CN100368835C - 高性能抗辐射石英光纤及其制作方法 - Google Patents

高性能抗辐射石英光纤及其制作方法 Download PDF

Info

Publication number
CN100368835C
CN100368835C CNB2006100232860A CN200610023286A CN100368835C CN 100368835 C CN100368835 C CN 100368835C CN B2006100232860 A CNB2006100232860 A CN B2006100232860A CN 200610023286 A CN200610023286 A CN 200610023286A CN 100368835 C CN100368835 C CN 100368835C
Authority
CN
China
Prior art keywords
optical fiber
radiation
quartz
pure
surrounding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100232860A
Other languages
English (en)
Other versions
CN1800891A (zh
Inventor
王廷云
陈振宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Xinye Heavy Industry Co., Ltd.
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CNB2006100232860A priority Critical patent/CN100368835C/zh
Publication of CN1800891A publication Critical patent/CN1800891A/zh
Application granted granted Critical
Publication of CN100368835C publication Critical patent/CN100368835C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/23Double or multiple optical cladding profiles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本发明涉及一种高性能抗辐射石英光纤及其制作方法。本发明的高性能抗辐射石英光纤,它由纯石英纤芯、纯石英掺氟内包层和纯石英掺铈外包层组成。本光纤的制作方法是采用MCVD、OVD制棒技术制作的光纤预制棒,然后将其进行拉丝制作成本光纤。本发明的高性能抗辐射石英光纤既可用于常规的光通信系统的信息传输,又可在辐射环境下,作为抗辐射光纤保持正常的信息通信。它具有抗辐射能力强、传输损耗低的特点,可广泛应用于航空航天、核工业、军事等辐射相关领域的光纤通信和光纤传感之用。

Description

高性能抗辐射石英光纤及其制作方法
技术领域
本发明涉及一种石英光纤及其制作方法,特别是一种高性能抗辐射石英光纤及其制作方法,属光纤技术领域。
背景技术
光纤越来越广泛地应用于航空航天、核工业、军事等辐射相关领域,特别是光纤在辐射环境下能否正常通信,对军事尤为重要。而常规纤芯掺锗石英光纤,由于在辐射状态下传输损耗明显增加,如在3×103Gy、3.5小时的γ射线照射下,单模光纤约有30dB/km的辐射感应损耗,所以,不适合这些领域的应用。为此,研制抗辐射光纤成为国际研究和开发的热点。
抗辐射光纤是指能够抵御由于原子辐射、γ射线、X射线、紫外线照射所产生传输性能下降的光纤。辐射使光纤传输能力下降是由于辐射在石英光纤中产生的色心,即原子缺陷所致。这些色心主要与光纤中所含的杂质及光纤本身的初始原子缺陷有关。前者会使辐射产生的部分自由电子被光纤内的一些着色正离子(如Fe、Ni、Pb等)俘获,还原并形成新的色心,这些色心降低光纤传输能力;而后者是高能量的辐射粒子切断具有初始原子缺陷的≡Si-O-Si≡键,从而形成了E′色心(≡Si·)和非桥键氧空心色心(NBOHC,≡Si-O·)等(这里,≡Si代表在石英玻璃材料的网状组织中一个硅原子与三个氧原子的结合,·代表不成对的自旋电子)。其中,前一种因素产生的色心可以通过采用高纯度的石英加以解决;后一种因素在于如何减少初始的原子缺陷,使光纤在辐射条件下产生少的断键色心。
针对以上这些科学和制备技术问题,国外从八十年代到现在一直在从事抗辐射光纤的研究工作,主要的工作表现在以下几个方面:(1)在纯石英光纤芯中加入一定量的OH-,如600-800ppm,可以提高光纤的γ射线、深紫外光、X光的抗辐射能力,但由于OH-的加入,在近红外通信波段它的传输损耗会加大,影响正常通信。另外,OH-的注入浓度也是有限的,当达到一定程度就会饱和。(2)在石英纤芯材料中加入5-10ppm的低OH-,且掺杂200ppm的氟,会提高光纤的抗辐射能力,这种光纤是适用于真空和深紫外光的传输的,但在近红外通信波段也会比常规的掺锗芯光纤损耗高。(3)俄罗斯Doanov研究了一种纤芯掺氮的抗辐射光纤,在1300nm-1600nm波段,10Gyγ射线2小时照射后的测量感应损耗比纯石英光纤略高0.5-1.0dB/km。(4)纯石英纤芯掺氟包层的光纤,这种单模光纤在3×103Gy、3.5小时的γ射线照射下,辐射感应损耗约为10dB/km,对于长距离的光纤通信而言,这个值是可以使用的。
发明内容
本发明的目的在于提供一种高性能的抗辐射光纤及其制备方法。本光纤结构较简单,既能作为常规的光通信光纤,又具有高性能的抗辐射特性。
为达到上述目的,本发明的构思是:
提出了一种抗辐射石英光纤及其制作方法——光纤和阻止外包层相结合抗辐射光纤制作技术。这种制作技术是基于纯石英芯掺氟内包层光纤,拟解决减少辐射环境下的初始原子缺陷、有效还原和消除断键色心的难点,同时,在阻止外包层中掺铈用来阻止辐射的侵入而提出的,目的在于在低损耗的情况下,能够进一步提高抗辐射能力。用这种技术制作的抗辐射光纤,由于纯石英芯掺氟内包层光纤具有抗辐射功能,而外包层具有屏蔽辐射功能,从而有效地提高了光纤的抗辐射能力,形成高性能的抗辐射石英光纤。
根据上述构思,本发明采用下述技术方案:
一种高性能抗辐射石英光纤,由纤芯和包层组成,其特征在于纤芯的材料是纯石英,包层由内包层和外包层组成,内包括的材料是纯石英掺杂氟材料,而外包层的材料是纯石英掺杂铈材料。
上述的高性能抗辐射石英光纤,所述的纤芯的纯石英材料是高纯度的石英材料;所述的内包层的纯石英掺杂氟材料是以纯石英为基质掺杂180-400ppm的氟;所述的外包层的纯石英掺杂铈材料是以纯石英为基质掺杂1000-9000ppm的铈。
一种上述的高性能抗辐射石英光纤的制作方法,其特征在于用气相沉积法(MCVD)在MCVD制棒机上依次直接以气相沉积方式制成外包层、内包层和纤芯,最后缩棒形成光纤预制棒,然后再进行拉丝制成光纤。本方法适用于研制和小批量生产高性能抗辐射石英光纤。
一种上述的高性能抗辐射石英光纤的制作方法,其特征在于用管外沉积法(OVD)在OVD制棒机上依次直接以气相沉积方式制成纤芯、内包层和外包层,最后形成光纤预制棒,然后再进行拉丝制成光纤。本方法适用于大小批量生产高性能抗辐射石英光纤。
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:本发明中不仅采用纯石英芯掺氟内包层制成光纤使其在光纤传输中具有抗辐射能力,而且其外包层具有屏蔽辐射功能,从而有效地从内到外提高了光纤的抗辐射能力,形成高性能的抗辐射石英光纤。本发明的结构简单、易于制作、成本低,适合于小批量或大批量的抗辐射光纤生产。本发明的高性能抗辐射石英光纤既可用于常规的光纤通信系统的信息传输,又可在辐射环境下,作为抗辐射保持正常的信息通信。它具有抗辐射能力强、传输损耗低的特点,可广泛应用于航空航天、核工业、军事等辐射相关领域的光纤通信和光纤传感之用。
附图说明
图1高性能抗辐射石英光纤结构图。
具体实施方式
本发明的一个优选实施例结合附图说明如下:
参见图1,本高性能抗辐射石英光纤,它由纤芯1、内包层2和外包层3组成,纤芯1的材料是高纯度的石英材料;内包层2的材料是以纯石英为基质掺杂250ppm的氟;外包层3的材料是以纯石英为基质掺杂6000ppm的铈。
上述的高性能抗辐射石英光纤,用气相沉积法(MCVD)在MCVD制棒机上依次直接以气相沉积方式制成外包层3、内包层2和纤芯1,最后缩棒形成光纤预制棒,然后再进行拉丝制成光纤。上述的高性能抗辐射石英光纤也可采用管外沉积法(OVD)在OVD制棒机上依次直接以气相沉积方式制成纤芯1、内包层2和外包层3,最后形成光纤预制棒,然后再进行拉丝制成光纤。

Claims (4)

1.一种高性能抗辐射石英光纤,由纤芯(1)和包层组成,其特征在于纤芯(1)的材料是纯石英,包层由内包层(2)和外包层(3)组成,内包层(2)的材料是纯石英掺杂氟材料,而外包层(3)的材料是纯石英掺杂铈材料。
2.根据权利要求1所述的高性能抗辐射石英光纤,其特征在于所述的纤芯(1)的纯石英材料是高纯度的石英材料;所述的内包层(2)的纯石英掺杂氟材料是以纯石英为基质掺杂180~400ppm的氟;所述的外包层(3)的纯石英掺杂铈材料是以纯石英为基质掺杂1000~9000ppm的铈。
3.一种根据权利要求1所述的高性能抗辐射石英光纤的制作方法,其特征在于用气相沉积法(MCVD)在MCVD制棒机上依次直接以气相沉积方式制成外包层(3)、内包层(2)和纤芯(1),最后缩棒形成光纤预制棒,然后再进行拉丝制成光纤。
4.一种根据权利要求1所述的高性能抗辐射石英光纤的制作方法,其特征在于用管外沉积法(OVD)在OVD制棒机上依次直接以气相沉积方式制成纤芯(1)、内包层(2)和外包层(3),最后形成光纤预制棒,然后再进行拉丝制成光纤。
CNB2006100232860A 2006-01-12 2006-01-12 高性能抗辐射石英光纤及其制作方法 Expired - Fee Related CN100368835C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100232860A CN100368835C (zh) 2006-01-12 2006-01-12 高性能抗辐射石英光纤及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100232860A CN100368835C (zh) 2006-01-12 2006-01-12 高性能抗辐射石英光纤及其制作方法

Publications (2)

Publication Number Publication Date
CN1800891A CN1800891A (zh) 2006-07-12
CN100368835C true CN100368835C (zh) 2008-02-13

Family

ID=36811004

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100232860A Expired - Fee Related CN100368835C (zh) 2006-01-12 2006-01-12 高性能抗辐射石英光纤及其制作方法

Country Status (1)

Country Link
CN (1) CN100368835C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147496A (zh) * 2011-03-23 2011-08-10 华中科技大学 一种空间用抗电离辐照有源光纤
CN106646735B (zh) * 2015-10-29 2019-12-27 上海亨通光电科技有限公司 一种抗辐射光纤及其制备工艺
CN109856720B (zh) * 2019-01-16 2020-10-23 深圳太辰光通信股份有限公司 一种高Verdet常数磁光光纤的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669821A (en) * 1984-09-19 1987-06-02 Hughes Aircraft Company Radiation resistant optical fiber waveguide
US5914458A (en) * 1997-03-14 1999-06-22 Quantic Industries, Inc. Dual fiber laser initiator and optical telescope
CN1558288A (zh) * 2004-02-12 2004-12-29 上海大学 半导体薄膜内包层放大光纤及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669821A (en) * 1984-09-19 1987-06-02 Hughes Aircraft Company Radiation resistant optical fiber waveguide
US5914458A (en) * 1997-03-14 1999-06-22 Quantic Industries, Inc. Dual fiber laser initiator and optical telescope
CN1558288A (zh) * 2004-02-12 2004-12-29 上海大学 半导体薄膜内包层放大光纤及其制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Detection of low dose electron radiation using rareearthdopedoptical fibers.. J.L.Cruz, F.Lliso-valverde, M.V.Andres, J.Perez-Calatayud.Proceedings of SPIE,Vol.5502 . 2004 *
Fiber transmission losses in High-Radiation Fields.. GEORGE H.SIGEL.PROCEEDINGS OF THE IEEE,Vol.68 No.10. 1980 *
光纤制造中的掺氟问题.. 袁启华,崔华.化学通报,第10期. 1987 *

Also Published As

Publication number Publication date
CN1800891A (zh) 2006-07-12

Similar Documents

Publication Publication Date Title
US7689093B2 (en) Fluorine-doped optical fiber
CN102730977A (zh) 光纤和光纤预制件
US5509101A (en) Radiation resistant optical waveguide fiber and method of making same
CN100509672C (zh) 纳米量子点光纤及其制造方法
CN100383579C (zh) 高性能抗辐射石英光纤及其组合法制作技术
CN105541104B (zh) 高功率掺Yb石英光纤及光纤预制棒的制备方法
CN102126825B (zh) 耐辐射高性能石英光纤的制作方法
CN102135641A (zh) 一种抗光子暗化的有源光纤及其制备方法
JPS60257408A (ja) 光フアイバおよびその製造方法
CN100368835C (zh) 高性能抗辐射石英光纤及其制作方法
JP2542356B2 (ja) 石英系光ファイバガラスの耐放射線処理方法
CN101759358A (zh) 一种掺钛保偏光纤的制备方法
CN101066834B (zh) 一种光纤预制棒的制备方法
CN115304266B (zh) 一种抗辐照保偏铒镱共掺光纤及其制备方法与应用
CN109399910B (zh) 大芯径光纤预制棒和光纤的制备方法
CN1792911A (zh) 一种低衰减光纤及其制造方法
JPS61191544A (ja) 石英系光フアイバ
Bachmann et al. Loss reduction in fluorine-doped SM-and high NA-PCVD fibers
JPH0665613B2 (ja) 石英ガラス管
CN111458788B (zh) 一种超强抗弯耐辐照光纤及其制备方法
JP2019021922A (ja) 希土類元素添加光ファイバ、及び希土類元素添加光ファイバの耐放射線性を向上させる方法
CN112824943A (zh) 一种辐射不敏感单模光纤
US6611650B2 (en) Silica optical fiber
CN116813207B (zh) 一种抗辐照保偏掺铒光纤及其制备方法与应用
US20230167002A1 (en) Optical fibers and method of making the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: JIANGSU XINYE HEAVY INDUSTRY CO., LTD.

Free format text: FORMER OWNER: SHANGHAI UNIVERSITY

Effective date: 20130902

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 200444 BAOSHAN, SHANGHAI TO: 226600 NANTONG, JIANGSU PROVINCE

TR01 Transfer of patent right

Effective date of registration: 20130902

Address after: Wang Yuan Cun Da Gong Zhen Haian County in Jiangsu province 226600 18 Nantong City Group Building 1

Patentee after: Jiangsu Xinye Heavy Industry Co., Ltd.

Address before: 200444 Baoshan District Road, Shanghai, No. 99

Patentee before: Shanghai University

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080213

Termination date: 20160112