CN100374283C - 微流体制品及其制造方法 - Google Patents
微流体制品及其制造方法 Download PDFInfo
- Publication number
- CN100374283C CN100374283C CNB998073776A CN99807377A CN100374283C CN 100374283 C CN100374283 C CN 100374283C CN B998073776 A CNB998073776 A CN B998073776A CN 99807377 A CN99807377 A CN 99807377A CN 100374283 C CN100374283 C CN 100374283C
- Authority
- CN
- China
- Prior art keywords
- substrate
- polymer matrix
- matrix film
- microfluidic process
- microfluidic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
- B29C59/04—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/505—Containers for the purpose of retaining a material to be analysed, e.g. test tubes flexible containers not provided for above
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/14—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length
- B29C39/148—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length characterised by the shape of the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/22—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
- B29C43/222—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length characterised by the shape of the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
- B29C59/022—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/12—Specific details about manufacturing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0887—Laminated structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0415—Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00009—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with a sample supporting tape, e.g. with absorbent zones
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/906—Roll or coil
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/24562—Interlaminar spaces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/2457—Parallel ribs and/or grooves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/24612—Composite web or sheet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24744—Longitudinal or transverse tubular cavity or cell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Analytical Chemistry (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Micromachines (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
制备模塑制品的方法,包括:(a)使可模塑的材料(10)和带模塑表面的敞模成型模具(16)彼此线接触,将微流体处理结构图案压印到可压模材料(10)上,从而形成模塑制品;和(b)从所述的模塑表面取下模塑制品。本发明还涉及各种带有微流体处理结构的聚合物制品。
Description
技术领域
本发明涉及微流体制品及其制造方法。
背景技术
已力图减小分析和其它方法操作液态样品如生物液态样品的部件的尺寸。减小尺寸能带来许多优点,包括能够分析非常小的样品、增加分析的速度、能用减少量的试剂和减少总成本。
已提出了各种不同的用于微流体运用的部件。这些部件典型地包括带有平版印刷图案的玻璃或硅基片,且蚀刻的表面带有一个或多个形成微流体处理的结构。也已提出塑料基片如聚酰亚胺、聚酯和聚碳酸酯。
需要一种聚合体基的微流体制品,其可以工业规模量高效生产,如以卷形物的形式,且可选择性地制造成具有各种不同功能,包括分析功能。因此,本发明的第一个方面是制备模塑制品的方法,包括使一种可模塑材料,和敞膜成型模具的表面彼此成线接触,从而将微流体处理结构压印在可模塑的材料上。然后从模具的模塑表面分离出得到的模塑制品。
发明内容
“微流体处理结构”是指以预定的自载(self-contained)图案方式排列的一个或多个流体处理结构。较佳地,该结构包括至少一种尺寸不大于1000μm的结构。另外,液体宜以Z-方向(即与结构的平面是成垂直方向的)进入和离开该结构。对于本发明,适合的微流体处理结构例子包括选自微通道、液体储器、样品处理区域和它们的组合的结构。
“敞模成型模具”是指缺少闭模中存在的密封腔的成型模具,如用于注塑的类型的模具。
“线接触”是指由相对于模具和可模塑材料移动成的线确定的模具和可模塑材料接触的状态。
在一实施例中,可模塑材料是可压印的聚合基片。将微流体处理结构图案压印在聚合基片的表面制造出模制制品。
在另一实施例中,可模塑材料是可流动树脂组合物。这种组合物的一种例子是可固化的树脂组合物,在此情况下,该方法包括在从模塑表面分离模塑的制品前将组合物暴露于热辐射或光化辐射下以固化组合物。本文所用的“固化”和“可固化树脂组合物”包括交联已聚合的树脂,以及聚合单体或低聚物成分,其产物并非一定是交联的热固性树脂。优选的可固化树脂组合物的例子是可光致聚合的组合物,当与模塑表面接触时,通过将组合物暴露于光化辐射而固化。
可流动树脂组合物的另一例子是熔融的热塑性组合物,其在接触模塑表面时被冷却从而固化。
当可模塑材料是可流动树脂组合物时,有两个优选模塑方法。在一优选方法中,可流动树脂组合物被引到聚合基片的主表面上,基片和压模器彼此相对的移动,使压模器和可流动树脂组合物成彼此线接触。这种净结果是两层结构,其中带有微流体处理结构的层整体地结合于聚合基片。
当可压模材料是可流动树脂组合物时,另一优选模塑方法,包括将可流动树脂组合物引到压模器的压模表面上。可将分开的聚合基片与可流动树脂组合物组合,产生两层结构,其中带有微流体处理结构的基片整体地结合于聚合基片。
基片可与压模的制品结合,形成覆盖在微流体处理结构上的覆盖层。较佳地,该基片是聚合基片。压模的制品也可装有一种或多种微电子元件、微光学元件和/或微微型机械元件。可以各种不同方法结合这些微型元件,表明总方法的灵活性。例如,当可压模材料是可压印的聚合基片时,该基片可包括微型元件。当可压模材料是可流动树脂组合物且该方法包括在模塑时将树脂组合物和聚合基片结合时,该聚合物基片可包括微型元件。也可能是在覆盖层中包括微型元件。这些微型元件也可以与模塑制品结合的分开基片(较佳地为一聚合基片)的形式提供。
较佳地,该方法设计为一连续操作方法。因此,可压模材料被连续地引入由压模器确定的压模区域,且压模器连续不断地与可压模材料线接触产生多个微流体处理的结构。较佳地,该连续方法得到卷形物形式的制品,其包括许多微流体处理的结构。该卷形物可直接使用或随后被分成多种独立的部件。附加的聚合物基片可连续与制品结合。例子包括覆盖层和带有微电子、微光学和/或微机械元件的层。
本发明的另一方面,制品包括(A)非弹性的第一聚合基片,该第一聚合物基片具有第一主表面,该第一主表面包括微流体处理结构(如上所述),和第二主表面;和(B)第二聚合基片,其整体地结合于第一基片的第二主表面。在没有第一基片时,这个第二基片能形成独立的基片。其为第一基片提供机械支承并提供将其它元件(如微电子、微光学和/或微机械元件)加入到制品中的手段,从而提供了设计的灵活性。
“非弹性”材料是指在Z方向(即对基片的平面是垂直的方向)上弹性不够的材料,当对Z方向循环变化力时,它可当作泵或阀门。
“整体地结合”是指两个基片直接互相结合,而不是通过中间材料(如粘合剂)结合的。
制品较佳地包括覆盖在微流体处理结构上的覆盖层。该覆盖层,可结合于第一基片的第一表面,较佳的是聚合物层。
制品较佳地包括一种或多种微电子、微光学和/或微机械元件。这些微型元件可包括在第一基片、第二基片、聚合物覆盖层或它们的组合中。
第三方面,本发明的制品为卷形物,其包括带有第一主表面(包括多个不连续的微流体处理结构(如上所述))和第二主表面的第一聚合物基片。该制品较佳地包括第二聚合物基片,其整体地结合于(如上所述)第一基片的第二主表面。在第一基片不存在时,该第二基片能够形成独立的基片。
制品较佳地包括结合于第一基片的第一主表面的聚合物覆盖层。
制品较佳地包括一种或多种微电子、微光学和/或微机械元件。这些微型元件可包括在第一基片、第二基片、聚合物覆盖层或它们的组合中。
本发明的第四方面,制品包括(A)第一聚合物基片,该第一聚合物基片具有第一主表面,该第一主表面包括微流体处理结构(如上所述)和第二主表面;和(B)第二聚合物基片。这个第二基片的第一主表面整体地结合于(如上所述)第一基片的第二主表面,且第二主表面包括一种或多种微电子元件和在第二基片的第一和第二主表面之间延伸的通道。该第二基片在不存在第一基片时能形成独立的基片。
本发明的第五方面,制品包括第一聚合物基片,该第一聚合物基片具有第一主表面,该第一主表面包括微流体处理结构(如上所述)和第二主表面,该第二表面包括一种或多种微电子元件和在该基片的第一和第二主表面之间延伸的通道。
本发明的第六方面,制品包括(A)第一聚合物基片,该第一聚合物基片具有第一主表面,该第一主表面包括微流体处理结构(如上所述),和第二主表面;和(B)一聚合物覆盖层。该覆盖层包括上覆盖基片第一主表面的第一主表面和第二主表面,该第二主表面包括一种或多种微电子元件和在该覆盖层的第一和第二主表面之间延伸的通道。
本发明的第七方面,一种处理微流体样品的方法,包括(a)提供卷形物形式的制品,该制品包括带有第一主表面(包括多个不连续的微流体处理结构)和第二主表面的聚合物基片;(b)将微流体样品加入其中一个微流体处理结构;和(c)处理样品(如通过分析样品)。
本发明提供用于处理(如分析)微流体样品的聚合物制品,其可以工业规模连续生产,制品的形式为方便的卷形物,易于储藏和搬运。该卷形物产品可直接用于处理流体样品,如用卷到卷连续方法,包括将不同的液体注入每个微流体处理结构然后进行多重的操作。另外,在制造后,该卷形物产品可分成多个不连续的部件。
这种制造的方法提供了显著的设计灵活性,使大量的加工步骤可在线进行。例如,在制造过程中,易于通过各种不同的方法,该元件作为包括带有微流体处理结构的基片的部分,作为覆盖层的部分或整体地结合于基片的第二聚合物基片的部分,将微电子、微光学和/或微机械元件结合入制品。也可有各种结合这些微型元件的设计。也可制备多层制品。
该模塑方法对形成各种不同的微流体处理结构设计是充分通用的。因此,制品可制造成具有各种功能的,包括例如毛细管类的电泳、动力学抑制测定、竞争免疫测定、酶测定、核酸杂化测定、细胞分类、组合化学和电色谱法。
这种模塑方法能够制备具有高度纵横比和各种不同纵横比细部(feature)的微流体处理结构。这又提供了展现出改进的速度和分辨率的结构。例如,当维持恒定的微通道宽度时,微通道的深度可变化。这样的微通道可用来构建用于压电阀门一较小扩压器(diffuser)的微型泵的垂直锥形入口和出口的扩压器,或用于提供电动区域控制或电动聚焦。类似地,可在恒定的深度逐步减小高纵横比微通道的宽度。结果得到的结构也可用于提供电动区域控制。
也可逐步减小微通道的深度和宽度,得到恒定断面面积或恒定的断面周长。恒定断面面积或周长的结果,得到的结构能在整个通道的长度实现为主要的电泳流或电渗流提供恒定的电压梯度,从而为单分子测定提供光密封(而不损失分辨能力)。该结构也可用于提供高和低纵横比结构(如高纵横比注射三通、低纵横比的探针俘获区域、微井反应器或压电传动器元件)之间的转变,而不损失电动学分辨力。
也可制备有不同深度的两个相交的微通道。因此,再可利用这一特征在疏水基片制造微流体开关。由于深度的不同,较浅的微通道的一个臂中的液体不会越过相交处,除非将缓冲液引入较深的微通道桥接相交处。这种不同深度的特征还可用于制备接线端子阵列(post array),用于免疫测定或核酸测定中把探针俘获小珠聚集在一起,并同时允许指示试剂和液体样品自由地流过。
本发明的其它特征和优点可从以下的优选实施例的描述和权利要求中清楚看出。
附图说明
图1是制备微流体制品的连续“流延(cast)和固化”方法的示意图。
图1(a)是按图1所示的方法制备的微流体制品的透视图。
图2是制备微流体制品的连续“挤压压印”方法的透视图。
图2(a)是按图2所示的方法制备的微流体制品的透视图。
图3是制备微流体制品的连续“挤压压印”方法的第二实例的透视图。
图3(a)是按图3所示的方法制备的微流体制品的透视图。
图4是制备微流体制品的连续“挤压压印”方法的第三个实例的透视图。
图4(a)是按图4所示的方法制备的微流体制品的透视图。
图5是制备微流体制品的连续“挤压压印”方法的第四个实例的示意图。
图5(a)是按图5所示的方法制备的微流体制品的透视图。
图6是制备微流体制品的连续“基片压印”方法的透视图。
图6(a)是按图6所示的方法制备的微流体制品的透视图。
图7是制备微流体制品的连续“基片压印”方法的第二实例的透视图。
图7(a)是按图7所示的方法制备的微流体制品的透视图。
图8是制备微流体制品连续方法的示意图,其中在模塑后覆盖层是层压到带有微流体结构的基片上的。
图9(a)和9(b)是带有微流体处理结构的基片和装有微电子元件的覆盖层组合的剖面图。
图10(a)和10(b)是显示典型微流体处理结构设计的示意图。
图11(a)具有多根导电线路和接触垫片的柔性聚合物基片的上视图。
图11(b)在基片主表面上有多个微流体处理结构特征的柔性聚合物基片的上视图。
图12是将图11(a)所示的基片对准层压到图11(b)所示的基片上的上视图。
具体实施方式
本发明的特征是一种聚合物基的带有微流体处理结构的制品,用于处理(如分析)微流体样品,和制造这种制品的连续卷到卷方法。图1显示了该方法的一个实例(称为“连续流延和固化”方法)。参看图1,一可流动的,较佳的是基本上无溶剂的,可光致固化的树脂组合物10从模头12挤压到连续柔性光学透明的基片14的表面上。
用于基片14的适合材料的例子包括聚(甲基丙烯酸甲酯)聚碳酸酯、聚酯和聚酰亚胺。适合的可光致固化的树脂组合物的例子包括丙烯酸烷酯和甲基丙烯酸烷酯(如聚甲基丙烯酸甲酯)。这种组合物也包括光引发剂。适合的光引发剂的例子包括苯偶姻醚如苯偶姻甲醚和苯偶姻异丙醚;取代的乙酰苯如2,2-二乙氧基乙酰苯、2,2-二甲氧基-2-苯基-1-苯基乙酰苯和二甲氧基羟基乙酰苯;取代的α-酮醇,如2-甲基-2-羟基苯基乙基酮;芳族磺酰氯,如2-萘磺酰氯;和感光性肟,如1-苯基-1,2-丙二酮-2-(O-乙氧基羰基)肟。其它可加入到组合物中的组分包括一羟基和多羟基化合物,触变剂、增塑剂、增韧剂、颜料、填料、磨粒、稳定剂、光稳定剂、抗氧剂、流动剂、增稠剂、消光剂、着色剂、粘合剂、发泡剂、杀真菌剂、杀菌剂、表面活性剂、玻璃和陶瓷珠、和增强材料如有机或无机纤维的织造网和非织造网。
将树脂10和基片14与压模器16的压模表面接触,将所需的微流体处理结构图案压印到树脂层10的表面。如图1所示,压模器16是以卷形物的形式或是按顺时针方向旋转的环形带的形式。然而,其也可以是圆柱套筒的形式。可用各种不同的控制技术制备压模器,包括激光烧蚀控制、电子束蚀刻、光刻、X-射线光刻、机械滚花和划线。其带有所需的微流体处理结构图案。
特定结构的设计取决于用制品进行的操作。图10(a)、10(b)和11(b)显示了典型的设计。这些设计包括竞争测定芯片(图10(a))和梯式芯片(图10(b))和电泳芯片(图11(b))。该结构的特点是有微通道、流体储器和样品处理区域的各种组合。图10(a)和(b)中显示的单个微体系结构的尺寸为用于这些芯片的代表性的典型尺寸。任何芯片的特定尺寸是可变的。
使树脂层10与压模器16的旋转表面成线接触。线11是由树脂层10的上游边缘确定的,并且当压模器16旋转时,相对于压模器16和树脂层10移动。基片14保持与树脂层10接触,且树脂层也与压模器16的表面接触。将任何多余的树脂减至最小之后,将压模器16、基片14和树脂层10暴露于由辐射源18发出的光化辐射下,(较佳地为紫外辐射的形式)来固化仍与压模器16的压模表面接触的树脂组合物。辐射时间、剂量高低的选择取决于每种树脂组合物的特性,包括树脂层10的厚度。
如图1(a)所示,得到的产品20是两层的片,聚合物基片22带有多个微流体处理结构24,并整体地结合于基片14。压模后,可将该片卷绕在辊上(图上没有显示),得到卷形物形式的产品。
也可用热固化树脂组合物作为可流动树脂组合物,实施流延和固化方法,在此情况下,则用热辐射源(如加热灯)替代光化辐射。
在这种方法的一种变化方式中,可用熔融的热塑树脂作为可流动树脂组合物。接触后冷却压模器和树脂的组合体,使树脂凝固(而不是固化的)。
也可按挤压压印方法制备微流体制品。图2-5显示了这种方法的各种不同的实例。参看如图2,从模头12直接挤压可流动树脂组合物到压模器16的旋转表面上,这样树脂与压模器16的旋转表面成线接触;适合的树脂组合物的例子包括上述可光致固化的、热固化的和热塑性树脂组合物。线由树脂的上游边缘确定,且当压模器16旋转时,它相对于压模器16和树脂移动。如图2(a)所示,结果得到的产品是薄片形式的单层制品26,其聚合物基片23是带有多个微流体处理结构24。可将该片卷绕在辊上(图上没有显示),得到成卷形物形式的制品。
图3显示了图2所示的挤压压印方法的另一变化。如图3所示,将聚合物基片28引入压模区域(由压模器16确定的),并与压模器16的旋转压模表面成线接触。适合的用于基片28的材料包括上述用于基片14的那些材料。同样也可用非光学透明的基片。从模头12挤出可流动的树脂组合物(如上所述)到基片28的表面,基片28的反面与压模器16的压模表面成线接触。压模器16将多个微流体处理结构压印到基片28的表面上。得到的制品,如图3(a)所示,是两层薄片形式的制品30,其聚合物基片28上带有多个微流体处理结构24,并整体地结合于挤压到基片28上的树脂形成的聚合物层32。模塑后,可将该片卷绕在辊上(图上没有显示),得到成卷形物形式的产品。
图4显示了图2所示的挤压压印方法的另一变化。如图4所示,从模头12挤压可流动的树脂组合物(如上所示)到压模器16的旋转表面上,使树脂与压模器16的旋转表面成线接触。如图2中所示的实例,线由树脂的上游边缘确定,并且当压模器16旋转时,它相对于压模器16和树脂移动。同时,将另一聚合物基片34引入到由压模器16所确定的压模区域,使其接触树脂。用于基片34的适合材料包括上述讨论的用于基片14的材料。也可用非光学透明基片。结果得到的制品是两层薄片的形式36,其中聚合物基片38上带有多个微流体处理结构24,其整体地结合于聚合物基片34。模塑后,可将该片卷绕在辊上(图上没有显示),得到成卷形物形式的产品。
图5显示了挤压压印方法的另一实例。如图5所示,从模头12挤压出可流动的树脂组合物(如上所述)到压模器16的旋转表面上,使树脂与压模器16的旋转表面成线接触。如图2所示的实例,线由树脂的上游边缘确定,并且当压模器16旋转时,它相对于压模器16和树脂移动。从另一模头40挤压另一树脂到与压模器16接触的树脂层上。
结果得到的产品是两层制品42,它的形式为聚合物基片44上带有多个微流体处理结构24,其整体地结合于由从模头40挤压的树脂形成的聚合物基片46。模塑后,可将该片卷绕在辊上(图上没有显示),得到成卷形物形式的产品。也可通过结合另一模头的挤压形成另一聚合物层。另外,可用带适合供料头的单个模头来共挤压多层聚合物层。
在另一实施例中,制品可通过基片压印方法制得。如图6所示,使单一的可压印的基片48与压模器16成线接触,直接在基片表面形成微流体处理结构。线11是由基片48的上游边缘(a)和辊50和压模器16的旋转表面之间形成的辊隙(b)的相交形成的。任选地,辊50可具有带有微流体处理结构图案的压模表面。结果得到的制品的基片在其两个主表面上都有多个微流体处理结构。
如图6(a)所示,结果得到的产品是单层薄片形式的制品52,它的聚合物基片48上带有多个微流体处理结构24。可将该片卷绕在辊上(图上没有显示),得到成卷形物形式的产品。
图7显示了图6所示的压印方法的改变。如图7所示,使可压印的基片48与压模器16成线接触,直接在基片的表面形成微流体处理结构。由基片48的上游边缘(a)和辊50加上另一聚合物基片54和压模器16的旋转表面之间形成的辊隙(b)相交形成了线11。定位基片54使其与基片48的表面接触,基片48的反面与压模器16的压模表面接触。
图7(a)显示了得到的制品,为两层薄片形式的制品56,薄片的特点为聚合物基片48上带有多个微流体处理结构24,并整体地结合于聚合物基片54。可将该片卷绕在辊上(图上没有显示),得到成卷形物形式的产品。
模塑后,成“毛坯”形式的制品可用卷取辊卷取,并保存。为了组装可操作的微流体处理部件,将毛坯与分开的覆盖层结合,该覆盖层覆盖带有微流体处理结构的层。用这种形式,该部件可用于处理(如分析)微流体样品。
用于覆盖层的材料能够和带有微流体处理结构的基片形成液体密封。另外,存在试剂(如典型地用于样品分析的缓冲剂)时,这些材料抗降解,且宜将背景荧光和吸收减至最小;后一特性尤其可用于当部件与以荧光为基础的分析技术一起使用时。
覆盖层可以聚合物基片的形式,其结合于带有微流体处理结构的基片表面。适合的聚合物基片例子包括聚碳酸酯、聚酯、聚(甲基丙烯酸甲酯)、聚乙烯和聚丙烯。可用压敏粘合剂(如苯乙烯-丁二烯-苯乙烯嵌段共聚物粘合剂,可从Shell购得,商品名为“Kraton”的橡胶)、热熔粘合剂(如乙烯-醋酸乙烯酯粘合剂)、带图形的粘合剂、或热固性粘合剂(如环氧树脂粘合剂)来粘合。粘合剂可以图案的形式铺设,从而在基片20的不连续位点形成粘合。结合也可通过将覆盖层直接层压或溶剂溶接到带有微流体处理结构的基片来实施。
也可用硬的覆盖层如玻璃覆盖层。另外,覆盖层也可是分析手段部分(制品设计成要使用该部分)。
图8显示了将覆盖层在线加到带有微流体处理结构的基片64上的优选方法。如图8所示,将制品64传送到位于压模区域下游的层压区域。该层压区域包括在辊66上的一柔性聚合物覆盖基片58。在层压区域,覆盖基片58被层压到辊60、66之间的制品64上。
虽然上述所有的制品的特征是在一个或两个主表面上带有多个微流体处理结构的单基片,也可制备这些基片结合在一起的多层制品。制造这种多层制品的一种方法是用带有微流体处理结构基片取代图8所示的覆盖基片。
可选择性地将薄膜无机涂层沉积到微流体处理结构部分上,如在微通道的内部表面。沉积可在制造过程中或后续的操作中在线进行。适合的沉积技术例子包括真空喷镀、电子束沉积、溶液沉积和化学蒸气沉积。
无机涂层可有各种不同的功能。例如,该涂层可用于增加微流体处理结构的亲水性或改善高温性能。运用某些涂层可促进将定尺寸的凝胶吸入电泳部件的微通道内。也可用导电涂层形成压电或蠕动泵的电极或隔膜。可用涂层作为不渗漏膜防止运用中(如气相色谱)的漏气。
也可在微流体处理结构的各个部分选择性地沉积试剂、生物探针、生物相容的涂层等。另外,这些材料也可按预先确定的图案沉积到层(设计为接触微流体处理结构的)的表面上。
制品较佳地包括一种或多种微电子、微光学和/或微机械元件。微电子元件的例子包括导电的线路、电极、电极片、微型加热器元件、静电传动泵和阀门、微型电动机械系统(MEMS)等。微光学元件的例子包括光波导、波导探测器、反射元件(如棱镜)、分束器、透镜元件、固态光源和探测器等。微机械元件的例子包括过滤器、阀门、泵、气动和液压路线等。这些微型元件可结合入覆盖层,或带有微流体处理结构的基片表面,另一结合于带有微流体处理结构基片的聚合物基片,或它们的组合。
微型元件有各种不同的功能。例如,可将与微流体处理结构中特殊位点的流体接触的微电子元件设计成高度控制地电动推进液体通过结构。这些微电子元件能够进行一些操作,如电动注射、毛细管电泳和等电聚焦,以及更复杂的操作如将精确量的试剂传递到运用中的(如毛细管类电泳和组合化学)一个或多个样品处理区域。
也可设计接触流体的微电子元件形成可寻址的电子矩阵,用于自由场电泳分类带电的生物物种,如细胞、核酸碎片和抗原。也可用与特定位点流体接触的微电子元件以电化学方法探测物种。
也可设计不与流体接触的微型元件。例如,可设计微电子元件与微流体处理结构非常地接近,这样就可用它们来加热或冷却流体样品,或在整个微流体处理结构建立不同温度的区域。再用这些区域维持运用(如PCR扩增核酸和组合化学试验)所需的热循环。另外,也可设计微电子元件非常接近微流体处理结构,以形成天线来探测AC阻抗变化,用于探测在微流体分离系统中的分析物。
有一些不同的方法将微电子、微光学和/或微机械元件结合到带有微流体处理结构的制品上。例如,可将微元件结合到覆盖层70上,然后在如上所述结合到基片68上。图9(a)和9(b)显示了涉及微电子元件的这种配置。覆盖层70一个表面结合于基片68的带有微流体处理结构的表面。图9(a)和9(b)显示了微流体处理结构,包括进口72、流体储器74、和微通道38。覆盖层70的特征是与储器74(在导电电路78的终端)相通的导电的通道76。线路78当作电极对储器74施加电压在整个微流体处理结构中推进流体,或其中的组分。如图9(b)所示,通道76可用金属装满而形成与储器74相通的导电“凸起”80。
另一将微电子元件结合到制品的方法,包括提供带有一系列导电线路的柔性聚合物基片(如线路由镍、金、铂、钯、铜、导电的含银油墨、或导电的含碳油墨制成),然后在该基片表面形成微流体处理结构。适合的基片例子包括Klun等人的U.S.5,227,008和Gerber等人的U.S.5,601,678中所公开的。然后将这些基片做成带有微流体处理结构的基片。
可由若干方法形成微流体处理结构。例如,可按照图6所示的压印方法,可使带有导电线路的基片表面与压模表面带有所需的微流体处理结构图案的压模器接触。接触后,压印基片在带有导电线路的同一表面形成了微流体处理结构。设计这种线路图案和压模表面,使导电线路与微流体处理结构的适当的细部紧密配合。
也可用相同的压模器,将微流体处理结构压印到基片的与带有导电线路表面相反的表面上。在这种情况中,在压印将导电线路连接于微流体处理结构的适合结构之前,对不带有线路的表面提供一系列导电通道或通孔。
另外,也可用如带组成图案的粘合剂将带有微电子、微光学和/或微机械元件的分开的聚合物基片结合于带有微流体处理结构的聚合物基片的表面,从而导电线路与微流体处理结构的适合细部紧密配合。
也可按图1、3、4和7所示的方法,将微电子、微光学和/或微机械元件加入分开的聚合物基片(其结合于带有微流体处理结构的基片)。为实现这一目的,将在一主表面带有一系列导电通道和凸起的柔性基片用作基片14、28、34或54。然后如上所述,将微流体处理结构模塑到基片的带有通道和凸起的表面上。
也可将微电子、微光学和/或微机械元件加入分开的聚合物基片(其模塑后层压到带有微流体处理结构的基片上)。
另一用微电子、微光学和/或微机械元件制品的方法,包括取一表面带有微流体处理结构的聚合物基片,和插入导电的接线柱或插头穿过反面;另外,可用一Z-轴导电粘合剂(如Z-轴粘合剂膜7303,可从3M Company of St.Paul,MN购得)。然后可将该制品加压安装到线路板上。在这一方法的变化方式中,可插入导电接线柱或插头穿过覆盖在微流体处理结构基片上的覆盖层,以提供电连接。
用微电子、微光学和/或微机械元件装备制品的另一方法,包括取在一表面带有微流体处理结构的聚合物基片,和用常规的金属沉积和光刻技术,直接将导电金属电路图案沉积到该表面上。
该制品可用于进行一系列程序,包括分析程序。含有大量不连续微流体处理结构的卷形物可直接用于连续的卷到卷的方法。对于该方法,将卷形物连续地提供给微流体样品分配器,其将微流体样品注射到每个微流体处理结构的入口。然后对这些样品进行相应的处理(如分析)。另外,可将卷形物切开形成大量适用于间歇方法的单个部件。
由以下实施例进一步描述本发明。
实施例
实施例1
两个分开的膜卷,每个含有大量的微流体处理结构,是用带微型结构的环形带形式的镍模具制备的。设计其中的一个模具带有图10(a)所示的微流体处理结构图案,另一则带有图10(b)所示的图案。该模具的制备是通过用准分子激光器烧蚀聚酰亚胺基片产生所需的图案,然后电镀带图案的区域形成带指明图案的镍模具。然后将该模具用于连续挤压压印步骤生产如下的制品。
将可从Mobay Corporation of Pittsburgh,PA购得的MarkrolonTM 2407的聚碳酸酯粒料流延到受热的含有肋条(50μm高,64μm宽)的带微结构的镍模具表面上。这些肋条相应于最终模塑制品中的微通道。这些肋条排布的方式,使它们与若干储器(如图10(a)和10(b)所画的,50μm高,4mm直径)相通。这些镍模具的厚度为508μm,模具温度为210℃。在约1.66×107帕斯卡的压力下,将在282℃熔融的聚碳酸酯,以与模具表面成线接触的形式传送到镍模具,时间为0.7秒,以复制模具表面上的图案。重合形成复制图案,将其它的聚碳酸酯熔覆到位于模具(厚度约为103.9μm)上的连续聚合物基片。然后用空气冷却模具、基片和熔融的聚碳酸酯组合体18秒,至温度约为48.9℃,从而使聚碳酸酯固化。然后从模具表面取下得到的模塑产品。
实施例2
将实施例1所述的模具加热到199-207℃。传送聚(甲基丙烯酸甲酯)粒料(从Rohm and Haas Co.of Philadelphia,PA购得的PlexiglassTM DR 101),条件是在271℃、1.1×107帕斯卡压力下,使聚合物与镍模具的聚合物成线接触,时间为0.7秒。重合形成复制图案,将其它的聚碳酸酯熔覆到位于模具(厚度约为212.1μm)上的连续聚合基片。然后用空气冷却模具、聚合物基片和熔融的聚(甲基丙烯酸甲酯)组合体18秒,至温度约为48.9℃,从而使聚(甲基丙烯酸甲酯)固化。然后从模具表面取下得到的模塑产品。
实施例3
制备可紫外光辐射固化的共混物,它是59.5重量份PhotomerTM 316(可从Henkel Corp.of Ambler,PA购得的环氧二丙烯酸酯低聚物)、39.5重量份PhotomerTM4035(可从Henkel Corp.of Ambler,PA购得的2-丙烯酸苯氧基乙酯单体)和1重量份DarocurTM 1173光引发剂(Ciba Additives,Tarrytown,NY)的共混物。然后将该共混物层压在被加热到66℃的实施例1所述的模具和0.5mm厚的聚碳酸酯薄片(可从General Electric Corp.of Pittsfield,MA购得,注册商标为“Lexan”)之间。用手工操作的墨辊将树脂厚度减至最小。将得到的结构置于传送带上,在600瓦特/英寸的高强度的紫外灯(由Fusion UV System,Inc.of Gaithersburg,MD提供的“D”灯)下以每分钟7.6米的速度传送,以固化树脂。然后从模具上取下固化的制品,其特征为带有微流体处理结构的聚合物基片整体地结合于聚碳酸酯基片。
实施例4
本实施例描述了,制备特征为带有多个微流体处理结构的聚合物基片与带有微电子元件的聚合物基片组合的微流部件。
如图11(b)所示的聚合物基片114,带有多个交叉的狗骨形微流体处理结构116,是通过用镍模具(用实施例1所述的一般步骤制备的)在压机中模塑聚(甲基丙烯酸甲酯)膜(DRG-100,Rohm和Haas)而制得的。如图11(a)所示,该模具尺寸为16.5cm×19cm×0.5mm(厚度),包括五个不同的交叉狗骨形微流体处理结构116。在199℃,3.5×106帕斯卡压力下,将该膜和模具彼此接触15秒,之后将压力增至6.2×106帕斯卡达10分钟。此后,将温度减到74℃,并维持压力为6.2×106帕斯卡达15秒。结果得到的模压基片114有五个不同的交叉狗骨形微流体处理结构116,每个带有一个长为28.5mm的长通道并交叉一个长为9mm的短通道。每个通道末端带有直径5mm的流体储器。通道和储器都是50μm深。五个结构的通道宽度都是不同的,分别为64、32、16、8和4μm。在每个储器的中心钻出直径为1mm的入口。
如下制备带有多个微电子线路元件的柔性聚合物基片100(如图11(b)所示)。用氧化铬粘结层蒸汽涂覆聚酰亚胺薄片(可从DuPont得到,商品名为“KaptonE”),然后蒸汽涂覆2μm的铜。然后按制造公司说明,用印刷电路板转移抗蚀剂(购自Techniks Inc.,Ringoes,NJ,名称为“Press-n-Peel”),将微电子线路图形印到镀铜的聚酰亚胺上。得到的基片100包括六个相同的微电子线路图形,每个有四根导电铜线路110。每个线路110终止于接触垫片112。
印好电子线路图形后,用铜蚀刻浴除去裸露的铜。然后用氧化铬蚀刻剂蚀刻氧化铬粘结层,用丙酮洗涤除去转移抗蚀剂。得到的铜线路为500μm宽,在周边小突出部位有5mm2的接触垫片。
如下将基片100层压到基片114,制造微流体制品118(如图12所示)。切割基片100和基片114制作单独的部件。将双面胶带(胶带9443,可从3M Company,St.Paul,MN购得)做孔,相应于交叉狗骨形微流体处理结构116上的流体储器。然后将每个微流体处理结构116层压到基片100的线路上,使基片100带线路的面与基片114带微流体处理结构的面紧密配合,让铜线路110和微流体处理结构的流体储器接触。用夹辊进行层压,使两个基片的层压成线接触。然后用得到的微流体制品118来证实如下的电动注射和电泳分离。
用4mM Na2B4O7缓冲液(pH9.0)浸没微流体处理结构116。用20微摩尔的荧光指示染料(溶解于相同的缓冲液)装满分析物储器。通过与电脑控制的电压控制线路相连的接触垫片112对四个储器施加电压。用带CCD摄像机(PanasonicCL 354,Panasonic Industrial Co.,Secaucus,NJ)的Leica DMRX表射荧光显微镜(epifiuorescence microscope)(Leica Inc.,Deerfield,IL)监测流体通道内荧光指示染料的移动。对于微量(pinched)样品注射来说,将四个储器的电压调到从分析物、样品和废液储器到分析物废液储器形成电压梯度。这就让荧光素染料很好地从分析物储器流经注射三通到分析物废液储器。来自分离通道和来自缓冲液储器的缓冲液缓慢流动,产生了在注射三通的约180pL荧光素溶液的梯形塞。通过转换电压做到将该塞注入分离通道,使液流主要从缓冲液储器沿分离通道往下流到废液储器。观察到一荧光素染料的密团沿分离通道往下移动。
本实施例用荧光素和钙黄绿素的混合物重复过。在该试验中,将混合团注射入分离通道导致这两个物质的快速电泳分离。
Claims (21)
1.一种制备模塑制品的方法,其特征在于,包括:
(a)提供可模塑的材料和包括模塑表面的敞模成型模具;
(b)使可模塑的材料和敞模成型模具的模塑表面彼此成线接触,并将微流体处理结构图案压印到所述的可模塑材料上,从而形成至少带有一个模塑制品,该制品具有以预定的自载图案方式排列的一个或多个流体处理结构和至少一个尺寸不大于约1000μm的结构;和
(c)从所述的模塑表面取下所述的模塑制品。
2.如权利要求1所述的方法,其特征在于,所述的可模塑材料包括可压印的聚合物基片。
3.如权利要求2所述的方法,其特征在于,所述的可压印基片还包括微电子元件、微光学元件或微机械元件。
4.如权利要求1-3任一所述的方法,其特征在于,所述的可模塑材料包括可流动的树脂组合物。
5.如权利要求4所述的方法,其特征在于,所述的可流动树脂组合物包括可固化的树脂组合物,所述的方法包括在从所述的模塑表面取下所述的模塑制品前,将所述的组合物暴露于热或光化辐射下以固化所述的组合物。
6.如权利要求5所述的方法,其特征在于,所述的可固化树脂组合物包括可光致聚合物树脂组合物,所述的方法包括在从所述的模塑表面取下所述的模塑制品前,将所述的组合物暴露于光化辐射下以固化所述的组合物。
7.如权利要求4所述的方法,其特征在于,所述的可流动树脂组合物包括熔融的热塑性组合物,所述的方法包括在从所述的模塑表面取下所述的模塑制品前,冷却所述的组合物。
8.如权利要求4所述的方法,其特征在于,所述的方法包括将所述的可流动树脂引到聚合物基片的主表面上,相对地移动所述的聚合物基片和所述的模具,使所述的模具和所述的可流动树脂组合物彼此成线接触。
9.如权利要求8所述的方法,其特征在于,所述的聚合物基片还包括微电子元件、微光学元件、微机械元件。
10.如权利要求4所述的方法,其特征在于,所述的方法包括将所述的可流动树脂组合物引到模塑表面上。
11.如权利要求10所述的方法,其特征在于,所述的方法还包括将所述的可流动树脂组合物结合于聚合物基片上。
12.如权利要求11所述的方法,其特征在于,所述的聚合物基片包括微电子元件、微光学元件、微机械元件。
13.如权利要求1所述的方法,其特征在于,所述的方法还包括将包括微电子元件、微光学元件、或微机械元件的聚合物基片结合于所述的模塑制品。
14.如权利要求1或13所述的方法,其特征在于,所述的方法还包括将基片结合于所述的模塑制品,在所述的微流体处理结构上形成覆盖层。
15.如权利要求14所述的方法,其特征在于,所述的基片包括聚合物基片。
16.如权利要求14或15所述的方法,其特征在于,所述的基片还包括微电子元件、微光学元件或微机械元件。
17.如权利要求1所述的方法,其特征在于,所述的方法包括连续地将可模塑材料引到由所述的模具确定的模塑区域上,并连续使可模塑的材料和所述模具的模塑区域表面彼此成线接触,从而形成多个微流体处理结构。
18.如权利要求17所述的方法,其特征在于,所述的方法包括制造所述的制品,该制品为卷形物形式且包括多个微流体处理结构。
19.如权利要求17或18所述的方法,其特征在于,所述的方法还包括连续将包括微电子元件、微光学元件或微机械元件的聚合物基片结合于所述的模塑制品。
20.如权利要求17-19任一所述的方法,其特征在于,所述的方法还包括连续将聚合物基片结合于所述的模塑制品,以形成在所述的微流体处理结构上的覆盖层。
21.如权利要求20所述的方法,其特征在于,所述的聚合物基片还包括微电子元件、微光学元件、或微机械元件。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/099,562 | 1998-06-18 | ||
US09/099,562 US6375871B1 (en) | 1998-06-18 | 1998-06-18 | Methods of manufacturing microfluidic articles |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1305410A CN1305410A (zh) | 2001-07-25 |
CN100374283C true CN100374283C (zh) | 2008-03-12 |
Family
ID=22275608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB998073776A Expired - Lifetime CN100374283C (zh) | 1998-06-18 | 1999-05-18 | 微流体制品及其制造方法 |
Country Status (8)
Country | Link |
---|---|
US (2) | US6375871B1 (zh) |
EP (1) | EP1087864B1 (zh) |
JP (2) | JP4489945B2 (zh) |
KR (1) | KR100618013B1 (zh) |
CN (1) | CN100374283C (zh) |
AU (1) | AU742931B2 (zh) |
DE (1) | DE69930254T2 (zh) |
WO (1) | WO1999065664A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102665916A (zh) * | 2009-11-23 | 2012-09-12 | 3M创新有限公司 | 微孔阵列制品及使用方法 |
CN102822657A (zh) * | 2010-01-20 | 2012-12-12 | 耐克思乐生物科学有限责任公司 | 细胞计数和样品室及其装配方法 |
CN105269915A (zh) * | 2014-06-23 | 2016-01-27 | 施乐公司 | 用于形成粘结衬底的系统和方法 |
CN110573194A (zh) * | 2017-04-03 | 2019-12-13 | 由退伍军人事务部代表的美国政府 | 微流控扩散装置和系统及其制造和使用方法 |
Families Citing this family (223)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5885470A (en) * | 1997-04-14 | 1999-03-23 | Caliper Technologies Corporation | Controlled fluid transport in microfabricated polymeric substrates |
US6375871B1 (en) | 1998-06-18 | 2002-04-23 | 3M Innovative Properties Company | Methods of manufacturing microfluidic articles |
US6420622B1 (en) * | 1997-08-01 | 2002-07-16 | 3M Innovative Properties Company | Medical article having fluid control film |
US6833242B2 (en) * | 1997-09-23 | 2004-12-21 | California Institute Of Technology | Methods for detecting and sorting polynucleotides based on size |
WO1999019717A1 (en) | 1997-10-15 | 1999-04-22 | Aclara Biosciences, Inc. | Laminate microstructure device and method for making same |
GB9808836D0 (en) * | 1998-04-27 | 1998-06-24 | Amersham Pharm Biotech Uk Ltd | Microfabricated apparatus for cell based assays |
US7223364B1 (en) | 1999-07-07 | 2007-05-29 | 3M Innovative Properties Company | Detection article having fluid control film |
AU7101000A (en) * | 1999-09-10 | 2001-04-10 | Caliper Technologies Corporation | Microfabrication methods and devices |
SE0000300D0 (sv) * | 2000-01-30 | 2000-01-30 | Amersham Pharm Biotech Ab | Microfluidic assembly, covering method for the manufacture of the assembly and the use of the assembly |
US6749813B1 (en) | 2000-03-05 | 2004-06-15 | 3M Innovative Properties Company | Fluid handling devices with diamond-like films |
US20040132174A1 (en) * | 2000-03-28 | 2004-07-08 | Smith Allan Joseph Hilling | Perfusion incubator |
US6741523B1 (en) | 2000-05-15 | 2004-05-25 | 3M Innovative Properties Company | Microstructured time dependent indicators |
US6829753B2 (en) * | 2000-06-27 | 2004-12-07 | Fluidigm Corporation | Microfluidic design automation method and system |
US6627159B1 (en) * | 2000-06-28 | 2003-09-30 | 3M Innovative Properties Company | Centrifugal filling of sample processing devices |
EP2299256A3 (en) | 2000-09-15 | 2012-10-10 | California Institute Of Technology | Microfabricated crossflow devices and methods |
US6939451B2 (en) * | 2000-09-19 | 2005-09-06 | Aclara Biosciences, Inc. | Microfluidic chip having integrated electrodes |
EP1336097A4 (en) * | 2000-10-13 | 2006-02-01 | Fluidigm Corp | SAMPLE INJECTION SYSTEM USING A MICROFLUIDIC DEVICE, FOR ANALYSIS DEVICES |
US7232109B2 (en) * | 2000-11-06 | 2007-06-19 | California Institute Of Technology | Electrostatic valves for microfluidic devices |
US8097471B2 (en) * | 2000-11-10 | 2012-01-17 | 3M Innovative Properties Company | Sample processing devices |
JP2002214241A (ja) * | 2000-11-20 | 2002-07-31 | Minolta Co Ltd | マイクロチップ |
US20020108860A1 (en) * | 2001-01-15 | 2002-08-15 | Staats Sau Lan Tang | Fabrication of polymeric microfluidic devices |
US6531206B2 (en) | 2001-02-07 | 2003-03-11 | 3M Innovative Properties Company | Microstructured surface film assembly for liquid acquisition and transport |
US6802342B2 (en) | 2001-04-06 | 2004-10-12 | Fluidigm Corporation | Microfabricated fluidic circuit elements and applications |
EP1384022A4 (en) * | 2001-04-06 | 2004-08-04 | California Inst Of Techn | AMPLIFICATION OF NUCLEIC ACID USING MICROFLUIDIC DEVICES |
US6814938B2 (en) * | 2001-05-23 | 2004-11-09 | Nanostream, Inc. | Non-planar microfluidic devices and methods for their manufacture |
US7141812B2 (en) * | 2002-06-05 | 2006-11-28 | Mikro Systems, Inc. | Devices, methods, and systems involving castings |
US7410606B2 (en) | 2001-06-05 | 2008-08-12 | Appleby Michael P | Methods for manufacturing three-dimensional devices and devices created thereby |
US7785098B1 (en) | 2001-06-05 | 2010-08-31 | Mikro Systems, Inc. | Systems for large area micro mechanical systems |
US7128876B2 (en) * | 2001-07-17 | 2006-10-31 | Agilent Technologies, Inc. | Microdevice and method for component separation in a fluid |
US7075162B2 (en) * | 2001-08-30 | 2006-07-11 | Fluidigm Corporation | Electrostatic/electrostrictive actuation of elastomer structures using compliant electrodes |
WO2003031066A1 (en) | 2001-10-11 | 2003-04-17 | California Institute Of Technology | Devices utilizing self-assembled gel and method of manufacture |
US8440093B1 (en) | 2001-10-26 | 2013-05-14 | Fuidigm Corporation | Methods and devices for electronic and magnetic sensing of the contents of microfluidic flow channels |
GB0128350D0 (en) * | 2001-11-27 | 2002-01-16 | Lab901 Ltd | Non-rigid apparatus for microfluidic applications |
ES2403560T3 (es) * | 2001-11-30 | 2013-05-20 | Fluidigm Corporation | Dispositivo microfluídico y procedimientos de utilización del mismo |
US7691333B2 (en) * | 2001-11-30 | 2010-04-06 | Fluidigm Corporation | Microfluidic device and methods of using same |
MXPA04005681A (es) * | 2001-12-11 | 2004-12-06 | Procter & Gamble | Proceso para elaborar objetos preformados. |
US7140495B2 (en) | 2001-12-14 | 2006-11-28 | 3M Innovative Properties Company | Layered sheet construction for wastewater treatment |
AU2002360822A1 (en) * | 2001-12-17 | 2003-06-30 | Aclara Biosicences, Inc. | Microfluidic analytical apparatus |
DE10201640A1 (de) * | 2002-01-17 | 2003-08-07 | Fraunhofer Ges Forschung | Verfahren zur Herstellung einer Folie mit Oberflächenstrukturen im Mikro- und Nanometerbereich sowie eine diesbezügliche Folie |
US7312085B2 (en) * | 2002-04-01 | 2007-12-25 | Fluidigm Corporation | Microfluidic particle-analysis systems |
WO2003085379A2 (en) * | 2002-04-01 | 2003-10-16 | Fluidigm Corporation | Microfluidic particle-analysis systems |
ATE434781T1 (de) | 2002-04-03 | 2009-07-15 | 3M Innovative Properties Co | Produkte zur anzeige der zeit oder zeit- temperatur |
US6803090B2 (en) | 2002-05-13 | 2004-10-12 | 3M Innovative Properties Company | Fluid transport assemblies with flame retardant properties |
US8206666B2 (en) * | 2002-05-21 | 2012-06-26 | Battelle Memorial Institute | Reactors having varying cross-section, methods of making same, and methods of conducting reactions with varying local contact time |
US20060134157A1 (en) * | 2002-06-06 | 2006-06-22 | Rutgers, The State University | Co-continuous phase composite polymer blends for in-vivo and in-vitro biomedical applications |
US8168139B2 (en) * | 2002-06-24 | 2012-05-01 | Fluidigm Corporation | Recirculating fluidic network and methods for using the same |
US7201881B2 (en) * | 2002-07-26 | 2007-04-10 | Applera Corporation | Actuator for deformable valves in a microfluidic device, and method |
US7135147B2 (en) * | 2002-07-26 | 2006-11-14 | Applera Corporation | Closing blade for deformable valve in a microfluidic device and method |
US20060234042A1 (en) * | 2002-09-05 | 2006-10-19 | Rui Yang | Etched dielectric film in microfluidic devices |
US7329545B2 (en) | 2002-09-24 | 2008-02-12 | Duke University | Methods for sampling a liquid flow |
US6911132B2 (en) * | 2002-09-24 | 2005-06-28 | Duke University | Apparatus for manipulating droplets by electrowetting-based techniques |
EP2298448A3 (en) | 2002-09-25 | 2012-05-30 | California Institute of Technology | Microfluidic large scale integration |
US8871446B2 (en) | 2002-10-02 | 2014-10-28 | California Institute Of Technology | Microfluidic nucleic acid analysis |
US6913931B2 (en) * | 2002-10-03 | 2005-07-05 | 3M Innovative Properties Company | Devices, methods and systems for low volume microarray processing |
JP4009684B2 (ja) * | 2002-10-28 | 2007-11-21 | アークレイ株式会社 | 分析用具における液成分の温調方法、および分析用具 |
JP3866183B2 (ja) * | 2002-11-01 | 2007-01-10 | Asti株式会社 | バイオチップ |
US6963007B2 (en) | 2002-12-19 | 2005-11-08 | 3M Innovative Properties Company | Diacetylenic materials for sensing applications |
US20040126897A1 (en) * | 2002-12-19 | 2004-07-01 | 3M Innovative Properties Company | Colorimetric sensors constructed of diacetylene materials |
JP3856763B2 (ja) * | 2003-03-11 | 2006-12-13 | 財団法人川村理化学研究所 | マイクロ流体素子の製造方法 |
US7476363B2 (en) * | 2003-04-03 | 2009-01-13 | Fluidigm Corporation | Microfluidic devices and methods of using same |
CA2521171C (en) * | 2003-04-03 | 2013-05-28 | Fluidigm Corp. | Microfluidic devices and methods of using same |
US8828663B2 (en) * | 2005-03-18 | 2014-09-09 | Fluidigm Corporation | Thermal reaction device and method for using the same |
US20050145496A1 (en) * | 2003-04-03 | 2005-07-07 | Federico Goodsaid | Thermal reaction device and method for using the same |
US7604965B2 (en) * | 2003-04-03 | 2009-10-20 | Fluidigm Corporation | Thermal reaction device and method for using the same |
US6986428B2 (en) | 2003-05-14 | 2006-01-17 | 3M Innovative Properties Company | Fluid separation membrane module |
CA2526368A1 (en) * | 2003-05-20 | 2004-12-02 | Fluidigm Corporation | Method and system for microfluidic device and imaging thereof |
US7413712B2 (en) * | 2003-08-11 | 2008-08-19 | California Institute Of Technology | Microfluidic rotary flow reactor matrix |
US20050047967A1 (en) * | 2003-09-03 | 2005-03-03 | Industrial Technology Research Institute | Microfluidic component providing multi-directional fluid movement |
US7378451B2 (en) * | 2003-10-17 | 2008-05-27 | 3M Innovative Properties Co | Surfactant composition having stable hydrophilic character |
US20050106360A1 (en) | 2003-11-13 | 2005-05-19 | Johnston Raymond P. | Microstructured surface building assemblies for fluid disposition |
US7279215B2 (en) | 2003-12-03 | 2007-10-09 | 3M Innovative Properties Company | Membrane modules and integrated membrane cassettes |
KR100572207B1 (ko) * | 2003-12-18 | 2006-04-19 | 주식회사 디지탈바이오테크놀러지 | 플라스틱 마이크로 칩의 접합 방법 |
SE0400007D0 (sv) * | 2004-01-02 | 2004-01-02 | Gyros Ab | Large scale surface modifiv´cation of microfluidic devices |
EP1703982A1 (en) * | 2004-01-06 | 2006-09-27 | Gyros Patent Ab | Contact heating arrangement |
US8030057B2 (en) * | 2004-01-26 | 2011-10-04 | President And Fellows Of Harvard College | Fluid delivery system and method |
JP4698613B2 (ja) | 2004-01-26 | 2011-06-08 | プレジデント アンド フェロウズ オブ ハーバード カレッジ | 流体送達のシステムおよび方法 |
SE0400181D0 (sv) * | 2004-01-29 | 2004-01-29 | Gyros Ab | Segmented porous and preloaded microscale devices |
US20050210996A1 (en) * | 2004-03-12 | 2005-09-29 | Quinn John G | Flow channel structure and method |
JP2008506547A (ja) * | 2004-06-21 | 2008-03-06 | スリーエム イノベイティブ プロパティズ カンパニー | 半導体ナノ粒子のパターン形成および配列 |
DE602005024418D1 (de) | 2004-08-26 | 2010-12-09 | Life Technologies Corp | Elektrobenetzende abgabevorrichtungen und dazugehörige verfahren |
US7253288B2 (en) * | 2004-09-08 | 2007-08-07 | Pacific Scientific Energetic Materials Company | Process for preparing substituted tetrazoles from aminotetrazole |
US8796583B2 (en) * | 2004-09-17 | 2014-08-05 | Eastman Kodak Company | Method of forming a structured surface using ablatable radiation sensitive material |
EP1804959B1 (en) | 2004-10-06 | 2014-02-26 | State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon State University | Mecs dialyzer |
US7955504B1 (en) | 2004-10-06 | 2011-06-07 | State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Microfluidic devices, particularly filtration devices comprising polymeric membranes, and method for their manufacture and use |
DE102004050062A1 (de) * | 2004-10-13 | 2006-04-27 | Boehringer Ingelheim Microparts Gmbh | Vorrichtung, Meßgerät und Verfahren zur Aufnahme und Untersuchung oder Manipulation von Probenflüssigkeiten in einer mikrofluidischen Plattform |
EP1825268A2 (en) * | 2004-12-17 | 2007-08-29 | 3M Innovative Properties Company | Colorimetric sensors constructed of diacetylene materials |
BRPI0606316A2 (pt) * | 2005-01-20 | 2017-06-27 | 3M Innovative Properties Co | método para formar uma película polimérica estruturada, e , artigo de processamento de amostra |
US20060157381A1 (en) * | 2005-01-20 | 2006-07-20 | Adams James T | Component carrier and method for making |
JP5897780B2 (ja) | 2005-01-28 | 2016-03-30 | デューク ユニバーシティ | プリント回路基板上の液滴操作装置及び方法 |
US7454988B2 (en) * | 2005-02-10 | 2008-11-25 | Applera Corporation | Method for fluid sampling using electrically controlled droplets |
US20060245933A1 (en) * | 2005-05-02 | 2006-11-02 | General Electric Company | Valve and pump for microfluidic systems and methods for fabrication |
WO2007000833A1 (ja) * | 2005-06-29 | 2007-01-04 | Harima Chemicals, Inc. | 導電性回路の形成方法 |
JP4679992B2 (ja) * | 2005-07-27 | 2011-05-11 | 大日本印刷株式会社 | エンボス加工装置およびエンボス加工方法 |
US20070134739A1 (en) * | 2005-12-12 | 2007-06-14 | Gyros Patent Ab | Microfluidic assays and microfluidic devices |
CA2634027A1 (en) * | 2005-12-16 | 2007-07-05 | James A. Glazier | Sub-micron surface plasmon resonance sensor systems |
US8355136B2 (en) | 2005-12-16 | 2013-01-15 | Indiana University Research And Technology Corporation | Sub-micron surface plasmon resonance sensor systems |
AU2007209759A1 (en) * | 2006-01-24 | 2007-08-02 | Mycrolab Diagnostics Pty Ltd | Stamping methods and devices |
FR2897858B1 (fr) * | 2006-02-27 | 2008-06-20 | Commissariat Energie Atomique | Procede de fabrication d'un reseau de capillaires d'une puce |
EP1996704A2 (en) * | 2006-03-08 | 2008-12-03 | Barry Beroth | Thin sheet for retaining biomolecules |
CN101405084B (zh) * | 2006-03-20 | 2011-11-16 | 皇家飞利浦电子股份有限公司 | 用于电子微流体设备的系统级封装台 |
US8492168B2 (en) * | 2006-04-18 | 2013-07-23 | Advanced Liquid Logic Inc. | Droplet-based affinity assays |
US20140193807A1 (en) | 2006-04-18 | 2014-07-10 | Advanced Liquid Logic, Inc. | Bead manipulation techniques |
US9476856B2 (en) | 2006-04-13 | 2016-10-25 | Advanced Liquid Logic, Inc. | Droplet-based affinity assays |
US8613889B2 (en) * | 2006-04-13 | 2013-12-24 | Advanced Liquid Logic, Inc. | Droplet-based washing |
US8637317B2 (en) * | 2006-04-18 | 2014-01-28 | Advanced Liquid Logic, Inc. | Method of washing beads |
US8716015B2 (en) | 2006-04-18 | 2014-05-06 | Advanced Liquid Logic, Inc. | Manipulation of cells on a droplet actuator |
WO2007123908A2 (en) | 2006-04-18 | 2007-11-01 | Advanced Liquid Logic, Inc. | Droplet-based multiwell operations |
US10078078B2 (en) | 2006-04-18 | 2018-09-18 | Advanced Liquid Logic, Inc. | Bead incubation and washing on a droplet actuator |
US7901947B2 (en) | 2006-04-18 | 2011-03-08 | Advanced Liquid Logic, Inc. | Droplet-based particle sorting |
US8637324B2 (en) | 2006-04-18 | 2014-01-28 | Advanced Liquid Logic, Inc. | Bead incubation and washing on a droplet actuator |
US7763471B2 (en) * | 2006-04-18 | 2010-07-27 | Advanced Liquid Logic, Inc. | Method of electrowetting droplet operations for protein crystallization |
US7851184B2 (en) * | 2006-04-18 | 2010-12-14 | Advanced Liquid Logic, Inc. | Droplet-based nucleic acid amplification method and apparatus |
US8809068B2 (en) | 2006-04-18 | 2014-08-19 | Advanced Liquid Logic, Inc. | Manipulation of beads in droplets and methods for manipulating droplets |
US7816121B2 (en) * | 2006-04-18 | 2010-10-19 | Advanced Liquid Logic, Inc. | Droplet actuation system and method |
US7815871B2 (en) * | 2006-04-18 | 2010-10-19 | Advanced Liquid Logic, Inc. | Droplet microactuator system |
US8980198B2 (en) | 2006-04-18 | 2015-03-17 | Advanced Liquid Logic, Inc. | Filler fluids for droplet operations |
US8470606B2 (en) * | 2006-04-18 | 2013-06-25 | Duke University | Manipulation of beads in droplets and methods for splitting droplets |
US8658111B2 (en) | 2006-04-18 | 2014-02-25 | Advanced Liquid Logic, Inc. | Droplet actuators, modified fluids and methods |
US7439014B2 (en) | 2006-04-18 | 2008-10-21 | Advanced Liquid Logic, Inc. | Droplet-based surface modification and washing |
US7822510B2 (en) * | 2006-05-09 | 2010-10-26 | Advanced Liquid Logic, Inc. | Systems, methods, and products for graphically illustrating and controlling a droplet actuator |
US8041463B2 (en) * | 2006-05-09 | 2011-10-18 | Advanced Liquid Logic, Inc. | Modular droplet actuator drive |
US7939021B2 (en) * | 2007-05-09 | 2011-05-10 | Advanced Liquid Logic, Inc. | Droplet actuator analyzer with cartridge |
US20080108122A1 (en) * | 2006-09-01 | 2008-05-08 | State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon | Microchemical nanofactories |
CN101578520B (zh) * | 2006-10-18 | 2015-09-16 | 哈佛学院院长等 | 基于形成图案的多孔介质的横向流动和穿过生物测定装置、及其制备方法和使用方法 |
US20080138248A1 (en) * | 2006-12-11 | 2008-06-12 | Institut Curie | Method for improving the bonding properties of microstructured substrates, and devices prepared with this method |
GB2445739A (en) | 2007-01-16 | 2008-07-23 | Lab901 Ltd | Polymeric laminates containing heat seals |
GB2445738A (en) * | 2007-01-16 | 2008-07-23 | Lab901 Ltd | Microfluidic device |
DK2152417T3 (en) | 2007-05-04 | 2018-08-06 | Opko Diagnostics Llc | APPARATUS AND PROCEDURE FOR ANALYSIS IN MICROFLUID SYSTEMS |
DE102007021544A1 (de) * | 2007-05-08 | 2008-11-13 | Siemens Ag | Messeinheit und Verfahren zur optischen Untersuchung einer Flüssigkeit auf eine Analytkonzentration |
JP2008284626A (ja) * | 2007-05-16 | 2008-11-27 | Miraial Kk | マイクロ流路デバイス |
US8920879B2 (en) * | 2007-06-08 | 2014-12-30 | Board Of Trustees Of The University Of Illinois | Self-healing materials with microfluidic networks |
WO2009014553A1 (en) * | 2007-07-23 | 2009-01-29 | Nomadics, Inc. | Fluidic configuration for flow injection analysis system |
WO2009021233A2 (en) | 2007-08-09 | 2009-02-12 | Advanced Liquid Logic, Inc. | Pcb droplet actuator fabrication |
WO2009051901A2 (en) * | 2007-08-30 | 2009-04-23 | Pepex Biomedical, Llc | Electrochemical sensor and method for manufacturing |
WO2009032760A2 (en) | 2007-08-30 | 2009-03-12 | Pepex Biomedical Llc | Electrochmical sensor and method for manufacturing |
US20090130746A1 (en) * | 2007-10-25 | 2009-05-21 | Canon U.S. Life Sciences, Inc. | Microchannel surface coating |
JP2011504236A (ja) * | 2007-11-20 | 2011-02-03 | スリーエム イノベイティブ プロパティズ カンパニー | ジアセチレンを含むポリマーセンサーを用いる細菌試料の分析方法 |
US20090211977A1 (en) * | 2008-02-27 | 2009-08-27 | Oregon State University | Through-plate microchannel transfer devices |
US8431671B2 (en) | 2008-03-26 | 2013-04-30 | 3M Innovative Properties Company | Structured polydiorganosiloxane polyamide containing devices and methods |
US8921118B2 (en) * | 2008-03-27 | 2014-12-30 | President And Fellows Of Harvard College | Paper-based microfluidic systems |
EP2265959B1 (en) * | 2008-03-27 | 2014-03-05 | President and Fellows of Harvard College | Paper-based cellular arrays |
US8206992B2 (en) * | 2008-03-27 | 2012-06-26 | President And Fellows Of Harvard College | Cotton thread as a low-cost multi-assay diagnostic platform |
CA2719320A1 (en) | 2008-03-27 | 2009-10-01 | President And Fellows Of Harvard College | Three-dimensional microfluidic devices |
WO2009131677A1 (en) | 2008-04-25 | 2009-10-29 | Claros Diagnostics, Inc. | Flow control in microfluidic systems |
WO2010002679A2 (en) * | 2008-06-30 | 2010-01-07 | 3M Innovative Properties Company | Method of forming a microstructure |
EP2311301B1 (en) * | 2008-06-30 | 2012-04-25 | 3M Innovative Properties Company | Method of forming a patterned substrate |
US9315663B2 (en) * | 2008-09-26 | 2016-04-19 | Mikro Systems, Inc. | Systems, devices, and/or methods for manufacturing castings |
US20110174435A1 (en) * | 2008-10-02 | 2011-07-21 | Bruce Malcolm Peterson | Microwell Sampling Tape Sealing Apparatus and Methods |
WO2010056878A2 (en) | 2008-11-14 | 2010-05-20 | Pepex Biomedical, Llc | Electrochemical sensor module |
US8506740B2 (en) * | 2008-11-14 | 2013-08-13 | Pepex Biomedical, Llc | Manufacturing electrochemical sensor module |
US8951377B2 (en) | 2008-11-14 | 2015-02-10 | Pepex Biomedical, Inc. | Manufacturing electrochemical sensor module |
EP2376226B1 (en) | 2008-12-18 | 2018-09-12 | Opko Diagnostics, LLC | Improved reagent storage in microfluidic systems and related articles and methods |
DE202010018623U1 (de) | 2009-02-02 | 2018-12-07 | Opko Diagnostics, Llc | Strukturen zur Steuerung der Lichtwechselwirkung mit mikrofluidischen Vorrichtungen |
PL2403645T3 (pl) | 2009-03-06 | 2017-05-31 | President And Fellows Of Harvard College | Mikroprzepływowe, elektrochemiczne urządzenia |
EP2244489A1 (de) * | 2009-04-24 | 2010-10-27 | Bayer MaterialScience AG | Verfahren zur Herstellung eines elektromechanischen Wandlers |
WO2010151419A1 (en) * | 2009-06-24 | 2010-12-29 | State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Microfluidic devices for dialysis |
US8801922B2 (en) | 2009-06-24 | 2014-08-12 | State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Dialysis system |
CN102574327B (zh) * | 2009-10-21 | 2014-09-03 | 旭硝子株式会社 | 压印用模具及其制造方法、压印装置和压印方法 |
UA120744C2 (uk) * | 2009-11-24 | 2020-02-10 | Опко Дайегностікс, Елелсі | Мікрофлюїдна система |
US8753515B2 (en) | 2009-12-05 | 2014-06-17 | Home Dialysis Plus, Ltd. | Dialysis system with ultrafiltration control |
WO2011069110A1 (en) * | 2009-12-05 | 2011-06-09 | Home Dialysis Plus, Ltd. | Modular dialysis system |
AU2011212916B2 (en) | 2010-02-03 | 2015-07-02 | President And Fellows Of Harvard College | Devices and methods for multiplexed assays |
JP5585138B2 (ja) * | 2010-03-17 | 2014-09-10 | オムロン株式会社 | 流路チップ及び治具 |
EP2558203B1 (en) | 2010-04-16 | 2024-06-05 | Opko Diagnostics, LLC | Microfluidic sample analyzer and method of analyzing |
US8580161B2 (en) | 2010-05-04 | 2013-11-12 | State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Fluidic devices comprising photocontrollable units |
USD645971S1 (en) | 2010-05-11 | 2011-09-27 | Claros Diagnostics, Inc. | Sample cassette |
US8501009B2 (en) | 2010-06-07 | 2013-08-06 | State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Fluid purification system |
CN102069564B (zh) * | 2010-11-12 | 2013-12-04 | 中南大学 | 用于微流控芯片制造的旋转多工位注射成型模具 |
US9504162B2 (en) | 2011-05-20 | 2016-11-22 | Pepex Biomedical, Inc. | Manufacturing electrochemical sensor modules |
US9513253B2 (en) | 2011-07-11 | 2016-12-06 | Advanced Liquid Logic, Inc. | Droplet actuators and techniques for droplet-based enzymatic assays |
US20130090633A1 (en) * | 2011-10-07 | 2013-04-11 | University Of Southern California | Osmotic patch pump |
AU2012318561B2 (en) | 2011-10-07 | 2017-04-20 | Outset Medical, Inc. | Heat exchange fluid purification for dialysis system |
CN104169378B (zh) | 2011-11-02 | 2018-04-13 | 3M创新有限公司 | 亲水流体输送装置 |
US11092977B1 (en) | 2017-10-30 | 2021-08-17 | Zane Coleman | Fluid transfer component comprising a film with fluid channels |
US8813824B2 (en) | 2011-12-06 | 2014-08-26 | Mikro Systems, Inc. | Systems, devices, and/or methods for producing holes |
EP2823427B1 (en) | 2012-03-05 | 2020-12-16 | OY Arctic Partners AB | Computer systems, methods and computer readable storage medium for predicting risk of prostate gland volume |
JP2013224188A (ja) * | 2012-04-20 | 2013-10-31 | Nippon Electric Glass Co Ltd | ベルトコンベア |
WO2014031523A2 (en) * | 2012-08-19 | 2014-02-27 | University Of Rochester | Method for preparing microfluidic device with reduced channel height |
US11224367B2 (en) | 2012-12-03 | 2022-01-18 | Pepex Biomedical, Inc. | Sensor module and method of using a sensor module |
US10040018B2 (en) | 2013-01-09 | 2018-08-07 | Imagine Tf, Llc | Fluid filters and methods of use |
AU2014209562A1 (en) | 2013-01-22 | 2015-08-20 | Pacific Scientific Energetic Materials Company | Facile method for preparation of 5-nitrotetrazolates using a flow system |
EP2969156B1 (en) | 2013-03-13 | 2019-04-10 | Opko Diagnostics, LLC | Mixing of fluids in fluidic systems |
WO2015003722A1 (en) * | 2013-07-10 | 2015-01-15 | Delta Dansk Elektronik, Lys & Akustik | Single-use device with a reaction chamber and a method for controlling the temperature in the device and uses thereof |
US10378813B2 (en) | 2014-04-24 | 2019-08-13 | 3M Innovative Properties Company | Fluid control films with hydrophilic surfaces, methods of making same, and processes for cleaning structured surfaces |
US20150310392A1 (en) | 2014-04-24 | 2015-10-29 | Linkedin Corporation | Job recommendation engine using a browsing history |
WO2015168280A1 (en) | 2014-04-29 | 2015-11-05 | Outset Medical, Inc. | Dialysis system and methods |
US9861920B1 (en) | 2015-05-01 | 2018-01-09 | Imagine Tf, Llc | Three dimensional nanometer filters and methods of use |
BR112016028536B1 (pt) | 2014-06-04 | 2021-11-30 | Pepex Biomedical, Inc | Sensor compreendendo um membro de perfuração de pele e uma zona de análise de amostra de sangue |
US9598380B2 (en) | 2014-06-12 | 2017-03-21 | Sri International | Facile method for preparation of 5-nitrotetrazolates using a batch system |
US9686540B2 (en) | 2014-06-23 | 2017-06-20 | Xerox Corporation | Robust colorimetric processing method for paper based sensors |
US10730047B2 (en) | 2014-06-24 | 2020-08-04 | Imagine Tf, Llc | Micro-channel fluid filters and methods of use |
KR102238956B1 (ko) * | 2014-06-24 | 2021-04-13 | 삼성전자주식회사 | 유체 분석 시트, 이를 포함하는 유체 분석 카트리지 및 유체 분석 카트리지의 제조방법 |
US10124275B2 (en) | 2014-09-05 | 2018-11-13 | Imagine Tf, Llc | Microstructure separation filters |
US10330095B2 (en) * | 2014-10-31 | 2019-06-25 | Encite Llc | Microelectromechanical systems fabricated with roll to roll processing |
EP3229963B1 (en) | 2014-12-12 | 2023-08-23 | Opko Diagnostics, LLC | Fluidic systems comprising an incubation channel, including fluidic systems formed by molding, and method |
EP3245194B1 (en) | 2015-01-16 | 2019-05-01 | Pacific Scientific Energetic Materials Company | Process and contiuous flow system for prearing sodium 5-nitrotetrazole at a rate of at least 100 gram/hour and at a temperature of 10-30 °c |
WO2016133929A1 (en) | 2015-02-18 | 2016-08-25 | Imagine Tf, Llc | Three dimensional filter devices and apparatuses |
US10118842B2 (en) | 2015-07-09 | 2018-11-06 | Imagine Tf, Llc | Deionizing fluid filter devices and methods of use |
USD804682S1 (en) | 2015-08-10 | 2017-12-05 | Opko Diagnostics, Llc | Multi-layered sample cassette |
US10479046B2 (en) | 2015-08-19 | 2019-11-19 | Imagine Tf, Llc | Absorbent microstructure arrays and methods of use |
WO2017074464A1 (en) * | 2015-10-30 | 2017-05-04 | Hewlett-Packard Development Company, L.P. | Microfluidic channel filter |
US10852310B2 (en) | 2015-12-11 | 2020-12-01 | Opko Diagnostics, Llc | Fluidic systems involving incubation of samples and/or reagents |
CN108602239B (zh) * | 2016-01-18 | 2020-06-02 | 东丽株式会社 | 表面结构膜的制造方法及制造装置 |
ES2908601T3 (es) | 2016-08-19 | 2022-05-03 | Outset Medical Inc | Sistema y métodos de diálisis peritoneal |
US10464908B2 (en) | 2016-09-07 | 2019-11-05 | Pacific Scientific Energetic Materials Company | Purification of flow sodium 5-nitrotetrazolate solutions with copper modified cation exchange resin |
EP3548815B1 (en) | 2016-12-05 | 2023-06-14 | 3M Innovative Properties Company | Condensate management system |
US10121645B2 (en) * | 2016-12-05 | 2018-11-06 | National Institutes of Health (NIH) U.S. Department of Health and Human Services (DHHS), U.S. Government NIH Division of Extramural Inventions and Technology Resources (DEITR) | Sheathless interface for capillary electrophoresis/electrospray ionization-mass spectrometry |
EP3557976A4 (en) | 2016-12-20 | 2020-08-12 | 3M Innovative Properties Company | CONDENSATE COLLECTOR AND REGULATION SYSTEM |
KR102564002B1 (ko) * | 2017-03-15 | 2023-08-08 | 한국전자통신연구원 | 미세유체 제어 시스템 및 이를 이용한 미세유체 제어 방법 |
US10807092B2 (en) * | 2017-03-15 | 2020-10-20 | Electronics And Telecommunications Research Institute | Microfluidic control system and microfluidic control method using the same |
US11384212B2 (en) | 2017-06-23 | 2022-07-12 | 3M Innovative Properties Company | Films with a primer layer containing silica nanoparticles modified by an organic silane |
CN110770284A (zh) | 2017-06-23 | 2020-02-07 | 3M创新有限公司 | 具有含有包括有机聚合物部分和含硅部分的复合粒子的底漆层的膜 |
CN109551754A (zh) * | 2017-09-25 | 2019-04-02 | 长春工业大学 | 一种超声辅助辊对辊热纳米压印装置及方法 |
EP3732423A4 (en) | 2017-12-29 | 2021-09-29 | 3M Innovative Properties Company | CONDENSATION MANAGEMENT USING A FLUID REGULATION FILM APPARATUS |
US20200326118A1 (en) | 2017-12-29 | 2020-10-15 | 3M Innovative Properties Company | Managing condensation with fluid control film apparatus |
USD878622S1 (en) * | 2018-04-07 | 2020-03-17 | Precision Nanosystems Inc. | Microfluidic chip |
WO2020031135A1 (en) | 2018-08-10 | 2020-02-13 | 3M Innovative Properties Company | Condensation management apparatus with gutter assembly |
DE102019119571A1 (de) * | 2019-07-18 | 2021-01-21 | Uwe Beier | Verfahren und Vorrichtung zur Herstellung eines Substratverbundes |
US20220250077A1 (en) | 2019-07-24 | 2022-08-11 | Hewlett-Packard Development Company, L.P. | Digital microfluidics device with droplet processing components |
CN114126833A (zh) * | 2019-07-26 | 2022-03-01 | 通用电气公司 | 用于增材制造中将热塑性打印珠形成为净形结构的方法 |
CN114651041B (zh) | 2019-11-21 | 2024-08-30 | 3M创新有限公司 | 包含聚环氧烷嵌段共聚物的微结构化膜、组合物和方法 |
DE102020114621A1 (de) | 2020-06-02 | 2021-12-02 | Joanneum Research Forschungsgesellschaft Mbh | Bauteil mit Mikrofluidikstrukturen, Herstellungsverfahren und Verwendung |
EP4288289A1 (en) * | 2021-02-04 | 2023-12-13 | Universiteit Maastricht | A method for manufacturing a structure with at least one microchannel for fluid |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1037888A (zh) * | 1988-04-22 | 1989-12-13 | 艾尔坎国际有限公司 | 溶胶-凝胶法制造陶瓷 |
US5376252A (en) * | 1990-05-10 | 1994-12-27 | Pharmacia Biosensor Ab | Microfluidic structure and process for its manufacture |
WO1998000231A1 (en) * | 1996-06-28 | 1998-01-08 | Caliper Technologies Corporation | High-throughput screening assay systems in microscale fluidic devices |
WO1998024544A1 (en) * | 1996-12-04 | 1998-06-11 | Nanogen, Inc. | Laminated assembly for active bioelectronic devices |
Family Cites Families (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3442686A (en) | 1964-03-13 | 1969-05-06 | Du Pont | Low permeability transparent packaging films |
SE325370B (zh) | 1967-03-06 | 1970-06-29 | Gambro Ab | |
US3520300A (en) | 1967-03-15 | 1970-07-14 | Amp Inc | Surgical sponge and suction device |
BE754658A (fr) | 1969-08-12 | 1971-02-10 | Merck Patent Gmbh | Lamelle indicatrice, se composant d'une matiere capillaire impregnee, absorbante et gainee de feuilles |
CA941280A (en) | 1969-11-17 | 1974-02-05 | Franklin R. Elevitch | Method and apparatus for forming electrophoresis apparatus and the like |
GB1354502A (en) | 1970-08-28 | 1974-06-05 | Ici Ltd | Heat exchangers |
BE794510A (fr) | 1972-01-28 | 1973-05-16 | World Inventions Ltd | Perfectionnements apportes aux aspirateurs |
US3812972A (en) | 1972-05-02 | 1974-05-28 | J Rosenblum | Liquid filter and method for fabricating same |
US3993566A (en) | 1975-01-08 | 1976-11-23 | Amerace Corporation | Reverse osmosis apparatus |
US4668558A (en) | 1978-07-20 | 1987-05-26 | Minnesota Mining And Manufacturing Company | Shaped plastic articles having replicated microstructure surfaces |
US4233029A (en) | 1978-10-25 | 1980-11-11 | Eastman Kodak Company | Liquid transport device and method |
US4200681A (en) | 1978-11-13 | 1980-04-29 | General Electric Company | Glass coated polycarbonate articles |
US4392362A (en) | 1979-03-23 | 1983-07-12 | The Board Of Trustees Of The Leland Stanford Junior University | Micro miniature refrigerators |
US4277966A (en) | 1979-06-04 | 1981-07-14 | Raytheon Company | Method of manufacturing a foraminous plate |
US4271119A (en) | 1979-07-23 | 1981-06-02 | Eastman Kodak Company | Capillary transport device having connected transport zones |
US4413407A (en) | 1980-03-10 | 1983-11-08 | Eastman Kodak Company | Method for forming an electrode-containing device with capillary transport between electrodes |
FR2481790A1 (fr) | 1980-04-30 | 1981-11-06 | Ecopol | Element modulaire moule, et application de cet element modulaire aux echangeurs a plaques et aux procedes de separation a membrane |
DE3212295A1 (de) | 1982-04-02 | 1983-10-06 | Friedrich Von Amelen | Verfahren zum verbinden zweier flaechen von platten |
US4601861A (en) | 1982-09-30 | 1986-07-22 | Amerace Corporation | Methods and apparatus for embossing a precision optical pattern in a resinous sheet or laminate |
US4533352A (en) | 1983-03-07 | 1985-08-06 | Pmt Inc. | Microsurgical flexible suction mat |
US4579555A (en) | 1983-12-05 | 1986-04-01 | Sil-Fab Corporation | Surgical gravity drain having aligned longitudinally extending capillary drainage channels |
US4552791A (en) | 1983-12-09 | 1985-11-12 | Cosden Technology, Inc. | Plastic container with decreased gas permeability |
DE3435661A1 (de) | 1984-09-28 | 1986-04-03 | Wilhelm 6000 Frankfurt Schuster | Saugerduese |
US4740468A (en) | 1985-02-14 | 1988-04-26 | Syntex (U.S.A.) Inc. | Concentrating immunochemical test device and method |
FR2579025B1 (fr) | 1985-03-15 | 1987-04-10 | Occidental Chem Co | Pile a combustible a separation amelioree |
US5133516A (en) | 1985-05-31 | 1992-07-28 | Minnesota Mining And Manufacturing Co. | Drag reduction article |
US4986496A (en) | 1985-05-31 | 1991-01-22 | Minnesota Mining And Manufacturing | Drag reduction article |
US4639748A (en) | 1985-09-30 | 1987-01-27 | Xerox Corporation | Ink jet printhead with integral ink filter |
AT396998B (de) | 1985-12-09 | 1994-01-25 | Ottosensors Corp | Messeinrichtungen und rohranschluss sowie verfahren zur herstellung einer messeinrichtung und verfahren zur verbindung von rohren mit einer messeinrichtung bzw. zur herstellung von rohranschlüssen |
US4906439A (en) | 1986-03-25 | 1990-03-06 | Pb Diagnostic Systems, Inc. | Biological diagnostic device and method of use |
JP2582066B2 (ja) | 1987-03-19 | 1997-02-19 | 株式会社日立製作所 | 光機能性デバイス |
DE3709278A1 (de) | 1987-03-20 | 1988-09-29 | Kernforschungsz Karlsruhe | Verfahren zur herstellung von feinstrukturkoerpern |
US5249359A (en) | 1987-03-20 | 1993-10-05 | Kernforschungszentrum Karlsruhe Gmbh | Process for manufacturing finely structured bodies such as heat exchangers |
US5078925A (en) | 1987-07-01 | 1992-01-07 | Minnesota Mining And Manufacturing Company | Preparing polypropylene articles |
US4950549A (en) | 1987-07-01 | 1990-08-21 | Minnesota Mining And Manufacturing Company | Polypropylene articles and method for preparing same |
US4867876A (en) | 1987-10-02 | 1989-09-19 | Kopf Henry B | Filter plate, filter plate element, and filter comprising same |
US4913858A (en) | 1987-10-26 | 1990-04-03 | Dennison Manufacturing Company | Method of embossing a coated sheet with a diffraction or holographic pattern |
SE460013B (sv) | 1987-11-20 | 1989-09-04 | Adolf Gunnar Gustafson | Anordning foer att medelst undertryck avlaegsna partiklar, vaetskor etc.fraan ett underlag |
US4871623A (en) | 1988-02-19 | 1989-10-03 | Minnesota Mining And Manufacturing Company | Sheet-member containing a plurality of elongated enclosed electrodeposited channels and method |
US5158557A (en) | 1988-04-04 | 1992-10-27 | Minnesota Mining And Manufacturing Company | Refastenable adhesive tape closure |
US4908112A (en) | 1988-06-16 | 1990-03-13 | E. I. Du Pont De Nemours & Co. | Silicon semiconductor wafer for analyzing micronic biological samples |
US5132012A (en) | 1988-06-24 | 1992-07-21 | Hitachi, Ltd. | Liquid chromatograph |
US5175030A (en) | 1989-02-10 | 1992-12-29 | Minnesota Mining And Manufacturing Company | Microstructure-bearing composite plastic articles and method of making |
US5411858A (en) | 1989-05-17 | 1995-05-02 | Actimed Laboratories, Inc. | Manufacturing process for sample initiated assay device |
US5143854A (en) | 1989-06-07 | 1992-09-01 | Affymax Technologies N.V. | Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof |
JPH03132705A (ja) | 1989-10-19 | 1991-06-06 | Brother Ind Ltd | 光導波路アレイ及びその製造方法 |
US5014389A (en) | 1989-11-15 | 1991-05-14 | Concept Inc. | Foot manipulated suction head and method for employing same |
JPH03240005A (ja) | 1990-02-19 | 1991-10-25 | Brother Ind Ltd | 光導波路アレイ |
DE69113450T3 (de) | 1990-02-20 | 2001-06-13 | The Procter & Gamble Company, Cincinnati | Struktur mit offenen kapillarkanälen, verfahren zu deren herstellung und extrusionsdüse zum gebrauch darin. |
US5750015A (en) | 1990-02-28 | 1998-05-12 | Soane Biosciences | Method and device for moving molecules by the application of a plurality of electrical fields |
US5126022A (en) | 1990-02-28 | 1992-06-30 | Soane Tecnologies, Inc. | Method and device for moving molecules by the application of a plurality of electrical fields |
US5534576A (en) | 1990-04-17 | 1996-07-09 | E. I. Du Pont De Nemours And Company | Sealant for electrochemical cells |
WO1992008972A1 (en) | 1990-11-16 | 1992-05-29 | Abbott Laboratories | Improved agglutination reaction device having geometrically modified chambers |
US5698299A (en) | 1991-02-28 | 1997-12-16 | Dyconex Patente Ag | Thin laminated microstructure with precisely aligned openings |
US5474796A (en) | 1991-09-04 | 1995-12-12 | Protogene Laboratories, Inc. | Method and apparatus for conducting an array of chemical reactions on a support surface |
US5605662A (en) | 1993-11-01 | 1997-02-25 | Nanogen, Inc. | Active programmable electronic devices for molecular biological analysis and diagnostics |
DE59108591D1 (de) | 1991-12-06 | 1997-04-10 | Ciba Geigy Ag | Elektrophoretische Trennvorrichtung und elektrophoretisches Trennverfahren |
BR9206951A (pt) | 1991-12-18 | 1995-11-28 | Minnesota Mining & Mfg | Artigo absorvente |
US5514120A (en) | 1991-12-18 | 1996-05-07 | Minnesota Mining And Manufacturing Company | Liquid management member for absorbent articles |
US5227008A (en) | 1992-01-23 | 1993-07-13 | Minnesota Mining And Manufacturing Company | Method for making flexible circuits |
DE4210072A1 (de) | 1992-03-27 | 1993-03-25 | Daimler Benz Ag | Vorrichtung zum auftragen zaeher klebermassen auf starre anklebeflaechen |
US5176667A (en) | 1992-04-27 | 1993-01-05 | Debring Donald L | Liquid collection apparatus |
US5296375A (en) | 1992-05-01 | 1994-03-22 | Trustees Of The University Of Pennsylvania | Mesoscale sperm handling devices |
US5498392A (en) | 1992-05-01 | 1996-03-12 | Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification device and method |
US5304487A (en) | 1992-05-01 | 1994-04-19 | Trustees Of The University Of Pennsylvania | Fluid handling in mesoscale analytical devices |
US5726026A (en) | 1992-05-01 | 1998-03-10 | Trustees Of The University Of Pennsylvania | Mesoscale sample preparation device and systems for determination and processing of analytes |
US5637469A (en) | 1992-05-01 | 1997-06-10 | Trustees Of The University Of Pennsylvania | Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems |
US5265184A (en) | 1992-05-28 | 1993-11-23 | Motorola, Inc. | Molded waveguide and method for making same |
US5440332A (en) | 1992-07-06 | 1995-08-08 | Compa Computer Corporation | Apparatus for page wide ink jet printing |
JPH0724643B2 (ja) | 1992-10-26 | 1995-03-22 | 東京コスモス電機株式会社 | 還流式掃除機及び吸引式掃除機 |
US5583211A (en) | 1992-10-29 | 1996-12-10 | Beckman Instruments, Inc. | Surface activated organic polymers useful for location - specific attachment of nucleic acids, peptides, proteins and oligosaccharides |
US5651888A (en) | 1992-12-16 | 1997-07-29 | Kubota Corporation | Filtration membrane cartridge |
US5399486A (en) | 1993-02-18 | 1995-03-21 | Biocircuits Corporation | Disposable unit in diagnostic assays |
US5401913A (en) | 1993-06-08 | 1995-03-28 | Minnesota Mining And Manufacturing Company | Electrical interconnections between adjacent circuit board layers of a multi-layer circuit board |
DE4328001C2 (de) | 1993-08-20 | 1997-03-20 | Dia Nielsen Gmbh | Tintenbehälter |
US5728446A (en) | 1993-08-22 | 1998-03-17 | Johnston; Raymond P. | Liquid management film for absorbent articles |
US5437651A (en) | 1993-09-01 | 1995-08-01 | Research Medical, Inc. | Medical suction apparatus |
US5450235A (en) | 1993-10-20 | 1995-09-12 | Minnesota Mining And Manufacturing Company | Flexible cube-corner retroreflective sheeting |
US5691846A (en) | 1993-10-20 | 1997-11-25 | Minnesota Mining And Manufacturing Company | Ultra-flexible retroreflective cube corner composite sheetings and methods of manufacture |
US5429807A (en) | 1993-10-28 | 1995-07-04 | Beckman Instruments, Inc. | Method and apparatus for creating biopolymer arrays on a solid support surface |
US5737457A (en) | 1994-02-25 | 1998-04-07 | Fci - Fiberchem, Inc. | Chip level waveguide sensor |
US6001229A (en) | 1994-08-01 | 1999-12-14 | Lockheed Martin Energy Systems, Inc. | Apparatus and method for performing microfluidic manipulations for chemical analysis |
US5510155A (en) | 1994-09-06 | 1996-04-23 | Becton, Dickinson And Company | Method to reduce gas transmission |
US5707799A (en) | 1994-09-30 | 1998-01-13 | Abbott Laboratories | Devices and methods utilizing arrays of structures for analyte capture |
US5571410A (en) | 1994-10-19 | 1996-11-05 | Hewlett Packard Company | Fully integrated miniaturized planar liquid sample handling and analysis device |
US5645702A (en) | 1995-06-07 | 1997-07-08 | Hewlett-Packard Company | Low voltage miniaturized column analytical apparatus and method |
US5641400A (en) | 1994-10-19 | 1997-06-24 | Hewlett-Packard Company | Use of temperature control devices in miniaturized planar column devices and miniaturized total analysis systems |
US5658413A (en) | 1994-10-19 | 1997-08-19 | Hewlett-Packard Company | Miniaturized planar columns in novel support media for liquid phase analysis |
US5500071A (en) | 1994-10-19 | 1996-03-19 | Hewlett-Packard Company | Miniaturized planar columns in novel support media for liquid phase analysis |
US5585069A (en) | 1994-11-10 | 1996-12-17 | David Sarnoff Research Center, Inc. | Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis |
DE19501017C2 (de) | 1995-01-14 | 2002-10-24 | Michael Volkmer | Chirurgisches Absauginstrument |
US5757482A (en) | 1995-04-20 | 1998-05-26 | Perseptive Biosystems, Inc. | Module for optical detection in microscale fluidic analyses |
US5692263A (en) | 1995-06-02 | 1997-12-02 | Sorenson; R. Wayne | Delicate dusting vacuum tool |
US5856174A (en) | 1995-06-29 | 1999-01-05 | Affymetrix, Inc. | Integrated nucleic acid diagnostic device |
US5658802A (en) | 1995-09-07 | 1997-08-19 | Microfab Technologies, Inc. | Method and apparatus for making miniaturized diagnostic arrays |
EP0854781A1 (en) | 1995-10-12 | 1998-07-29 | Minnesota Mining And Manufacturing Company | Microstructured polymeric substrate |
US5705813A (en) | 1995-11-01 | 1998-01-06 | Hewlett-Packard Company | Integrated planar liquid handling system for maldi-TOF MS |
US5716825A (en) | 1995-11-01 | 1998-02-10 | Hewlett Packard Company | Integrated nucleic acid analysis system for MALDI-TOF MS |
US5628735A (en) | 1996-01-11 | 1997-05-13 | Skow; Joseph I. | Surgical device for wicking and removing fluid |
US5721435A (en) | 1996-04-09 | 1998-02-24 | Hewlett Packard Company | Methods and apparatus for measuring optical properties of biological and chemical substances |
US5885470A (en) | 1997-04-14 | 1999-03-23 | Caliper Technologies Corporation | Controlled fluid transport in microfabricated polymeric substrates |
US5932315A (en) | 1997-04-30 | 1999-08-03 | Hewlett-Packard Company | Microfluidic structure assembly with mating microfeatures |
US6375871B1 (en) | 1998-06-18 | 2002-04-23 | 3M Innovative Properties Company | Methods of manufacturing microfluidic articles |
US5842787A (en) | 1997-10-09 | 1998-12-01 | Caliper Technologies Corporation | Microfluidic systems incorporating varied channel dimensions |
US6167910B1 (en) * | 1998-01-20 | 2001-01-02 | Caliper Technologies Corp. | Multi-layer microfluidic devices |
-
1998
- 1998-06-18 US US09/099,562 patent/US6375871B1/en not_active Expired - Lifetime
-
1999
- 1999-05-18 AU AU40032/99A patent/AU742931B2/en not_active Ceased
- 1999-05-18 WO PCT/US1999/011024 patent/WO1999065664A1/en active IP Right Grant
- 1999-05-18 CN CNB998073776A patent/CN100374283C/zh not_active Expired - Lifetime
- 1999-05-18 KR KR1020007014303A patent/KR100618013B1/ko not_active IP Right Cessation
- 1999-05-18 EP EP19990923208 patent/EP1087864B1/en not_active Expired - Lifetime
- 1999-05-18 JP JP2000554525A patent/JP4489945B2/ja not_active Expired - Lifetime
- 1999-05-18 DE DE1999630254 patent/DE69930254T2/de not_active Expired - Lifetime
-
2002
- 2002-03-27 US US10/108,069 patent/US6761962B2/en not_active Expired - Lifetime
-
2010
- 2010-02-04 JP JP2010023193A patent/JP2010111129A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1037888A (zh) * | 1988-04-22 | 1989-12-13 | 艾尔坎国际有限公司 | 溶胶-凝胶法制造陶瓷 |
US5376252A (en) * | 1990-05-10 | 1994-12-27 | Pharmacia Biosensor Ab | Microfluidic structure and process for its manufacture |
WO1998000231A1 (en) * | 1996-06-28 | 1998-01-08 | Caliper Technologies Corporation | High-throughput screening assay systems in microscale fluidic devices |
WO1998024544A1 (en) * | 1996-12-04 | 1998-06-11 | Nanogen, Inc. | Laminated assembly for active bioelectronic devices |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102665916A (zh) * | 2009-11-23 | 2012-09-12 | 3M创新有限公司 | 微孔阵列制品及使用方法 |
CN102665916B (zh) * | 2009-11-23 | 2014-09-24 | 3M创新有限公司 | 微孔阵列制品及使用方法 |
CN102822657A (zh) * | 2010-01-20 | 2012-12-12 | 耐克思乐生物科学有限责任公司 | 细胞计数和样品室及其装配方法 |
CN102822657B (zh) * | 2010-01-20 | 2016-01-20 | 耐克思乐生物科学有限责任公司 | 细胞计数和样品室及其装配方法 |
CN105269915A (zh) * | 2014-06-23 | 2016-01-27 | 施乐公司 | 用于形成粘结衬底的系统和方法 |
CN105269915B (zh) * | 2014-06-23 | 2018-11-09 | 施乐公司 | 用于形成粘结衬底的系统和方法 |
CN110573194A (zh) * | 2017-04-03 | 2019-12-13 | 由退伍军人事务部代表的美国政府 | 微流控扩散装置和系统及其制造和使用方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1087864B1 (en) | 2006-03-08 |
US6761962B2 (en) | 2004-07-13 |
DE69930254D1 (de) | 2006-05-04 |
KR100618013B1 (ko) | 2006-08-31 |
US20020098124A1 (en) | 2002-07-25 |
DE69930254T2 (de) | 2006-12-07 |
US6375871B1 (en) | 2002-04-23 |
AU742931B2 (en) | 2002-01-17 |
EP1087864A1 (en) | 2001-04-04 |
JP2002518202A (ja) | 2002-06-25 |
CN1305410A (zh) | 2001-07-25 |
KR20010052934A (ko) | 2001-06-25 |
JP2010111129A (ja) | 2010-05-20 |
JP4489945B2 (ja) | 2010-06-23 |
AU4003299A (en) | 2000-01-05 |
WO1999065664A1 (en) | 1999-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100374283C (zh) | 微流体制品及其制造方法 | |
US6827095B2 (en) | Modular microfluidic systems | |
JP5016611B2 (ja) | スタンピング方法 | |
JP2983060B2 (ja) | ミクロ液体構造およびその製造方法 | |
EP0996547B1 (en) | The production of microstructures for use in assays | |
EP0964428B1 (en) | Miniaturized device for sample processing and mass spectroscopic detection of liquid phase samples | |
US5965237A (en) | Microstructure device | |
US20020185184A1 (en) | Microfluidic synthesis devices and methods | |
Haraldsson et al. | 3D polymeric microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP) | |
JP2009095971A (ja) | 多機能ミクロ構造およびその作製 | |
US20080233011A1 (en) | Microfluidic devices | |
JP2008008880A (ja) | プラスチック製マイクロチップ、及びその製造方法、並びにそれを利用したバイオチップ又はマイクロ分析チップ | |
CN101410323B (zh) | 压印方法和器件 | |
CN110496657B (zh) | 一种可形成液态金属液滴的微流控芯片及其制备方法 | |
Sethu et al. | Cast epoxy-based microfluidic systems and their application in biotechnology | |
CA2745162A1 (en) | Microfluidic devices | |
Yussuf et al. | Sealing of polymeric-microfluidic devices by using high frequency electromagnetic field and screen printing technique | |
CN101676033B (zh) | 微流控芯片以及分析方法 | |
CN209952893U (zh) | 一种微流控贴纸 | |
CN109012770B (zh) | 多层纸芯片结构、制造设备和方法以及流体层间流动方法 | |
KR20040009187A (ko) | 마이크로칩 제조방법. | |
DE10153663B4 (de) | Mikroanalytische Vorrichtung zum Erfassen von Nahe-Infrarot-Strahlung emittierenden Molekülen | |
JP2005297416A (ja) | 樹脂製マイクロ化学チップの製造方法およびその方法により作成された樹脂製マイクロ化学チップ | |
EP1602623B1 (en) | Method of moulding a microfluidic structure and mould | |
Charlot et al. | A low cost and hybrid technology for integrating silicon sensors or actuators in polymer microfluidic systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20080312 |