CN100385702C - 用于可编程器件的粘接材料 - Google Patents

用于可编程器件的粘接材料 Download PDF

Info

Publication number
CN100385702C
CN100385702C CNB028281942A CN02828194A CN100385702C CN 100385702 C CN100385702 C CN 100385702C CN B028281942 A CNB028281942 A CN B028281942A CN 02828194 A CN02828194 A CN 02828194A CN 100385702 C CN100385702 C CN 100385702C
Authority
CN
China
Prior art keywords
bonding agent
dielectric
contact
programmable material
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028281942A
Other languages
English (en)
Other versions
CN1620732A (zh
Inventor
泰勒·A·劳里
肖恩·J·李
何惠民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN1620732A publication Critical patent/CN1620732A/zh
Application granted granted Critical
Publication of CN100385702C publication Critical patent/CN100385702C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/066Shaping switching materials by filling of openings, e.g. damascene method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/068Shaping switching materials by processes specially adapted for achieving sub-lithographic dimensions, e.g. using spacers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/828Current flow limiting means within the switching material region, e.g. constrictions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Switching materials based on at least one element of group IIIA, IVA or VA, e.g. elemental or compound semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)

Abstract

一方面,本发明提供了一种设置并重新编程可编程器件的状态的装置。一方面,本发明提供了一种方法,使得在电介质(210)和电极(230A)上形成例如Ti或多晶硅的粘接剂(215),所述粘接剂被图案化以暴露出电极,并在粘接剂上和电极上形成可编程材料(404)。另一方面,本发明提供了一种方法,即在电介质(210)上形成粘接剂(214),形成通过电介质的开口(220)以暴露出形成在衬底上的触头(170),并且在粘接剂上和触头的一部分上形成优选地是硫族化物的可编程材料(404)。在可编程材料上形成导体(410),所述触头传导到信号线。

Description

用于可编程器件的粘接材料
技术领域
可编程器件,包括可通过改变相变材料的状态而被编程的相变存储器器件。
背景技术
典型的计算机或与计算机相关的设备包括物理存储器,通常称之为主存储器或随机访问存储器(RAM)。一般地,RAM是计算机程序可用的存储器,只读存储器(ROM)是例如用于存储启动计算机和进行诊断的程序的存储器。典型的存储器应用包括动态随机访问存储器(DRAM)、静态随机访问存储器(SRAM)、可擦除可编程只读存储器(EPROM)和电可擦除可编程只读存储器(EEPROM)。
固态存储器器件通常对存储器应用中的每个存储器位采用微电子电路元件(例如每个位1-4个晶体管)。由于每个存储器位需要一个或多个电子电路元件,因此这些器件可能消耗大量的芯片“占地面积”(″realestate″)来存储一位的信息,这就限制了存储器芯片的密度。这些器件的主要“非易失”存储器元件,例如EEPROM,通常采用具有受限的可重编程性的浮栅场效应晶体管器件,该器件在场效应晶体管的栅极上保持电荷来存储每个存储器位。而且这些类的存储器器件编程相对较慢。
相变存储器器件使用相变材料,即可以在一般的无定形状态和一般的晶体状态之间进行电切换的材料,来用于电子存储器应用。最初由密歇根州Troy的Energy Conversion Device公司开发的一种存储器元件采用了一种相变材料,这种相变材料在一种应用中可以在一般的无定形结构状态和一般的晶体局部有序结构状态之间,或者在完全无定形状态和完全晶体状态之间的整个范围上局部有序的不同可检测状态之间进行电切换。适于这种应用的典型材料包括利用各种硫族元素化合物的材料。这些电子存储器器件通常不使用场效应晶体管器件作为存储器存储元件,但是在电学环境下包括薄膜硫族化物材料的单片电路。结果,需要非常少的芯片占地面积来存储一位的信息,从而提供了内在高密度的存储器芯片。这种状态变化材料也是真正非易失的,因为当其被设置在代表电阻值的晶体、半晶体、无定形、或半无定形状态时,该值被保持直到被重新编程,这是由于这个值代表材料的物态(例如晶态或无定形)。因而,相变存储器材料代表了非易失存储器的显著进步。
固态存储器器件和相变存储器器件共有的一个特性是有限的可重编程循环寿命,所述循环是指从/至无定形态和晶态的循环。而且,随着时间的过去,相变材料可能无法从/至无定形态和晶态地来可靠地重新编程。造成这些不利特性的因素包括由热和膜沉积应力引起的相变材料的分层,以及相变材料与粘接材料的混合。增加相变存储器材料的可编程循环寿命,并避免上述因素是所期望的。
附图说明
当参照附图来阅读下面的详细描述时,本发明的优点将变得明显,附图中:
图1是存储器元件阵列实施例的示意图;
图2示意性地示出了部分半导体衬底的横截面平面侧视图,半导体衬底具有形成于其中的电介质沟槽,限定出根据在衬底上形成存储器元件的一个实施例的存储器单元的z向厚度;
图3通过同样的横截面视图描绘了在引入掺杂剂来形成存储器元件隔离器件之后图2的结构;
图4描绘了在形成沟槽之后图3的结构;
图5描绘了图4结构的示意性俯视图;
图6描绘了在形成触头之后图4的结构;
图7通过同样的横截面视图描绘了在形成掩模材料和介电材料之后图6的结构;
图8通过同样的横截面视图描绘了在电介质上形成粘接剂之后图7的结构;
图9通过同样的横截面视图描绘了在形成穿过粘接剂和电介质的开口以暴露出触头之后图8的结构;
图10通过同样的横截面视图描绘了在开口内和粘接剂上保形地(conformally)形成隔片之后图9的结构;
图11通过同样的横截面视图描绘了刻蚀隔片之后图10的结构;
图12描绘了在形成可编程材料、阻挡和导体之后的图11结构的同样的横截面视图;
图13描绘了图案化可编程材料、阻挡和导体之后的图12结构的同样的横截面视图;
图14描绘了图13结构的另一横截面视图;
图15描绘了在形成介电材料和信号线之后的图14结构的同样的横截面视图;
图16通过同样的横截面视图描绘了在形成穿过电介质的开口以暴露出触头之后图7的结构;
图17通过同样的横截面视图描绘了在触头上形成电极之后图16的结构;
图18通过同样的横截面视图描绘了在开口中形成电介质、并去除了电极的水平部分之后图17的结构;
图19A-图19E通过同样的横截面视图描绘了图18的结构,其示出了粘接剂和可编程材料的形成和图案化;
图20通过同样的横截面视图描绘了在可编程材料上形成并图案化阻挡、以及在阻挡上形成并图案化导体之后图19E的结构;
图21通过同样的横截面视图描绘了在导体上形成电介质、形成通孔以及在电介质上形成信号线之后图20的结构;
图22描绘了一种形成具有类似于图15中所描绘的结构的存储器器件的方法;
图23描绘了另一种形成具有类似于图21中所描绘的结构的存储器器件的方法;以及
图24描绘了一个系统实施例,其包括具有类似于图15和图21中的一个所描述的结构的存储器。
具体实施方式
参照具体构造来描述示例性实施例。本领域普通技术人员将认识到,可进行各种变化和修改,而仍保持在所附权利要求的范围内。此外,为避免混淆本发明,可能并未详细地陈述公知的元件、器件、部件、电路、工艺步骤等。
当前,在一些存储器器件中,相变材料和电极之间并未使用粘接剂,部分原因是由于粘接剂对器件的影响。但是,没有粘接剂,在处理存储器器件时所用的温度会受限,因为温度会影响相变材料以及电极和电介质其中一个之间的粘接(例如分层)。而且,没有粘接剂,薄膜沉积的厚度会受限,因为随后的膜沉积会增加应力,这可能造成相变材料以及电极和电介质其中一个之间的分层。
当前,在其他存储器器件中,在相变材料和电极之间使用粘接剂,这对相变材料的编程有有害的影响。例如,在粘接剂导电性高的情况下,粘接剂可以通过触头与晶体相变材料的短接,而使相变材料(当处在高电阻的无定形状态时)短路。在粘接剂绝缘或导电率较低的情况下,会遇到相反的问题,即粘接剂增加了与晶体编程相变材料相串联的附加电阻。
而且,在当前已知的器件中,粘接剂与相变材料的混合也可能发生,并且温度越高,这种混合的可能性越大。这种混合可能造成相变材料的编程故障。因此,对所用粘接剂的选择是有限的,或者被限定为在给定温度下能防止混合的粘接剂。
本发明描述了利用可编程材料来确定存储器器件的存储器元件状态的器件,其重新编程至无定形态和晶态。相对于以前的器件,所描述的存储器器件和方法提供的器件可靠性和可编程循环寿命都有所改善。而且,在实施例中,利用常规的工艺工具和设施可生产这种装置。
在实施例中,在相变材料和电介质之间使用粘接剂。在实施例中,有关相变材料的分层、对相变材料编程的有害影响、以及粘接剂和相变材料混合的问题都被控制,并使其影响最小。
图1示出了存储器阵列实施例的示意图,所述存储器阵列由在这里所提供的说明的上下文中提出并形成的多个存储器元件组成。在这个示例中,存储器阵列5的电路包括在芯片的一部分上与隔离器件25串接而电互连的存储器元件30的xy网格。在一个实施例中,地址线10(例如各列)和20(例如各行)以常规方式被连接到外部的寻址电路系统。结合有隔离器件的存储器元件的xy网格阵列的一个目的在于,使得各个分立的存储器元件能够在不干扰存储在阵列的邻近或远离的存储器元件中的信息的情况下被读和写。
存储器阵列(例如图1的存储器阵列5)可以形成在衬底的一部分中(包括整个部分)。典型的衬底包括半导体衬底,例如硅衬底。其他衬底也是合适的,包括但不限于含有陶瓷材料、有机材料或玻璃材料作为部分基础结构的衬底。在硅半导体衬底的情况下,存储器阵列5可以在晶片级的衬底区域上制造,并接着通过分割(singulation)将晶片变成分立的管芯或芯片,其中某些或所有管芯或芯片上形成有存储器阵列。附加的寻址电路(例如解码器等)可以如本领域技术人员所已知的那样形成。
图2-14示出了图1的代表性存储器元件15的制造实施例。图2描绘了例如为半导体(例如硅)衬底的衬底100的一部分。在这个实例中,诸如硼的P型掺杂剂被引入110部分。在一个实例中,P型掺杂剂的合适浓度在约5×1019至1×1020个原子每立方厘米(atoms/cm3)的量级,使得衬底100的110部分代表性地为P++。在这个实例中,覆盖在衬底100的110部分上的是P型外延硅部分120。在一个实例中,掺杂剂浓度在约1016至1017atoms/cm3的量级。
图2还描绘了在衬底100的外延部分120中形成的浅沟槽隔离(STI)结构130。正如在接下的讨论中将变得清楚的,一方面,STI结构130起限定存储器单元的z向厚度的作用,在这点处只有存储器单元的z向厚度被限定了。在一个实施例中,存储器单元z向区域135A和135B被图案化为y向尺寸大于z向尺寸的带。另一方面,STI结构130起这样的作用,即将各个存储器元件彼此隔离,以及将各个存储器元件与形成在衬底中及衬底上的相关电路元件(例如晶体管器件)隔离。目前用来图案化STI结构从而限定存储器单元区域135A和135B的z向厚度的现有光刻技术,可以得到小至0.18微米(μm)的特征尺寸(z向厚度)。
图3描绘了在存储器单元区域135A和135B中进行进一步制造操作之后图2的结构。在每个存储器单元区域(带)内,覆盖在衬底100的外延部分120上的是第一导体或信号线材料140。在一个实例中,第一导体或信号线材料140是N型掺杂多晶硅(例如N+硅),它是通过引入浓度在约1018至1019atoms/cm3量级上的例如磷或砷而形成的。在这个实例中,第一导体或信号线材料140作为地址线,即行线(例如图1的行线20)。覆盖在第一导体或信号线材料140上的是隔离器件(例如图1的隔离器件25)。在一个实例中,隔离器件是由N型硅部分150(例如掺杂剂浓度在约1014至1018atoms/cm3量级上)和P型硅部分160(例如掺杂剂浓度在约1019至1020atoms/cm3量级上)形成的PN二极管。虽然示出了PN二极管,但是应该理解到其他隔离结构同样合适。这样的器件包括但不限于金属氧化物半导体(MOS)器件。
图4从xy的视角描绘了在衬底100的外延部分120中形成沟槽190之后图3的结构。在这个实例中,与STI结构130正交地来形成沟槽190。沟槽190限定了存储器单元的x向厚度。根据目前的光刻技术,合适的x向厚度特征尺寸小至0.25μm。图4还描绘了由沟槽190隔开的存储器单元145A和145B,其具有由STI结构130所限定的z向厚度和由沟槽190所限定的x向厚度。在一个实施例中,对x向厚度的限定涉及刻蚀至存储器线栈(memory line stack)的导体或信号线140来限定存储器单元区域135A的存储器单元145A和145B。在刻蚀的情况下,在这个实例中,刻蚀进行穿过存储器线栈而到达导体或信号线140的一部分。计时刻蚀可用来使刻蚀在该处停止。图案化之后,在每个沟槽190的底部引入N型掺杂剂,而在存储器单元145A和145B之间形成掺杂剂浓度约为1018至1020atoms/cm3量级的小块区域200(例如N+区域)。
在引入小块区域200之后,诸如二氧化硅之类的介电材料被引入沟槽190内以形成STI结构132。然后,可通过例如化学机械抛光来平坦化上表面(如所示的)。图5描绘了具有由STI结构130和132隔开的存储器单元(例如存储器单元145A和145B)的图4结构的xz视图。
图6描绘了在P型硅部分160的一部分中形成难熔金属硅化物材料(在这个实例中例如为二硅化钴(CoSi2)),以限定出触头170之后图4的结构(即xy视图)。一方面,触头170在芯片上制造电路结构的外围电路系统(例如寻址电路系统)中用作低电阻材料。
图7描绘了在引入掩模材料180之后图6的结构。正如后面将变得更清楚的,在某种意义上,掩模材料180作为用于随后的刻蚀操作的刻蚀停止材料。在一个实施例中,用于掩模材料180的合适材料是介电材料,例如氮化硅(Si3N4)。
图7还描绘了引入到结构上厚度达
Figure C0282819400111
Figure C0282819400112
的量级而足以毯覆存储器单元145A和145B的介电材料210。在一个实施例中,介电材料是SiO2。在另一实施例中,介电材料210是因其较低的导热率K而选择的材料,其导热率优选地小于KSiO2,更优选地比KSiO2小3到10倍。一般地,SiO2和Si3N4具有在1.0的量级上的K值。这样,除了SiO2之外,用于介电材料210的合适材料包括K值小于1.0的那些材料。某些K值小于1.0的高温聚合物包括碳化物材料、气凝胶、干凝胶(K值在1.0的量级上)及它们的衍生物。
图8描绘了在电介质210上形成粘接剂214之后图7的结构。虽然各种粘接材料都可用于粘接剂214,但在实施例中,粘接剂214包括多晶硅和钛中至少之一。
图9通过同样的横截面视图描绘了形成穿过粘接剂214、电介质210和掩模材料180的开口220,露出触头170之后图8的结构。在一个实施例中,利用光刻技术和干法刻蚀技术,通过圆孔图案化来形成开口220,所述圆孔刻蚀穿过粘接剂214、电介质210和掩模材料180。根据现有光刻技术,可以图案化直径小至0.18μm的圆形开口。应该认识到,除了圆形开口之外,也可以使用例如长方形开口的其他开口。通过以实施例中的这种方式(即在引入粘接剂214之后)来形成开口220,结果是触头170上没有粘接层,使得不会从随后引入的可编程材料分流电流(见图12)。
图10通过同样的横截面视图描绘了在开口220内、粘接剂214上和电介质210上形成可选的隔片材料402之后图9的结构。在一个实施例中,隔片材料402例如是通过在衬底上化学气相沉积原硅酸四乙酯(TEOS)而保形形成的。如图10所示,隔片材料覆盖了开口220内的触头170。
图11描绘了图案化隔片材料402以在开口220内形成电介质隔片(隔片材料部分402A)之后图10的结构。在一个实施例中,利用选择性的刻蚀剂来各向异性地刻蚀隔片材料402,以使得刻蚀剂在触头170处停止或保留触头170。如图11所示,刻蚀操作暴露出电介质210上表面(如所示的)上的粘接剂214。一方面,隔片材料402用来减少触头170上可编程材料(图12)的量,这一点在下面将变得更清楚。隔片材料部分402A是可选的,因为在另一实施例中,可编程材料可以形成在开口220内,而不必将隔片材料402引入开口220内。
图12描绘了在粘接剂214上、开口220内和触头170上引入可编程材料404之后图11的结构。一方面,可编程材料404往往粘附于粘接剂214,或继续与粘接剂214结合在一起。在一个实施例中,可编程材料404是具有这样的特性的相变材料,即其物态(例如晶态、无定形态)随着施加一定量的能量(例如电能、热能)而变化。已知具有通式的硫族化物材料适于此目的。在实施例中,适合作为可编程材料404的硫族化物材料包括元素周期表中第VI族的至少一种元素。在实施例中,Ge2Sb2Te5用作可编程材料404。其他用作可编程材料404的硫族化物合金包括GaSb、InSb、InSe、Sb2Te3、GeTe、InSbTe、GaSeTe、SnSb2Te4、InSbGe、AgInSbTe、(GeSn)SbTe、GeSb(SeTe)和Te81Ge15Sb2S2。硫族化物材料可通过常规沉积技术引入到衬底上和触头170上。
如图12进一步所示,在可编程材料404引入之后,在可编程材料404上形成阻挡材料408,并在阻挡材料408上形成导体410。一方面,阻挡材料408用来防止可编程材料404和导体410之间发生任何化学反应。在实施例中,利用常规图案化技术来形成可编程材料404、隔片402、阻挡材料408和导体410。在实施例中,阻挡材料408包括钛和氮化钛中的至少一种。可在衬底上均匀地沉积钛和/或氮化钛涂层,这表现出良好的粘接,因为它们防止了剥落、起泡、裂开和脱皮。
在图12所示的结构中,隔片材料部分402A的存在使得可编程材料404和触头170的接触面积最小。一方面,开口220的尺寸暴露出触头170的第一接触区。一方面,由隔片材料402和/或隔片材料部分402A暴露出小于第一接触区的第二接触区。通过使可编程材料404的量最小化,来使例如在触头170上(如区域406所示)经历从/至无定形态和晶态的相变的可编程材料404的量局部化。在隔片材料部分402A之间所示的区域406限定出可编程材料404的受限且局部化的编程区域,从而增加了可编程材料404从/至无定形态和晶态的编程可靠性。一般来说,通过使相变区局部化,在编程和读取过程中需要更少的电流通过可编程材料404,从而导致更小的功耗。
图13从xy视角描绘了形成开口416之后图12的结构。一方面,开口416用来限定可编程材料404、阻挡材料408和导体410的x向厚度。另一方面,开口416用来将各个存储器元件彼此隔开,以及将各个存储器元件与衬底上形成的相关电路元件(例如晶体管器件)相隔开。在一个实施例中,通过同时图案化穿过导体410、阻挡材料408、可编程材料404和粘接剂214的开口来形成开口416。可以利用常规的光刻和刻蚀技术来完成图案化。在这个实例中,刻蚀进行穿过导体410、阻挡材料408、可编程材料404和粘接剂214,到电介质210为止。根据目前的光刻技术,开口416的x向厚度的合适特征尺寸包括小至0.18μm。如图13所示,开口416形成一般与第一导体或信号线140相正交的导体410线。
图14从yz视角描绘了图13结构的另一横截面视图。如一般由线500限定的区域所示的,可邻近器件结构引入散热片,以保持可编程材料404和触头170之间更冷的界面和更稳定的温度。
图15示出了在导体410上形成介电材料412之后图14的结构。例如,介电材料412是SiO2或其他合适的材料,其形成在导体410上来电隔离导体410。介电材料412在形成之后被平坦化,并在穿过介电材料412、介电材料210和介电材料180直至触头170的结构的一部分中形成通孔。这个通孔填充有例如钨(W)的导电材料和例如钛(Ti)和氮化钛(TiN)混合的阻挡材料。引入介电材料412、形成并填充导电性通孔、以及平坦化的技术对本领域技术人员是已知的。图15所示的结构还示出了已形成并经图案化的附加导体或信号线材料414,以映射(mirror)在衬底100上形成的导体或信号线材料140(例如行线)。映射导体线材料414映射出导体或信号线材料140,并通过导电通孔(未示出)耦合到导体或信号线材料140。一方面,通过映射例如N型硅的掺杂半导体,映射导体线材料414用来降低存储器阵列(例如图1所示的存储器阵列5)中导体或信号线材料140的电阻。映射导体线材料414的合适材料包括铝材料,例如铝合金。
图16-图21描绘了对比图8-图15所描述的另一实施例。图16通过同样的横截面视图描绘了在形成穿过电介质210和掩模材料180的开口220,并暴露出触头170之后图7的结构。可以通过使用有选择性的刻蚀剂进行刻蚀图案化来形成开口220,所述刻蚀剂刻蚀介电材料210和掩模材料180,但不刻蚀触头170(例如,触头170用来停止刻蚀)。
图17描绘了在保形地引入电极材料230之后图16的结构。在一个实例中,电极材料230是多晶半导体材料,例如多晶硅。其他合适的材料包括碳和诸如过渡金属之类的半金属,包括但不限于钛、钛-钨(TiW)、氮化钛(TiN)和氮化钛铝(TiAlN)。沿着开口220的侧壁和底部引入电极材料230来使得电极材料230接触触头170,从这种意义上来说,这种引入是保形的。对例如多晶硅的电极材料230的保形引入可以采取本领域技术人员已知的常规引入技术,包括化学气相沉积(CVD)技术。
图18描绘了图17的结构,其中电极材料230仅有一个支腿部分用作导体或信号线材料140和随后引入的可编程材料之间的导电路径。在这个实例中,电极材料230一般是非导电本征多晶硅。在将掺杂剂引入部分电极材料230之后,限定出两个部分,电极材料230A和电极材料230B。从还原剂材料170起,电极材料230A被沿其长度掺杂,并将作为导体或信号线材料140和随后引入的可编程材料之间的导电路径。电极材料230B一般是非导电的(例如主要是本征多晶硅),从而一般不会作为导电路径。单导电路径(例如电极材料230A)的隔离可以通过掺杂剂的带角度引入(即偏离电极材料230B一定角度)来完成。
图18还示出了在将介电材料250引入开口220内之后的结构。在一个实施例中,介电材料250是二氧化硅(SiO2)。在另一实施例中,介电材料250是导热率为K的材料,K小于SiO2的导热率KSiO2,优选地比KSiO2小3到10倍。引入之后,该结构受到平坦化,这就去除了电极材料230的水平组分。合适的平坦化技术包括那些本领域技术人员已知的,例如化学或化学机械抛光(CMP)技术。
图19A-图19E通过同样的横截面视图描绘了图18的结构,示出了粘接剂和可编程材料的形成和图案化。图19A是电极材料230A邻近如图18所示结构上表面的部分的分隔视图。
参照图19B,粘接剂215形成在电介质210、电介质250和电极材料230A上。接着,电极材料230A上的粘接剂215被图案化去除(图19C)。随后,可编程材料404形成在粘接剂215、部分电介质210、电介质250和电极材料230A上(图19D)。在实施例中,在邻近电极材料230A的区域上同时图案化粘接剂215和可编程材料404(图19E)。可以使用常规光刻和刻蚀技术来完成图案化。在这个实例中,刻蚀穿过部分粘接剂215和可编程材料404,一直进行到电介质210和电介质250(不包括电介质210和电介质250)。
图20通过同样的横截面视图描绘了在形成并图案化导体410、阻挡408、可编程材料404和粘接剂215之后图19E的结构。阻挡408包括例如钛(Ti)和氮化钛(TiN)其中之一。一方面,阻挡408用来防止大量的可编程材料404与覆盖大量可编程材料404的第二导体或信号线材料(例如第二电极410)之间的扩散。覆盖阻挡408的是导体或信号线材料410。在这个实例中,导体或信号线材料410充当地址线,即列线(例如图1的列线10)。在一个实施例中,导体或信号线材料410被图案化,从而一般与第一导体或信号线材料140相正交(列线与行线相正交)。例如,导体或信号线材料410是铝材料,例如铝合金。用于引入并图案化阻挡408和导体或信号线材料410的方法包括本领域技术人员已知的技术。
图21示出了在导体410上形成介电材料412之后图20的结构。例如,介电材料412是SiO2或其他合适的材料,其形成在导体410上以电隔离导体410。介电材料412在形成之后被平坦化,并在穿过介电材料412、介电材料210和介电材料180直至触头170的结构的一部分中形成通孔340。通孔340填充有例如钨(W)的导电材料和例如钛(Ti)和氮化钛(TiN)混合的阻挡材料350。引入介电材料412、形成并填充导电性通孔、以及平坦化的技术对本领域技术人员是已知的。图21所示的结构还示出了已形成并经图案化的附加导体或信号线材料414,以映射在衬底100上形成的导体或信号线材料140(例如行线)。映射导体线材料414映射出导体或信号线材料140,并通过导电通孔耦合到导体或信号线材料140。一方面,通过映射例如N型硅的掺杂半导体,映射导体线材料414用来降低存储器阵列(例如图1所示存储器阵列5)中导体或信号线材料140的电阻。映射导体线材料414的合适材料包括铝材料,例如铝合金。
图22根据实施例描述了形成具有类似于图15中所描绘的结构的可编程存储器器件的方法。图23根据实施例描述了形成具有类似于图21中所描绘的结构的可编程存储器器件的方法。
另外,如图24中所描绘的,例如存储器阵列5(图1)的存储器阵列可以结合到合适的系统内,在存储器阵列5中各个存储器单元具有类似于参照图15和图21中至少之一以及所附文本所描述的结构。在一个实施例中,系统700包括微处理器704、输入/输出(I/O)端口706和存储器702。微处理器704、I/O端口706和存储器702通过数据总线712、地址总线716和控制总线714相连接。微处理器704通过在地址总线716上发送地址并在控制总线714上发送存储器读取信号,来从存储器702取指令或读数据。存储器702在数据总线712上将被寻址的指令或数据字输出到微处理器704。微处理器704通过在地址总线716上发送地址、在数据总线712上发送数据字、并在控制总线714上将存储器写信号发送到存储器702,来将数据字写到存储器702。I/O端口706用来耦合到输入设备708和输出设备710中的至少一个设备上。
已公开了示例实施例,对这些公开的实施例可进行许多修改和变化,但这些修改和变化仍落在所附权利要求所限定的发明的精神和范围内。

Claims (21)

1.一种方法,包括:
在触头上形成电介质,所述触头形成在衬底上;
形成通过所述电介质的开口,以暴露出所述触头;
在所述开口内形成电极,所述电极位于所述触头上;
在所述电介质和所述电极上形成粘接剂;
图案化所述粘接剂,以暴露出所述电极的一部分;
在所述粘接剂上和所述电极上形成可编程材料;以及
在所述可编程材料上形成导体。
2.如权利要求1所述的方法,还包括:
同时图案化所述粘接剂、所述可编程材料和所述导体。
3.如权利要求1所述的方法,其中形成粘接剂包括形成钛和多晶硅中的至少一种,形成可编程材料包括形成硫族化物存储器元件。
4.一种装置,包括:
在衬底上的触头;
所述触头上的电介质,所述电介质具有延伸至所述触头的开口;
在所述开口内的电极,所述电极位于所述触头上;
在所述电介质上的粘接剂;
在所述粘接剂上和所述电极上的可编程材料;以及
到所述可编程材料的导体。
5.如权利要求4所述的装置,其中所述粘接剂、所述可编程材料和所述导体被同时图案化。
6.如权利要求4所述的装置,其中所述粘接剂包括钛和多晶硅中的至少一种,所述可编程材料包括硫族化物存储器元件。
7.一种系统,包括:
微处理器;
输入/输出端口;和
存储器,所述存储器包括:衬底上的触头;所述触头上的电介质,所述电介质具有延伸至所述触头的开口;在所述开口内并在所述触头上的电极;在所述电介质上的粘接剂;在所述粘接剂上和所述电极上的可编程材料;和到所述可编程材料的导体;并且
其中所述微处理器、所述输入/输出端口和所述存储器通过数据总线、地址总线和控制总线相连接。
8.如权利要求7所述的系统,其中所述粘接剂、所述可编程材料和所述导体被同时图案化。
9.如权利要求7所述的系统,其中所述粘接剂包括钛和多晶硅中的至少一种,所述可编程材料包括硫族化物存储器元件。
10.一种方法,包括:
在触头上形成电介质,所述触头形成在衬底上;
在所述电介质上形成粘接剂;
形成通过所述粘接剂和所述电介质的开口,以暴露出所述触头;
在所述粘接剂上和所述触头的第一部分上形成可编程材料;以及
在所述可编程材料上形成导体。
11.如权利要求10所述的方法,还包括:
同时图案化所述粘接剂、所述可编程材料和所述导体。
12.如权利要求10所述的方法,其中形成粘接剂包括形成钛和多晶硅中的至少一种,形成可编程材料包括形成硫族化物存储器元件。
13.如权利要求10所述的方法,还包括在所述触头的第二部分上形成至少一个隔片。
14.一种装置,包括:
在触头上的电介质,所述触头在衬底上;
在所述电介质上的粘接剂,所述粘接剂和所述电介质具有暴露出所述触头的开口;
在所述粘接剂上和所述触头的第一部分上的可编程材料;以及
到所述可编程材料的导体。
15.如权利要求14所述的装置,其中所述粘接剂、所述可编程材料和所述导体被同时图案化。
16.如权利要求14所述的装置,其中所述粘接剂包括钛和多晶硅中的至少一种,所述可编程材料包括硫族化物存储器元件。
17.如权利要求14所述的装置,还包括在所述触头的第二部分上的至少一个隔片。
18.一种系统,包括:
微处理器;
输入/输出端口;和
存储器,所述存储器包括:位于衬底上的触头;所述触头上的电介质;所述电介质上的粘接剂,所述粘接剂和所述电介质具有暴露出所述触头的开口;在所述粘接剂上和所述触头的第一部分上的可编程材料;和到所述可编程材料的导体;并且
其中所述微处理器、所述输入/输出端口和所述存储器通过数据总线、地址总线和控制总线相连接。
19.如权利要求18所述的系统,其中所述粘接剂、所述可编程材料和所述导体被同时图案化。
20.如权利要求18所述的系统,其中所述粘接剂包括钛和多晶硅中的至少一种,所述可编程材料包括硫族化物存储器元件。
21.如权利要求18所述的系统,还包括在所述触头的第二部分上的至少一个隔片。
CNB028281942A 2002-08-14 2002-08-14 用于可编程器件的粘接材料 Expired - Fee Related CN100385702C (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2002/025997 WO2004017438A1 (en) 2002-08-14 2002-08-14 Adhesive material for programmable device

Publications (2)

Publication Number Publication Date
CN1620732A CN1620732A (zh) 2005-05-25
CN100385702C true CN100385702C (zh) 2008-04-30

Family

ID=31886105

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028281942A Expired - Fee Related CN100385702C (zh) 2002-08-14 2002-08-14 用于可编程器件的粘接材料

Country Status (5)

Country Link
KR (1) KR100675989B1 (zh)
CN (1) CN100385702C (zh)
AU (1) AU2002323170A1 (zh)
DE (1) DE10297692B4 (zh)
WO (1) WO2004017438A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524599B2 (en) * 2011-03-17 2013-09-03 Micron Technology, Inc. Methods of forming at least one conductive element and methods of forming a semiconductor structure
US8941432B2 (en) * 2012-08-31 2015-01-27 Advanced Micro Devices, Inc. Transitioning between resonant clocking mode and conventional clocking mode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903041A (en) * 1994-06-21 1999-05-11 Aptix Corporation Integrated two-terminal fuse-antifuse and fuse and integrated two-terminal fuse-antifuse structures incorporating an air gap
US6140191A (en) * 1998-09-21 2000-10-31 Advanced Micro Devices, Inc. Method of making high performance MOSFET with integrated simultaneous formation of source/drain and gate regions
US6222212B1 (en) * 1994-01-27 2001-04-24 Integrated Device Technology, Inc. Semiconductor device having programmable interconnect layers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031287A (en) * 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US6569705B2 (en) * 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6770531B2 (en) * 2001-06-30 2004-08-03 Intel Corporation Adhesive material for programmable device
US6545287B2 (en) * 2001-09-07 2003-04-08 Intel Corporation Using selective deposition to form phase-change memory cells
US6861267B2 (en) * 2001-09-17 2005-03-01 Intel Corporation Reducing shunts in memories with phase-change material
EP1318552A1 (en) * 2001-12-05 2003-06-11 STMicroelectronics S.r.l. Small area contact region, high efficiency phase change memory cell and fabrication method thereof
US6512241B1 (en) * 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
EP1339110B1 (en) * 2002-02-20 2008-05-28 STMicroelectronics S.r.l. Phase change memory cell and manufacturing method thereof using minitrenches
EP1339111B1 (en) * 2002-02-20 2007-05-09 STMicroelectronics S.r.l. Contact structure, phase change memory cell, and manufacturing method thereof with elimination of double contacts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222212B1 (en) * 1994-01-27 2001-04-24 Integrated Device Technology, Inc. Semiconductor device having programmable interconnect layers
US5903041A (en) * 1994-06-21 1999-05-11 Aptix Corporation Integrated two-terminal fuse-antifuse and fuse and integrated two-terminal fuse-antifuse structures incorporating an air gap
US6140191A (en) * 1998-09-21 2000-10-31 Advanced Micro Devices, Inc. Method of making high performance MOSFET with integrated simultaneous formation of source/drain and gate regions

Also Published As

Publication number Publication date
DE10297692T5 (de) 2005-04-21
KR100675989B1 (ko) 2007-01-29
WO2004017438A1 (en) 2004-02-26
KR20050018660A (ko) 2005-02-23
DE10297692B4 (de) 2010-11-25
CN1620732A (zh) 2005-05-25
AU2002323170A1 (en) 2004-03-03

Similar Documents

Publication Publication Date Title
US6841397B2 (en) Method for forming pore structure for programmable device
US6511862B2 (en) Modified contact for programmable devices
US6511867B2 (en) Utilizing atomic layer deposition for programmable device
US7572666B2 (en) Reduced area intersection between electrode and programming element
US9231103B2 (en) Vertical MOSFET transistor, in particular operating as a selector in nonvolatile memory devices
US8796101B2 (en) Memory device
US7247876B2 (en) Three dimensional programmable device and method for fabricating the same
US6757190B2 (en) Single level metal memory cell using chalcogenide cladding
US6770531B2 (en) Adhesive material for programmable device
CN1650443A (zh) 对于可编程器件使用原子层沉积
JP2005536052A (ja) プログラム可能デバイスのためのコンタクト改善方法及び装置
CN100385702C (zh) 用于可编程器件的粘接材料
KR100676342B1 (ko) 프로그램 가능 디바이스에 대해 원자 층 증착을 활용하는장치 및 방법
KR20050053617A (ko) 프로그램 가능 디바이스를 위한 변경된 콘택트

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080430

Termination date: 20190814