CN100349304C - 硅光接收器件 - Google Patents

硅光接收器件 Download PDF

Info

Publication number
CN100349304C
CN100349304C CNB028278747A CN02827874A CN100349304C CN 100349304 C CN100349304 C CN 100349304C CN B028278747 A CNB028278747 A CN B028278747A CN 02827874 A CN02827874 A CN 02827874A CN 100349304 C CN100349304 C CN 100349304C
Authority
CN
China
Prior art keywords
substrate
doped region
silicon
silicon photoreceptor
quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028278747A
Other languages
English (en)
Other versions
CN1618132A (zh
Inventor
李银京
崔秉龙
金俊永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1618132A publication Critical patent/CN1618132A/zh
Application granted granted Critical
Publication of CN100349304C publication Critical patent/CN100349304C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

提供一种硅光接收器件。在该器件中,一衬底基于n型或p型硅;通过使用与衬底的掺杂剂类型相反类型的掺杂剂,使一掺杂区在衬底的一面上被极浅地掺杂,从而使对于波长在100至1100nm的光的光电转换效应由衬底p-n结中的量子局限效应产生。第一和第二电极形成在衬底上以便在电学上连接到掺杂区。由于在硅衬底上的极浅掺杂区,量子局限效应产生于p-n结中。由于量子局限效应,即使硅被用作半导体材料,该硅光接收器件的量子效率也远高于常规太阳能电池的量子效率。该硅光接收器件还可被形成为能够吸收特定或大的波长谱带的光,并可被用作太阳能电池。

Description

硅光接收器件
技术领域
本发明涉及一种硅光接收器件的领域,更具体而言,涉及一种由于量子局限效应具有高量子效率(quantum efficiency)的硅光接收器件。
背景技术
图1是作为硅光接收器件实例的太阳能电池的示意图。参照图1,一普通太阳能电池具有p-n二极管结构,其中一n型半导体1和一p型半导体2被连接起来以获得和利用使光能转换成电能的光生伏特效应(photovoltaiceffect)。用于将外部电路连接到n和p型半导体1和2的电极3和4分别形成在p型半导体2的上表面上和n型半导体1的下表面上。
参照图2,当光入射到图1所示p-n二极管结构并且一光子被吸收到其中时,在p-n结两侧将产生由一电子7a和一空穴7b组成的一对电子空穴。此时,电子7a向n型半导体1移动而空穴7b沿相反方向移动。因此,当作为外部电路的负载电阻5被连接到该p-n二极管结构时,根据光能被转换为电能,电流I将流过p-n二极管结构。
典型地,硅被用作上述太阳能电池的半导体材料。具有使用硅半导体的二极管结构的该太阳能电池,在将光能转换成电能时提供的效率较低。理论上,单晶硅具有约23%的光电转换效率,多晶硅具有约18%的光电转换效率,而非晶硅具有约14%的光电转换效率。在使用上述硅的类型之一作为半导体材料的太阳能电池的实际工作中,光电转换效率下降的更多。
发明内容
为解决上述问题,本发明的一个目的在于提供一种硅光接收器件,由于在p-n结处产生的量子局限效应,即使使用硅作为半导体材料,该器件也提供比常规太阳能电池高的多的量子效率。
为达到此目的,本发明提供一种硅光接收器件,包括:一衬底,一掺杂区以及第一和第二电极。该衬底基于n型或p型硅。通过使用与衬底的掺杂剂类型相反类型的掺杂剂,该掺杂区在衬底的一面上被掺杂为具有极浅的深度。因此,对于波长在100至1100nm的光的光电转换效应将会由该衬底和掺杂区之间的边界上的衬底p-n结中的量子局限效应产生。第一和第二电极在衬底上形成以便在电学上连接到掺杂区。
优选地,形成多种尺寸的微腔(micro-cavity)从而使硅光接收器件可被用作吸收100至1100nm多种波长光的太阳能电池。
同样优选地,该硅光接收器件还包括一在衬底的一面上形成的控制薄膜。该控制薄膜用作掺杂区形成时的掩模并有助于将掺杂区形成为具有极浅的深度。
控制薄膜可由氧化硅SiO2形成为适当的厚度从而使掺杂区能够被形成为具有极浅的深度。
优选地,掺杂区可通过掺杂剂的非平衡扩散形成。该掺杂剂可以是硼或磷之一。
同样优选地,在内部均产生电子空穴对的量子井、量子点和量子线中至少其一,被形成在衬底与掺杂区的p-n结处。
优选地,通过施加外部电压,使量子井,量子点和量子线中至少其一内部的子带能级(sub-band energy level)发生变化,从而使吸收光波长谱带发生变化。
衬底可由Si,SiC和金刚石之一形成。
附图说明
图1是作为常规硅光接收器件实例的太阳能电池的示意图;
图2是在图1的p-n二极管结构中光电转换原理的示意图;
图3是根据本发明一实施例的硅光接收器件的示意图;
图4A表示当通过非平衡扩散形成非常薄的掺杂区时一p-n结的结构;
图4B表示通过非平衡扩散形成在图4A的p-n结处的纵向和横向量子井(QW)的能带;
图5是根据本发明另一实施例的硅光接收器件的示意图;
图6表示在根据本发明的硅光接收器件中的光电转换原理;以及
图7表示使用单晶硅半导体的常规太阳能电池的外部量子效率(EQE)和根据本发明的硅光接收器件在作为太阳能电池使用时的外部量子效率相比较的图。
具体实施方式
参照图3,根据本发明一实施例的硅光接收器件包括:一衬底11,形成在衬底11一个面上的掺杂区15,以及形成在衬底11上以便在电学上连接到掺杂区15的第一和第二电极17和19。优选地,根据本发明的硅光接收器件还包括一形成在衬底11一个面上的控制薄膜13,其用作形成掺杂区15的掩模并控制掺杂区15使之形成为具有预期的极浅厚度。在形成掺杂区15后,控制薄膜13可被选择性地移除。
衬底11由包括例如硅(Si),碳化硅(SiC),或金刚石的半导体材料形成,并使用n型掺杂剂掺杂。
通过使用非平衡扩散技术将掺杂剂(如硼或磷)经过控制薄膜13的开口注入到衬底11中,使掺杂区15被掺杂与衬底11相反类型的掺杂剂,即p+型掺杂剂。
优选地,掺杂区15被掺杂为具有预期的极浅深度从而使量子井,量子点和量子线中的至少之一形成于掺杂区15和衬底11的边界,即p-n结14处,并且随之发生的量子局限效应能够将波长为100到1000nm的光,优选地,波长为200到900nm的光以高量子效率转换为电能。
这里,量子井通常形成于p-n结14处。作为选择地,量子点或者量子线形成于p-n结14处。也可在p-n结14处形成两个或更多个量子井,量子点和量子线。下文中,将对在p-n结14处形成量子井的情况作简要说明。因此,即便下文中说明的是在p-n结14处形成量子井,仍必须认为量子井,量子点和量子线中至少之一被形成。
图4A表示当通过非平衡扩散形成具有极浅深度的掺杂区15时p-n结14的结构。图4B表示通过非平衡扩散形成在图4A的p-n结处的纵向和横向量子井(QW)的能带。在图4B中,附图标记Ec表示导带能级,附图标记Ev表示价带能级,且附图标记Ef表示费米(Fermi)能级。这些能级在半导体相关技术领域中众所周知,因此不对其进行详细说明。
如图4A和4B所示,p-n结14具有量子井结构,其中不同的掺杂层交替出现。此处,井和势垒约为2nm,3nm。
这种在p-n结14处形成量子井的极浅掺杂,可通过最优地控制控制薄膜13的厚度和扩散条件来实现。
在扩散中,扩散分布的厚度能够通过适宜的扩散温度和衬底11的表面的形变势能(deformed potential)被控制到例如10至20nm。在这样极浅的扩散分布中,可产生量子井系统。此时,衬底11的表面的势能通过在其初始阶段的控制薄膜13的厚度和表面预处理发生形变,并且随着扩散的进行,形变加剧。
优选地,控制薄膜13是氧化硅薄膜SiO2,其具有适当的厚度从而使掺杂区15被形成为具有极浅的深度。例如,通过在衬底11的一个面上形成氧化硅薄膜并使用光刻法蚀刻氧化硅薄膜以获得用于扩散的一开口,控制薄膜13形成为具有一掩模结构。
如在扩散技术领域中众所周知的那样,如果氧化硅薄膜比适当的厚度(例如,几千埃)厚或者扩散温度低,空位(vacancy)主要影响扩散并且发生深扩散。如果氧化硅薄膜比适当的厚度薄或者扩散温度高,Si自填隙原子(self-interstitial)主要影响扩散并且发生深扩散。因此,当氧化硅薄膜形成为适当的厚度使得产生的自填隙原子和空位具有相似的百分比时,Si自填隙原子和空位被结合在一起从而使掺杂剂的扩散被抵消。因此,使极浅的掺杂区成为可能。Si自填隙原子和空位的物理特性在涉及扩散的技术领域中众所周知,因此不对其进行详细说明。
作为选择,衬底11可使用p型掺杂剂掺杂,掺杂区15可使用n+型掺杂剂掺杂。
为了和外部电路连接起来,第一电极17形成于其上已形成掺杂区15的衬底11的上表面上,且第二电极19形成于衬底11的下表面上。图3表示了一实例,其中第一电极17由一不透明金属形成从而与掺杂区15的外侧面部分接触。第一电极17也可由一透明电极材料如氧化铟锡(ITO)形成在掺杂区15的整个表面上。
代替将第二电极19形成在衬底11的下表面的是,第一和第二电极17和19也可形成在衬底11具有掺杂区15的那一面,如图5所示。图5中和图3相同的附图标记表示实际上实现相同功能的相同元件,因此不再对其进行说明。
如上所述,在根据本发明的硅光接收器件中,一量子井形成于掺杂区15和衬底11之间的p-n结14处。如图6所示,该量子井吸收入射光以产生一对电子和空穴。在图6中,附图标记31表示量子井,附图标记33表示子带能级,附图标记“e”表示电子,附图标记“h”表示空穴,且附图标记“p”表示光子。同时,附图标记Ev表示价带能级,而附图标记Ec表示导带能级。
如图6所示,当光入射到p-n结14处且具有量子井结构的p-n结14吸收了光子p时,电子e和空穴h每个都被激发到p-n结14处的量子井内的子带能级。因此,如果一外部电路,如图3和5中的负载电阻18被连接的话,将流过与辐射光数量成比例的电流。
根据本发明的硅光接收器件中的吸收波长根据微腔而确定,该微腔归因于在衬底11的表面上(实际在掺杂区15的表面上)产生的微缺陷。通过调整基于制造工艺的微腔尺寸,根据本发明的硅光接收器件中的吸收波长可被确定到一位于100至1100nm范围内的特定波长,或者可发生变化。
当微腔形成为具有统一的尺寸时,根据本发明的硅光接收器件吸收具有特定波长的光并将吸收的光转换为电能。当微腔形成为具有不同的尺寸时,根据本发明的硅光接收器件吸收具有大的波长谱带的光,例如与普通太阳能电池的吸收范围相对应的100至1100nm的光,优选200至900nm的波长谱带,并将吸收的光转换成电能。
微腔的产生来自形变势能,该形变势能归因于形成在掺杂区15表面上的微缺陷。因此,通过调整形变势能量子井可发生形变,从而使微腔被确定。所以,微腔的尺寸可被控制从而导致在特定或大的波长谱带的吸收。
因此,根据本发明的硅光接收器件被形成为具有统一尺寸的微腔,从而使其能用于探测具有特定波长的光。
此外,根据本发明的硅光接收器件被形成为具有不同尺寸的微腔,能够吸收具有大的波长谱带的光,包括普通太阳能电池的吸收波长谱带,如100至1100nm,优选200至900nm,从而使其能够用作太阳能电池。
图7表示使用单晶硅半导体的常规太阳能电池的外部量子效率(EQE)和根据本发明的硅光接收器件在作为太阳能电池使用时的外部量子效率相比较的图。参照图7,在200至900nm的波长谱带中,根据本发明的硅光接收器件的平均EQE约为50%至60%,而由单晶硅形成的常规太阳能电池的EQE仅为35%。此处,200至900nm的波长谱带常用于计算太阳能电池的效率。
从图7中可看到,在根据本发明的硅光接收器件被制造以用作太阳能电池的情况下,根据本发明的该硅光接收器件的效率远大于常规太阳能电池的效率。
更具体而言,在常规的太阳能电池中,使用普通掺杂方法将掺杂区形成在硅衬底上,光被吸收和散射到p型或n型掺杂层上因而不能被输出到一垂直电极并贡献于一响应的一电子空穴对所消灭。同时,常规太阳能电池具有间接带隙结构(indirect band gap structure),其中只有被掺杂层下面的耗尽层所吸收的光能够作为电流信号被探测到而没有量子效应,因此提供了低探测效率。
另一方面,由于电荷分布势能(charge distribution potential)中的局部改变,使根据本发明的硅光接收器件的极浅掺杂区15产生了量子局限效应。特别是,如图6所示,在量子井31内形成了子带能级33,从而使光能够以高效率被探测到。
根据本发明的具有极浅掺杂区15的硅光接收器件提供了极好的灵敏度,例如在100至1100nm的光波长谱带中。
此外,根据外部电压的施加,通过改变量子井的子带能级,根据本发明的硅光接收器件能够移动整个吸收波长谱带。
更具体而言,可将电压施加到第一和第二电极17和19上以控制形成在p-n结14处的量子井内的子带能级之间的间隔。如果第一和第二电极17和19如图2所示形成,电压能够被垂直地施加。如果第一和第二电极17和19如图5所示形成,电压能够被水平地施加。
如上所述,当根据本发明的硅光接收器件被施加水平或垂直电压时,形成在p-n结14处的量子井内的子带能级能够被改变从而移动整个吸收波长谱带。
工业实用性
如上所述,根据本发明的硅光接收器件具有在一硅衬底上的一极浅掺杂区,因而即使硅被用作半导体材料,也可在p-n结处产生量子局限效应。由于量子局限效应,根据本发明的该硅光接收器件的量子效率远高于常规太阳能电池的量子效率。
根据本发明的硅光接收器件可被形成为能够吸收特定或大的波长谱带的光,并可被用作太阳能电池。
此外,根据外部电压的施加,通过改变量子井、量子点和量子线中至少其一内部的子带能级,根据本发明的硅光接收器件能够移动吸收波长谱带。

Claims (10)

1.一种硅光接收器件,包括:
基于n型或p型硅的一衬底;
一掺杂区,通过使用与衬底的掺杂剂类型相反类型的掺杂剂,该掺杂区在衬底的一面上被掺杂到极浅的深度,从而使对于波长在100至1100nm的光的光电转换效应由所述衬底和所述掺杂区之间的边界上的衬底p-n结中的量子局限效应产生;以及
形成在衬底上的第一和第二电极,以便在电学上连接到掺杂区。
2.权利要求1的硅光接收器件,其中形成有不同尺寸的微腔,从而使该硅光接收器件被用作吸收100至1100nm范围内不同波长的光的太阳能电池。
3.权利要求2的硅光接收器件,进一步包括在衬底的一面上形成的控制薄膜,该控制薄膜用作掺杂区形成时的掩模并有助于将掺杂区形成为具有极浅的深度。
4.权利要求1的硅光接收器件,进一步包括在衬底的一面上形成的控制薄膜,该控制薄膜用作掺杂区形成时的掩模并有助于将掺杂区形成为具有极浅的深度。
5.权利要求3或4的硅光接收器件,其中控制薄膜由氧化硅SiO2形成为使掺杂区能够被形成为具有极浅的深度的厚度。
6.权利要求1至4中任一权利要求的硅光接收器件,其中掺杂区通过掺杂剂的非平衡扩散形成。
7.权利要求6的硅光接收器件,其中掺杂剂包括硼和磷之一。
8.权利要求1至4中任一权利要求的硅光接收器件,其中在内部均产生电子空穴对的量子井、量子点和量子线中至少其一被形成在衬底与掺杂区的p-n结处。
9.权利要求8的硅光接收器件,其中通过施加外部电压,使量子井,量子点和量子线中至少其一内部的子带能级发生变化,从而使吸收光波长谱带发生变化。
10.权利要求1至4中任一权利要求的硅光接收器件,其中衬底由Si,SiC和金刚石之一形成。
CNB028278747A 2002-02-09 2002-10-16 硅光接收器件 Expired - Fee Related CN100349304C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2002/7707 2002-02-09
KR10-2002-0007707A KR100459894B1 (ko) 2002-02-09 2002-02-09 실리콘 수광소자

Publications (2)

Publication Number Publication Date
CN1618132A CN1618132A (zh) 2005-05-18
CN100349304C true CN100349304C (zh) 2007-11-14

Family

ID=27725721

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028278747A Expired - Fee Related CN100349304C (zh) 2002-02-09 2002-10-16 硅光接收器件

Country Status (7)

Country Link
US (1) US7253491B2 (zh)
EP (1) EP1472743A4 (zh)
JP (1) JP2005517302A (zh)
KR (1) KR100459894B1 (zh)
CN (1) CN100349304C (zh)
AU (1) AU2002367602A1 (zh)
WO (1) WO2003067670A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940530B1 (ko) * 2003-01-17 2010-02-10 삼성전자주식회사 실리콘 광소자 제조방법 및 이에 의해 제조된 실리콘광소자 및 이를 적용한 화상 입력 및/또는 출력장치
KR100455288B1 (ko) * 2002-03-08 2004-11-06 삼성전자주식회사 실리콘 발광소자를 이용한 평판형 표시장치
KR100624413B1 (ko) 2003-10-21 2006-09-18 삼성전자주식회사 수발광 소자 및 그 제조 방법
KR100612875B1 (ko) * 2004-11-24 2006-08-14 삼성전자주식회사 실리콘 광소자 제조방법 및 이에 의해 제조된 실리콘광소자 및 이를 적용한 화상 입력 및/또는 출력장치
KR20060059327A (ko) * 2004-11-27 2006-06-01 삼성전자주식회사 실리콘 광소자 제조방법 및 이에 의해 제조된 실리콘광소자 및 이를 적용한 화상 입력 및/또는 출력장치
KR100927661B1 (ko) * 2007-11-05 2009-11-20 한국전자통신연구원 광신호를 전기적 신호로 변환시키는 수광 소자
KR101059780B1 (ko) * 2009-07-02 2011-08-26 한국화학연구원 근적외선 감지 소자 및 그 제조방법
EP2838120B1 (en) 2013-08-12 2016-03-23 Rigas Tehniska Universitate Graded band gap pn homojunction formation method in silicon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2275820A (en) * 1993-02-26 1994-09-07 Hitachi Europ Ltd Optoelectronic device
US5600157A (en) * 1993-04-28 1997-02-04 Oki Electric Industry Co., Ltd. Light-emitting and light-sensing diode array device, and light-emitting and light-sensing diode with improved sensitivity
US5920078A (en) * 1996-06-20 1999-07-06 Frey; Jeffrey Optoelectronic device using indirect-bandgap semiconductor material
US6294399B1 (en) * 1999-01-29 2001-09-25 Sharp Kabushiki Kaisha Quantum thin line producing method and semiconductor device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356613A (ja) * 1986-08-27 1988-03-11 Fujitsu Ltd 光導波路
JPH02148769A (ja) * 1988-11-29 1990-06-07 Furukawa Electric Co Ltd:The フォトダイオード
US5633526A (en) * 1992-11-01 1997-05-27 Rohm Co., Ltd. Photodiode array and method for manufacturing the same
JPH10214958A (ja) * 1997-01-31 1998-08-11 Toshiba Corp 光半導体素子
US6060026A (en) * 1997-07-31 2000-05-09 Starfire Electronic Development & Mktg., Ltd. Photoelectrochemical device containing a quantum confined silicon particle
JP4071360B2 (ja) * 1997-08-29 2008-04-02 株式会社東芝 半導体装置
JP2001007379A (ja) * 1999-06-24 2001-01-12 Sharp Corp 窒化ガリウム系化合物半導体受光素子
KR100828351B1 (ko) * 2001-04-17 2008-05-08 삼성전자주식회사 발광 소자 및 이를 적용한 디스플레이 장치
US6697403B2 (en) * 2001-04-17 2004-02-24 Samsung Electronics Co., Ltd. Light-emitting device and light-emitting apparatus using the same
KR100446622B1 (ko) * 2002-01-10 2004-09-04 삼성전자주식회사 실리콘 광소자 및 이를 적용한 발광 디바이스 장치
KR100468846B1 (ko) * 2002-03-11 2005-01-29 삼성전자주식회사 화상 입출력장치
KR20040076330A (ko) * 2003-02-25 2004-09-01 삼성전자주식회사 실리콘 광소자 및 이를 적용한 광신호 입출력장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2275820A (en) * 1993-02-26 1994-09-07 Hitachi Europ Ltd Optoelectronic device
US5600157A (en) * 1993-04-28 1997-02-04 Oki Electric Industry Co., Ltd. Light-emitting and light-sensing diode array device, and light-emitting and light-sensing diode with improved sensitivity
US5920078A (en) * 1996-06-20 1999-07-06 Frey; Jeffrey Optoelectronic device using indirect-bandgap semiconductor material
US6294399B1 (en) * 1999-01-29 2001-09-25 Sharp Kabushiki Kaisha Quantum thin line producing method and semiconductor device

Also Published As

Publication number Publication date
KR100459894B1 (ko) 2004-12-04
KR20030067955A (ko) 2003-08-19
WO2003067670A1 (en) 2003-08-14
EP1472743A1 (en) 2004-11-03
CN1618132A (zh) 2005-05-18
US7253491B2 (en) 2007-08-07
US20050073019A1 (en) 2005-04-07
EP1472743A4 (en) 2008-08-27
AU2002367602A1 (en) 2003-09-02
JP2005517302A (ja) 2005-06-09

Similar Documents

Publication Publication Date Title
US6930330B2 (en) Silicon optoelectronic device and light emitting apparatus using the same
US7029943B2 (en) Photovoltaic component and module
KR101889429B1 (ko) 태양 전지용 바이패스 다이오드
US8872297B2 (en) Integrated photodiode for semiconductor substrates
EP3240045B1 (en) Solar cell and method for manufacturing the same
JP2006332273A (ja) 裏面電極型太陽電池
KR100997113B1 (ko) 태양전지 및 그의 제조방법
US20110248370A1 (en) Electromagnetic radiation converter with a battery
CN100349304C (zh) 硅光接收器件
US7642116B1 (en) Method of forming a photodiode that reduces the effects of surface recombination sites
US6281428B1 (en) Photovoltaic generator
RU2355066C2 (ru) Преобразователь электромагнитного излучения
KR101054985B1 (ko) 태양전지 제조 방법
KR101936193B1 (ko) 수평형 실리콘 광증배소자 및 그 제조방법
JP2002314116A (ja) Pin構造のラテラル型半導体受光素子
EP1833095B1 (en) Photo diode having reduced dark current
KR102054218B1 (ko) 태양전지 셀 및 태양전지 셀의 제조방법
KR100835893B1 (ko) 발광변환기를 갖는 포토다이오드
KR101345506B1 (ko) 후면전극형 태양전지 및 그 제조방법
JP5723135B2 (ja) 半導体装置の製造方法
EP3306677A2 (en) High quantum efficiency optical detectors
US20080023779A1 (en) Photoelectric conversion element
JP3101015B2 (ja) 受光素子及び受光素子の製造方法
Chen et al. Modeling, fabrication and measurement of a novel CMOS UV/blue-extended photodiode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071114

Termination date: 20091116