CN100374194C - 无机氧化物或金属纳米粒子的制备方法及设备 - Google Patents

无机氧化物或金属纳米粒子的制备方法及设备 Download PDF

Info

Publication number
CN100374194C
CN100374194C CNB2006100888174A CN200610088817A CN100374194C CN 100374194 C CN100374194 C CN 100374194C CN B2006100888174 A CNB2006100888174 A CN B2006100888174A CN 200610088817 A CN200610088817 A CN 200610088817A CN 100374194 C CN100374194 C CN 100374194C
Authority
CN
China
Prior art keywords
reactor
hollow
metal
measuring pump
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100888174A
Other languages
English (en)
Other versions
CN1907556A (zh
Inventor
何洪
戴洪兴
訾学红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CNB2006100888174A priority Critical patent/CN100374194C/zh
Publication of CN1907556A publication Critical patent/CN1907556A/zh
Priority to US11/777,090 priority patent/US8133441B2/en
Application granted granted Critical
Publication of CN100374194C publication Critical patent/CN100374194C/zh
Priority to US13/176,728 priority patent/US8382877B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0047Preparation of sols containing a metal oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0043Preparation of sols containing elemental metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1893Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/089Liquid-solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种无机氧化物和金属纳米粒子的制备方法和装置,属于纳米材料的制备领域。常规沉淀法或金属离子液相还原法制备无机氧化物和金属纳米粒子具有反应不均匀、结晶过程难以控制的缺点。本发明是在机械搅拌和超声诱导的条件下,用计量泵(2)将沉淀剂或还原剂通过中空纤维膜(4)扩散到金属盐溶液中,或用计量泵(2)将金属盐溶液通过中空纤维膜(4)扩散到沉淀剂或还原剂溶液中,使金属离子形成纳米氢氧化物沉淀或金属纳米粒子溶胶,灼烧该纳米氢氧化物沉淀可得到纳米无机氧化物,而金属纳米粒子溶胶则可以作为制备纳米催化剂的前驱体。利用本发明的方法和装置制备的无机氧化物和金属纳米粒子粒度小、粒度分布均匀一致。

Description

无机氧化物或金属纳米粒子的制备方法及设备
技术领域
本发明涉及一种无机氧化物纳米粒子或金属纳米粒子的制备方法及相关设备,属于纳米材料的制备领域。制备的无机氧化物纳米粒子或金属纳米粒子可以用作为制备纳米催化剂的前驱体或用于其它纳米粉状材料的制备。
背景技术
传统的纳米粉体材料或纳米催化剂的制备方法有沉淀法、溶胶凝胶法、水热合成法、水解法、络合物热分解法、反向微乳法、金属离子液相还原法、膜板剂法、物理或化学气相沉积法等。在制备纳米粉体材料或纳米催化剂时,沉淀法、溶胶凝胶法、水热合成法、水解法、络合物热分解法、金属离子液相还原法存在着工艺条件难以控制,粉体产物颗粒度分布广,而膜板剂法、反向微乳法、物理或化学气相沉积法存在制备成本高,难以形成规模生产。
沉淀法和金属离子液相还原法分别是规模生产无机纳米粉体或金属纳米粒子的常用方法,例如工业上用共沉淀法制备纳米Ce1-xZrxO2固溶体。但是,这两种方法在工艺过程中存在沉淀剂或还原剂浓度不均匀,结晶过程难以有效控制的缺点。并且制备出的纳米粒子粒度分布广而不均匀,使其物理化学性能难以得到保障。
发明内容
本发明的目的是提供一种无机氧化物纳米粉体或金属纳米粒子(溶胶)的制备方法及相关设备,克服常规沉淀法或金属离子液相还原法的缺点,使沉淀或还原反应均匀,速度可控。
本发明的目的是利用膜扩散法将沉淀剂或还原剂均匀缓慢地加入到反应体系中实现的。
一种无机氧化物或金属纳米粒子的制备装置,其特征在于:整套设备由搅拌器1、计量泵2、反应器3、储罐5和超声波发生器6组成;
反应器3内由上向下设置多层相连的环状中空纤维膜管,搅拌器1的轴带有搅拌叶8的一端伸入到反应器中该多层环状中空纤维膜管所围成的空间中;
当实验室制备无机氧化物纳米粒子或金属纳米粒子时,反应器3置于超声波发生器6内,中空纤维膜4通过中空纤维膜管道口7与计量泵2连接,计量泵2与储罐5相连接;
当工业大规模生产无机氧化物纳米粒子或金属纳米粒子时,反应器3与超声波发生器6连接,并且反应器3的一端设置反应产物出口10,另一端设置两个溶液入口9,其中一个溶液入口9与计量泵2连接,中空纤维膜管道口7位于靠近连接计量泵2的溶液入口9处,计量泵2与储罐5相连接。
所述的中空纤维膜4可以是有机中空纤维膜或者无机陶瓷中空纤维膜,膜壁孔径为0.03-0.3μm。
一种利用所述设备实现实验室制备无机氧化物或金属纳米粒子的方法,其特征在于,包括如下步骤:
(1)配制金属盐溶液,并将溶液转移到反应器3中,将沉淀剂或还原剂放入储罐5中;
(2)启动计量泵2,使沉淀剂或还原剂从储罐5经过计量泵2和中空纤维膜管道口7注入到中空纤维膜4的管道中,启动搅拌器1和超声波发生器6,使沉淀剂或还原剂通过中空纤维膜4管道壁上的微孔扩散到反应器3中的金属盐溶液中发生反应;
反应产物为沉淀时,金属盐溶液和沉淀剂在反应器3中反应2-8小时后,停止反应,收集并分离沉淀物,灼烧后得到无机氧化物纳米粒子;
反应产物不是沉淀时,反应器3中还原剂的物质的量比金属离子物质的量高5-20倍时,停止反应,所得溶液即为金属纳米粒子溶胶。
一种利用所述设备实现工业大规模生产制备无机氧化物或金属纳米粒子的方法,其特征在于,包括如下步骤:
(1)配制金属盐溶液,并将溶液通过未与计量泵2连接的溶液入口9转移到反应器3中,将沉淀剂或还原剂放入储罐5中;
(2)启动计量泵2,使沉淀剂或还原剂从储罐5经过计量泵2、连接计量泵2的溶液入口9和中空纤维膜管道口7注入到中空纤维膜的管道中,启动搅拌器1和超声波发生器6,使沉淀剂或还原剂通过中空纤维膜4管道壁上的微孔扩散到反应器3中的金属盐溶液中发生反应;
反应产物为沉淀时,金属盐溶液和沉淀剂在反应器3中的停留2-8小时后,从反应产物出口10流出,收集并分离沉淀物,灼烧后得到无机氧化物纳米粒子;
反应产物不是沉淀时,反应器3中反应产物出口10附近还原剂的物质的量比金属离子物质的量高5-20倍时,使溶液从反应产物出口10流出,所得溶液即为金属纳米粒子溶胶。
所述的一种无机氧化物或金属纳米粒子的制备方法,其特征在于:计量泵2的流量为0.2-100ml/min,搅拌器1的转速为100-200转/min,超声波发生器6的发射频率为60-120KHz。
所述的无机氧化物或金属纳米粒子的制备方法,还可以是在步骤(1)将沉淀剂或还原剂放入反应器3中,将金属盐溶液放入储罐5中;对应的步骤(2)将金属盐溶液通过中空纤维膜4管道壁上的微孔扩散到反应器3中的沉淀剂或还原剂溶液中。
所述的金属盐溶液为碱土金属、稀土金属、过渡族金属的无机盐或有机盐溶液。
所述的沉淀剂为NH4OH、NaOH或草酸。
所述的还原剂为N2H4、NaBH4、抗坏血酸、草酸、甲醛或乙醇。
本发明的有益效果是:
利用本发明的方法和设备制备无机氧化物纳米粒子或金属纳米粒子,具有成本低、反应均匀,可以有效控制结晶过程的优点,制备的粒子粒度小、粒度分布均匀一致。
附图说明
图1超声波诱导膜扩散法实验室制备无机氧化物纳米粒子或金属纳米粒子装置系统示意图;
图2超声波诱导膜扩散法工业大规模生产无机氧化物纳米粒子或金属纳米粒子装置系统示意图;
附图标记:
1、搅拌器,2、计量泵,3反应器,4、中空纤维膜,5、储罐,6、超声波发生器,7、中空纤维膜管道口8、搅拌叶,9、溶液入口,10、反应产物出口。
图3实验室制备无机氧化物纳米粒子或金属纳米粒子时反应器3的内部结构图;
图4工业大规模生产无机氧化物纳米粒子或金属纳米粒子时反应器3的内部结构图;
图5利用本发明方法制备的Ce0.6Zr0.4O2固溶体HRSEM照片
图6常规沉淀法制备的Ce0.6Zr0.4O2固溶体HRSEM照片
图7利用本发明方法制备的Ag纳米粒子TEM照片
图8常规液相还原法制备的Ag纳米粒子TEM照片
具体实施方式
实施例1
将已称重的硝酸亚铈(Ce(NO3)3·6H2O)和硝酸氧锆(ZrONO4)溶于300ml去离子水中,将该溶液转移到反应器3中(1000ml),设置超声波发生器6的发射频率为60赫兹,水浴温度为60℃,启动搅拌器1,使其转速为100转/分,利用计量泵2以0.2ml/min的液体流量将氨水经过中空纤维膜管道口7注入到中空纤维膜4的管道中,氨水通过中空纤维膜4的微孔扩散到含有Ce3+和Zr4+离子的溶液中,缓慢产生浅黄色沉淀,当溶液的pH值达到10时,关闭计量泵2、超声波发生器6和搅拌器1,过滤沉淀物,沉淀物在110℃烘干10小时,在500℃灼烧4小时,即得浅黄色Ce0.6Zr0.4O2固溶体。该产物比表面积为108m2/g,粒子粒度小于10nm且粒度分布均匀一致(图5),和传统的沉淀法制备的Ce0.6Zr0.4O2固溶体(图6)相比,利用本发明的方法制备的Ce0.6Zr0.4O2固溶体具有粒度小,粒度分布窄等优点。利用H2-O2脉冲法测量的该纳米Ce0.6Zr0.4O2固溶体储氧量为0.757mmol/g,比传统的沉淀法制备的Ce0.6Zr0.4O2固溶体储氧量(0.357mmol/g)高出一倍。
实施例2
将已称重的硝酸银(AgNO3)和聚乙烯吡咯烷酮(PVP,分子量为40000)溶于300ml去离子水中,将该溶液转移到釜式反应器3中(1000ml),将已称重的硼氢化钠(NaBH4)溶于30ml去离子水中,将该溶液转移到储罐中5中,设置超声波发生器6的发射频率为120赫兹,水浴温度为60℃,启动搅拌器1,使其转速为200转/分,利用计量泵2以1.2ml/min的液体流量将硼氢化钠(NaBH4)水溶液经过中空纤维膜管道口7注入到中空纤维膜4的管道中,硼氢化钠(NaBH4)水溶液通过中空纤维膜4的微孔扩散到含有Ag+离子的溶液中,溶液颜色从无色透明慢慢变成棕色,当硼氢化钠(NaBH4)水溶液全部注入到釜式反应器中,关闭计量泵2、超声波发生器6和搅拌器1,即得棕色Ag溶胶。Ag粒子粒度为5-8nm且粒度分布均匀一致(图7),和传统的金属离子液相NaBH4还原法制备的Ag纳米颗粒(图8)相比,利用本发明的方法制备的Ag纳米颗粒具有粒度小,粒度分布窄等优点。

Claims (8)

1.一种无机氧化物或金属纳米粒子的制备设备,其特征在于:整套设备由搅拌器(1)、计量泵(2)、反应器(3)、储罐(5)和超声波发生器(6)组成;
反应器(3)内由上向下设置多层相连的环状中空纤维膜管,搅拌器(1)的轴带有搅拌叶(8)的一端伸入到反应器中该多层环状中空纤维膜管所围成的空间中;
当实验室制备无机氧化物纳米粒子或金属纳米粒子时,反应器(3)置于超声波发生器(6)内,中空纤维膜(4)通过中空纤维膜管道口(7)与计量泵(2)连接,计量泵(2)与储罐(5)相连接;
当工业大规模生产无机氧化物纳米粒子或金属纳米粒子时,反应器(3)与超声波发生器(6)连接,并且反应器(3)的一端设置反应产物出口(10),另一端设置两个溶液入口(9),其中一个溶液入口(9)与计量泵(2)连接,中空纤维膜管道口(7)位于靠近连接计量泵(2)的溶液入口(9)处,计量泵(2)与储罐(5)相连接。
2.根据权利要求1所述的一种无机氧化物或金属纳米粒子的制备设备,其特征在于:中空纤维膜(4)为有机中空纤维膜或者无机陶瓷中空纤维膜,膜壁孔径为0.03μm-0.3μm。
3.一种利用权利要求1所述设备实现实验室制备无机氧化物或金属纳米粒子的方法,其特征在于,包括如下步骤:
1)配制金属盐溶液,并将溶液转移到反应器(3)中,将沉淀剂或还原剂放入储罐(5)中;
2)启动计量泵(2),使沉淀剂或还原剂从储罐(5)经过计量泵(2)和中空纤维膜管道口(7)注入到中空纤维膜(4)的管道中,启动搅拌器(1)和超声波发生器(6),使沉淀剂或还原剂通过中空纤维膜(4)管道壁上的微孔扩散到反应器(3)中的金属盐溶液中发生反应;
反应产物为沉淀时,金属盐溶液和沉淀剂在反应器(3)中反应2-8小时后,停止反应,收集并分离沉淀物,灼烧后得到无机氧化物纳米粒子;
反应产物不是沉淀时,反应器(3)中还原剂的物质的量比金属离子物质的量高5-20倍时,停止反应,所得溶液即为金属纳米粒子溶胶。
4.一种利用权利要求1所述设备实现工业大规模生产制备无机氧化物或金属纳米粒子的方法,其特征在于,包括如下步骤:
1)配制金属盐溶液,并将溶液通过未与计量泵(2)连接的溶液入口(9)转移到反应器(3)中,将沉淀剂或还原剂放入储罐(5)中;
2)启动计量泵(2),使沉淀剂或还原剂从储罐(5)经过计量泵(2)、连接计量泵(2)的溶液入口(9)和中空纤维膜管道口(7)注入到中空纤维膜的管道中,启动搅拌器(1)和超声波发生器(6),使沉淀剂或还原剂通过中空纤维膜(4)管道壁上的微孔扩散到反应器(3)中的金属盐溶液中发生反应;
反应产物为沉淀时,金属盐溶液和沉淀剂在反应器(3)中的停留2-8小时后,从反应产物出口(10)流出,收集并分离沉淀物,灼烧后得到无机氧化物纳米粒子;
反应产物不是沉淀时,反应器(3)中反应产物出口(10)附近还原剂的物质的量比金属离子物质的量高5-20倍时,使溶液从反应产物出口(10)流出,所得溶液即为金属纳米粒子溶胶。
5.根据权利要求3或4所述的一种无机氧化物或金属纳米粒子的制备方法,其特征在于:计量泵(2)的流量为0.2-100ml/min,搅拌器(1)的转速为100-200转/min,超声波发生器(6)的发射频率为60-120KHz。
6.根据权利要求3或4所述的一种无机氧化物或金属纳米粒子的制备方法,其特征在于:金属盐溶液为碱土金属、稀土金属、过渡族金属的无机盐或有机盐溶液。
7.根据权利要求3或4所述的一种无机氧化物或金属纳米粒子的制备方法,其特征在于:沉淀剂为NH4OH、NaOH或草酸。
8.根据权利要求3或4所述的一种无机氧化物或金属纳米粒子的制备方法,其特征在于:还原剂为N2H4、NaBH4、抗坏血酸、草酸、甲醛或乙醇。
CNB2006100888174A 2006-07-19 2006-07-19 无机氧化物或金属纳米粒子的制备方法及设备 Expired - Fee Related CN100374194C (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CNB2006100888174A CN100374194C (zh) 2006-07-19 2006-07-19 无机氧化物或金属纳米粒子的制备方法及设备
US11/777,090 US8133441B2 (en) 2006-07-19 2007-07-12 Apparatus and process for metal oxides and metal nanoparticles synthesis
US13/176,728 US8382877B2 (en) 2006-07-19 2011-07-05 Process for metal oxide and metal nanoparticles synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100888174A CN100374194C (zh) 2006-07-19 2006-07-19 无机氧化物或金属纳米粒子的制备方法及设备

Publications (2)

Publication Number Publication Date
CN1907556A CN1907556A (zh) 2007-02-07
CN100374194C true CN100374194C (zh) 2008-03-12

Family

ID=37698886

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100888174A Expired - Fee Related CN100374194C (zh) 2006-07-19 2006-07-19 无机氧化物或金属纳米粒子的制备方法及设备

Country Status (2)

Country Link
US (2) US8133441B2 (zh)
CN (1) CN100374194C (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101161342B (zh) * 2007-11-23 2010-06-23 北京工业大学 高活性负载型RhxAu1-x/Y纳米催化剂的制备方法
CN101532168B (zh) * 2009-03-06 2011-08-03 宁波大学 能够抑制多结晶水晶型生长的配合物晶体培育装置
CN101532167B (zh) * 2009-03-06 2011-08-03 宁波大学 对易风化晶型生长有阻滞作用的配合物晶体合成装置
US20130216646A1 (en) * 2011-04-11 2013-08-22 Kandalam V. Ramanujachary Nanoparticles of Nutritional and Pharmaceutical Compounds
US20130087020A1 (en) * 2011-10-07 2013-04-11 University Of Southern California Continuous flow synthesis of nanomaterials using ionic liquids in microfluidic reactors
CN102689017A (zh) * 2012-05-25 2012-09-26 南京白云化工环境监测有限公司 制备纳米铜镍合金的自动化生产设备
US9624598B2 (en) * 2012-09-06 2017-04-18 The Research Foundation For The State University Of New York Segmented metallic nanostructures, homogeneous metallic nanostructures and methods for producing same
EP3238943A4 (en) * 2014-12-24 2018-08-01 DIC Corporation Hollow-fiber degassing module and inkjet printer
CN104934330A (zh) * 2015-05-08 2015-09-23 京东方科技集团股份有限公司 一种薄膜晶体管及其制备方法、阵列基板和显示面板
CN107949539B (zh) 2015-07-23 2021-03-16 昭荣化学工业株式会社 纳米晶体的制造方法和纳米晶体制造装置
CN106270554B (zh) * 2016-09-28 2018-04-13 广州凯耀资产管理有限公司 一种超细钴粉的制备方法
US10961665B2 (en) * 2017-10-31 2021-03-30 Koppers Delaware, Inc. Rail joint assembly having forged rail joint bars
CN112604640A (zh) * 2020-12-28 2021-04-06 苏州欣影生物医药技术有限公司 一种纳米材料制备装置及方法
CN114197088B (zh) * 2021-11-09 2023-04-21 华南理工大学 一种超声诱导制备纳米纤维或纳米微球的方法及由纳米材料形成的薄膜

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1192991A (zh) * 1997-03-06 1998-09-16 西北大学 一种制备纳米级氧化锌的新方法
US6558575B2 (en) * 2001-02-07 2003-05-06 Agfa-Gevaert Perparation of improved ZnS:Mn phosphors

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2940831A (en) * 1954-12-23 1960-06-14 Nossardi Gerolamo Method of and installation for the continuous extraction of magnesium with milk of lime from sea waters and the like
JP3011530B2 (ja) * 1992-04-06 2000-02-21 森永乳業株式会社 スプレッドとその製造法
GB9606738D0 (en) * 1996-03-29 1996-06-05 Disperse Tech Ltd Dispersion of immiscible phases
EP1875960A3 (en) * 1998-10-28 2008-01-30 Covaris, Inc. Controlling sonic treatment
US6209855B1 (en) * 1999-05-10 2001-04-03 Canzone Limited Gas/liquid mixing apparatus and method
JP2001239140A (ja) * 1999-12-22 2001-09-04 Reika Kogyo Kk 反応攪拌装置、反応分画濾過装置及び分画方法、生成方法、濾過方法
AU2001252588A1 (en) * 2000-04-28 2001-11-12 Tanabe Seiyaku Co., Ltd. Method for preparing microsphere
EP1412418A1 (en) * 2001-08-03 2004-04-28 Akzo Nobel N.V. Process to make dispersions
DE60221872T2 (de) * 2001-10-26 2008-05-08 Miyazaki Prefecture Kugelförmiges monodisperses metallteilchen
US20050271731A1 (en) * 2002-09-11 2005-12-08 Akira Suzuki Process for the production of microspheres and unit therefor
AU2003270129A1 (en) * 2002-10-02 2004-04-23 Unilever Plc Method for controlling droplet size of an emulsion when mixing two immiscible fluids
US7595195B2 (en) * 2003-02-11 2009-09-29 The Regents Of The University Of California Microfluidic devices for controlled viscous shearing and formation of amphiphilic vesicles
JP2007509750A (ja) * 2003-10-31 2007-04-19 シェブロン フィリップス ケミカル カンパニー エルピー イオン性液体触媒化学反応を改善する高剪断を与える方法及びシステム
US7053021B1 (en) * 2004-04-22 2006-05-30 The Research Foundation Of The State University Of New York Core-shell synthesis of carbon-supported alloy nanoparticle catalysts
JPWO2006006349A1 (ja) * 2004-07-07 2008-04-24 株式会社カネカ ポリマー修飾ナノ粒子の製造方法
KR100753773B1 (ko) * 2005-08-04 2007-08-30 학교법인 포항공과대학교 페로브스카이트 구조를 갖는 산화물 나노 분말 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1192991A (zh) * 1997-03-06 1998-09-16 西北大学 一种制备纳米级氧化锌的新方法
US6558575B2 (en) * 2001-02-07 2003-05-06 Agfa-Gevaert Perparation of improved ZnS:Mn phosphors

Also Published As

Publication number Publication date
US20100025224A1 (en) 2010-02-04
CN1907556A (zh) 2007-02-07
US20110286904A1 (en) 2011-11-24
US8382877B2 (en) 2013-02-26
US8133441B2 (en) 2012-03-13

Similar Documents

Publication Publication Date Title
CN100374194C (zh) 无机氧化物或金属纳米粒子的制备方法及设备
Bao et al. Compositions, structures, and catalytic activities of CeO2@ Cu2O nanocomposites prepared by the template-assisted method
Wang et al. Microfluidic synthesis of nanohybrids
Chen et al. Fabricate globular flower-like CuS/CdIn2S4/ZnIn2S4 with high visible light response via microwave-assisted one–step method and its multipathway photoelectron migration properties for hydrogen evolution and pollutant degradation
CN101947448B (zh) 一种复合金属氧化物负载纳米金催化剂及其制备方法和用途
CN104080728B (zh) 整体式基材上的金属氧化物纳米棒阵列
Wang et al. Self-organization of layered inorganic membranes in microfluidic devices
CN106270543B (zh) 连续制备排列方式可控的三角形银纳米粒子的方法
CN102019431A (zh) 一种金属纳米簇/二氧化硅空心核壳结构纳米颗粒及其制备方法
Wu et al. Electrodeposition of vertically aligned silver nanoplate arrays on indium tin oxide substrates
CN103263915A (zh) 一种水滑石负载纳米铂催化剂及其制备方法和应用
CN106563811B (zh) 一种利用微通道反应器连续制备海胆状Ag-ZnO纳米粒子的方法
CN102744421A (zh) 一种水溶液中大批量制备Ag纳米线的方法
Hellstern et al. Development of a dual-stage continuous flow reactor for hydrothermal synthesis of hybrid nanoparticles
Jose et al. Pushing nanomaterials up to the kilogram scale–An accelerated approach for synthesizing antimicrobial ZnO with high shear reactors, machine learning and high-throughput analysis
CN102898134A (zh) 一种利用微流体装置制备二氧化锆陶瓷微球的方法
CN104841437A (zh) 一种利用微通道反应器制备铜锌催化剂的方法
Valente et al. A simple environmentally friendly method to prepare versatile hydrotalcite-like compounds
CN102553586B (zh) 含铈复合金属氧化物负载纳米金及其制备方法和应用
CN107442132B (zh) 一种Ag@Cu2O核壳纳米粒子及其制备方法
Zardi et al. Mild microfluidic approaches to Oxide nanoparticles synthesis
Ozerova et al. Magnetically recovered Co and Co@ Pt catalysts prepared by galvanic replacement on aluminum powder for hydrolysis of sodium borohydride
CN100393456C (zh) 纳米多晶态贵金属空心球颗粒链及其制备方法
CN103894211A (zh) 一种多元金属硫化物半导体光催化材料及其制备方法
Luo et al. Continuous synthesis of reduced graphene oxide-supported bimetallic NPs in liquid–liquid segmented flow

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080312