical vapor deposition on a substrate

Also Published As

Publication number Publication date
JP2007505219A (ja) 2007-03-08
CN1845797A (zh) 2006-10-11
US20060222779A1 (en) 2006-10-05
WO2005049228A3 (en) 2005-08-18
BRPI0413769A (pt) 2006-10-31
KR20060082858A (ko) 2006-07-19
CA2537075A1 (en) 2005-06-02
EP1663518A2 (en) 2006-06-07
MXPA06002679A (es) 2006-06-05
WO2005049228A2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
CN100450647C (zh) 辉光放电产生的化学气相沉积
CN100432289C (zh) 在基底上进行电晕致化学气相沉积
US11845216B2 (en) 3D printed electronics using directional plasma jet
JP4433680B2 (ja) 薄膜形成方法
DK2425685T3 (en) In-situ-plasma/laser-hybridsystem
Belmonte et al. Nonequilibrium atmospheric plasma deposition
KR100937789B1 (ko) 층형성 방법, 및 이 방법에 의해 형성되는 층을 갖는 기재
KR20120122375A (ko) 소수성이 개선된 기공체 및 그 제조 방법
US6902808B2 (en) Diamond coated article bonded to a body
WO2006049865A1 (en) Improved deposition rate plasma enhanced chemical vapor process
JP2005523142A (ja) 保護コーティング組成物
JP2002500703A (ja) 基板上のフィルムまたはコーティング堆積
CN101218040A (zh) 采用激光器对浆料涂层进行选择性区域熔合
Saito et al. Microstructured SiOx thin films deposited from hexamethyldisilazane and hexamethyldisiloxane using atmospheric pressure thermal microplasma jet
WO2007043569A1 (ja) 透明導電性膜およびその製造方法
US20090291224A1 (en) Porous Ceramic Thin Film
WO2021111947A1 (ja) 粉粒体の塗布または成膜方法
JP2005307321A (ja) 薄膜形成装置及び薄膜形成方法
TWI585226B (zh) 真空蒸鍍用蒸發源,真空蒸鍍裝置及方法
JP4345284B2 (ja) 薄膜製膜装置
JP2004035990A (ja) 薄膜製膜装置
JP4244575B2 (ja) 薄膜製膜装置
CN110114322A (zh) 自支承式无机片材、制品及制造所述制品的方法
JP2004035975A (ja) 薄膜製膜装置
Traldi Design, Characterization and Optimization of Plasma Assisted Processes for the Treatment and Synthesis of High Value-Added Materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090114

Termination date: 20090907