CN100337814C - 提花的纺织产品 - Google Patents

提花的纺织产品 Download PDF

Info

Publication number
CN100337814C
CN100337814C CNB2004800063819A CN200480006381A CN100337814C CN 100337814 C CN100337814 C CN 100337814C CN B2004800063819 A CNB2004800063819 A CN B2004800063819A CN 200480006381 A CN200480006381 A CN 200480006381A CN 100337814 C CN100337814 C CN 100337814C
Authority
CN
China
Prior art keywords
substrate
valve
dyestuff
pattern
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800063819A
Other languages
English (en)
Other versions
CN1759005A (zh
Inventor
P·K·康
D·T·麦克布瑞德
R·S·科勒尔曼
W·H·斯蒂瓦特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Milliken and Co
Original Assignee
Milliken and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Milliken and Co filed Critical Milliken and Co
Publication of CN1759005A publication Critical patent/CN1759005A/zh
Application granted granted Critical
Publication of CN100337814C publication Critical patent/CN100337814C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Fiber Materials (AREA)

Abstract

织物基底(252)通过对基底表面选择性施用各种染料而提花,某种程度上在图案细节、清晰度和颜色范围(70)领域提供理想的、视觉明显的加强,这是通过使用令这种加强成为可能的新提花系统(254),包括应用各种化学剂而实现的。在一个实施方式中,本文说明的提花系统(254)能够生产绒面织物基底(252),可用于表现出理想的提花品质独特结合的地面覆盖物,该提花品质使用专门为这些基底和提花品质开发的新技术鉴别和测量。

Description

提花的纺织产品
技术领域
本公开涉及提花的织物基底,其通过将各种染料选择性地应用于基底表面,而在某种程度上提供在图案细节、清晰度和颜色范围方面理想的、视觉上明显的增强,本公开还涉及使这些增强变得可能的提花系统。在一个实施方式中,本文说明的提花系统能够生产绒面纺织品基底,可用于地面覆盖物,其显示出理想的图案品质的独特结合,该结合已经用专门为这些基底和图案品质开发的新技术鉴别和测量。
背景技术
此背景讨论将涉及具有绒面的纺织品基底的提花,因此,为了方便,将使用地面覆盖物作为特定实例的来源。然而,本文描述的技术不限于这样的表面,并且是要应用于适当的其它基底,包括织造的、非织造的、编织的、粘合的、或另外缠结的或附着的以提供粘合的、结构上一体的纺织品的纺织纤维。
关于用作地面覆盖物的有色纺织品,着色或提花工艺可以认为属于两类中的一种:在基底或绒面形成前,将染料应用于组成纱线的方法(“纱线染色”法),和在基底(和绒面)形成后将染料应用于基底的方法(“基底染色”法)。对于每一种方法,市场上可得的各种染色的或提花的纺织产品,尤其是地面覆盖产品,可能有进一步的区别。虽然下面的讨论将指作为这些产品的代表的地毯,应该理解小地毯、方块地毯、垫子和其它地面覆盖产品,是要包括于该讨论中,好似专门提到的一样,除非明确地表明相反意图或该相反意图是固有合理的。历史上,染色地毯几乎独有地由各种纱线染色方法生产,其中在纱线形成地毯的织造或者簇绒操作前,将纱线染成期望的颜色。目前,在制造纱线染色织造地毯中,两种方法明显地占优势:威尔顿机织(Wilton)和阿克斯明斯特机织(Axminster)。在前者中,可以使用多种颜色,但是因为纱线是以未切形式使用的,在图案中发现的所有颜色一定会传递到地毯的背面,不管在图案中其使用的位置和程度。因此,虽然能够达到相对高水平的图案细节和清晰度,但是在图案中能够使用的颜色数受实际负担的限制,这是因为不管其在图案中的用途,总是不得不提供和调和每种颜色的纱线。另一方面,阿克斯明斯特机织地毯在织造中使用断损纱。使用这种技术,可以使用多种颜色的纱线,但是图案细节和清晰度一般低于威尔顿机织地毯。当然,在任何一种情况中,制造方法耗时并且昂贵。
在生产簇绒而不是织造的地毯时,需要在每个位置隐藏不需要的纱线,从而在地毯的那个位置保持期望的颜色。因为在整个地毯上有很多可得的颜色,需要隐藏相当数量的纱线,簇绒地毯能够显示出显著的图案细节和清晰度,但是趋于在能够显示的颜色数量方面受限制。
最近,地毯制造商已试图开发各种方法,其中未染色的或未着色的基底可以通过将染料应用于基底表面而提花。因为这样的工艺通常容许使用按照用户需要能够快速提花的原料基底,由此提供了重大的生产经济型和灵活性,地毯制造商对于开发和改进这样的提花工艺保持强烈的兴趣。
一般,这样的“基底染色”工艺已经沿着三个不同的途径发展。在第一种途径(“按需滴墨(drop-on-demand)”法)中,染料或着色剂从放置在待提花的纺织品基底上方的阀门供料器直接施加。在一个这种系统的例子中,当染料或着色剂要分配到基底上时将阀门打开,当对基底适当的预定区域供应了所需的染料量时将阀门关闭。
在此设备(在下文中称作“DOD”设备)的一种构造中,含有多个单独染料喷嘴或供料器的印刷头横跨待图案化的基底路径。通常使用多个染料贮存器,每个贮存器提供各自给定颜色的染料到一个或多个喷嘴以提供多色提花。因此根据电子规定的图案数据,特定的喷嘴分配预定颜色的染料,并且仅有那种颜色的染料(直到机器重新配置,清洗供料器等),在几个预置量水平之一影响所有的颜色。随着印刷头横越基底的宽度,且该基底连续地被向前指引,这样的数据,以“开-关”指令的形式指导选择的喷嘴将各种所期望颜色的染料分配到基底上,因此容许包括印刷头的染料喷嘴在基底表面上追踪光栅图,并且将所期望颜色的染料分配到由选择的图案所指示的基底的任何期望区域。
相信这种横越运动有两个结果,其影响机器在与输送机运动相平行的方向产生精确成形线的性能。第一个涉及以下可能性,即,横过待提花的基底宽度的横越运动在横跨运输机方向引入分速度,这可能引起在横越方向分配的滴的延长。第二个涉及的事实是,随着分配器沿着形成线垂直运动,该线的产生涉及形成一系列精确排列的像素所需的,在准确时间开动和退动染料分配器的能力。也许因为这些可能中之一或两者的影响,通过这种类型DOD设备产生的图案特征据知有显著的各向异性(即方向敏感性)。
在第二个途径(“再循环”或者“RECIRC”方法)中,单独的染料供料器也仅与特定的颜色相联,该供料器也可以排成行,也许是沿着移动基底的路径以隔开的关系排列的一系列平行列。然而,不是仅当图案要求时分配染料,在这种再循环途径中的供料器总是“开”的,并连续地产生指引到移动基底的表面的染料流,但是那些染料流通常是通过控制流体(例如空气)的单独流,转移到与每一行相关联的集液槽(catch basin)中。这种供料器的开动或退动分别涉及相应控制流体的退动或开动。因此,只有当染料流不转移到集液槽时,它才能到达基底,这是通过间歇开动的(即,根据图案数据开动)空气或其它控制流体的横向流实现的,其时间间隔足以分配通过电子定义的图案数据规定的染料量(可以在颜色上有相当大的不同)。使用供料器和相应的集液槽的分开设置,以便能够收集引入专门集液槽的染料并再循环到分配给那种颜色染料的染料供料器的行中。下面讨论这种设备的一些细节,另外在大量的美国专利,包括共同转让的美国专利第4,116,626、5,136,520、5,142,481和5,208,592号中也有讨论,其内容在此引入作为参考。
在以上引述的美国专利中的RECIRC设备和技术中,基底图案用像素来规定,单个的着色剂或着色剂的组合被分配到每一像素,从而将期望的颜色赋予基底上那个相应的像素。将此着色剂应用于特定的像素是通过使用多个单独的染料供料器而实现的,该供料器沿着以隔开的、平行关系横过待提花的移动基底路径放置的各种色档(color bar)的长度方向放置。对特定色档的每个供料器提供来自相同着色剂贮存器的着色剂,不同的色档由典型地含有不同着色剂的不同贮存器供应。通过产生供料器开动指令,沿着色档的长度调节供料器的固定位置,以及色档在移动基底上相对于目标像素位置的位置,如可能由再生的特定图案所要求,来自任何色档的任何可得的着色剂可以应用于在基底图案区域内的任何像素。本领域的技术人员应该理解,必须提供在行间基底行程时间的补偿。
虽然使用这种RECIRC设计的提花系统已经获得成功,熟悉这种系统的人们意识到为了最好结果不得不调节的基础设计的几种后果。这些后果是由于连续形成的染料流,而不是由于图案的需要而出现的。这种设计特征导致染料流(1)必须按照图案数据在基底上偏斜,以及(2)在其它时间必须再循环以使昂贵的染料的消耗最小化。
第一个设计后果(即染料流的偏斜),随着染料流首先容许瞬染基底,然后如图案数据指示再偏斜到集液槽中,导致染料流经受微小的分速度以及某些流体的机械作用。这些影响,沿着偏斜轴(也相对于输送机运动轴)以轻微伸长的滴轨迹的形式,能够对图案清晰度具有细微的但是可以察觉的影响,如果染料流从顶上的供料器以“开/关”方式简单地分配,这些影响将不存在。
此外,因为染料流的控制在某种程度是间接的,它取决于利用的控制并且通过偏斜流体的横向流,这种设计对能够准确并可靠地传送到特定像素的染料的最小量设置了内在的限制。
与上面有关DOD设备的讨论相似,也存在以下事实,即,与基底运动方向平行的线的形成,涉及当供料器分配器与沿形成的线垂直运动时,形成一系列精确排列的像素所需要的,在准确时间令分配的染料流偏斜的能力。也许因为这些可能中之一或两者的影响,通过RECIRC设备产生的图案特征也已经知道有显著的各向异性(即方向敏感性)。
第二个设计后果(即当不提花时染料的再循环),导致能够加到染料的化学试剂-包括表面活性剂、切变敏感的增稠剂等对该染料的限制,例如随着它的再循环能够导致染料不符合要求的性质。该再循环系统另外的后果是需要倾斜该系统以促进集液槽重力辅助的排泄。那种倾斜易于引起新鲜沉积的染料流下倾斜的基底,并能引起非圆形的染料滴的出现。也许最根本地,这两个设计后果-尤其第二个-不适应高粘度染料的使用,这种染料传统上是对于纺织品基底高清晰度提花所选择的染料,因为与相同种类的低粘度染料相比,它们降低了在应用时不可控制的扩散趋势。
在第三个途径(“筛网印花”方法)中,直接在待提花的基底区域上方,顺序放置并对准由单个相对细隔距的网眼组成的一系列筛网(典型地每个颜色一个)。每个筛网是筛孔被封闭或阻塞的位置,以便当染料应用到该筛网的一侧时,它穿过并染色基底除了这些位置以外的任何地方。
筛网印花虽然能有高度细节和清晰度,然而具有趋于表征用这种工艺提花的纺织品基底的工艺“标记(signature)”。筛网本身的物理尺寸通常定义和限制图案循环的大小。典型地,将筛网直接与提花的基底表面接触放置。这不仅可以使表面纤维变形,而且限制具有轮廓的或其它不平顶面(例如非水平的毛圈地毯)的基底能够提花的成功性。由于这种与表面纤维的物理相互作用和偶尔的移距,以及当在具有高度变形的可变形表面上处理一系列大筛网的精确定位时获得精密对准容许度而带来的困难,筛网印花过程常常在相邻的筛网方位之间提供显著的重叠(以及由此显著的套印),以确保在相邻筛网位置之间在边界区内基底没有染色不足。这种套印在视觉上的后果常常是明显的。
也许筛网印花产品最显著的特点品质是所得染色图案的实际深度。随着染料被压过筛网,为了提供染料放置的适当控制,使用的染料趋于是高粘度的。高粘度染料的使用为高清晰度的图像提供可能-这样的染料通常不易于泳移,并且使在基底上横向染料泳移最小化,这趋于使基底上的染料边界锐化。然而,最小化的横向染料泳移也趋于阻碍垂直的(即沿着纤维)染料泳移到绒头,这意味着,虽然筛网染色产品可能看起来相当精细,它们通常不具有高度的染色渗透性-在图案区域的染色纱也许在它们长度的最初的30%或40%(取决于组成和包含绒面的纤维总的全长)被完全染色,在其后染色渗透通常十分不均匀并且常常不存在。
总之,现有技术的地毯提花系统共同存在几个重要的缺点,包括不能提供高图案清晰度或分辨率的产品,该产品可以从无限数量的无图案原料基底中容易地提花,并且显示出在基底面内向深度延伸的多种视觉均匀的颜色(包括就地混合的颜色)。
发明内容
为了克服这些缺点,现在已经开发了按需滴墨型的第四种系统。这种系统,称作PREF(“PREFerred”)系统,提供了很多各种纱线染色体系的共同优点,显著、清晰地界定的图案边缘,高水平的图案细节,和在图案中结合大量颜色的能力,以及各种基底染色系统的共同优点,显著的提花速度和灵活性,能够使用标准的、未染色的原料基底作为起始材料,以及能够在基底上从有限量的三原色着色剂中产生多种混合色。如所描述的,这种PREF系统生产的提花产品,具有通过其它已知的纺织品提花染色系统生产的产品所无法比拟的清晰度和对比度。
这种新系统提供一系列固定排列的单独开动的染料分配器或供料器,其中每一个放置在待提花的移动基底网的上方并指向该基底网。在其最直接的实施方式中,所有与特定排列相关联的供料器供给普通染料。当开动时,供料器交付给基底表面由待复制的图案规定的染料量,其具用通过其它按需滴墨、再循环、或者筛网印花系统以前所不能达到的准确度和精确度,并且能够交付足够大的染料量而达到理想的染色渗透,和足够小的染料量而实现空前的就地染料混合能力,并且能够在没有染料溢流的情况下对低表面重量(face weight)的织物染色。
如在下面将详细讨论的,通过这种独特的PREF提花系统生产的产品已经显示出是独特的,这表现在视觉上是明显的并且在科学上是可测量的。这种产品的特有属性包括在图案区域边界所需的从一个颜色过渡到第二个颜色的距离极大减少,以及能够准确并精确地呈现在基底上的最小图案元素尺寸的极大减少,以及优异的染色渗透。
通过使用这种PREF提花系统能够获得几个操作上的优点,尤其是与以上讨论的再循环型(“RECIRC”)系统比较。因为PREF系统不依赖于持续的染料再循环,所以不再需要对染料粘度和使用的表面活性剂或者消泡剂的限制。关于机器构型的限制也放宽了,因为不再需要提供再循环系统,不再需要拥有每个所用染料的单独集液槽,这容许非再循环型色档更紧凑地放置,因此降低了相邻色档间的实际距离,并且消除了为促进集液槽重力辅助排液而倾斜该提花系统的需要。而且在本文公开的PREF系统中发现的染料流形成和交付的几何形状是十分不同的,随着染料滴瞬染基底,它的“印迹(footprint)”从根本上改变了-它基本上是圆形的,而不是由于以上讨论的原因而具有显而易见的扁圆外观。
此外,由于使用具有相对高粘度染料的能力,存在着相信有助于这种PREF系统高清晰度提花性能的另外机理。当它瞬染基底表面时,赋予高粘度染料在被该基底吸收前形成似球状外形的机会。由于这种机理,当该染料滴首先沉积在基底上,在被完全吸收前,其“印迹”(即它在基底表面平面上的横向尺寸)趋于最小化。因此,染料滴最终被吸收的印迹可能减少,而在那块区域察觉的图案清晰度可能增加了(只要能够控制随后的横向染料泳移)。
也许是最重要的,在通过就地混合技术,将高清晰度提花与技术上对立的从特定三原色组产生宽范围的可用颜色的性能相结合方面,阀门的性质和它们在PREF提花系统中的构型,给予显著改善的“调节(turn-down)”响应。这种性能提供具有准确性和精确性的应用,该应用与以前技术发展水平可能的再循环型设备相比,从单独的染料供料器提供低得多的染料量。这种性能也在没有染料溢流情况下,提供了提花低表面重量的纺织品基底的能力。
这种具有准确性和精确性地分配相对小量染料的改进的能力,容许在基底上产生高度定位的染料混合,这要求相对小部分的特定染料。在过去,该混合色的产生可能要求构造相对大的多像素结构(例如超像素)以及杂色(即不均匀色或半色调制品)增加的可能性的伴随增加,从而达到组成染料的合适比例。用本文公开的新型提花系统可得的调节响应,这样的混合色可能用较少的像素构成,或者也许仅仅一个像素,因此可能在使用这样混合色时增强该图案的清晰度。
总之,该PREF提花系统包括用于提花纺织品基底的改进系统,其使用多个单独控制的染料供料器,根据颜色和供料器规定的起动指令,将图案决定的染料量选择性地应用于基底表面。用这种新型系统生产的产品预计具有高度的图案细节和清晰度、每个图案元素周围的锐边性、在基底上混合各种三原色而形成可用于图案的一大套颜色的强化性能,以及在基底内优异的染色渗透。这些理想的性能先前在单一的基底染色系统中一直没有得到,因此同样地,这种系统的产品以前是不可得到的。
因此,本发明提供了一种基本平坦的提花织物基底,其已经固定了大量的单个绒头纱线,其中每个所述单个纱线从所述基底向上延伸,并具有每个所述纱线附着到所述基底的近端部分和位置相对于所述近端部分的远端部分,并包括含有所述绒头纱线远端部分的绒头表面,所述绒头表面进一步包括邻接的图案区,其中在电子限定的提花数据控制下,将不同的染料选择性地和分别地分配到所述绒头纱线的所述远端部分,并容许染料从所述绒头纱线的所述远端部分泳移到所述绒头纱线各自的近端部分,所述邻接的图案区有共同的边界区,所述边界区具有小于1.3mm的最小半无限过渡宽度,其中包括所述边界区的大多数所述绒头纱线显示出染料渗透,对于包括所述大多数的每个绒头纱线,所述染料渗透从所述纱线的所述远端部分延伸到沿着所述纱线至少40%距离的位置,将所述纱线各自的远端和近端部分分开,并且其中对于包括所述大多数的至少一个这样的绒头纱线,染料渗透延伸到小于100%所述距离的位置。
另外,本发明还提供一种基本平坦的提花织物基底,其已经固定了大量的单个绒头纱线,其中每个所述单个纱线从所述基底向上延伸,并具有每个所述纱线附着到所述基底的近端部分和位置相对于所述近端部分的远端部分,并包括含有所述绒头纱线远端部分的绒头表面,所述绒头表面进一步包括邻接的图案区,其中在电子限定的提花数据控制下,将不同的染料选择性地和分别地分配到所述绒头纱线的所述远端部分,并容许染料从所述绒头纱线的所述远端部分泳移到所述绒头纱线各自的近端部分,所述邻接的图案区有共同的边界区,所述边界区对于特定的吸湿率水平,具有不大于相应于该吸湿率水平的染料球形滴直径的最小特征宽度,边界区在任何方向具有小于1.5mm的最小特征宽度,所述特征宽度显示出小于1.1的各向同性指数,其中包括所述边界区的大多数所述绒头纱线显示出染料渗透,对于包括所述大多数的每个绒头纱线,所述染料渗透从所述纱线的所述远端部分延伸到沿着所述纱线至少40%距离的位置,将所述纱线各自的远端和近端部分分开,并且其中对于包括所述大多数的至少一个这样的绒头纱线,染料渗透延伸到小于100%所述距离的位置,所述距离至少为2mm。
此外,本发明还提供了专用于制造上述提花织物基底的设备。在这一方面,本发明提供了用于制造上述提花织物基底的阀门插件,这种阀门插件可用于适合将处理流体可控地拔染到所述基底的基底处理装置,所述阀门插件包括以下组合:
在打开与关闭位置之间多个选择性地可操作阀门,其中至少一部分阀门与相应的专用流体排放喷射器流体窜流;
适于安装电源线而为阀门插件供应电力的电源输入口;
指令数据输入口,其适于安装阀门控制电缆而将阀门操作指令从控制装置传送到阀门插件;和
集成电路板,其适于将来自数据输入口的指令数据转化为动力阀门操作命令,以使该阀门可以选择性地打开和关闭,其中所述阀门插件是适合于在基底处理装置中独立操作的组装式元件,并且是可从基底处理装置中拆除的一件结构。
另一方面,本发明还提供了一种用于制造上文所述的提花织物基底的基底处理装置,这种基底处理装置适于将至少一种着色剂或化学组合物可控地拔染到所述的基底,所述基底处理装置包括:
多个可独立操作的组装式阀门插件,其适于将所述着色剂或化学组合物拔染到所述基底上,其中至少一部分所述组装式阀门插件包括;
在打开与关闭位置之间多个选择性地可操作阀门,其中至少一部分阀门与相应的专用流体排放喷射器流体窜流;
适于安装电源线而为阀门插件供应电力的电源输入口;
指令数据输入口,其适于安装阀门控制电缆而将阀门操作指令从控制装置传送到阀门插件;和
集成电路板,其适于将来自数据输入口的指令数据转化为动力阀门操作命令,以使该阀门可以选择性地打开和关闭,其中所述至少一部分所述的组装式阀门插件适合于在基底处理装置中独立操作,并且是可从基底处理装置中独立拆除的单一结构。
此外,本发明还提供了一种用于制造如上文所述的提花织物基底的加工机组,这种加工机组用于将至少一种着色剂或者化学组合物施用于所述的织物基底,所述加工机组包括:
适于将所述至少一种着色剂或化学组合物可控地拔染到基底上的基底处理装置;
适于在基底进入基底处理装置之前将其加热的预处理站;和
至少一个安置在预处理站下游的处理站,其中所述基底处理装置包括:
多个可独立操作的组装式阀门插件,其适于将处理流体拔染到所述基底上,其中至少一部分所述组装式阀门插件包括;
在打开与关闭位置之间多个选择性地可操作阀门,其中至少一部分阀门与相应的专用流体排放喷射器流体窜流;
适于安装电源线而为阀门插件供应电力的电源输入口;
指令数据输入口,其适于安装阀门控制电缆而将阀门操作指令从控制装置传送到阀门插件;和
集成电路板,其适于将来自数据输入口的指令数据转化为动力阀门操作命令,以使该阀门可以选择性地打开和关闭,其中所述至少一部分所述的组装式阀门插件适合于在基底处理装置中独立操作,并且是可从基底处理装置中独立拆除的单一结构。
为了便于下面的讨论,将使用下面的定义,除非上下文中另有指明或要求。在每种情况下,从定义的术语中派生的术语将具有与给定的定义一致的意义。其它定义可能到处适当地出现。
术语“基底”是指由单独的天然或人造纱或纤维(如本文所用的,纱线将用作包括纱线和纤维两者的共同术语,无论此纤维是否是纱线组分,除非上下文另有规定或指示)所组成的任何基本平坦的、有吸收力的纺织品。用于本文描述的工艺的基底尤其适合包括绒头织物和地面覆盖物,包括地毯、小块地毯、方块地毯和地垫。然而,本文的教导完全适用于图案化织物,例如内部装饰织物(例如窗帘、桌布、家具装饰织物、墙帷织物等)、衣服织物、和其它织物,并且是要包括织造的、编织的、缠结的、粘合的、 簇绒的、或其它只要是用保持结构完整的方法得到的织物。
术语“有吸收力的”是指组成的纤维或纱线,或由相邻纤维或者纱线形成的间隙具有容纳和保留液体着色剂的能力。
术语“提花”是指根据预定的数据将染料选择性地应用于基底的规定区域。
术语“图案构型”当用于表明染料或化学物在基底上的布局时,是指根据待复制的预定图案的布局。在图案构型中布局的一个例子是包括图案的各个着色区对准的位置。然而,在图案构型中的布局也可以仅仅指与某种图案元素相关的布局,这样的布局可以不需要对准这些图案元素(如果发生,例如,化学试剂应用于距图案元素边缘预定距离的不规则形状的区域)以便达到一种或多种特殊效果。
作为用于说明基底上的染料或颜料,术语“应用的图案”是指以图案构型应用到基底上的染料或者颜料。
术语“像素”用于说明图案被限定的基础,对于至少一些本文讨论的基底提花设备,是指产生复制这些图案所需的染料供料器启动指令的基础。衍生术语像素方式(pixel-wise)用来说明将染料或其它液体分配或应用到基底上特定的像素大小的位置,例如,在复制根据像素定义的图案或者图案元素中发生的,但是也能够以类似的方式应用到,严格地讲,图案不根据像素定义的系统中。
除非另外规定,术语“染色”是指含有各种组分的液体,它形成用于将纺织品基底染色的溶液,包括在载体中的一种或多种染料或着色剂(任何合适种类),和任选地其它添加剂,例如本文可能教导的作为提花工艺的一部分应用到基底上的添加剂。
术语“染料泳移”包括染料溶液的任何部分从基底上一个图案区向该基底上第二个相邻图案区的移动,它以能够改变(例如通过染色或者稀释)第二个图案区颜色的方式进行。
术语“三原色”是指在与任何其它染料或着色剂在基底上混合或掺合之前,应用到基底上的染料或着色剂的颜色。该三原色是由提花设备分配的颜色组,从中必需包括在基底上待产生的所有其它颜色。
术语“就地混合”指将染料应用到基底后染料的泳移和混合。在一个例子中,相同颜色的染料应用于相邻的像素,在相邻像素之间的染料泳移趋于促进在基底染色区域内更均匀的外观。在另一个例子中,两种或多种颜色的染料应用于相同的像素,并且主要在同一像素内(在较次要的程度,由于染料发生横向泳移的程度而在相邻像素内)发生混合。在第三个例子中,将不同颜色的染料应用于相邻的像素,在一定程度上,发生像素到像素的泳移而有效混合,各种应用的染料形成复合颜色。当然,以上的各种组合(例如应用于每组两个或多个相邻像素的复合染料,同时发生像素到像素的泳移)是可能的,并且在某种条件下可能是有利的。
术语“均匀的”或者“杂色的”用于说明基底特定区域显示的视觉颜色的一致程度。具有不均匀或者高度杂色的染色区域显示斑点的或者污点的外观,在已经尝试就地着色的情况下,单独的像素到像素的颜色变化可能是视觉上明显的。这样的变化或许受欢迎或许不受欢迎。
当应用于在基底上所见的染色图案时,术语“清晰度”或者“高清晰度”是指显示极多细节的图案,具有提供特别清晰、视觉对比和明确边缘的图案元素。
术语“边界区”是指在第一种颜色的第一图案区与邻接的第二种颜色的第二图案区之间作为边界的区域。该边界区包括所有可测量的颜色层次,它从“纯”第一种颜色到“纯”第二种颜色(或者反之亦然)以过渡的形式出现,且沿着代表两个图案区之间最短距离的路径,定位于它们共同边界的特定位置。该边界区的一个边缘与沿着以下路径的位置相一致,该路径是第一个颜色开始可测量地受到染料从第二图案区泳移的影响,该边界区的另一个边缘与沿着以下路径的位置相一致,该路径是第二种颜色开始可测量地受到来自第一个区域的染料泳移影响。边界区包括含有来自两个边界图案区的应用图案染料的单个纱线、纤维或者绒头元素。
术语“过渡宽度(Transition Width)”是使用本文公开的技术计算的距离,用于表征两个邻接图案区之间特定的边界区。概念上,过渡宽度可能被看作定义边界点的数学导出值,该边界点可用于位于(和属于)定义边界区的实际前缘和后缘。这些数学导出的边界点,相信很好地适合于可靠地表征在两个邻近图案区之间的颜色过渡的缓急度。
术语“特征宽度”是指根据本文定义的方法,穿过图案元素最短尺寸所测量的图案元素的宽度。概念上,最小特征宽度可以看作与最大印花隔距相反关系的,因为它是能够在基底上可靠地定位和复制的最小图案特征的测量。
与过渡宽度和特征宽度一起使用的术语“半无限”,指的是与关注的边界区邻接的图案区的宽度。“半无限”区具有充足的宽度,从而能够假设从邻近图案区穿过其边界区的染料泳移,对该半无限图案区内部的颜色没有影响。该充足宽度假设是三个像素。因此,为了本文的分析,三个像素或者更大的特征宽度是认为的“半无限”宽度。因为这种定义意味着半无限图案区的中点离边界区足够远,以避免来自任何邻近图案区的任何实体影响(来自染色泳移),半无限特征大小的选择可能要随需要调整。
术语“优势边界颜色”是指一对邻接的颜色之一,凭借其比色性能,在它们的共同边界区趋于从视觉上压倒第二种颜色。例如,与较浅颜色(即如CIELAB所定义具有相对较高的L*值)邻接的较暗颜色(即如CIELAB所定义具有相对低的L*值)相关的边界区,可能在视觉上由较暗颜色的边缘支配,而不是由较浅的颜色边缘支配。值得注意的这个普遍规律的例外是某些较高亮度的黄色调,尽管它具有相对高的L*值,但可以表现为优势颜色。
术语“染色渗透”,当应用于具有绒头或似绒表面的纺织品基底时,是指在图案构型中应用于基底表面的染料沿着纱线或者纺织品纤维(“绒头元素”)的长度泳移,并且以基本均匀的方式对这些绒头元素染色的程度,该纱线或者纺织品纤维在基底背面(通常是绒头元素附着基底背面的点)的一般方向含有绒头。仅作为例子,对于含有广泛直立的绒头元素的基底,染色渗透是应用图案染料沿着单个绒头元素的长度移动,并有效均匀地对那些绒头元素染色的距离,没有出现色条、带、条痕、明显的色彩变化(例如由于降低了的染料浓度或者色层影响),或者沿着绒头元素长度的不完全的、不均匀染色的其它迹象。显示染色渗透相对浅的基底可能在原状基底表面附近显示出完全的染色,但是当刷或分开绒头表面时,显示出不完全染色的绒头元素(关于应用图案染料)。
术语“起霜(frostiness)”用于描述绒头纱线顶端缺乏染料,要不然其显示至少一些染料渗透,使基底的染色表面具有亮或模糊的外观。
术语“吸湿率”用于描述染料应用于基底表面的量,以方便的单位(例如克/平方厘米)表示。
术语“有效滴径”是指,如果染料置于基底图案区的每个像素的中间,获得特定的吸湿率时,假定的球形染料滴的直径。
用于描述基底的提花工艺的术语“计量喷射”,是指对纺织品染色的任何工艺,其中多重的、分离形成的易流动染料流,根据图案数据通过选择性开动和退动分配染料的单个染料供料器,通常以像素方式的形式,从放置在与基底的待提花区相对的导管,应用于基底表面。
术语“有效印花隔距”是指通过计量喷射提花设备,可以将图案赋予到基底上的实际分辨率;它相当于每单位长度单个像素的最大数量,在该单位长度上特定的颜色能够有效和可靠地从视觉上分辨出来。
术语“线轮廓(line profile)”是指印花颜色变化的测量(例如CIELAB值,或者它们的空间导数),它在垂直于和横过不同颜色图案区之间边界区的合适数量路径上均分。
术语“颜色信号”是指将纺织品基底数字化的扫描器的输出信号,其表征基底表面的颜色。
术语“基底噪声”是指将纺织品基底数字化的扫描器的输出信号,该信号叠加在颜色信号上,是由于基底表面的拓扑和其伴随的加亮和遮蔽。这样的效果在绒头基底表面上尤其明显,在具有相对长绒头元素或者不规则绒头绞距的绒头基底表面更加显著。
附图说明
下面的讨论是要与下面简要描述的图一起结合阅读。
图1是典型提花机组的前端示意性俯视图,该提花机组包括用于生产本文说明的产品的典型PREF提花设备;
图1A是如同图1的典型提花机组另外可选的前端的示意性俯视图;
图2是图1提花机组的中间部分的示意性俯视图;
图3是图1和1A的提花设备的后端示意性俯视图;
图4是图1和1A的PREF提花设备的示意性平面图;
图5是根据典型实施方式的PREF按需滴墨或者直接喷射提花设备或装置的侧视图;
图6是图5的PREF提花设备的端视图;
图7是根据其第一个实施方式的图5和6的PREF提花设备的一个截面的横截面图;
图8是根据其第二个实施方式的图5和6的PREF提花装置的一个截面的横截面图;
图9是典型的所有内含的阀门插件(valve card)的透视图;
图10是多个图9的阀门插件相互邻近排列的仰视图,它们是在图5和6中的PREF提花设备的阀门插件组或者阀门插件阵列中;
图11是两个相邻阀门插件组或阵列的一部分的仰视图,每个相邻阀门插件组的喷射器相互排列成行;
图11A是图11的两个阀门插件喷射器的一部分的放大图,其显示第一个阀门插件和第二个或者后面的阀门插件的喷射器在基底移动的方向上相互排列成行;
图12是根据另外可选择的典型实施方式的大量阀门插件的仰视图,它们在与图5和6所示PREF设备类似的阀门插件组或者阵列中排列成行;
图13是图12的阀门插件的两个阀门插件组和阵列的一部分的仰视图,其中喷射器相互偏移排列;
图13A是图13的两个阀门插件喷射器的一部分的放大图,显示阀门插件偏移了喷射器间距离的一半,致使后端的阀门插件喷射器与首位的阀门插件偏离;
图14是根据本发明典型的实施方案的阀门、喷射器和管道排列(单独控制的染料供料器或者分配器)一定程度示意性的横截面图;
图15是图14阀门的一部分的放大横截面图;
图16是图14喷射器的一部分的放大横截面图;
图17是图7的阀门插件部件底板的一部分的俯视图;
图18是图8的阀门插件部件底板的一部分的俯视图;
图19是用于为流体导管供应染料和/或化学品的封闭流体罐的典型实施方式的示意图,该流体导管为一个或多个阀门插件组或者阵列中的多个阀门插件供料;
图20是可选择的多路染料或化学品供应的示意图,其为特定的阀门插件组或者阵列中的多个阀门插件的特定流体导管供料;
图21是根据另一个典型实施方式的多个阀门插件的可选择的多路染料或化学品供应的示意图;
图22是显示适用于操作图1-21的PREF提花设备的电子控制系统的概观方块图;
图23A和23B是图22中公开的“错排”存储器的图示,图23A描述在时间T1的存储状态;图23B描述在时间T2的存储状态,该时间T2正好是一百条图案线之后;
图24是描述图22中描述的“格林式(gatling)”存储的方块图;
图25示意性描述如图22到图24指示的在本发明各种数据处理阶段的图案数据的格式;
图26是显示任选的“喷射器校准(jet tuning)”功能的图,如本文所述,该功能可能与每个阵列相关;
图27是显示本文公开的新型邻接阀控制系统的概观方块图;
图28是代表当阀从之前的机器循环中打开时的时钟电压脉冲、电压脉冲中的移位数据(shift date)、高电压脉冲、闭锁电压脉冲、和阀驱动电压脉冲的图;
图29相应于图28,代表当阀未从之前的机器循环中打开时的时钟电压脉冲、电压脉冲中的移位数据、高电压脉冲、闭锁电压脉冲、和阀驱动电压脉冲的图;
图30是示意性描述显示基底块状着色区的提花设备的平面图;
图31是典型的多层地毯结构的分解示意图;
图32是在地毯绒头中应用和固定染料的简化工艺流程图;
图33是说明地毯制备的步骤顺序的展开流程图,包括将染料应用和固定到绒头表面;
图34说明了弥散场射频应用装置,包括多个延伸穿过方块地毯的运行路径的电极以施加干燥电场;
图35是与图31类似的分解侧视图,其说明施加到地毯结构内基本受控深度处的RF场;
图36是说明用RF预热改进染色的图;
图37是说明阔幅地毯形成的典型工艺流程图,可能包括图案印花和/或RF预热步骤;
图38是说明形成方块地毯产品的典型工艺流程图,可能包括图案印花和/或RF预热步骤;
图39是说明形成方块地毯产品的另一个典型工艺流程图,可能包括图案印花和/或RF预热步骤;
图40是图案适于进行本文教导的分析的方块地毯的透视图;
图41A和41B系统地描述割绒表面上染料滴的性能;
图42A和42B系统地描述圈绒表面上染料滴的性能;
图43是描述测定过渡宽度的步骤的概观流程图;
图44是描述扫描器仪表校正的一系列步骤的流程图;
图45是描述与基底噪声叠加的颜色信号;
图46是用于查找过渡宽度的计算的总览;
图46A是类似于图46但是涉及测定特征宽度的图;
图47A到47C包括描述实施边界区图像分析的步骤的流程图;
图48说明在两个图案区之间的理想化边界区及与其相关联的数学模型;
图49是与图48相似的图,但是该图说明在两个图案区之间扩散的边界区;
图50是与图49相似的图,但是该图描述清晰的、曲折的边界区;
图51类似于图49和50,但是在该图描述的边界区中,颜色混和而导致在该边界区形成第三种颜色;
图52示意性地描述涉及测定特征宽度的工艺步骤,该特征具有相对直的但是扩散的边界区;
图53是与图52相似的图,但是该图描述的特征具有曲折的但是相对清晰的边界区;
图54A描述在割绒基底上不规则的和相对浅的染色渗透;
图54B描述在割绒基底上相当深的和更均匀的染色渗透;并且
图55到219以各种形式描述在进行本文描述的分析过程中收集的试验数据。
图220到255以各种形式描述,在由羊毛组成的基底上,进行本文描述的分析过程中收集的附加试验数据。
具体实施方式
设备的详细说明
为了讨论,图1-21的设备连同下面描述的计量喷射提花设备控制系统一起说明,该设备特别适合此系统。然而应当理解,本发明下面描述的电子控制系统也许经过明显的改造可能用于其它设备,其中相似数量的数字化数据必须快速地分配给大量的单个元素。
还是为了讨论,图1-21说明的设备连同下面描述的提花纺织产品一起说明。图1-21的设备尤其很适合于生产这样的产品。然而应当理解,本发明的设备也许经过明显的改造可用于生产其它产品。
根据本发明至少一个潜在优选的实施方式并参考图1-21,为特定像素的或者像素方式的染料应用、化学应用和/或类似应用,提供了按需滴墨或直接喷射纺织品提花机或者设备。该直接喷射染色设备或者纺织品提花机不仅提供单个着色剂的特定像素染料应用,也提供颜色、化学试剂和类似物的结合从而不仅产生传统的图案、设计、颜色和效果,而且产生独特的以及以前所不知道的图案、涉及、效果等。
虽然本发明的直接喷射染料或者提花设备或机器,可能用来对阔幅基底、区域地毯、地垫、方块地毯、长条地毯或类似物染色或者提花,图1-3涉及染色或者生产不连续的方块地毯的特别提花机组或者染色机组的实施方式。容易想象人们可以使用相似的设备对阔幅地毯提花。美国专利第3,894,413号公开了方块地毯的染色,而美国专利第6,120,560号公开阔幅基底的染色,因此每个在此引入作为参考。
关于图1-3的特别例子,尤其以像素方式的形式,用于纺织品基底染色或者提花的染色机组或者生产线,包括在前端为了接受原料方块地毯或者坯布货盘252的机械的卸垛或者分单(singulating)站250,自动地从货盘上的原料中拆卸单块,并将该分单的方块放置到输送机253上,该输送机输送每个方块或者坯布252经过预处理站256。在预处理站,该方块可能经受蒸汽、浸湿、水或类似处理。例如,染色前基底的预处理,在美国专利第4,740,214和4,808,191号中说明,因此在此引入作为参考。
预处理后(若有的话),每个方块或坯布252经过典型的PREF提花设备或者直接喷射染色或提花机254,其包括具有各自条板或者分隔器320的输送机械装置310,确保每个方块在输送机上规定的位置并以准确的方式经过提花设备或者机器254输送,从而在每个方块的特定位置或地点对每个方块提供染色图案、设计、颜色和/或类似物,并且当该方块地毯安装到一个位置时在相邻方块上提供图案、设计、颜色、或类似物的准确定位。方块经过PREF提花设备254的位置越准确,得到的图样在相邻块上的定位就越准确。
图1中的PREF提花设备或者机器254显示处于三十二个染料或者化学品罐260的附近,它们为三十二个相应的阀门插件组或者阵列供应染料或者化学品,这将在下面更详细说明。每个染料或化学品罐260优选从混合罐、稳压罐、贮存罐、混合设备、或类似物中接受选择的染料溶液或者化学试剂。并且优选每个染料或者化学品罐260在压力下将染料或化学试剂输送到阀门插件组,更优选地,以基本恒定的压力,例如约10-35psi,更优选约20-30psi,最优选约30psi。
关于图1,染色的或印花的方块地毯退出PREF提花设备或机器254,并转移到输送系统或者转移盘264,它将方块从单纵列排列在预热或者预调站266的上游转换成三列宽排列。例如,预热或预调站是一个RF装置,其至少将每个方块的顶面加热到约190的温度,以便在进入第一蒸汽区段268前在纱线上预热或者预调整染料。染料的这种预热或者预调可能不仅提供较好的清晰度、较少的渗色、较好的颜色、或者类似优点,而且当它进入蒸气机区段268时还可能降低方块地毯顶的冷凝。
比照图1A并根据另外可选的实施方式,染色的方块或者基底252在经过将方块从单宽排列转换成三倍宽排列的输送装置或盘264前,从PREF提花设备254传到单宽预热站266。因此,图2的预热站266比图1的窄。虽然图1-3显示方块在机组的大部分以三倍宽输送,预计该机组可以排列输送单宽、双宽、三宽、或者类似的方块。
关于图2,将方块以三倍宽输送经过第一蒸气机区段268到第一处理站270,然后进入第二蒸气机区段272。在第二蒸气机区段272后,将该块以三倍宽输送进入洗涤和处理站274、真空站276、轧辊站278,并经过干燥机区段282上游的附加处理站280。每个蒸气机区段268、272的入口和出口是蒸汽罩269。
关于图3,干燥机区段282,例如,一个传统的加压气流干燥器或炉,随后是后干燥区段284,比如RF设备。将方块进一步以三倍宽输送经过冷却区间286,例如,冷空气或者制冷装置,然后运送到将方块转换回单一方块排或排列的分单设备288。
紧接着,将方块地毯252沿着第一个输送机290输送到同时修整每个方块的两个相对边缘的第一个整边站292。此后,该方块进入第二个输送机294,例如辊式运输机,它将方块输送经过修整每个方块另外两边的第二个整边站296。在整边后,每个方块穿过串联的块翻转站298,它能翻转每个间隔的方块,以便使方块能够面对面或背对背地堆叠在机械的码垛堆积或堆垛站300。虽然没有显示,应该理解图1-3的机组或者生产线可能包括串连的边或尖修剪站,其中例如,在码垛堆积之前剪切割绒表面方块地毯的尖头。根据图3所示的例子,方块可以从输送机290或者294之一移去,修剪尖头,然后如需要地放回该输送机。或者,方块可以通过机械堆垛机300堆垛到货盘上,开始进行离线剪尖操作,修剪尖头,再码垛堆积、包装和运输。
将成垛的方块252传到货盘包装站302,在那里,将例如成垛方块的货盘,例如80张方块地毯,压缩包装(或者装上套筒并封盖,然后包装),然后运输到用户、仓库或类似处。图1-3的机组包括多个处理站,这些处理站提供一个用蒸汽、浸湿、水、阻污剂、去污剂、耐漂白剂、碳氟化合物、抗菌剂、和/或类似物处理方块或坯布的机会。如果一个或多个这样的处理需要蒸汽,这可以在处理站270实现。如果一个或多个这样的处理需要加热,这可以在干燥器282上游的处理站274或280之一进行。虽然在图3中没有显示,预计人们可以在冷却站286、分单设备288或类似处的后面增加后处理站。
关于图4,显示了PREF提花设备254的示意图。并且,包括在该图中的是与电子控制系统52、电子记录系统54、和循环脉冲发生器或者相似的转换器56相联的计算机系统50的框图。这些系统的共同操作导致产生单独的“开/关”启动指令,该指令控制来自安置于阀门插件组或者阵列58的阀门插件中的单个喷射器的流体流。该喷射器以控制的方式将流体分配到基底252上。对于PREF提花设备优选的特定控制系统,根据图22-29在下面说明。仅仅作为非限制性的例子,其它控制系统在美国专利第5,984,169、5,128,876、5,136,520、5,140,686、5,142,481、5,195,143、5,208,592、4,033,154、4,545,086和4,984,169中说明,由此将每一个引入本文作为参考。
图4中的阀门插件组或者阵列1-8从染料或化学品供应60接受染料和/或化学品。例如,阀门插件组1和2可以接受选择性的化学品,而阀门插件组3-8可以接受选择的染料,例如红、绿、黄、蓝、黑、棕。进一步地,电动机336通过控制系统52控制,以便在每个阀门插件阵列58下经过而输送基底252,并产生在其上具有染料图案、设计或颜色70的染色基底252A。优选基底252以设置的速度连续输送经过阀门插件阵列,例如每分钟20英尺、每分钟40英尺、或者每分钟80英尺或更高。虽然不是优选的,该基底可以被指引经过阀门插件阵列58。仍进一步地,虽然图4描述了具有固定染料头的提花机器(基底是移动的),应该理解基底可能被固定,而阀门插件组或者阵列移动横过或越过基底。
虽然图4仅显示了八个示例性的阀门插件组或者阵列58,应该理解该PREF提花设备254可以包括任何数量的该阀门插件组,在每组中具有任何数量的阀门插件。根据一个具体的例子,本发明的提花设备254具有24个阀门插件组,其中有2至4组是化学品阀门插件组,其余20-22个阀门插件组装备有例如有色染料、透明染料的染料,或者稀释剂。根据本发明另一个例子,提花机或设备254包括32个阀门插件组,其中两个阀门插件组,第一和第二阀门插件组是化学品阀门插件套,而其余阀门插件组3-32是染料阀门插件组或者阵列,提供有色染料、透明染料、稀释剂、染料混合物、或类似物。
关于图5和6,并根据具体的实施方式或者例子,PREF提花设备、直接喷射或者按需滴墨型喷射印染机或者纺织品提花机254,在输送机310顶上输送多个方块地毯、基底或者坯布252,该输送机310位于多个阀门插件盒或者区段312、314、316和318的下面并与之接近,每个阀门插件盒或者区段显示覆盖8个阀门插件组或者阵列362(58),总共是32个阀门插件组。该输送机310包括多个分隔条、条板或者隔板320,从而确保每个方块地毯252,随着在每个阀门插件组1-32下加工,位于输送机310的合适位置。该阀门插件区段312、314、316和318由支撑结构322支撑。输送机310由多个动力高度调节装置324支撑,每个324包括用于升起和降下支撑螺丝328的伺服电动机326,328支撑衬垫330,330用来根据送到伺服电动机326的电子驱动信号升起或者降下输送机310。每个装置324由构架322支持。
每个阀门插件的喷射器与待提花或染色的基底之间的间隙,可以通过给每个伺服电动机326的电子信号从远端控制。输送机310相对于区段312、314、316和318的适当位置,通过令杆或构件332在圆柱形构件或开口334中推上或推下而控制,这为阀门插件喷射器与基底之间的间隙提供很大的变化,例如,高达约2英寸的间隙,优选八分之一英寸至1英寸,更优选八分之一英寸至四分之一英寸。伺服电动机326为喷射器与基底之间的间隙提供自动调节,以解决不同基底、变形基底等的不同绒头高度。
输送机310由电动机336根据来自控制系统52的信号驱动。电动机336为端部的轮或链齿342和346之一提供驱动。将输送机310设计成通过降低衬垫330而降低并远离阀门插件区段312、314、316和318,衬垫330使多个带槽轮338降低到各自具尖角的轨道340。一旦将带槽轮338支在轨道340上,可以将输送机310从阀门插件组区段下取出,进行输送机区段的维修、维护、替换,除去卡住的方块或类似物。
销或元件332足够短,以致当支撑衬垫330降得足够低以容许辊338与轨道340接触时,销332不在通道334中固定,并且输送机310自由地沿着轨道340移动。输送机310除了电源接头或电缆外是独立的,由此可以沿着轨道340移动。
虽然输送机310显示适合用于方块地毯,应当理解该输送机可以改造,或用适合用于阔幅地毯、地垫、区域地毯、长条地毯或类似物的输送机代替。例如可以去掉定位条板或者杆320,以适应用于阔幅基底的输送机310。
支撑构架322放置在趋于降低噪声和振动的多个可调的弹性支撑脚348的顶上。同样,支撑衬垫330可以稍微有弹性并且可以趋于降低噪声和振动。
每个阀门插件盒或者区段312、314、316和318包括多个侧壁350、底板352、顶板354和356,以及多个铰链盖或板358,这为特定的阀门插件的插入、除去或检查提供进入区段内部通路。优选板354和356以及盖358具有足够的强度,以便使它们支撑在设备或机器254顶行走的操作者的重量。
底板352优选精密地用机器制造,并包括多个开口,该开口接受每个阀门插件的凸出的喷射器或喷射器阵列,以及沿着每个阀门插件的喷射器阵列延伸的任何保护销,这将在下面根据图17和18说明。
关于图6,阀门插件盒或者区段312的侧部或端部板350的部分切除,显示在盒或区段312中多个阀门插件在操作位置彼此相邻,并形成提花机254的阀门插件组或阵列58或阀门插件组或阵列第1号。为了讨论,当从接受基底252的前端或末端观察机器254时,第一个阀门插件组或阵列的最左边的阀门插件是阀门插件1,1,并且阀门插件1,1的第1号喷射器是该提花机的喷射器1。
关于图5-7、12、13、13A和17,显示了一个特定的排列,比如40隔距(0.025英寸或者0.0635cm)的排列,其中单一的流体导管或者歧管364给两个相邻的阀门插件组或者阵列的阀门插件供料,以便使这些相邻阀门插件组运载相同的染料和/或化学试剂。如图13-13A所示,相邻阀门插件组可以相互偏移,以使第一个阀门插件喷射器与喷射器间隔排列,例如,在20隔距时,即1/20英寸(0.05英寸或者0.127cm),从第二个阀门插件喷射器阵列偏移喷射器阵列的二分之一隔距(0.025英寸或者0.0635cm)而产生总的40隔距(0.025英寸或者0.0635cm)的排列。换句话说,通过使阀门插件的选择阵列偏移,使用喷射器以20隔距设置的阀门插件,图案、设计、颜色、图像、或类似物能够以40隔距或更高的分辨率产生。
虽然图5和7显示40隔距的排列或者其中单一的染料或者化学品供应到两个相邻阀门插件组的排列,应当理解,如图8、10、11、11A和18所示,每个阀门插件组可以从分离的流体歧管或者导管364供料,相邻阀门插件组的每个阀门插件的每个喷射器列如下排列,例如,提供提花或者染色的分辨率为20隔距(0.05英寸或者0.127cm)的排列。这为染料或化学品提供了附加性能,因为每个阀门插件组或阵列可以具有其本身独立的颜色、化学品或类似物。应当理解本发明的PREF提花设备可以以任何选择的隔距产生图案,例如,通过以期望的间隔放置喷射器,使用挑选的喷射器,令阀门插件组偏移等。例如,通过放置10隔距的喷射器,或者通过使用以20隔距的喷射器排列每两排喷射器,人们能够产生10隔距(0.10英寸或者0.254cm)的图案。
关于图9,优选每个阀门插件360在每个阀门插件盒或者区段312、314、316、318中容易地插入、安装、除去或者替换。人们通过简单地升起盖358,并将阀门插件(以垂直方向)插入其在基板352(或者352A)中各自的空间或位置,来安装阀门插件360。接着,借助快速连接插塞或头378连接动力和识别(ID)缆376,378适于被插孔或接收器380可释放地被接受(就像是适于被电话插孔接受的电话插塞)。同样,借助适于被快速连接和分离接受器或者插口384接受的连接器382连接阀控制缆386。该阀控制缆接受器384包括右旋和左旋的端夹388,它使得阀门插件控制缆386快速连接和分离。为完成阀门插件360的安装,待连接的其余项目是流体的快速连接,这采用流体管或者软管392的末端切断的管接头390,392适于连接到从歧管364延伸出的配套快速连接元件394。管接头390和软管392在阀门插件360与歧管364之间提供运转的流体连接。在提花机254中的每个阀门插件位置,具有其本身的阀控制缆386,以及动力和ID缆378。由此,该机器控制系统能够单独地指挥每个阀门插件的每个喷射器(阀)随期望喷射。
根据所示的具体实施方式,人们能够在大约几秒种内将新的阀门插件插入并连接到阀门插件盒或者区段中选择的阀门插件位置。同样地,如果需要维修或替换出故障的或损坏的阀门插件,人们能够在大约几秒种内,通过将管接头390、连接器382和插塞378从它们各自配套的连接器或插口中拆开,然后将阀门插件从其在基板352或者352A中的场所和位置拉出,而拆除阀门插件。
根据本发明的一个例子,通过重复相同颜色,经过提花设备或机器254的加工速度可以翻倍或者相当大地增加,就是说,例如使用像图7的装置,其中将相同颜色提供到两个相邻阀门插件组,但是相邻阀门插件组的喷射器如图11A排列,以使人们能够在基底上相同的像素或位置应用两滴相同的染料或者化学品。因此,人们可以将相邻阀门插件阵列的每个喷射器应用的最小滴体积减半,而由此对于特定基底、染料、化学品、化学组成、或类似物的最小滴体积总计100%。通过具有图8的两个歧管364,供应相同的染料、化学试剂、化学组成或类似物,这也可以实现。同样,应该理解不同颜色可以在另一个上应用以进行杂色-对-杂色(shot-on-shot)混合,不同颜色可以邻接于另一个应用以进行杂色-邻接-杂色(shot-by-shot)混和,等。
关于图7-13、17和18,每个阀门插件360非常准确地定位于其在基板352、352A上的阀门插件座或位置,这是通过多个销400和402或者404和406、受载弹簧定位钢球408和定位钢球接受器条410、依靠在基底416的平边414上的定位条或柱412实现的,或者通过令平边414依靠在定位钢球接受器410的平坦背面。
优选地,每个歧管或流体导管364经过阀门插件组盒或者区段312、314、316、318,并且从至少一个侧壁350,优选两个侧壁350向外延伸,以在其一端或两端上向该处提供染料或化学品供应的简便连接,或者在其一端提供染料或化学品供应的连接,并提供另一端用于从歧管364里面冲洗或者清洁。
每个阀门插件盒或者区段312、314、316、318也包括多个动力和控制支撑盘或板420,其为每个阀控制缆386以及动力和ID缆376支撑连接器或者分配元件。关于图6,提花机254在其至少一侧包括延伸外壳422,为电子元件、电缆、连接器和类似物提供间隔,例如将每个阀控制缆386以及动力和ID缆376与电子控制系统52、电子记录54、和/或转换器56隔开。根据一个例子,一米宽的提花设备包括每阀门插件阵列或组中的35个阀门插件,具有32个阀门插件组,总共1,120个阀门插件(每个有24个喷射器)、1,120个阀门控制缆、以及1,120个动力和ID缆。
每个阀门插件360优选是整装的,或者装配的所有内含的阀门插件包括电子、动力、流体、阀门、喷射器、和类似物,其优选地提供选择量的流体在基底上精确和准确的沉积,该基底在每个阀门插件360的喷射器424下经过。同样,该阀门插件具有以交错的角度行列安置的喷射器424,或喷射器柱提供紧凑的阀门插件排列以及高分辨率或者高隔距(大量喷射器),例如喷射器以20隔距(0.05英寸或者0.127cm)或者40隔距(0.025英寸或者0.0635cm)排列。例如图10和12的每个阀门插件上的喷射器可以隔开以产生20隔距或0.05英寸(0.127cm)分辨率的图案。通过以显示角度的阵列放置喷射器,人们也能够在基底移动的方向限制阀门插件的长度。
还关于图9,优选的全部内含的阀门插件或者阀门插件模块360进一步包括识别(ID)板426,提供对于每个阀门插件专一的电子序列号。该提花机控制系统查询ID板426(借助线376)并接受插件号以使该系统能够追踪特定阀门插件的位置、该插件的历史、该插件的维护等。因此,缆或线376包括电力和ID查询线。
动力在阀门插件360的主板432上通过动力线428转移到噪声滤波器430。主板432也包括用于控制每个阀门的电子元件,包括电阻包434、集成电路(ICs)436、齐纳二极管438、二极管440、和类似物,它们为选择性地操作或者启动(打开)每个电磁阀提供电子控制信号,以容许例如染料或者化学品的流体或液体相应于那个特定阀门从所选的喷射器分配。根据图9、10和12所示的特定例子,每个阀门插件具有24个阀门和24个相应的喷射器。这样,每个阀门插件提供单独控制的染料分配器或者供料器的固定排列。并且,多个排列成行的阀门插件、阀门插件组或者阵列,优选横跨整个基底的幅宽并用作供料器条或色带。
虽然图9-13中显示的阀门插件每个具有24个喷射器(和24个阀),但是预计根据期望的分辨率、期望的滴体积、待染色的基底、每个阵列的喷射器是否具有角度、阀门插件是否相互排列成行等,一个阀门插件能够具有任何数量的喷射器,例如8、16、20、24或类似。本发明显示的喷射器间隔为20隔距(0.05英寸或者0.127cm)提花的阀门插件在工业上是新颖的、独特的,并在绒头地毯上提供基本上确切的20×20隔距的分辨率。
关于图9和14-16,阀门插件或阀门插件模块360进一步包括从软管392接受流体并将其分配到二十四个歧管出口443的染料或流体歧管442,每个443分别连接到歧管到阀门管444,444接收阀门448的上部阀门管或者入口446。每个上部阀门管446经过子板或者阀门连接界面印刷电路板(PCB)450,450不仅提供每个阀门上部管446的支持和定位,而且提供在板432上阀门控制电路与每个阀门上正和负电子端或导线447和449之间的电子连接。这种安排有助于阀门插件的制造,以及修理或替换出故障的阀门。每个阀门448具有下部管或出口452,452延伸到阀门支撑板454的下面并接收到喷管456的阀门,456有效地连接出口452到喷射器424的各自喷管458。喷管458经过基板416,在图9和10中所示的实施方式中其由保护销460保护。
子板450由一个或多个板间隔物462支撑,阀门支撑盘454又受阀门托架464和间隔物466支撑。托架464也支撑定位钢球机械装置408。作为典型的有定位钢球的装置,定位钢球408包括使球向外偏斜的弹簧,以在其座上提供阀门插件的搭扣件。
阀门插件基底416进一步支撑适于容纳销400的圆柱形销贮槽468。基板416也包括适于容纳销402的开口或槽470。关于图9,每个阀门448在三个偏移行中的每一行安置八个阀门,以安置阀门并提供其紧凑的排列。
根据本发明的一个特定例子,每个阀门448具有外形尺寸长度大约0.83英寸以及直径0.22英寸的圆柱性阀体472。根据本发明,优选每个阀门是电子启动打开的串联的螺线管,并如图14和15所示通过弹簧474闭锁关闭。优选该阀门是串联的或直通的阀门,从而保持阀门插件360相对较小,例如外形尺寸大约11-1/2”英寸高,1-3/8英寸宽和4-1/4英寸长(不包括延伸出主板432的软管392部分)。并且,相对小的阀门尺寸同时仍适合为特定基底提供所需的最小滴体积,也减少了能量需求,减少了热量产生,并为较大数量的阀门或喷射器提供可能,并因此为提花机254提供增加的隔距。
虽然图9和10所显示的阀门插件的实施方式可能是潜在优选的实施方式,阀门插件另一种选择的实施方式360A显示在图12和13中,其中基板416A适于在V-槽476中容纳销404,并在槽470中容纳销406。阀门插件360A与阀门插件360相似的地方在于,它们包括在三个有角度的喷射器行或柱中,以一定角度阵列排列的二十四个喷射器424。如上所述,图13和13A显示人们能够通过令相邻的阀门插件组彼此偏移,来使机器的隔距翻倍。
还关于图14-16,优选每个阀门448是具有线圈或绕组478的电子启动的螺线管,当借助导线447、449开动时,相对着弹簧474的偏压,478将阀轴或构件480从图15所示的关闭位置运动到图14所示的开启位置。这使有弹性的阀门座482移动离开管452,以容许流体在压力下流经阀门448并进入管452。尤其是,例如染料或者化学试剂的流体流经管446,经过环形通道484,经过并环绕弹簧474,环绕构件480,在座482和管452之间,进入管452。构件480包括容纳弹性座482的承窝或贮槽486。根据一个实施方式,轴480由430F不锈钢制成,弹性座482由EPDM橡胶制成。
在图15的阀门关闭位置,例如染料、化学试剂、空气或类似物的流体不容许通过阀门448,这样没有流体或液体从喷射器424分配或喷射。在管452、管456和在宝石轴承孔(jewel orifice)488上方的管458内的任何流体,通过毛细管作用而保持位置。当该阀门如图14所示开启时,流体经过管452,经过管456,经过喷管458,经过宝石轴承孔488的小孔489,流出喷射器424的喷管458。随着阀门448可能非常快地开启,小滴或者量的流体可以从喷射器424喷射。并且,应当理解阀门448可以保持开启相当长的时间,以容许流体流从喷射器424分配。
喷管458包括多个结块490或者环形结块,其令宝石轴承孔保持在喷管458中。喷管458的内径不是关键的,因为宝石轴承孔488的小孔489,连同发射时间、粘度、化学组成等,决定从喷射器424分配的流体。
根据本发明,优选喷射器424包括精密制作的宝石轴承孔488,从而提供基本无溅泼的阀门喷射器,这是因为通过迫使流体经过小孔489而不是经过喷管458的末端,从喷射器分配或喷射出流体。虽然优选喷射器424包括宝石轴承孔488,但是预计人们可以去除宝石轴承孔488,或者用孔板或其它扼流圈代替。
根据本发明特定的例子,宝石轴承孔具有直径约0.02英寸或更小的出口或者小孔489。根据本发明特定的例子,管444的内径为0.05英寸,外径为0.09英寸,管456的内径为0.032英寸,外径为0.09英寸,管444的管长为1.23英寸,每个管456足够长以提供各对管452与喷管458之间的连接。
关于图9,为了清楚,不是所有的阀门至喷射器管456完整显示,而部分显示在基板416的背面。然而,应当理解每个阀出口管452通过各个管456连接到喷管458。
根据本发明的一个例子,优选供应到阀门插件360或阀门插件360A的软管392和染色歧管442的流体,在约15至35psi之间的压力下供应,更优选约25-30psi,最优选在约30psi的恒压下。通过以恒压供应流体,人们能够得到更准确的滴体积或者流体在基底上的吸湿率。
根据本发明的特定例子,每个阀门448满足下列阀门规格:典型的阀门规格:
该例子对于优选阀门限定了设计、性能和试验规格。限定的规格适于单个的阀门以及阀门插件模块。
1.0设计和性能规格
这部分限定了影响阀门设计以及阀门和阀门插件模块的预期性能的参数。
1.1流动介质
该阀门设计用下列流动介质操作:
介质:水溶液、分散体和乳状液
粘度:1-1300厘泊(Brookfield LVT#3@60rpm)
PH:3.0-12.0
比重:0.95-1.05
过滤:名义上5微米
温度:5-45℃
操作压力:≤40psig
1.2电
螺线管启动系统设计在下面条件下操作:
HSD脉冲电压:45.6-50.4VDC
HSD脉冲持续时间:237.5-262.5微秒
吸持电压:2.7-3.3VDC
功率耗散:600毫瓦(42欧姆线圈)
其中:HSD=高速驱动
1.3出口宝石轴承孔
宝石轴承孔和宝石轴承孔管满足下列设计和性能标准而制造:
宝石轴承孔直径:0.0159-0.0161英寸
小孔/管方向性:0.100英寸内径圈内,4英寸支柱,管安置于阀门插件模块中。
1.4机械加工公差
除非有其它规定,阀门插件模块基板的机械加工公差是±0.001英寸。
1.5性能
在以上列出的设计限制中,所要求的阀门性能规定如下:
设计使用期限:≥2×109循环
TOPEN:≤500微秒(阀门完全开的时间)
ΔTCLOSE:≤1,000微秒(阀门完全关闭的时间)
工作循环:0-100%
泄漏:在≤40psig时无(<1滴/小时)
将单个阀门装配到含有24个阀门的阀门插件模块中。在特定的阀门插件中从阀门到阀门的流动均匀性和绝对流量,为了合适的系统性能进行优选。下列规格限定了单个阀门的性能以及作为总体的阀门插件模块的流动特性。为了这个规格,具体说明了有代表性的介质。
流动介质:Kelzan S黄原胶
粘度:700-750厘泊(Brookfield LVT#3@60rpm)
PH:4.5-5.0
过滤:名义上5微米
压力:29.7-30.3psig
温度:20-35℃
流动条件:5000循环:5.00毫秒开,1.00毫秒关
输出:μVC:17.00-22.00克
fi:(0.95*μVC)≤fi≤(1.05*μVC)
其中:fi=在阀门插件模块上对于单个阀门的输出
μVC=阀门插件模块的平均输出
    =∑fi/24,i=1,2,...,24。
上面的规格要求任何单个阀门对于阀门插件模块的平均输出的最大偏差小于或等于5%。而且,在这个条件下,阀门插件模块的平均输出优选在17.00和22.00克之间。
关于图7,12-13和17,基板352具有多个开口492,通过该处适合接受在每个阀门插件360A基底上的每个各自阵列的喷射器424。并且,基板352支撑用来定位每个阀门插件360A的基板416A的各个销404和406。而且基板352支撑构件410和412,用来进一步准确定位阀门插件360A,并提供相对于基板352的快速连接和拆除的阀门插件座。定位钢球或者球塞408可释放地被支撑物或接受器410中的凹陷承窝接受,以使阀门插件360A迅速咬合进入其在基板352上所选择的场所或位置。基板352进一步包括在其开口492区域内的底面上的凹槽,以提供易于接近喷射器、喷射器的可视度、等等。
关于图8,9-11和18,基板352A包括多个开口492,以装备每个阀门插件360成角度排列的喷射器424。进一步地,基板352A支撑销400和402,400和402提供每个阀门插件360的基板416的定位。仍进一步地,基板352A支撑构件410和412,这些构件进一步提供每个阀门插件的定位和阀门插件座的快速连接和拆除。像基板352一样,基板352A包括在其较低表面上的凹槽494,以进一步容纳喷射器424。
每个基板352和352A优选是精密机械加工的部件,以在机器上提供阀门插件的非常准确的放置,并因此在基底上提供染料和/或化学品的准确放置而产生高分辨率的设计、一个设计到下一个设计的极好定位、产品的可重复性、高品质、等等。
关于图19,每个阀门插件组或者阵列(单独控制的染料分配器或者供料器的固定排列),优选保持在恒压下,从流体罐供给流体或者液体,例如染料、化学试剂、或类似物。并且,连续地搅拌该罐中的流体或者液体从而使它很好地混合,保持染料的分散等是有利的。
关于图20,选择性地通过操作阀门A,可以将来自每个罐A或罐B的流体A或流体B供应于特定的阀门插件组或者阵列,例如阀门A是三通阀门,它从罐A提供流体A给流体导管或歧管364,从罐B提供流体B到流体导管364,或者关闭既不提供流体A也不提供流体B给导管364。当供应流体A或流体B给导管364和一个或多个阀门插件组的阀门插件360时,阀门B通常关闭。当用例如流体A或者流体B冲洗流体导管364时,阀门B可以打开以排出污染的流体,以使导管364仅含有选用的流体。一旦冲洗了歧管364,将阀门B关闭,然后冲洗阀门插件。以这种方式,人们能够快速地在特定阀门插件组或者阀门插件组的组合中,从一种颜色变换到下一种颜色或者从一种化学组成到下一种组成。
关于图21,人们可以使用对于每个阀门插件的单独切换阀,选择性地容许流体1或者流体2通到该阀门插件,来将流体1或者流体2供应到每个阀门插件360。为了冲洗阀门插件并开始新的颜色或者不同的流体,人们简单地切换到该新的颜色或者流体,并容许其流经阀门插件足够的时间以从阀门插件中冲出旧流体。与要求从供应罐、歧管或类似物冲洗整个流体导管的其它系统相比,这可以降低染料或者化学品的浪费。
关于图19、20和21的每一个,人们可以通过排出罐中旧的流体,并用新的流体冲洗罐,或用例如水的冲洗流体或液体冲洗罐,充分排出旧流体,排出冲洗流体,并加入新的流体,而在染料罐或者化学品罐中放置新的染料或化学品、颜料、或类似物。因此,通过改变每个染料罐的特定染料混合,就能相当容易地改变三原色。
根据本发明的一个例子并参考图20,在纺织品印花机上迅速切换颜色的快速变化方法,是利用一个歧管和多重染料供应。染料的切换通过用三通阀切换染料供应,然后立刻打开排泄阀从歧管中排出旧的染料来完成。残留在歧管与印花头或喷射器之间管线的旧染料能够通过印花头排出。该排泄阀应该保持在开的状态比它排出所有旧染料的时间稍长,这样将保证附在歧管壁的任何染料将通过壁剪切力除去。多于两种颜色能够通过使用多重染料供应和多通阀来供应。
根据本发明的另一个例子并参考图21,多歧管和多重染料供应用于提供快速的颜色变换。通过用多通阀切换染料供应,每个印花头或者阀门插件有一个多通阀,来完成染料的转换。在多通阀与印花头之间管线中的旧染料能够通过该印花头排出。在该歧管中的旧染料能够通过开着的排泄阀清除。同时将新的染料供应和歧管用于印花。一旦清洗干净,可以将另一种颜色装载进该旧的染料供应歧管中,准备好用于印花的另一种染料。或者,通过用于在颜色间切换的多通阀,不同的颜色能够保持在每个染料供应系统中。以这种方式,只有在多通阀与印花头之间的管线中的染料需要排出或消耗。这种方法为印花提供大量快速可得的颜色。
根据本发明的特定例子并参考图19,压力控制系统包括压力罐、泵、压力和液面传感器、一个空气调节器、和两个控制器,其容许在快速变化速率下使用液体,同时保持恒定的压力并且补充液体。
目的是在压力传感器(使用点)保持恒定压力,同时液体以快速的变化流速从罐中使用。将来自该压力传感器的信号提供给控制器,而又控制调节器。另一个控制器使用连续的液面传感器作为输入,速度控制泵作为输出,来保持液面。
在压力罐中空气顶压减少了压力的变化。没有空气顶压,由于液体的不可压缩性,在泵速度和液体使用速率的任何不匹配,会导致压力的变化。该空气顶压通过压缩或扩张来吸收液体流速的任何不匹配。此外,随着空气的压缩或扩张,该调节器将排出或供应空气,进一步降低了压力的变化。
在压力罐中控制液面,减少在调节上的误差。没有真正的调节器能够完美地保持压力。通过减少液面的变化,空气经过调节器的必要流速将降低,提供更精确的压力控制。
在压力罐里较大的空气顶压减少了压力的变化。随着空气顶压体积的增加,对于液体体积的特定变化,在压力上将有较少的变化。这能够用理想的气体定律显示。例如,考虑2个罐,A和B。罐A有10加仑空气顶压,罐B有100加仑空气顶压。液体体积的变化是1加仑,并且初始压力是30psig。罐B由于液面的变化在压力上有较小的变化。
预计织物材料根据待染色的基底的应用和纤维含量,可以用各种天然或合成染料,包括酸性染料、碱性染料、活性染料、直接染料、分散染料、媒染料、或者颜料来印花。本文的教导适用于广泛的这些染料,以及广泛的纺织材料。能够借助本发明的方法图案染色的纺织材料包括簇绒的、粘合的、针织的、织造的、植绒的、针刺的、和非织造的纺织材料,例如单层织造、绒头织造、圆筒形针织物、平针织物、径编针织物、割绒、圈绒、割和圈绒、花式绒头、和类似物。典型地,但是非必要地,这样的纺织材料将包括绒头或绒面。这样的织物材料可以包括地面覆盖物(例如地毯、地毡、方块地毯、区域地毯、长条地毯、地垫等)、装饰织物、室内装饰织物(包括汽车车内装饰织物)、嵌板织物、和类似物。这样的纺织材料能由天然或合成纤维制成,例如聚酯、尼龙、羊毛、棉和丙烯酸纤维、以及含有这些天然或者合成纤维的混合物、混纺、或者其组合的纺织材料。
关于图1-21,显示了直接喷射染色设备的典型实施方式,其将染料、化学试剂或类似物以像素方式应用到纺织材料或者基底,例如绒头基底,例如地毯或类似物。
虽然本发明的设备和方法不限于特定的基底,使用该设备的几个典型基底的例子说明如下。
基础结构的例子:
纤维类型
类型6尼龙BCF
类型6尼龙Staple
类型6,6尼龙BCF
类型6,6尼龙Staple
100%羊毛
羊毛/尼龙混纺(包括从99%至50%羊毛的羊毛混纺)
羊毛/尼龙混纺(包括具有额外的聚酯、聚烯烃、尼龙或类似物的低熔点纤维的羊毛/尼龙混纺;高达15%)
其它纤维,例如聚酯、PTT、棉、可染色的聚丙烯、和类似物
纱线支数
BCF旦尼尔范围:500d至2500d
Staple纱线支数(英制棉纱支数):1.0cc-6.0cc
纱线股数
1-4股
纱线颜色
天然的、白色的、浅色的、或类似的。
纱线可以是纱线染色的、溶液染色的、间隔染色的、或天然的。浅色的或白色的纱线可以是套染的。白色或浅米色是优选的。
结构类型
簇状的
粘合的(乳胶、PVC、热熔体)
针刺的、水刺成网的、植绒的、和类似的
构造方法
割绒
圈绒
织造(阿克斯明斯特机织、威尔顿机织、双层织物织造、和类似的)
非织造
簇状结构规格
隔距  5/32g;1/8g;1/10g;5/64g;1/16g;和类似的
重量  8oz/sq.yd.-直到-80oz/sq.yd.
针迹  每英寸6针-直到-每英寸18针
绒头高度  0.05英寸-直到-0.75英寸
例子:
1.羊毛/尼龙混纺
80/20羊毛/尼龙;2.3cc大小;2股;~6tpi捻度;化学定形或Superba
热定形
1/8g簇状割绒;~40oz/sq yd.;每英寸~9针;~0.35″绒头高2.32oz.粘合的白色基底
100%类型6,6短纤维尼龙;3.15cc大小;2股;4.5tpi捻度;Superba
热定形
~1/8g乳胶粘合割绒;32oz/sq yd.;每英寸~9合股;~0.25″绒头高3.20oz.簇状白色基底
100%类型6,6BCF尼龙;1120d+1315d大小;2股;4.5捻度;Superba
热定形
1/10g簇绒圈;20oz/sq yd.;每英寸~12针;~0.15″绒头高4.12oz.簇状白色基底
100%类型6,6BCF尼龙;1360d大小;1股;0捻度;无热定形
1/10g簇绒圈;12oz/sq yd.;每英寸~12针;~0.13″绒头高5.18oz.BCF长丝割绒
100%类型6BCF尼龙;1095d大小;2股;每英寸4.5捻度;Superba
热定形
1/10g簇状割绒;18oz/sq yd.;每英寸~13针;~0.25″绒头高6.17.5oz.簇绒面衬垫背方块地毯(36平方英寸,具有簇状面、乳胶预涂层、热熔粘合剂、玻璃稳定剂、泡沫衬垫、和毛毡背衬)。
表面重量:17.5oz/sq yd.
每英寸针迹:12.0
簇绒隔距:5/64
簇绒密度:每平方英寸153.6
绒头高度:11/64″和8/64″(双绒头高度产品)
纤维:900d类型6.6BCF尼龙
纱线:2股热定形,每英寸5捻回
染色方法:喷射染色
整理剂:
1.阻污剂
2.耐漂白化学物
3.抗菌剂,例如AlphaSan抗菌剂
预涂层:16oz./sq.yd.SBR乳胶
热熔体:44oz./sq.yd.沥青热熔体
稳定剂:2oz./sq.yd.带有粘合剂的非织造玻璃垫
聚氨酯垫子:密度每立方英尺15lbs.(可能的范围:每立方英尺15-25lbs.)
毛毡:3-4oz./sq.yd.非织造PET/PP
7.17.5oz.簇绒面阔幅地毯(6英尺宽轧制品,具有簇绒面、乳胶预涂层、泡沫衬垫、和毛毡背衬)
表面重量:17.5oz./sq.yd.
每英寸针迹:12.0
簇绒隔距:5/64
簇绒密度:每平方英寸153.6
绒头高度:11/64″和8/64″(双绒头高度产品)
纤维:900d类型6.6BCF尼龙
纱线:2股热定形,每英寸5捻回
染色方法:喷射染色
整理剂:
1.阻污剂
2.耐漂白化学物
3.抗菌剂,比如AlphaSan抗菌剂
预涂层:12oz./sq.yd.SBR乳胶
聚氨酯垫子:密度每立方英尺15lbs.(可能的范围:每立方英尺15-25lbs.)
毛毡:3-4oz./sq.yd.非织造PET/PP
根据本发明的至少一个实施方式,其中将较高分辨率的图案、设计或类似物,应用于例如绒头地毯的基底,可以优选使用染色较暗的较小dpf或者较细支纱,和/或使用与传统的地毯纱或表面相比提供较少结霜的半无光纱线。
控制系统的详细讨论
下面说明适于操作如图1到21提出的上述优选的提花设备的电子控制系统。适用于该说明的图是图22到29。应当指出,为了简化该说明,阵列或色档数假定是8,提花设备的印花隔距(即每英寸的点)假定是20。术语“喷射器”和“供料器”是可互换的;两者都是指单独可选址的染料供料器。并且,术语“阵列”和“色档”,当指与PREF提花机相关的染料供料器的排列时,同样是可以互换的。如可能由上述提花设备所要求的,将本文的教导外推到较大量的色档或者不同的印花隔距,对本领域的技术人员来说是显而易见的。
图案数据以一系列八位单元的形式被接受,该八位单元独特地识别与那个图案元素或像素相关联的图案设计元素。不同图案设计元素的数量,等于图案上不同区域的数量,可以为该图案的不同区域指定单独的颜色。应当指出如果需要的话,本文的教导能够由本领域的技术人员容易地改编,而适应12或16位数据,或更多。
通过使用阵列专用的随机存取存储器(RAM),进行将单独的图案线数据排序以适应在相邻阵列间的基底行程时间这一过程,RAM优选静态型的。在载入任何数据之前,所有的RAM应当初始化到零。然后将特定阵列的所有图案数据载入到与那个阵列单独相关联的RAM。图案数据是一系列字节的形式,对于包含该阵列的单个供料器或喷射器,每个字节规定一个期望的发射时间。载入方法是协调的,以相同的相对指令(relative order)同时将所有喷射器的发射时间数据载入各自的RAM,即,首先将每个阵列中的所有喷射器对应于图案的第一条线的所有发射时间,载入适当的RAM,接着载入对应于第二条图案线的所有数据,等等。每个RAM使用读取偏移地址(reading address offset)读出,它将数据的读取有效地延迟足够量的时间,以容许基底的特定区域“追上”该特定区域的相应图案数据,该图案数据将沿着基底路径发送到下一个阵列。如将要说明的,在阵列或者色档内沿阀门插件对角线排列的单个喷射器的间隔或偏移,能够通过调整读取地址而调节。
这时,图案数据,处于一系列以字节形式表达的单个发射时间的形式,优选变换为单独的二进制数字(“位”)组序列。在该序列中的每组,通过在每组内顺序“堆叠”的预定逻辑值的二进制数字的相对数(例如逻辑“一”=“发射”),来表示其相应的各自发射时间值。这种转换允许以字节形式表示的发射时间,作为可以被供料器识别的单个发射指令(即一位)的连续序列而表示。
将已经被排序以适应阵列间基底行程时间的来自每个RAM的数据,载入先进先出存储器(FIFO)的收集器中。对于与特定色档关联的单个喷射器(即供料器)不是以直线横过基底路径的构型,如图10到11A的提花设备的错排喷射器的情况,必须调整RAM偏移地址以补偿在基底移动方向上喷射器到喷射器的间隔。每个阵列与单组FIFO关联。每个FIFO重复地将其内容,严格按照字节初始载入的顺序,以每次一个字节发送到比较器。代表单一喷射器沿着阵列所期望的经历发射时间的字节值,与时钟值相比较,该时钟值已经初始化以提供代表最小时间增量的值,期望对任何喷射器的该最小时间增量加以控制。作为比较的结果,生成逻辑“一”或逻辑“零”形式的发射指令,其分别表示喷射器将“发射”或“不发射”,并且在一个优选实施方式中,将该指令转寄到与阵列相关联的移位寄存器、和检测器中。在将所有的字节(代表沿着那个阵列的所有喷射器位置)发送和比较后,将移位寄存器的内容通过与移位寄存器联合的锁存器,并行地转寄到沿着阵列的空气阀组件中。其后,将计数器的值递增,FIFO的相同内容与新的计数器值相比较,再次将移位寄存器的内容以并行的方式,经过锁存器转寄到阵列中的空气阀组件中。
在某些计数器值,从FIFO中读出的所有经历发射时间将小于或等于计数器的值。当这个条件存在于每个阵列中时,代表新图案线的新数据响应转换器脉冲,从RAM中转寄,该转换器脉冲显示基底已经移动了相当于一个图案线的量。使用再初始化的计数器,将该新数据载入FIFO,并开始新系列的反复比较。重复这个过程直到处理完所有的图案线。如果要重复该图案,通过将第一条图案线发送到适当的FIFO,RAM重新开始以上过程。
为了讨论,本发明的电子控制系统将结合特别适合于这个控制系统的上述讨论的PREF提花设备一起说明。然而,应该理解,本发明的电子控制系统可以用于其它设备,也许具有明显的改造,该设备中相似数量的数字化数据必须快速分配给大量的单个单元。
在典型的使用这种设备的染色操作中,只要没有图案信息通过控制设备20提供给与染料出口52阵列相联合的空气阀V,该阀门保持“开”以允许来自空气歧管74的加压空气通过空气供应导管64,64连续地将所有连续流动的染料流从阵列出口52转向到初级集合室80中用于再循环。当基底12最初在单个阵列26的染料出口52下面通过时,以适当的方式启动图案控制系统20,比如通过操作者手动。其后,来自转换器18的信号促使图案信息被处理,并从图案控制系统20发送。由图案信息所指示,图案控制系统20产生控制信号以选择性地“关闭”适当的空气阀,以便根据期望的图案,使空气流的转向在沿着阵列26的特定单个染料出口52处中断,相应的染料流没有转向,而是代替为容许它们沿着正常的流出路径延伸从而瞬染基底12。因此,通过以期望的图案顺序操作每个阵列的空气阀,染料的图案可以在其通过各自阵列下的期间安置在基底上。
为了讨论,在本文中使用了下面的假设、惯例和定义。术语“染料喷射器”或“喷射器”指的是在各个阵列中与每个染料流的形成单独相关联的供料器设备。假设当在阵列下沿着路径测量时,基底将被印染具有十分之一英寸分辨率或者印花隔距的图案,即,根据每次基底沿着其路径移动二十分之一英寸(1.27mm)时给出的指令,该阵列将引导(或者中断)染料流到基底上。这意味着如之前定义的图案线(即越过基底延伸的单个图案元素的连续线),具有二十分之一英寸(1.27mm)的宽度或厚度。基底沿着输送机的速度将假设是每秒一线性英寸,或者每分钟五线性英尺。这意味着,基底移动二十分之一英寸的每个时间段(即每二十分之一秒),在下文可能称作图案周期,控制各个阵列中的单个染料喷射器的每个阀门将收到电子编码的指令,该指令规定(a)该阀门是否应该中断与其各自染料喷射器交叉的偏移空气流,如果是的话,(b)此中断的持续时间。在这段时间,染料流不转向并与基底接触,可以被称作“发射时间”或者染料喷射器“发射”或者开启的时间。发射时间和染料接触时间是同义的。阵列序列编号,即第一、第二、等,指的是基底在各个阵列下或对面通过的顺序。相似地,“下游”和“上游”分别指的是输送机方向和相反方向。假设总共八个阵列,每个阵列具有四百八十个单独的染料喷射器,然而本发明决不是限于这个数目,并且可以容易地改造为每个阵列支持数千单个染料喷射器,和/或更多数目的单个阵列。沿着基底移动方向的阵列对阵列的间隔假设是均匀的,为十英寸(25.4cm),即二百个图案线宽。注意二百个图案线意味着二百个图案周期的图案数据处理。
为了比较,图6显示了现有技术的一个控制系统,并将在下面详细说明。为了解释,如图6所示的该现有技术的控制系统的提花数据或提花指令的格式,示意性地在图7中描述。如图所示,通过将“原始的”图案数据与预产生的发射指令数据用电子仪器关联,其中该发射指令数据来自计算机生成的查找表,将图案元素数据(以数据格式A1)首先转换成“开/关”发射指令(分别指的是与单个染料流相关联的转向空气的退动或开动)。使用每个喷射器的单个逻辑位,这个发射指令数据仅仅指定了,在特定的提花循环期间特定阵列中的哪个喷射器将发射,并由图7的数据格式A2代表。
在这个操作之后,将“开/关”发射指令的顺序重排以适应阵列之间的实际间隔。这对于保证对应于待提花基底上特定区域的适当发射指令数据,在特定基底区域经过适当阵列下的准确时间,到达初始阵列和每个下游阵列,是必要的。这是通过以下方式完成的,即隔行扫描阵列数据,并对图案开始的下游阵列和图案结束的上游阵列插入合成的“关”数据,从而有效地排序并使图案数据达到下游阵列延迟,直到该基底已经有机会移动到下游阵列下的位置。退出这个隔行扫描操作的数据是串行位流的形式,对于特定的图案周期,对于每个阵列中的每个各自的喷射器,包括每个喷射器一位(表明该喷射器是否应该在该循环发射),如图7中的数据格式A3所示。
随后将这个串行位流供应到数据分配器,对于从记录控制系统接受的每个“起动图案周期”脉冲(表明新的图案线将要开始),该数据分配器以位(bit)从隔行扫描操作接受的顺序,简单地对相应于特定阵列中的喷射器数目的适当位数进行计数。当包括对于那个全部阵列的发射指令所需的适当位数已经被计数时,如下面所描述,将该组位以系列的形式传送到适当的阵列进行进一步加工,并且为涉及提花操作的下一个阵列再次启动计数过程。每个阵列以旋转的顺序,以相似的方式对特定的图案线发送数据,并且在每个“起始提花/循环”脉冲重复该过程,直到完成该基底的提花。
在与特定图案相关的所有提花循环中,与每个阵列相关的是,该阵列将使用的实际发射时间的电子编码值。明确要注意,虽然该“持续时间”值可以在阵列到阵列之间有所不同,但对于特定的阵列强制为一致的,不能在喷射器到喷射器之间变化,或者在提花循环到提花循环之间变化。因此,如果特定阵列中的任何喷射器必须在特定的提花循环期间发射,所有这样的发射喷射器必须在相同的时间段发射。将这个“持续时间”值叠加到从图案数据分配操作接收的“发射/不发射”单位数据上,并临时存储在与每个阵列单独相关的一个或多个移位寄存器中。在使得移位寄存器的时间填入预定的延迟之后,将数据同时发送到与沿着阵列的每个喷射器位置的空气转向流相关的各个阀门。
如图8到11所描述,通过把该系统看作基本上包括从系列顺序操作的三个独立数据存储器和分配系统(一个包括存储器、“错排”存储器、和“格林式”存储器的发射时间转换器),可以最容易地说明本发明的控制系统。这些系统在图8中示意性地描述,图8代表了当本发明的控制系统应用于以上公开的提花设备时的总览。图11示意性地描述了图8中说明的处理阶段的代表性数据格式。每个阵列与串联排列的各个发射时间转换器和“错排”存储器,以及随后的独立“格林式”存储器相关联。将依次讨论这些主要元素的每一个。
如图8所示,原始图案数据随着从基底运动传感器接收到的“起动图案周期”脉冲的促进而发送。每当基底输送器使基底在提花阵列下沿着路径移动一个预定的直线距离(例如,二十分之一英寸)时,这个传感器仅产生一个脉冲。(注意,在现有技术的系统中,“起动图案周期”脉冲接收自记录控制系统;在本文描述的新系统中,不需要独立的记录控制系统。)相同的“起动图案周期”脉冲同时发送到每个阵列,其原因将在下面说明。
原始提花数据是像素代码的序列形式,一个这样的代码为每个图案线指定了染料喷射器对于在每个阵列上特定的染料喷射器位置的响应,即,就单个图案线而论,每个像素代码控制着八个单独的染料喷射器(每个阵列一个)的响应。如上所讨论的,像素代码仅仅定义了指定不同颜色的不同图案区域。数据优选按严格的顺序排列,如图11的数据格式B1所描述,第一条图案线的供料器1-480的数据在系列中是第一个,随后是第二条图案线的供料器1-480的数据,等等。这种像素代码的完整串行流,以同样的形式并且没有任何阵列专用的配置,发送到与每个各自阵列相关的发射时间转换器/存储器,从而将像素代码转换成发射时间。这个像素代码流优选包括足够数量的代码,从而在基底上对整个图案内的每个图案线的每个染料喷射器位置提供单独的代码。假定每阵列480个供料器的8个阵列,宽度(沿着基底路径测量)为0.05英寸(1.27cm)的图案线,和长度(即沿着基底路径测量)为60英寸(152.4cm)的整个图案,这将需要包含576,000个单独代码的原始图案数据流。
包含每个发射时间转换器的是一个查找表,该查找表具有足够的地址数,以使形成图案数据串行流的每个可能的地址码可以在查找表中分配唯一的地址。在查找表内的每个地址是代表相对发射时间或者染料接触时间的字节,假定采用一个八位地址码形成原始图案数据,它可以是零或者255个不同离散时间值之一,该离散时间值相应于所述染料喷射器保持“开”的时间相对量。
因此,对于每八位字节的像素数据,为每个阵列的每个特定的喷射器位置定义了256个不同发射时间之一(包括0发射时间)。喷射器识别通过地址码在图案数据串行流内的相对位置和预载入查找表的信息来决定,该信息规定了在哪个阵列的特定喷射器发射,以及发射多长时间。(如果需要的话,数据单独包含两个或多个字节,其指定了例如65,536个不同发射时间之一,或根据本文的教导对硬件进行适当的改造,以使用的其它提花参数标准。)将结果以数据格式B2(见图11)发送到与特定阵列相关联的“错排”存储器。在这一点上,还没有尝试来补偿阵列与喷射器之间的物理间隔,或者将发送到与每个染料喷射器相关联的实际空气阀的数据分组并保持。
阵列之间物理间隔的补偿,可以通过图9A和9B最好地解释,图9A和9B功能上较详细地说明了各个阵列的单个错排存储器。
“错排”存储器对查找表产生的发射时间数据进行操作,并执行两个主要的功能:(1)来自查找表代表发射时间的串行数据流,被分组和分配到提花机上的适当阵列,以及(2)“不工作”的数据被加到每个阵列各自的提花数据上,以在启动时,并以特定于该特定阵列的预定间隔,抑制图案数据的读数,从而补偿带有该图案数据的待提花基底的特定部分从阵列移动到阵列所经过的时间。
“错排”存储器工作如下。将发射时间数据发送到与八个阵列中的每一个相关的单个随机存取存储器(RAM)中。虽然可以使用静态或者动态的RAM,发现静态的RAM因为增加的速度而是优选的。在每个阵列,数据按照从查找表发送的顺序写入RAM,从而保存单个发射时间的喷射器和阵列识别。每个RAM优选具有足够的容量以容纳发射时间信息,该信息是关于每个喷射器在其各自阵列中从第一阵列延伸至第八阵列的全部数量图案线的(为了讨论假定是1400)。在随后的讨论中,把1400条图案线看作是按7组排列,每组二百条图案线(与假定的阵列间的间隔相一致)。
RAM从单向重复循环中写入和读取,所有的“读取”指示器共同被初始化和“锁步”,以使所有阵列的所有RAM中相应地址位置同时读出。与每个RAM相关的是预定的偏移值,该值代表连续的存储器地址值的数,它将用于把数据插入存储器地址的“写入”指示器,与用于从RAM地址读出数据的“读取”指示器分开,从而为特定的存储器地址及时“错开”分别的读取和写入操作。
在与阵列或色档相关的喷射器不是以直线横过基底路径的结构中,如在图10至11A的提花设备的错排喷射器的情况,一旦计算了“读取”指示器,当从阵列读取数据时,它必须按喷射器-邻接-喷射器(jet-by-jet)的基础调节,以抵偿在基底移动方向上喷射器-到-喷射器(jet-to-jet)的间隔(即偏移)。这样,例如,如果喷射器在基底方向上偏移:
  喷射器   图案线偏移
  1   0条线
  2   2条线
  3   4条线
  4   6条线
  5   8条线
  6   10条线
  7   12条线
  8   14条线
  9   0条线
  10   2条线
  11,等   4条线,等
那么,调整“读取”指示器到:
  喷射器   数据线偏移
  1   0
  2   -2
  3   -4
  4   -6
  5   -8
  6   -10
  7   -12
  8   -14
  9   0
  10   -2
  11,等   -4,等
负的信号表明偏移必须移动到错排的存储器阵列中的在前的线。因此,在喷射器1印花并且基底移动两条线后,喷射器2对与喷射器1印花的像素相邻的部位进行印花。参考图23A,如果从线205中读取喷射器1的数据,那么喷射器2的数据将从线203中读取。
在这个例子中,写地址和读地址递增。另外地,也许有利地,可以减少地址计数器。通过这样做,能够以正数(即,加而不是减地,调节读地址)进行调整。这种备选方案简化了硬件设备。
如图9A的左边所示,第一个阵列的RAM偏移值是零,即,“读图案数据”操作在与“写入图案数据”操作相同的存储器地址启动,而没有偏移。然而,沿着基底在图案线单元的路线测量,第二个阵列的偏移显示是二百,这个数与横垮物理上将第一阵列和第二阵列分割的距离所需要的图案线或者图案周期数(以及相应的读取或写入的循环数)相等。如所描述的,发现在第一个存储器地址位置初始化的“读图案”指示器,比“写入”指示器“超过”或“较早”二百个地址位置。因此,在滞后于“写入”操作二百个连续位置的存储器地址位置开始“读取”操作,有效地将写入数据的读出延迟了二百个图案周期,从而符合(并补偿)在第一与第二阵列之间的物理间隔。为了避免对“读取”操作使用“虚设”数据,直到“读取”指示器赶上由“写入”指示器写入的第一个地址,可以使用“读取抑制”程序。这样的程序仅仅在图案开始和结束时需要。或者,代表零发射时间的数据能够在适当的地址位置载入RAM中,以使“读取”操作,尽管被激活,读取使喷射器在这个时间中止的数据。
图9A的右边描述第八阵列的错排存储器。与所有的其它阵列一样,“读取”指示器已经被初始化到RAM中的第一个存储器地址。在其初始化的存储器地址位置显示的“写入”指示器,领先于“读取”指示器相当于1400条图案线(假定七个间隔的阵列,和二百条图案线的均一阵列间间隔)的地址差。
图9B描述刚好在二百个图案周期后的图9A的错排存储器,即,在二百条图案线的数据已经读出之后。与阵列1相关的“读取”和“写入”指示器仍然在一起,但是往“下”移二百个存储器地址位置,并且即刻读取和写入与RAM中第二组二百条图案线的第一条线相关的发射时间数据。
如在图案线单元中所测量,与阵列2相关的“读取”和“写入”指示器仍然被相应于阵列1与阵列2之间的物理间隔的偏移所分离。着眼于与阵列8相关的指示器,安置“读取”指示器来读取来自第二组二百条图案线的发射时间数据的第一行,同时安置“写入”指示器以将新的发射时间数据写入RAM地址,该地址只在读出RAM中现有的1400条图案线后读出。因此显而易见的,“读取”指示器规定的是在1400个图案周期前写入的发射时间数据。
与每一阵列的错排存储器相关的储存寄存器通过那个图案周期中的各个阵列,存储待染色的图案线的发射时间数据,直到由来自基底传感器的脉冲提示,该脉冲指示基底已经移动等于一条图案线宽度的距离。在那时,发射时间数据以数据格式B3(见图11)发送到“格林式”存储器,用于如下所说明的处理,并且将下一条图案线的发射时间数据转送到错排存储器,用于如上所述的处理。
图10描述了一个阵列的“格林式”存储器模块。对于图1描述的提花设备,图10中显示的该类型的八个配置是必需的,每个阵列一个。在优选的实施方案中,一切由普通时钟和计数器驱动。该格林式存储器执行两个主要功能:(1)将编码发射时间的串行流转换成单个字符串的逻辑(即“开”或者“关”)发射命令,每个各自的“开”字符串的长度反应了相应的编码发射时间值,以及(2)将这些命令快速有效地分配到适当的供料器。
如图10所描述,与每个阵列相关的是一组专用的先进先出存储器模块(其每一个在下文中被称作“FIFO”)。FIFO的一个基本特征是数据从FIFO中读出的顺序或序列与该数据写入FIFO时正好相同。在本文说明的典型的实施方式中,该组FIFO模块必须具有足够的集体容量(collective capacity),从而为阵列中480个转向空气阀的每一个存储一个字节的数据(即,八位,与含有原始图案数据的地址编码大小相同)。为了解释,假设显示的两个FIFO的每一个能够容纳240个字节的数据。
每个FIFO具有其与连续的输入器相连的输入和与单个比较器相连的输出。计数器被设定将八位的增量数送到每个比较器,以响应来自“格林式”时钟的脉冲。该“格林式”时钟也与每个FIFO相连,并且能由此同步启动包括FIFO和与每个FIFO相关的各个比较器的操作。如果“发射时间”基于的时间最小增量在阵列和阵列之间不同,独立的时钟和计数器可以与每个这样的阵列相联合。如下面更详细说明的,优选地,从每个比较器的输出可以可操作地与各自的移位寄存器/锁存器组合相连,该移位寄存器/锁存器组合用来在将输出数据送入各自阵列前临时存储比较器的输出数据。每个比较器的输出也被指引到共同的检测器,其功能将在下面讨论。如图10所示,当每个图案周期完结时,来自检测器的复位脉冲被送到“格林式”时钟和计数器,这将在下面解释。
响应传感器脉冲,每个阵列的各个错排存储器依次读出,并且将该数据供给阵列特定的连续输入器,如图10所描述。该连续输入器将接收的第一组240个字节的数据发送到第一个FIFO,并将第二组240个字节的数据发送到第二个FIFO。同时在与其它阵列相联合的其它连续输入器执行类似的操作。对于阵列中的独立喷射器,每个字节代表一个相对发射时间或者染料接触时间(或者,更准确地,所经历的转向空气流的中断时间)。在每个阵列的每个FIFO被载入后,它们同时从“格林式”时钟发送一系列脉冲,每个脉冲提示每个FIFO将字节数据(由八位组成)发送到其各自的独立比较器,其顺序与字节通过连续输入器发送到FIFO的顺序相同。该FIFO“发射时间”数据字节是通过比较器接收的两个独立输入之一,第二个输入是从与每个阵列相关的所有FIFO共同的单一计数器发送的字节。这个共同的计数器字节响应提示FIFO数据的相同格林式时钟脉冲而发送,并充当时钟测量该图案周期从染料流瞬染基底开始的经过时间。在来自格林式时钟的每个脉冲,一个新字节的数据从每个FIFO释放并发送到其各自的比较器。
在每个比较器,将八位“经过时间”计数器值与由FIFO发送的八位“发射时间”字节值进行比较。这个比较结果是发送到移位寄存器以及检测器的单“发射/不发射命令”位。如果该FIFO值大于计数器值,表明由图案数据规定的期望发射时间大于计数器规定的经过发射时间,比较器输出位是逻辑“一”(由阵列供料器认为是“发射”命令)。否则,比较器输出位是逻辑“零”(由阵列供料器认为是“不发射”或者“停止发射”命令)。在下一个格林式时钟脉冲,在每个FIFO的下一个字节的发射时间数据(相应于沿着该阵列的下一个独立喷射器)发送到各个比较器,在比较器里与相同的计数器值相比较。每个比较器将由其各自FIFO转送的发射时间数据值与计数器的值进行比较,并以逻辑一或者逻辑零的形式,产生“发射/不发射”命令,如适当,用于传送到移位寄存器和检测器。
重复这个过程直到所有240个“发射时间”字节已经从FIFO读出,并已经与由计数器指示的“经过发射时间”值进行了比较。在这时,此刻包含相应于单个发射命令的240个逻辑一和零的串行流的移位寄存器,以并行格式将这些发射命令转送到锁存器。该锁存器用来将发射命令从移位寄存器并行地转移到与阵列染料供料器相关的独立的空气阀,同时移位寄存器接收新的一组240个发射命令,并随后转送到锁存器。每当该移位寄存器将其内容转送到锁存器(响应时钟脉冲),该计数器值增加。在这一转移之后,该计数器值递增一个时间单位,并重复该过程,通过使用计数器提供的新增加的“经过时间”值的计数器,每个FIFO的所有240个字节的“发射时间”数据依次被复查并转换为240个单位“发射/不发射”命令。在优选的实施方式中,虽然该连续的发射命令可以以并行的格式,通过本文公开的移位寄存器/锁存器组合,转换并存储,但是可预见到可以使用将发射命令的串行流送往适当供料器的各种替代的技术,也许不将所述的命令转换成真的并行格式。
重复以上过程,包括连续将每个FIFO全部容量的发射时间数据与计数器产生的每个增加的“经过时间”值进行比较,直到检测器确定那个阵列的所有比较器输出是逻辑“零”。这表明,对于阵列中的所有喷射器,阵列中所有喷射器的期望发射时间(由FIFO值代表)没有超过其后由计数器指示的经过时间。当比较器检测到这个状况时,它表明对于那条图案线和那个阵列,所有要求的图案已经出现。因此,检测器将“复位”脉冲发送到计数器和格林式时钟。然后格林式模块等待下一个基底传感器脉冲,以指示通过连续的输入器将下一条图案线的发射时间数据传送和载入FIFO,并且如上所述重复反复的读取/比较过程。
在优选的实施方式中,每个阵列的格林式存储器可以实际上包括两个可以交替地连接到阵列阀门的独立和同样的FIFO。因此,虽然数据在一个格林式存储器中读出和比较,下一条图案线的数据可以载入与交替的格林式存储器相关的FIFO内,因而消除了任何数据载入的延迟,否则如果每个阵列仅使用一个格林式存储器,可能出现数据载入的延迟。应当是显而易见地,可以适当修改独立FIFO的数量以适应阵列中较大或较少数量的染料喷射器。
图12描述了与每个阵列相关的任选存储器,它在要求最大的图案清晰度时可能使用。该存储器可以采取静态RAM的形式,发挥“调整”或者“微调”的能力,以精确的方式补偿单独供料器的响应时间或染料流特性中的微小变化。这是通过收录在RAM中的查找表实现的,对于特定阵列的每个供料器,如果期望,对于与每个这样的供料器相关的每个可能的发射时间,该RAM与一个单独的因素相关联,该因素使图案数据指示的发射时间增加或减少一定量,该量对于引起特定阵列中所有供料器响应相同的图案数据发射指令,向基底上传递基本相同量的染料来说是必需的。
如上所述,启动阀门所需的时间已知为发射时间。发射时间典型地包括部分机器周期。机器周期定义为例如阀门的电气设备执行其预期功能所需的时间量。典型地,通常在发射时间之间有一个小量的停滞时间,以容许阀门关闭。在邻近的阀门系统中,发射时间周期之间没有停滞时间,发射时间与机器周期相等。对于这类系统,必需根据图案数据打开和关闭阀门。
在一个或多个阀门已经启动的情况,额外的能量可能浪费在这些阀门上。为了节约能量并避免对阀门不必要的压力,人们可以为每个系列的阀门输入图案数据,然后比较数字阀门启动数据,一一对应于在先前机器周期中输入的那个相同系列阀门的数字阀门启动数据。如果在先前机器周期中打开一个特定阀门,那么对该阀门不施加阀门的机器周期时间百分比的电压。用于实现这个过程的专门技术在下面描述。
图27显示了通过单独的控制线来控制每个阀门的连续阀门控制。每个阀门的发射时间在预定时段内,通过开动与特定阀门相联系的控制线而启动。在邻近的阀门系统中,发射时间与机器周期是同义的。已经开动的螺线管阀门以热的形式消耗过量的能量,这可以导致螺线管阀门的损坏。在每个机器周期开始时,阀门可以根据计算机图案数据打开和关闭。
这种技术的一个优异的例子是染料在基底上的图案化应用,其中将染料流根据图案信息选择性地指引到基底上。每个单独的染料流通过一个螺线管阀门控制。因此,对于复杂的图案,使用的螺线管数可以是大量的。在以上应用中典型使用的螺线管阀门一般在十五(15)伏特下操作。通过恰当螺线管阀门开动时将电压在短时间内增加到100伏特,大大地减少了开动该阀门所需的时间。这个技术非常有效,然而,这一电压的巨大增加也导致了电源与多个螺线管阀门之间延伸的导电体的重大功率损耗。导电体中的电压损耗与被开动的阀门的数量成比例。因此,当仅开动少量螺线管阀门时,响应时间大大短于开动大量阀门时的时间。由于载荷变化引起的电压降问题的解决办法,是通过预见该载荷并通过延长能量施加的时间来提供额外的能量来解决的。在此申请中出现的电气元件是螺线管阀门,然而,用该技术可以使用继电器、线圈、电阻器、和作为电压载荷工作的任何其它类型的电气元件。此外,可以使用任何类型的螺线管阀门,以十五伏特的螺线管阀门作为非限制性的例子加以说明。
从一组图案数据自动和电子地变化到另一组的方法的例子,在1979年10月16日授权的美国专利第4,170,883号中公开,该专利在此引入作为参考。其它涉及通过利用启动阀门来对基底提花的共同转让的专利包括,1993年5月4日授权的美国专利第5,208,592号,在此引入作为参考;1992年8月18日授权的美国专利第5,140,686号,在此引入作为参考;1992年8月4日授权的美国专利第5,136,520号,在此引入作为参考;1991年1月8日授权的美国专利第4,984,169号,在此引入作为参考;1992年8月25日授权的美国专利第5,142,481号,在此引入作为参考;以及1992年7月7日授权的美国专利第5,128,876号,在此引入作为参考。
如图27所示,将串行数据通过数据输入32输入到当前的移位寄存器30。这类当前移位寄存器的一个非限制性的例子包括74HC4094。将该数据借助时钟线34实际上顺序地记录到该寄存器。数据输入线32电关联到当前移位寄存器30的数据输入端36。时钟线34与当前移位寄存器30的时钟输入端38电关联。可以在时钟线34中发现的代表性的时钟脉冲,通过图28中的数字41和图29中的数字44图示。可以在数据输入32中发现的数据输入电压脉冲,通过图2中的数字42和图3中的数字45图示。虽然,可以有任何数量的与当前寄存器30相关的输出端,在一个优选实施方式中,有八个描绘成Q1、Q2、Q3、Q4、Q5、Q6、Q7和Q8的输出端,分别用数字50、51、52、53、54、55、56和57标明。当前寄存器30的输出端50、51、52、53、54、55、56和57与分别用数字标注为26、24、22、20、18、16、14和12的一系列与门(AND gate)的两个输入之一电关联。这种类型与门的非限制性例子包括74H08。阀门启动数据通过由数字60标注的串行输出S02离开当前寄存器30,60电力地连接到通常用数字65表示的在前移位寄存器的数据输入端62。这种移位寄存器的一个非限制性的例子是74HC4094。将该串行数据通过时钟线34与时钟输入端67之间的电力连接,而记录到在前的寄存器65。再一次地,时钟电压脉冲代表分别由图28和29中的数字41和44标明,而电压脉冲中的数据移动分别由图28和29中的数字42和45标明。在前移动寄存器65的优选实施方式也有8个输出端。输出端Q1用数字70标明,输出端Q2用数字71标明,输出端Q3用数字72标明,输出端Q4用数字73标明,输出端Q5用数字74标明,输出端Q6用数字75标明,输出端Q7用数字76标明,输出端Q8用数字77标明。这些输出线70、71、72、73、74、75、76和77与分别用数字标明为80、81、82、83、84、85、86和87的一系列优选的八个与非门(NAND gate)的两个输入之一电关联。这种类型的与非门80、81、82、83、84、85、86和87的非限制性的例子包括74HC00。其余到与非门80、81、82、83、84、85、86和87的第二个输入连接口,与闭塞线(block line)90相连。闭塞线90是在总时间中打开一定百分比的时间的电压脉冲,在打开的时间中,将高电压脉冲施加到阀门上。如图28所示,高电压脉冲用数字92标明。在图29中高电压脉冲用数字93标明。闭塞电压脉冲优选是总时段中的一段显著时段,其中将高电压脉冲施加到阀门上。在优选实施方式中,高电压脉冲是在高状态下持续125微秒,而闭塞电压脉冲是在持续100微秒的高状态下启动。闭塞电压脉冲在图28中以数字94表示,并在图29中以数字95表示。
因此,与非门80、81、82、83、84、85、86和87的输出将总是在数字“一”的状态,除非有正的闭塞电压脉冲94、95,同时在前寄存器75的70、71、72、73、74、75、76或77的输出端是在数字“一”状态或高状态。否则,在所有剩余的情况下,与非门从80到87的输出将是在数字“一”状态。将与非门80到87的输出输入到与数字输出端50、51、52、53、54、55、56和57相连的各个与门26、24、22、20、18、16、14和12。将与门26、24、22、20、18、16、14和12的输出分别输出到控制线27、25、23、21、19、17、15和13。这些控制线开动阀门。
因此,根据图28,除了出现闭塞电压脉冲94与输出端70到77之一上的数字“一”状态相联合,阀门驱动将不断地启动。这将导致电压脉冲98,其中各自的阀门驱动最初将关闭100微秒,然后在125微秒的总启动时间中打开后25秒。这在图28中分别由高电压92、闭塞电压94和阀门驱动电压98表示。
图29代表了在前移位寄存器65的任何一个输出70到77均不存在数字“一”状态时的情况。然后,阀门驱动电压99将连续打开,并且没有阀门驱动电压99被关闭的时段。这是因为高电压脉冲93第一次打开阀门,并且该阀门在先前的机器周期内没有打开。
应当指出,另外可选地,上述的逻辑能够通过使用可编程的逻辑设备代替上面讨论的分离设备来执行。
方法的详细讨论
根据一个预期的实践,通过使用多个染料喷射器来分配染料,并结合可以增强整个基底提花设计的清晰度的各种化学试剂的选择性应用,本方法和设备可以用于以图案或单色对接受染料的基底染色。更特别地,关于染料的应用,这些化学试剂的受控应用可用于减少染料在基底上的选择区之间的色移,因此锐化了提花区域之间的边界。这种抑制的使用可能对于单色和提花基底都是有用的。在单色的情况下,在整个基底上获得更深的色泽。在提花基底的情况下,这样的实践提供了有意地和选择性地加重某图案区域或元素的能力,以产生理想的视觉效果。
以像素来定义纺织品图案是常有的,而将单个染料或染料的组合分配到每个像素,从而将期望的颜色赋予那个相应的像素或基底上像素大小的区域。这种将染料对特定像素的应用,是通过使用很多单独的染料喷射器实现的,该染料喷射器沿着各种色档(也称作施用棒)的长度方向安放,该色档以隔开的平行的关系,横穿过待提花的基底的移动路径放置。在特定色档的每个喷射器供应来自相同染料贮存槽的染料,从一般含有不同染料的不同贮存槽供应给不同的色档。如可能由待再现的特定图案所要求,通过产生喷射器启动指令,调节喷射器沿着色档长度的位置,和该色档相对于在移动基底上的目标像素的位置,来自任何色档的任何可用染料可以应用于基底上图案区域内的任何像素。
过去,有时采用例如染浴、轧染、喷雾器、或其它适当设备的技术将各种化学试剂应用于基底。采用这样的设备,在根据图案信息选择性地应用染料的提花步骤之前,表面活性剂或其它染料泳移改性剂已基本均匀地应用到基底的表面,例如,在共同转让的美国专利第4,740,214和4,808,191号中提出的,两者都在此引入作为参考,如同在本文完全提出。
预计可以利用染料泳移限制剂的应用,结合基底上受控的染料应用,以实现增强的颜色深度和图案清晰度。应用的染料可以快速在基底上固定,以防止显色图案或者色调深度的模糊或褪色。染料泳移控制剂的选择应用可以对准(in registration with),或者相关于染料的应用而进行,由此在基底上分配的染料的泳移或扩散特性可以在图案特定的预定区域缩减,从而提供具有各种视觉效果的提花产品,因此提供多种审美优势。如果愿意,一种染色图案(或单色)可以定位地在纺织品基底上固着,这是通过化学泳移控制剂的双重补充(dualcomplementary)机理结合RF(射频)加热,通过应用的染料和染料混合物的固着来阻止染料泳移。这种RF加热的应用由此进一步增强了图案清晰度。
如图30示意性的说明,基底25在施用棒15的排列下经过,施用棒15用于以像素方式放置染料和/或泳移控制剂。通过在基底的精确限定区域,提供准确的像素方式放置的染料泳移控制剂和染料,以此方式在施用棒15下传送后,提花的基底25A可以经过其它传统的染色相关步骤,例如干燥、固着等。例如,图案染色的纺织品基底可以经过下文将进一步说明的RF加热器,以固着在其上个别的或混合的染料的斑纹(patch)。包括在图30的是与电子控制系统52、电子记录系统54和循环脉冲发生器或者相似的转换器56相联合的计算机系统的框图。这些系统的集体运转引起单独的“开/关”启动命令的产生,而控制流体从施用棒以受控的方式流到基底。
预计纺织品材料根据待染色的基底的应用和纤维含量,可以使用各种天然或者合成染料,包括酸性染料、碱性染料、活性染料、直接染料、分散染料、媒染料、或者颜料,提花或者单色染色。本文的教导适用于宽范围的这些染料,以及宽范围的纺织品材料。借助本发明能够染色的纺织品材料包括针织的、织造的和非织造的纺织品材料、簇绒材料、粘合材料和类似物。典型地,但是不是必需地,这样的纺织品材料包括绒面。这样的纺织品材料可以包括地面覆盖物(例如地毯、小地毯、块状地毯、地垫等)、装饰织物、室内装饰织物(包括汽车车内装饰织物)、和类似物。这样的纺织品材料能够由天然或者合成纤维形成,例如聚酯、尼龙、羊毛、棉和丙烯酸纤维、以及含有这些天然或合成纤维的纺织品材料、或其组合。
根据第一个预期的实践,在第一或第二施用棒之一,将“均染剂”均匀地或者以期望的图案应用于基底25,该“均染剂”例如Papalos的美国专利4,110,367(作为参考引入)中所描述的阴离子特性的表面活性剂。该均匀剂的特性优选是中性的或者与染料的离子特性相同。更优选地,该均匀剂具有与染料溶液相同的离子特性,并具有与基底相反的离子特性。因而,如果基底是通常为中性或阳离子特性的尼龙,该均染剂将最优选地是阴离子特性的。仅仅作为非限制性的例子,各种预期的阴离子特性的表面活性剂包括混合的脂肪醇硫酸钠、烷基磺酸酯(盐)、烷基二芳基磺酸酯(盐)、磺化砜二烷基磺基琥珀酸酯、烷烃或烯烃-酰氨基-苯-磺酸类、单磺化烷基苯氧基甘油、烷基取代的二苯醚磺酸盐、和磺化烷基苯氧基丙酮。也预计相应的硫酸盐和磷酸盐化合物可以用于代替任何上述磺化物。如果愿意非离子的脂肪族也可使用。一种相信特别有效的阴离子表面活性剂被认为是磺酸盐分散体,它以商品名TANAPURE AC由在美国宾夕法尼亚州匹兹堡具有一个营业场所的拜耳公司工业化学部(Bayer Corporation IndustrialChemicals Division)提供。当然,该均染剂也可以通过其它技术应用于基底,例如轧染、喷雾、浸渍涂布、或类似的技术,因而避免了使用施用棒的需要。
在施用棒之一,可以应用泳移限制组合物。按照本发明的优选实践,该泳移限制组合物是染料的补偿离子性的。在均染剂是离子特性的情况,该泳移限制组合物优选是均染剂的补偿离子性的。泳移限制组合物可以均匀施用在需要限制泳移的区域,也可以作为轨迹轮廓施用以界定阻止泳移的边界。泳移限制组合物在待染色区域的覆盖,有助于在那个区域高浮雕着色的显色。也预计泳移限制组合物可以在使用或不使用均染剂下,选择性地或均匀地应用于基底。
应当理解,与先前应用的均染剂组合物具有补偿作用特性的泳移限制组合物的应用,趋向于在该泳移限制组合物的施用位点至少部分超过均染剂的作用。因此,即使在预先的步骤中用均染剂均匀地处理基底,也可以通过图案化施用有效量的起抵消作用的泳移限制组合物,在基底上建立起泳移降低的局部区域。
按照一个预期实践,泳移限制组合物包括染料中组分的补偿离子类型的组分,以便与该染料反应。由此,按照该优选实践,染料或泳移限制组合物之一包括阳离子型组分,而另一种含有阴离子型组分。如果需要,染料还可以包括增强染料和泳移限制组合物的互补离子组分之间反应的组分。优选地,泳移限制组合物或染料溶液的至少一种中的反应性离子组分包括离子聚合材料,例如分子量为至少大约5,000,优选至少大约10,000的材料。更优选地,染料和泳移限制组合物都包括分子量至少约为5,000(更优选至少约为10,000)的反应性聚合材料。按照最优选的预期实践,染料和泳移限制组合物都包括分子量至少约为5,000(更优选至少约为10,000)的阴离子型反应性聚合材料。设想的阴离子型聚合组分包括例如黄原酸胶的生物多糖、含丙烯酸的聚合物、藻酸钠和类似物。阳离子型聚合组分包括含有阳离子基团的聚丙烯酰胺共聚物,例如季铵化和非季铵化的含有伯胺、仲胺和叔胺的聚丙烯酰胺共聚物。非聚合型阴离子组分包括例如十二烷基苯磺酸钠的阴离子型表面活性剂。非聚合型阳离子组分包括例如二癸基二甲基氯化铵等的阳离子型表面活性剂。
在染料和泳移限制组合物包括反应性互补离子组分的方法中,阳离子组分(来自染料溶液或泳移限制组合物之一)和阴离子组分(来自染料溶液或泳移限制组合物中的另一个)最好在染料溶液施用到织物材料上时互相接触。然后产生离子相互作用,有效控制不合意的染料泳移。
阳离子组分与阴离子组分在需要限制泳移的区域中理想的相互作用可以如下方便地实现:在染料溶液按照所需图案施用之前,将离子组分中的一种以包含在水溶液中的泳移限制组合物的形式(其在基底上以相对于泳移促进剂的图案关系进行分配)施用到纺织品材料上,然后将相应的补偿离子材料作为对准泳移限制剂的染料溶液组分施用。由此如果首先将阳离子组分作为泳移限制剂组分施用到纺织品材料上,那么可以将阴离子组分作为染料溶液组分施用。类似地,如果首先将阴离子组分作为水溶液组分施用到织物材料上,那么可以将阳离子组分作为染料溶液组分施用。如果愿意,喷射供料器可用于在基底上基本对准图案应用染料和泳移限制组合物。
如上所述,含有一种反应性离子组分的泳移限制组合物,优选在染料溶液施用之前,施用到纺织品材料上将要包含染料的区域。这种离子组分,即,阴离子组分或者阳离子组分,通常可以以溶液形式提供,其在溶液中的含量为水溶液重量的大约0.1wt.%至大约10wt.%,优选大约0.2wt.%至大约5wt.%。该水溶液中也可以任选提供宽广范围的附加纺织品染色预处理化学剂,只要这些化学剂不会干扰任何表面形成的相互作用。例子包括,例如,润湿剂、缓冲剂等。水溶液的理想pH值大约为3至大约9,尽管pH值并不关键。
施加到纺织品材料上的载有泳移限制组合物的溶液量可以在宽范围内变动,该量从足以使纺织品材料完全饱和的量至仅仅能润湿纺织品材料的量。所提供的阳离子或阴离子组分的量可以根据分子量、离子基团的数量等在较宽的范围内变动。一般而言,施用的泳移限制组合物的量可以为纺织品材料重量的大约1wt.%至大约300wt.%,优选大约5wt.%至大约200wt.%,最优选大约50wt.%至大约150wt.%。在所需图案中施用泳移限制组合物后,可以在施用染料溶液之前将纺织品材料干燥,或者可以不先干燥纺织品材料而直接施用染料溶液。
当然,要理解的是,可以在基底上以图案关系施用另外的泳移限制组合物。仅作为非限制性的例子,如美国专利4,808,191(引用以供参考)中描述的方法被认为可以使用,其中将具有+2或更高价的金属盐的水溶液施用到基底上,此后将含有染料和会与预先施用的金属盐形成络合物的增稠剂的染料水溶液以图案形式施用到基底上。与染料配位的络合物由此基本抑制超过图案边界的染料色移。相信在这种方法中,由于待染色的织物材料的预处理,金属盐粘合到织物材料的纤维上,这样当根据所需图案随后施用染料-增稠剂水溶液时,增稠剂与“固定的”金属形成络合物,而该络合物与染料配位。结果,依靠织物基底-金属-增稠剂-染料络合物,染料分子被稳定束缚,而且经扩散或毛细管作用路线的染料泳移受到抑制。潜在优选的金属盐包括铝、锆、铪、硼、镁、钙、锌、锶、钡、镓和铍的盐。
按照潜在的优选实践,在使用此类泳移限制组合物的情况下,设想将它们根据图案布置在基底上选择性地施用到需要由泳移限制产生高浮雕的区域,而不是如现有技术中教导的那样分配到整个基底上。此外,优选将泳移促进剂安置在基底剩余的至少一部分上,由此在基底上同时建立起泳移限制和促进的结合,但是可能是在不同的图案区域。
同样设想到的是,可以将其它泳移限制组合物,以染料固定/吸收组合物形式,选择性地施用到需要高浮雕的区域上。按照一个预期实践,此类染料固定/吸收组合物包括固色剂和吸墨剂。在一个实施方式中,染料固定/吸收化合物可以包括相容的树脂粘合剂。可以与染料固定/吸收组合物一起使用的另外添加剂,例如增白剂、抗菌剂、光稳定剂/UV吸收剂、和润滑剂。
在一个实施方式中,固色剂的分子量至少约为1000。在一个实施方式中,固色剂包括高阳离子性的活性氨基化合物。一种潜在优选的活性氨基化合物是具有高正电荷密度的化合物(即,至少每克一(1)毫当量)。本发明中可以使用的活性氨基化合物包括含有至少一个伯、仲、叔或季氨基部分的化合物。另外,活性氨基化合物可以含有能够与织物基底或树脂粘合剂反应以生成连接到其上的价键的反应基团。反应基团的例子包括环氧基、异氰酸酯、乙烯基砜、和卤代三嗪。特别地,表氯醇聚胺缩聚物尤其有用。
在可用的染料固定/吸收组合物中的吸墨剂包括通过吸附或吸收作用来吸取墨水的无机颗粒。在一个实施方式中,吸墨剂的粒度等于,或小于大约10微米。在另一个实施方式中,吸墨剂的粒度等于或小于大约3微米。在另一个实施方式中,吸墨剂的粒度等于或小于大约1微米。设想的吸墨剂的例子包括二氧化硅、硅酸盐、碳酸钙、氧化铝、氢氧化铝、和二氧化钛。bohemite氧化铝和硅胶可能特别适合用作染料固定/吸收组合物中的吸墨剂,尤其是经过处理而带有正电荷的硅胶颗粒。在硅胶颗粒的情况下,可能需要氧化铝表面涂布和阳离子硅烷表面改性。相信bohemite氧化铝和硅胶的微孔特性允许进一步物理俘获染料/颜料,例如阴离子染料/颜料,以便提供改进的耐洗性。在一个实施方式中,无机颗粒具有孔径约为10nm至大约200nm的多孔结构。
在大多数制剂中,来自于阳离子活性氨基化合物的正电荷比无机颗粒上存在的正电荷大得多。因此,在无机颗粒上仅仅存在相对较小的正电荷,不会通过正-负电荷相互作用明显提高染料/基底的相互作用。正是高度带电的活性氨基化合物和微孔无机颗粒的结合,进一步改善了处理基底的泳移限制特性。
在一个实施方式中,固色剂通常构成处理织物基底的大约0.2wt.%至大约20wt.%。吸墨剂通常构成处理织物基底的大约0.2wt.%至大约20wt.%。在一个实施方式中,染料固定/吸收组合物构成处理织物基底的大约1wt.%至大约20wt.%。在另一个实施方式中,染料固定/吸收组合物构成处理织物基底的大约1wt.%至大约5wt.%。在另一个实施方式中,染料固定/吸收组合物构成处理织物基底的大约5wt.%至大约10wt.%。在置于织物基底之前,染料固定/吸收组合物优选为稳定的水溶液或分散体形式。
如本文所述,染料固定/吸收组合物可以与树脂粘合剂结合使用以限制染料泳移。设想的是树脂粘合剂具有与织物基底的纤维良好粘合的特性。树脂粘合剂可以是热塑性的或热固性的高分子粘合剂。此类粘合剂优选具有低于大约40℃的玻璃化转变温度。同样优选的是,该粘合剂在进行洗涤时是耐久的。树脂粘合剂的例子包括非阴离子或阳离子胶乳,例如乙烯醋酸乙烯酯、丙烯酸、氨基甲酸酯聚合物、聚酰胺、聚酯和聚氯乙稀。在一个实施方式中,树脂粘合剂在处理基底中的构成高达大约10wt.%。
相信固色剂与离子染料因电荷型吸引而相互作用,且本发明的固色剂通常会与织物基底的纤维反应以形成与织物基底的化学键。在一个使用树脂粘合剂的实施方式中,相信固色剂将与会和与织物基底粘合的树脂粘合剂化学键合。人们还相信,吸墨剂为来自提花设备的墨水提供了表面区域,从而与固色剂相互作用,由此有利于发挥固色剂的效果。
如上所述的染料固定/吸收组合物地图案化应用,配准施用染料,可以提供具有优异色彩亮度和印刷清晰度的印花织物。这些好处对于以像素×像素基础置于处理织物基底上的水性颜料墨水而言尤其显著。更具体地,粘合剂的水性颜料墨水可以印刷在处理的织物基底上,以便在处理的织物上制造耐水且耐气候的印花图像,其中颜料对墨水的重量比为大约10比1或更高。此外,含有大约10wt.%或更少粘合剂的颜料墨水可以印刷到用含有或不含无机颗粒的季氨基化合物处理的织物基底上,并提供耐久的印花。可以通过化学键或其它任何适当的方法将季氨基化合物固定到织物基底上。相信当处理剂吸收水性墨水时膨胀。人们还相信,膨胀会增加墨水的颜料颗粒与处理剂的高阳离子和多孔特征之间相互作用的机会。
染料在染料溶液中的浓度完全取决于所需的颜色,但是,通常处于织物染色操作的传统范围内,例如,占除增稠剂之外的染料溶液重量的大约0.01至大约2wt.%,优选占大约0.01至大约1.5wt.%。选择加入到水性染料溶液中的增稠剂的量,以提供适合特定图案染色方法的理想粘度。
通常,染料与例如增稠剂、消泡剂、润湿剂、杀生物剂、及其它添加剂的多种其它组分结合,以得到通过图案化设备分配的染料溶液。通常,增稠剂的量处于染料溶液重量的小于0.1至大约3wt.%的范围。对于按需滴墨的设备,根据操作条件(例如,染料压力和供料器的喷嘴尺寸),粘度优选在约800至约5000厘泊的范围内。应注意,规定本文列举的所有粘度值均通过在30rpm和25℃下运行的,带有No.3纺锤的Brookfield LVT粘度计测得。
已经发现,通过用泳移促进组合物将基底25选择性地图案化,在复杂图案的形成过程中建立起充分提高的自由度。特别地,处理化学剂的选择性应用结合图案化染料的应用,在创造着色区域之间的鲜明转换中,提供了充分的自由。
仅作为非限制性的例子,在图30的出口部分75中,在背景区域80中图解了通过施用来自一个或多个施用棒的一种或多种染料,可以形成的有色印版70。仅作为例子,在有色印版70中,可以通过在整个基底上,图案化施用来自一个或多个施用棒的一种或多种染料溶液,达到足够水平深阴影化立体着色的高浮雕,该基底上应用了相应于有色印版70的边界的泳移限制组合物的图案。
按照本发明潜在优选的实践,在施用染料溶液之前,用阳离子性的泳移限制组合物,例如含有阳离子聚丙烯酰胺共聚物、季铵化铵盐、或如前所述的其它适宜组合物(染料溶液中试剂的补偿离子)的水溶液,处理基底25,使得泳移限制组合物以基本包括有色印版70的形式分布在基底25上。按照潜在优选的实践,泳移限制剂的分布优选与有色印版70的边界共同扩张。仅作为例子,可以通过使用一个施用棒15进行喷墨冲击图案化来实现泳移限制组合物的受控分布。在这方面,应当理解的是,泳移限制组合物可以直接施用在基底25的表面上,或覆盖在之前施用的表面活性剂或其它匀染剂组合物上。在施用泳移限制组合物后,在所需的图案施用至少一种含有或不含增稠剂的含染料的染料溶液。染料和/或任何增稠剂具有离子性,以便与覆盖有色印版70的泳移限制组合物反应。由于在泳移限制组合物与染料溶液中的补偿离子组分之间的反应,基本排除了超越有色印版边界的染料扩散。
可以认识到,不考虑特定区域内的泳移特性,一旦已经应用了染料,希望迅速和有效地将该染料固定在基底上以排除进一步的不合意的混合和/或泳移。过去,这种固色是通过多种技术实现的,包括过热蒸汽、天然和强制空气加热、以及使用辐射和/或对流热交换机制进行加热。
按照本发明的一个潜在优选实践,一旦已经应用了染料,就可以施加达到基底内有效受控深度的RF(射频)电场,以便有效和迅速地加热基底的染色部分以制备待固定的染料。控制RF应用的参数以对基底内的受控深度提供迅速的定向加热,同时避免基底材料的结构组分的燃烧或其它损坏。预料这种RF加热处理可能在例如地毯或类似物的起毛织物的处理中特别有利,尽管它也可以用于其它基底的处理。因此,尽管下文将就起毛地毯织物的处理来说明此方法,这种说明仅被理解为示例性和说明性的。
按照本发明的一个方面,可以对基底输送电场形式的加热能,该电场是使用以RF范围内的频率操作的所谓“弥散场”电极系统所产生的,其中交替的正极和负极电极在地毯的起毛表面上方与该表面相对安置。确定操作频率和电极的设置以提供并保持所需的加热能级。
参考图31,说明了可以由RF加热处理的加背衬的地毯或方块地毯形式的示例性基底结构225。在该示例性构造中,基底结构225是由初级地毯织物212构成的,该织物212由穿过初级衬里层216(例如本领域技术人员公知的聚酯或聚丙烯的稀松布或无纺纤维织物)的成簇的大量起绒纱214形成。将弹性粘合剂(例如SBR胶乳)的预涂衬里层218布于初级地毯织物212的下侧,以便将起绒纱214在初级衬里层216中固定就位。例如热熔粘合剂的粘合剂层220从预涂衬里层218延伸。在粘合剂层220与缓冲层224(例如原始或再结合的聚氨酯泡沫或类似物)之间放置一层例如玻璃布或玻璃纤维(nonwoven glass)的稳定材料222。在缓冲层224的下侧放置一层二级衬里层226,例如聚酯和聚丙烯纤维的无纺混合物。
可以意识到,可以对基底结构225的实际构造进行各种变动。相应地,图31所示的多层构造被认为仅构成代表地毯的示例性构造,而且根据需要本发明同样适用于任何其它构造的地毯和/或其它织物。仅作为例子,美国专利Nos.6,203,881和6,468,623中说明了各种方块地毯的构造,其内容因此引入作为参考,如同在本文完全提出。
当基底结构是地毯时,起绒纱214可以是由例如羊毛、棉或类似物的天然纤维构成的短纤纱或长丝纱线。起绒纱214也可以由合成材料构成,例如聚酰胺聚合物,包括尼龙6或尼龙6,6;聚酯,例如PET和PBT;聚烯烃,例如聚乙烯和聚丙烯;嫘萦;和聚乙烯基聚合物,例如聚丙烯腈。天然和合成纤维的混纺,例如棉、羊毛和尼龙的混纺,也可用于起绒纱214。在图31中,以圈绒构造显示起绒纱214。当然,要理解的是,也可以使用本领域技术人员已知的其它起绒构造,包括割绒构造和类似物。
如上所述,可以在基底225上施用泳移控制化学剂和染料的图案配置,以便在基底225的表面上形成所需的图案。形成的图案可以是在基底225上以图案关系分散的三原色的结果,和/或两种或多种三原色的受控就地混合的结果。此外,可以通过充分控制允许染料泳移的程度来进一步控制图案形成。不考虑所用的图案形成技术,理想的是通过将染料固定就位,以迅速的受控方式,具有基本阻止进一步染料泳移和/或混合的能力。
按照潜在优选的实践,已经发现,使用RF(射频)加热器使基底内的受控深度处实现迅速和有效的温度升高,以促进基底的染色部分的染料固定。在操作中,RF加热器在待加热的物体内引入交变电场,由此使这种材料内的水分子迅速旋转以试图与变化的电场匹配。这种旋转在产物内产生热。
申请人已经认识到,在将染料溶液图案化施用到起绒纱上后,RF加热的适当应用可用于增强地毯或其它织物基底材料上的染料固定。特别地,已经发现,RF电场的施加可以提供迅速加热,以便以迅速和受控方式阻止染料扩散。此外,由于加热进行到受控深度的事实,能量向基底的转移更为有效,并且基本使对基底染色表面下方的各种构造层的损伤可能性降至最低。
在应用中,本发明优选利用所谓的“弥散场”RF加热装置,例如图34中图示的装置。RF施加装置230包括与一列交替带电的长条电极234相连的发电机232。在潜在优选的构造中,电极234是延伸于传送带236上方并横过该传送带236的条状物形式,该传送带236运送基底225,使地毯经过加热区。已经发现,通过操作频率和相对于基底的电极布局的适当选择,可以实现适当的表面加热和固定,且不会产生可能有害的电极之间的电弧和/或表面下方结构单元的不适当加热。如假想路线所示,在交替电极之间以图案化排列形式形成施加场。如此产生的场以操作距离延伸进基底225中,从而提供能量以实现场边界中的分子旋转。
图35表示在电极之间产生的场相对于基底复合结构的各层的基本受控的操作深度。如图所示,操作频率和电极间隔使得有效电场延伸到刚到起绒纱下方的位置,以避免可能含有水分的任何下底层的任何实质性加热。
用于增强染料固定的RF加热,相信促进了染料生色团在起绒纱214中的迅速固定,这样即使以相对较低的染料浓度,也可以在起绒纱214的可见表面上实现较深色调。图36显示了色泽保持方面的改进,其中在用相同浓度的相同染料染色的地毯样品(一个样品使用RF预热进行染料固定,然后通入蒸汽,而另一样品仅使用蒸汽固色进行染料固定)的纱线顶端测量光反射。根据ADOBE PHOTOSHOPL值记录沿着Y轴的反射率的测量,其中较低的数代表较暗色泽,其相应于提高的光吸收和相应降低的反射率。如所示,在施用较低浓度的染料时,用RF预热的地毯呈现出较暗色泽。随着施用更高浓度的染料,色调上的差别变得不那么明显。然而,即使在较高的染料施用水平下,使用RF预热的地毯的纱线顶端增艳的色调也是可以测量的。
尽管还没有充分理解造成纱线顶端着色增艳的现象,相信RF加热的使用,使基底的染色部分迅速加热至足够水平,以抑制染料溶液通过毛细作用离开施用区域的趋势。对流和/或传导加热似乎不能在非常早的时候抑制染料泳移,而RF加热似乎能做到这一点。因此,已经发现通过防止像素至像素扩散超过所需程度,同时避免在染色纱线顶端产生所谓的起霜现象,RF加热的使用基本改善了基底上图案的清晰度。
相信在实际实践中,弥散场RF染料加热的使用可用于基本改善染料固定方法的效率,以及由此形成的产品的美学外观。设想了大量引入了RF加热以帮助染料固定的实际产品形成实践。仅作为非限制性的例子,在图32和33中图解了可用于处理地毯的各种工序。
按照图32中说明的第一种设想的实践,对一个基底(例如具有簇状或粘合构造的地毯织物,其包含大量向外凸出的起绒纱)进行染料施用步骤,期间根据图案在表面上施用染料。这种施用可以通过任何已知技术进行,尽管可能优选染料溶液的受控流动,其中染料以像素×像素为基础施用。在对地毯绒面施用染料后,通过使用弥散场RF加热装置的RF加热来加热绒面,从而将活化电场施加至地毯绒面内的预定深度。如果需要可以在该步骤中固定染料。在RF加热步骤后,将地毯冷却。如果需要,可以使用强制冷却装置进行该冷却过程。
在图33中,显示了潜在优选的基底染色和处理方法的主要步骤。在该方法中,通过上述泳移限制组合物预处理基底(例如具有簇状或粘合构造的地毯织物,其包含许多向外凸出的起绒纱)。在施用了泳移控制组合物后,通过喷射流根据图案在地毯绒面上施用染料。在染料施用后,通过弥散场RF加热装置预处理绒面,该装置将活化电场施加至地毯绒面内的预定深度。在RF加热步骤后,使用蒸汽加热完成染料固定。此后可以在使用之前将地毯洗涤、干燥并冷却。
如前所指出的,如上概述的工艺在包括阔幅地毯和方块地毯的地面覆盖织物的生产中尤其有用。图37提供了使用例如6’阔幅、12’阔幅、14’阔幅的阔幅基底,形成阔幅地毯一个可能优选的工艺。应当理解,阔幅基底可以是簇绒地毯、粘合地毯、或类似物。根据所列举的典型工艺,人们可以用,例如蒸汽、浸湿剂或类似物预处理基底,用织物提花机将基底印花或染色,加热基底以使染料固定,洗涤基底以从染料化学物中除去过剩的染料或者其它材料,例如胶或类似物,用例如阻污剂化学物、抗漂白化学物、或者抗细菌和抗真菌化学物处理被染色的织物,其后再次洗涤它或者直接将基底转移到干燥工序,包括例如真空处理、轧辊和干燥,其后将基底冷却,然后将基底切割成阔幅卷,将其切割成从12’阔幅到6’阔幅、和/或类似的阔幅卷。
根据将阔幅基底印花或者染色的方法或工序的特别实施方式,并参考图37,在印花之后,在第一个蒸汽段的上游对基底进行附加的预热或预调,采用例如射频(RF)、红外(IR)、微波(MW)或类似的加热方法,随后是处理步骤,如果有的话,后面是第二个汽蒸过程,然后到处理工艺,后面是真空处理或轧辊,如需要随后是附加的处理工艺,例如添加碳氟化合物、阻污剂、抗漂白剂、或者类似物,其后是干燥,然后是使用RF、IR或MW能源以驱散湿气的后干燥,然后是冷却和切割。在图37显示的工艺中,通过使用RF、IR或者MW预热,随后进行传统的汽蒸过程保存能量,从而不需要RF、IR或者MW能量进行整个染料的固定。同样,通过RF、IR或者MW随后接着传统的循环热空气干燥器进行后干燥,以使RF、IR或者MW仅用来干燥来自基底的最后剩余的湿气。以这种方式,保存了能量,降低了成本。
并且,通过在两个汽蒸操作之间提供处理步骤,人们能够加入通过第二个汽蒸过程固定的试剂。
虽然图37可能涉及阔幅处理工艺的可能优选的实施方式,但本发明决不限于此。
如同图37的方法,根据本发明的典型的第一和第二实施方式,图38和39涉及相当详细的对方块地毯印花或者染色的方法。参考图38,将未染色的方块地毯坯布输送、卸垛或者分单,通过蒸汽、浸湿或类似预处理,以优选的单列方式印花或染色,然后传送到方块的三倍幅宽排列而经受例如使用RF、IR或者MW的预热、预调步骤,第一个汽蒸步骤,处理步骤,第二个汽蒸步骤,洗涤和处理步骤,真空处理,轧辊,和如需要的额外处理步骤,干燥,使用例如IR、RF或者MW的后干燥,冷却,分单回单方块形式,然后经历边缘修剪和随需要的表面剪切操作,然后包装,码垛和运输。
根据图39的第二个典型的方法,在被传送到三倍幅宽排列前,方块以单列形式经受预热或者预调步骤。这提供了必须仅处理单线的方块的预热或预调设备,并且不仅提供能量效率,而且还保证每块以相同的方式处理,避免了传送经过预热或预调设备的三列方块可能发生的任何不协调。处理单幅宽方块保证每个方块以相同的方式处理,从而避免了传送经过例如RF、IR或者MW设备的预热或预调设备的三列方块可能发生的任何不协调。优选每个方块以相同的方式处理,使得所得产品是相同的,以确保质量得到保持。
基本喷射染色、提花、或者印花工艺包括以下基本步骤,在一个或多个染料供料器下以受控方式提供可染色的基底,控制染料供料器选择性地在基底上的预定像素或位置染色,控制基底的传送,经过或在染料供料器下方以对准染色,以及随后固定染料,洗涤基底,干燥基底,切断或者修剪基底,包装基底,和类似步骤。
根据更复杂和可能优选的将阔幅形态基底染色的方法,例如6’阔幅、12’阔幅、14’阔幅的阔幅基底,例如簇绒地毯、粘合地毯或类似物,人们可以用例如蒸汽、浸湿剂或类似物预处理基底,用织物提花机对基底印花或染色,加热基底以固定染料,洗涤基底以从染料化学物中除去过剩的染料或者其它材料,例如胶或类似物,用例如阻污剂化学物、抗漂白化学物、或者抗细菌和抗真菌化学物处理被染色的织物,其后再次洗涤它或者直接将基底转移到干燥工序,包括例如真空处理、轧辊和干燥,其后将基底冷却,然后将基底切割成方块、区域地毯、阔幅卷,将其切割成从12’阔幅到6’阔幅、和/或类似的制品。
根据将阔幅基底印花或者染色的方法或工序的特别实施方式,并参考图37,在印花之后,在第一个蒸汽段的上游对基底进行附加的预热或预调,采用例如射频(RF)、红外(IR)、微波(MW)或类似的加热方法,随后是处理步骤,如果有的话,后面是第二个汽蒸过程,然后到处理工艺,后面是真空处理或轧辊,如需要随后是附加的处理工艺,例如添加碳氟化合物、阻污剂、抗漂白剂、或者类似物,其后是干燥,然后是使用RF、IR或MW能源以驱散湿气的后干燥,然后是冷却和切割。在图32显示的工艺中,通过使用RF、IR或者MW预热,随后进行传统的汽蒸过程保存能量,从而不需要RF、IR或者MW能量进行整个染料的固定。同样,通过RF、IR或者MW随后接着传统的循环热空气干燥器进行后干燥,以使RF、IR或者MW仅用来干燥来自基底的最后剩余的湿气。以这种方式,保存了能量,降低了成本。
并且,通过在两个汽蒸操作之间提供处理步骤,人们能够加入通过第二个汽蒸过程固定的试剂。
虽然图32可能涉及阔幅处理工艺的可能优选的实施方式,但本发明决不限于此。
如同图32的方法,根据本发明的典型的第一和第二实施方式,图33和34涉及相当详细的对方块地毯印花或者染色的方法。参考图33,将来染色的方块地毯坯布输送、卸垛或者分单,通过蒸汽、浸湿或类似预处理,以优选的单列方式印花或染色,然后传送到方块的三倍幅宽排列而经受例如使用RF、IR或者MW的预热、预调步骤,第一个汽蒸步骤,处理步骤,第二个汽蒸步骤,洗涤和处理步骤,真空处理,轧辊,和如需要的额外处理步骤,干燥,使用例如IR、RF或者MW的后干燥,冷却,分单回单方块形式,然后经历边缘修剪和随需要的表面剪切操作,然后包装,码垛和运输。
根据图34的第二个典型的方法,在被传送到三倍幅宽排列前,方块以单列形式经受预热或者预调步骤。这提供了必须仅处理单线的方块的预热或预调设备,并且不仅提供能量效率,而且还保证每块以相同的方式处理,避免了传送经过预热或预调设备的三列方块可能发生的任何不协调。处理单幅宽方块保证每个方块以相同的方式处理,从而避免了传送经过例如RF、IR或者MW设备的预热或预调设备的三列方块可能发生的任何不协调。优选每个方块以相同的方式处理,使得所得产品是相同的,以确保质量得到保持。
产品的详细讨论
如上所讨论,本文说明的提花系统已显示有能力生产在视觉上明显和在科学上可测量性方面都是独特的提花地面覆盖织物。将结合图40至219解释这一陈述的基础。这些图显示了典型的提花的地面覆盖物基底(这里是方块地毯),其在某种程度上将说明随后的讨论,并且另外显示和解释各种测量,以及在带有相似图案的代表性基底上所做的这些测量的结果。为了比较,使用的提花系统将不仅包括优选的固定色档、以上详细描述的按需滴墨提花系统,还包括以上讨论的交替的按需滴墨和再循环型提花系统。
图40描述了具有染色的图案区1至6的提花绒头方块地毯10,每个区被印染了不同的视觉均匀的颜色,至少两个相邻的图案区形成边界。另外,每个图案区含有至少两组设计元素,该设计元素为一系列尺寸渐进的矩形或“试验条”的形式,该矩形或试验条长度相同但是厚度降低,且紧密地平行于紧邻的图案区放置,从该处试验条获得其颜色。例如,在图案区3的5组试验条含有图案区1、2、4、5和6的各自颜色。在一组中的每个试验条的厚度,但是不是它们相对的间隔,依照完整像素宽度(0.05英寸或者1.27mm)的递减,PREF和RECIRC提花系统的最厚试验条是0.30英寸(7.62mm)厚,距离各自图案区的间隔是0.5英寸(1.27cm),下一个最厚的试验条是0.25英寸(6.35mm)厚,等等,经过下列级数:0.20英寸(5.08mm)、0.15英寸(3.81mm)、0.10英寸(2.54mm)和0.05英寸(1.27mm)。DOD提花设备产生相应的测试图案,而单位适合于那种设备的像素宽度(0.0625英寸或者0.159mm)。
因此,最薄的试验条(具有由提花设备的像素大小或隔距指示的尺寸)具有一个像素的厚度(0.05英寸/1.27mm或者0.0625英寸/0.159mm),并且紧接着在前的试验条0.5英寸(1.27cm)处放置。为了讨论,这些试验条提供某些特征,用来建立图案清晰度和外观上的差异,该差异相信将优选的提花工艺的产品,区别于任何其它将用于商业规模上织物基底的自动提花工艺的产品。下面详细讨论这些独特的特性。
通过优选的固定色档,以上详细说明的按需滴墨的提花系统,生产的图案的一个独特的特征,是显著的陡度,其中,表征第一个图案区的第一个颜色能够过渡到表征紧邻的第二图案区的第二个颜色。这种提供清晰图案元素的陡度,被量化为在两个相邻图案区之间的过渡宽度,将用于测量使用本文的技术可实现的图案清晰度的改进。在相邻图案区之间的相对对比度的概念,对感觉的视觉对比、颜色深度、和图案清晰度(共同称作图案的“pop”)起作用,与过渡宽度相关联,其中小的过渡宽度趋于加强边界颜色间的差异,因此促成对比度增加的感觉。
与过渡宽度的概念密切相关的是特征宽度的概念,它是本文描述的优选提花系统的第二个区别性特征。特征宽度可以看作是可观测的图案特征或者元素能够准确和可靠地显示在基底上的最短距离,或者看作是有效隔距,即,用特定的提花系统在特定的基底上可以实现的细节水平或者分辨率程度。特征宽度的测量将用来证实优选的提花系统能够提供有效的印花隔距,该印花隔距比其它测试的系统更接近提花系统的理论最大隔距。下面将更详细地讨论特征宽度和有效隔距的主题。
在特征宽度性能(即图案细节)好的情况下,增强了好的过渡宽度性能的效果。如果两个性能都很好,该图案具有相当明显的相对对比度,并且显得高度清晰和视觉饱满。如果存在微小细节,但是过渡宽度性能普通或较差,整个相对对比度略有降低,得到的图案显得缺少“pop”,微小细节看起来不清晰或模糊。
本领域的技术人员应该容易理解以上特征(相邻颜色之间的过渡宽度和小尺寸细节的特征宽度)是几个参数的函数,其最重要的相信包括(1)基底的物理性质和均匀度和其芯吸特性,(2)染料的性质(尤其是其粘度和其与任何表面化学处理剂的相互作用,该处理剂对基底的表面能改性,并因此对其后应用的染料的泳移特性改性),以及(3)应用于基底的染料的量。这之中的每一个将依次讨论。
甚至非本领域的技术人员也能容易理解,使用液体着色剂,尝试在内在有吸收性和内在不均匀的基底上(大多数织物)形成有高清晰度的图案,是使人气馁的任务。不仅基底结构的内在不均匀性(例如在绒头行列的方向或者在纱线高度或者捻转方向的小的暂时性差异)令染料难以沿着稳定的轮廓分明的线应用于基底,而且应用后的染料的泳移特性常常导致不受控制的和不想要的染料的横向芯吸入邻接的图案区,因此降低了边缘的清晰度。
一般来说,低粘度的染料比高粘度的染料倾向于更容易地在基底中泳移。因此,低粘度染料的使用同时具有有利的和不利的结果:较大的泳移引起最终染料布置的较少横向控制,因此倾向于降低能够被再现的图案的清晰度,但是也倾向于促进垂直泳移(即沿着纱线或纤维的长度泳移),并因此倾向于增加染料在基底内的渗透。反之,高粘度染料提供相对较大的最终染料布置的横向控制,但是这样的横向控制常常是以限制在单个纱线或者纱线组内垂直泳移为代价而得到。这在图41A和41B中图示。在图41A中,显示在横向控制很好的割绒织物表面上的染料滴,但是也没有提供明显的渗透。相反地,图41B的染料滴看起来提供充分的渗透,但是以显著的横向泳移为代价。图42A和42B显示了对圈绒织物表面的相似影响。试图同时保持低粘度和高粘度染料系统的优点,无附带的缺点,通常涉及将各种化学泳移改性剂加入或应用于染料或者基底,如上面所详细讨论的。
本领域的技术人员还将认识到应用于基底特定区域的染料的量,相当重要,因为如果吸湿率(应用于和结合到基底的染料量的量度)降到如下水平,即仅有构成基底表面的组成纱线或纤维的最尖端部分一致和充分地染色,在图案中相对清晰的转变和相对高的清晰度常常是可以实现的。通过这样做,在相邻纱或者纤维之间的泳移被最小化,并改善了所得图案的观察的清晰度。然而,这个改进能够导致在基底内染料渗透的降低,产生仅沿着纱线或织物纤维长度的相对小的部分带有期望颜色的纱线或织物纤维,并且当刷或分开绒头表面时,在远离纱线尖的地方倾向于显示不完全染色的纱线或者织物纤维。因此,对于特定的基底和特定的染料和表面化学系统,相信本文描述的PREF提花系统产生独特的提花制品,因为该图案同时能显示高清晰度和在基底内的高染料渗透。
为了理解下面关于颜色测量的讨论,需要了解颜色的测量通常包括颜色的各种组分的分别测量。一个被称作CIELAB系统的广泛认可的系统,是一个成直角的三维坐标系,其中各个垂直轴是亮度(“L*)、红色/绿色(“a*”)和黄色/蓝色(“b*”)。因此,在第一个颜色(例如图案区域1的颜色特征)与第二个颜色(例如图案区域2的颜色特征)之间的色差,可以通过各自在L*值、a*值和b*值的差异表达,或者数学上用,
ΔL*=L* Color1-L* Color2
Δa*=a* Color1-a* Color2
Δb*=b* Color1-b* Color2
而总色差由:
ΔE* ab=[(ΔL*)2+(Δa*)2+(Δb*)2]1/2表示。
虽然以上公式专门针对CIELAB颜色识别系统,已经知道用在Adobe Photoshop(Adobe Systems of San Jose,California发行的)(下文“Photoshop”)的Lab系统基本上是相同的,并在本文用于分析的指示。因此,具有稍微不同术语的以上表达的数学关系式,对于PhotoshopLab系统同等有效。
为了理解本文关于各种颜色对沿着共同边界的泳移和混合行为的讨论,需要引入优势边界色的概念。在很多情况下,在图案中的两个颜色是邻近的,如果放大的话,分离各个着色区的边界区显示包括一个颜色的视觉浓度的基本单调增加,被一般相应于另一个颜色的视觉浓度的基本单调减少所覆盖。在一些情况下,人们看到边界区中两个颜色相减组合的第三种颜色,该颜色出现在边界区的中心部分。因此,在放大图中,边界区类似从一个颜色到另一个颜色的渐进过渡(也许在过渡的中间引入第三种颜色),虽然由于经常存在由基底表面强加的颜色变化和芯吸的不规则性和其它因素,如下面将讨论的,该过渡不必需是平稳的。
在由称为“优势边界色”的一类颜色之一形成的边界,这种“渐进过渡”模式可能需要改性。这样的颜色足够暗或者上色占优势,以使它们可以建立相对轮廓分明的边界,且有很少的颜色明显混合或者共混合,无论什么情况下停止泳移,不管在相对图案区颜色的泳移。人们可以直观地理解,例如当黑色染料被应用于图案区1,米色被应用于图案区2,根据黑色染料已经泳移到被一些米色染料占据的区域的程度,而不是根据米色染料已经泳移到被一些黑色染料占据的区域的程度,所得到的边界区可能清楚得多。这是由于黑色和米色染料的任何混合(不管米色染料在该混合物中的任何优势)更可能被认知为黑色而不是米色的事实。其它显示这种行为的颜色,并且由此能被认为是优势边界色的颜色,包括红色、深蓝色和绿色。通常,对于相同浓度(即每单位体积的染料分子)的两种染料,暗得多的颜色是优势色。对于不同浓度的相同染料,具有高得多浓度得颜色将占优势。
通过使用Kubelka-Munk理论,这个关系式以稍微简化的形式,能通过下面的归纳不等式数学表达,它表达第一个染料支配第二个染料的情况:
C1·[k1/s0]≥≥C2·[k2/s0]
其中C1和C2分别是第一和第二个染料的浓度,k1和k2是它们各自光吸收的系数,s0是基底光散射的系数。本领域的技术人员将理解各种系数是波长特定的(wavelength-specific),对于有色度的颜色,以上比较必需修正而包括在不同波长的知觉辨别影响;例如,使用CIELAB ΔE* ab
应当理解,尽管上述边界区通常看起来具有常与优势颜色相关的性质(例如在优势颜色限定的边界的相对清晰的轮廓)和常与非优势颜色相互作用相关的性质(例如从一个图案色到另一个图案色的相对渐进的过渡)的复合特性。图案的视觉评估常常最受优势颜色的影响。
不管是否包括优势颜色或非优势颜色,边界区在本质上倾向于不均匀,因而需要一些方法使它们最小化,以致能够测量相关于边界区内颜色变化的可用数据。回想起通过上述优选的提花系统产生的图案的一些区别性特征(过渡宽度、特征宽度和有效隔距)被识别。用以上作为背景,现在将更详细地讨论这些特征的测量。
根据本文的教导,过渡宽度的概念也许在讨论关于织物的高清晰度提花的描述和分析中是最基本的。当在共同的边界上测量时,它包括在图案内相邻着色区之间颜色变化的量化,并且是简单地尝试来表征能够达到的从基底上一个着色区到相邻着色区过渡的陡度。已经发现好的过渡宽度性能,在确立显示高清晰度的图案中,具有基础的重要性。
直观地,可能看起来测量两个相邻着色区之间过渡的最直接方法,是进行比色测量,从图案区1内的井(well)开始并沿着直接路径延伸到图案区2内的点井(point well)。理论上,只要使用足够敏感的仪器,边界区的边缘(在该区域中图案区1和2的各个颜色可测量地彼此影响)应该是明显的。主要由于基底表面的表面布局和其伴随的不均匀的反射性能,在相同的边界区沿着不同路径的重复测量可能产生十分不同的结果,这只由于叠加在颜色信号上的明显的“基底噪音”组分,该组分能极大地使边界区的开始变得模糊。通常,通过增加测量系统的灵敏度或者分辨率只能使这种情况更糟。因此,定义的数学推导的过渡宽度的概念,包括大量数据的平均,其用于精确测量表征相邻图案区内颜色之间边界的陡度。在下面陈述这个术语的导出和实际计算,并且从扫描设备的校准开始。
图43以概括的形式阐明了涉及测定边界区的选择部分的过渡宽度的主要步骤。应当注意在图43中指出的每个步骤结合图46和47A-47C进一步详细地得到解释,这些图共同说明了有关于从试验图案产生过渡宽度和特征宽度数据的图像数据的采集和分析过程。
图43的步骤800涉及扫描器的校准,该扫描器用于扫描待计算过渡宽度和/或特征宽度的样品。在下面讨论的图44中更详细地阐明这个校准过程。在图44中没有提到本领域的技术人员所知的良好的习惯做法,比如容许足够的扫描器暖机时间、清洁扫描器的玻璃表面等。
如图44所示,步骤852到870共同涉及颜色扫描器或者相似设备的校准,当适当地校准时,这些设备能扫描织物基底上出现的图案,并产生准确地将颜色表达成在基底上位置的函数的信号(也许借助于附加的信号处理软件)。步骤852代表标准化的颜色测试目标(例如Kodak Q-60Photographic Target Standard,从纽约州罗彻斯特的伊士曼柯达公司(Eastman Kodak Company)可得到)的扫描(以手动模式,使所有的自动调整不起作用)。这样的试验目标附有包括CIELAB或在目标上显示的颜色的其它数字特征(即“真”目标颜色)的数据盘(步骤854)。通过将扫描的颜色与“真”颜色比较(步骤856),借助于适当的软件,例如GretagMacBeth’s Profile Maker 3.1(纽约州NewWindsor的GretagMacBeth LLC发行),能产生扫描器特定的颜色轮廓(color profile)。该概图给予密切相应于CIELAB的彩色空间(例如PhotoshopLab)中的颜色的自动数字表示,作为位置的函数。
一个任选的但是推荐的步骤是评估该颜色轮廓的准确性,在图44中概述的一个简明方法使用Photoshop将扫描值转换成PhotoshopLab值。这个过程(复制图47A的步骤872-878获得的图像数据)导致目标中每个颜色产生ΔE* ab值,通过将每个目标值的扫描和随后概括的颜色值(profiled color value),与来自该目标随附的校准盘的相同目标颜色的L*a*b*值比较而产生,并提供该扫描过程的整体比色准确度的评估。应当指出图44的步骤868优选可以借助软件来进行,该软件在目标上定位和隔离各自颜色区。发现将在Kodak Q-60目标上每个颜色的ΔE* ab值平均,导致约3.5的值(随着时间的过去,平均的ΔE* ab的标准偏差约为0.2)。这样的值被认为是可接受的。
回到图43,步骤802指的是样品的制备,包括刷样品以除去松散的纤维并使绒头行列标准化。然后将该样品定向在清洁的扫描器床,并适当地排列(即将待检的边界区或者试验条按扫描器床的边排列),小心不弄乱绒头。在图43中指出的下一步涉及选择、量尺寸和扫描待分析的两个图案区(分别为“图案区1”和“图案区2”)之间形成的边界区。
待扫描的样品区域位置和尺寸的挑选涉及几个考虑。理论上,如果使用高灵敏度和分辨率的仪器,边界区的边缘(图案区1和2的各自颜色开始混合的地方)应该是明显的。然而,如上所讨论,这样的仪器易于产生含有显著的基底噪音的输出。该噪音使相关数据模糊的程度由许多因素决定,包括扫描器的分辨率。使用相对高分辨率扫描分析(例如100至300d.p.i.)一般导致大的基底噪音组分,而使用与基底上图案的实际有效隔距更一致的相对低分辨率扫描分析(例如10至20d.p.i.)产生的结果,被认为太近似或“量化”而不能提供对于适当的显色分析(revealing analysis)所需的分辨力。因此,选择50d.p.i.(即每厘米20点)的扫描分辨率作为适当的折中。为了避免在这些讨论过程中的混淆,如上下文所要求的,必须将这个扫描的分辨率(有时用像素来表达)与相关于提花工艺的分辨率或像素大小(即提花机的印花隔距)区别开来。
由于这些信号的变化,在减少噪音组分的进一步尝试中,决定横过边界区的路径宽度应该从单像素路径增加到50像素列,或1英寸(2.54cm)宽(与边界区平行延伸)。这样,对于沿着横过边界区的垂直路径的每个像素,产生平均50个路径的线轮廓。通过这样做,与每个扫描相关的沿着50像素宽的基底表面变化趋于自抵消,随后的图像处理步骤(例如下面讨论的产生过渡宽度和特征宽度的步骤)较少受异常数据点的影响。该结果是图45中12所描述的清楚得多的定义曲线。
还建议选择的边界区在试验区上基本是直的(即不弯曲的),从而有助于根据本文的教导进行分析。在决定待扫描区的尺寸中(除了以上所讨论的提供扫描路径的适当个数外)附加考虑的是,建立由边界区表示的颜色转换的恰当期望终点(即未受染料从边界区泳移影响的图案区的实际颜色)的需要。因此,被扫描的样品区域应该包括离待检边界区足够远的区域,与该边界区相邻的两个图案区的各自颜色能够不受其它颜色影响而被单独表征。如果这样的表征不可能,例如,由于形成该边界区的图案区之一(或两者)是微小细节,除了包括待检边界区的扫描,可能需要在基底表面的另一部分单独扫描一个或多个相似的着色图案区,从而容许表征形成边界区的两个图案区的半无限颜色。
在这些工序之后,将样品适当地扫描(例如以用于扫描颜色目标的相同手动模式),令边界区适当地(和一致地)定向以便随后的线轮廓(或平均)与边界区平行。然后,扫描器的输出(在形成适当的颜色轮廓后)用于产生单独的PhotoshopL、a和b颜色通道图像(步骤804)。如步骤806所示,被选择表示形成待检边界区的两个图案区颜色的半无限区的L、a和b图像,用于测定在图案区1和2之间发现的总色变(ΔEmax)。由于颜色值可以以特别的方式编码以利于存储图像像素的简便,可能需要将PhotoshopLab值的编码值转换成它们的比色当量。这个总色变(ΔEmax)稍后(步骤814)用于计算过渡宽度(即色差ΔEmax在距离过渡宽度ΔX上产生)。
在步骤808中,为三个颜色通道图像的每一个(使用两个回旋核心(convolution kernel),与图46核46A结合讨论),计算代表颜色导出物(即在边界区位置的变色率)的图像。然后,Photoshop Lab衍生图像用于为每个颜色通道计算在边界区上的衍生线轮廓。这个过程参考图46和46A的概图可以较好理解。
如图46所描述,选择待检测的边界区(820),限定代表那个边界区和邻接图案区的扫描区(821),产生单个的PhotoshopL、a和b颜色通道图像(822、824和826)。下一步(830、832、834)包括回旋核心的应用,其以本领域技术人员所知的方式进行与边界区平行的平均操作,在此情况是9×9的核。由于这个操作,包括每个颜色通道图像的每个像素被赋予一个平均值,该值是通过将那个像素的值与那个像素上和下的四个像素的值(即平行于边界区域)相加并用9除而计算的,由此提供平行于边界区在空间上平均的各个L、a和b图像。
也如这些步骤所指明(在图47A的步骤886和888中更详细地说明),使用第二个回旋核心,除了在垂直于边界区的方向其非零值一律偏移1像素外,它与第一个相同。该核心具有以下作用,即在平行于边界区的1×9列(中心像素之上和之下4个像素)中使像素值平均,并如上将该平均值赋予中心像素,以及通过垂直于边界区方向的一个像素转移图像。在扫描区内的所有像素位已经用这两个回旋核心平均后,存储结果。然后各个颜色通道图像从彼此中扣除,从而对于每个L、a和b颜色通道形成代表边界导数的差分逼近的图像(见图46的840、844和848),分别用L12、a12和b12表示。然后基于每个这些有限差图像在边界区产生线轮廓,如(842、846、850)所显示。这样的信号组合或平均,以及导数计算,可以使用软件来完成,例如Image Pro Plus、Adobe Photoshop、IPL、MATLAB、或其它有类似功能的软件。
然后结合单个的L、a和b线轮廓形成总的欧几里德颜色导数(Euclidian Color Derivative,“E.C.D.”),即,
E . C . D . x = ( dL dx ) 2 + ( da dx ) 2 + ( db dx ) 2
实际上基于有限差计算,提供在边界区作为距离(x)的函数的颜色变化速率的测量。这个E.C.D.任选地可以被绘成图以提供一些关于边界区内变色性质的视觉反馈。如图43的812所示,E.C.D.的最终值是测定在边界区的颜色最大变化率(称为“E.C.D.max”),以及测定沿着垂直于边界区路径出现那个最大变化率的那个点(Xmax)。那么,过渡宽度的计算是简单的,如在814所示,根据下式:
过渡宽度=[ΔEmas/E.C.D.max]
本领域的技术人员将认识到如果存在多边界,必需小心E.C.D.max和ΔEmax的测量代表了待检测的边界区。
图48至51通过图形模拟呈现了说明该一般工艺的另外备选方法。图48以高度示意性和简化的形式描述了从一个图案区到第二个图案区的过渡,其具有从一个区域到另一个区域没有发生混合的理想边界区。图49至51以高度示意性和增大的形式描述了通常会遇到的三类边界区。在大多数情况下,观察到的边界区更接近类似于两个或多个所描述的边界区的结合。图49A是第一种边界的例子,其中颜色从第一个区域12逐渐过渡第二个区域14的(不同)颜色。所得到的边界区被描述成包括对立图案区的各自颜色的逐渐减小的浓度重叠。在此情况下,伴随这种测量的不可避免的基底噪音易于使边界区的前缘和后缘模糊,这是采用以上描述的“线性色差曲线”的本质原因-这样的方法仅需要色差曲线的最大斜率(较容易测量或估计的数据元素),而不是其测量的终点,以便计算过渡宽度的边缘(和尺寸)。
作为沿着水平轴标出的在边界区相对位置的函数,色值沿着图49B的垂直轴示意性地绘图。为了说明,图49B垂直对齐于图49A的边界区的直观图像。用适当的软件,例如Image Pro Plus4.5(从马里兰州Silver Spring的Media Cybernetics,Inc.可得到)、Adobe Photoshop等,计算一阶导数dL/dx、da/dx、db/dx。将它们结合而产生图49C中绘出的E.C.D.,也对齐于图49A和49B的直观图像。
该导数曲线30以图解的方式描绘了作为在边界区上位置的函数的变色率,并且一般预期有单一的全局最大值,在这种情况为Xmax。根据期望的精确,该导数优选使用所有三种PhotoshopLab颜色通道计算。按照多维颜色空间的可能使用(包括使用其它颜色坐标系统,例如亮度、色度和色调),垂直轴或导数的大小通常被标记欧几里德颜色导数。水平轴识别在边界区颜色变化率(即ΔE变化率)最大的位置。
使用所显示的E.C.D.的最大值,通过用等于E.C.D.最大值的斜率在曲线上Xmax处画一条直线,建立线性色差曲线20(49B)。当外推到与定义ΔEmax的色值(即在12和14与各自相对图案区相关的色值18、22)相交时,这些相交点在X-轴的投影定义为该边界区内的过渡宽度(“TW”)。
图50以高度示意和放大的形式描述了第二种较少“纯粹的”形式的边界的例子,这通常在边界区遇到。在这种情况下,来自第一个区域11的颜色,在两个图案区11和13之间,形成清楚得多但是更加不规则的线。不是扩散地和精细地混合两种颜色而形成边界,优势颜色趋于形成相对清晰但是蜿蜒的边缘,通常仅沿着边界轴并主观地产生微尺度上清晰的图案,不是本文所讨论的高清晰度外观。蜿蜒边缘的基本特性,连同伴随这些颜色测量的不可避免的织物相关的噪音,使该边界区的前缘和后缘的测定变得无意义,除非使用某种平均或者加权的方法。此外,以上描述的采用“线性色差曲线”方法能够用在这种情况,因为此方法仅需要色差曲线的最大斜率(较容易测量或者估计的数据元素),而不是其测量的终点,从而计算过渡宽度的边缘(和大小)。
作为沿着水平轴标出的在边界区相对位置的函数,色值沿着图50B的垂直轴绘图。为了说明,图50B垂直对齐于图50A的边界区的直观图像。将一阶导数(再次用任何适当的软件计算,例如Image Pro Plus4.5)绘制在图50C中,为了说明,也对齐于图50A的直观图像。使用指明的一阶导数34的最大值36,建立线性色差曲线28。当外推到与表征各自相对的图案区的色值(分别在24和26)相交时,这些相交点在X-轴的投影定义为该边界区内的过渡宽度。
已经观察到,在一些情况下,一个区域的颜色与第二个相邻区域的颜色之间的边界区,不涉及仅包含两个各自颜色的过渡,而是包括在边界区形成完全不同的、中间颜色,例如当红色与绿色相互混合而形成棕色。那种情况以相似的方式在图51中用图说明。在这样的情况下,导数的计算产生两个峰,不占优势的峰被忽视。过渡宽度和特征宽度的计算仅基于较大的衍生峰。
上述过渡宽度测定的细节在图47A至47C中阐明。步骤882描述了对于待检测的边界区的扫描区的选择。如指出的,建议相关于选择的图案区的边界区基本居中(以利于确定每个各自图案区的“纯粹的”颜色,而不受边界区的影响),且平行于边界区将在空间上平均化的方向。否则,该平均化过程将趋于使边界的内在清晰度模糊。
然后,用设置手动模式的已校准的扫描器(即非自动调节对比度、色调、亮度等-与扫描颜色目标的设置相同)进行适当制备的样品的扫描,使用适当的扫描器,例如可从德克萨斯州达拉斯的UMAXTechnologies,Inc.得到的Umax Powerlook 2100XL,和适当的软件,例如也是从德克萨斯州达拉斯的UMAX Technologies,Inc.得到的MagicScan采集软件。如上所讨论,已经发现当如此扫描不均匀的基底时,相对高扫描分辨率易于引起过多的基底噪音。因此,根据样品的均匀性,建议大约50d.p.i.级数(例如每厘米20点)的扫描分辨率对于该分析是适当的,尽管其它分辨率也可能有效。此外,建议每个颜色通道用8-位数据采集。扫描的24位RGB结果应该以优选的无损格式(例如TIFF文件)存储。
随后将先前产生的颜色轮廓应用于Photoshop来扫描图像,而将样品图像RGB文件转换成PhotoshopsRGB值(874)。该sRGB值然后转换成PhotoshopLab值(876),并且将图像分成8位L、a和b颜色通道图像,并以无损的方式存储(878)。
在这一点,图像处理软件,例如由马里兰州Silver Spring的MediaCybernetics,Inc.发行的Image Pro Plus,用于形成核心,该核心将为每个颜色通道产生空间上平均的图像,以使数据流畅从而容许更多有意义的附加处理。本文使用的第一个9×9核心都含零,除了中心列都含1。如886和888所示,产生两个这样的核心(K1和K2),第二个核心(K2)与第一个相同,除了垂直于图像边界区的一致的1个像素横向偏移。当三个颜色通道图像的每个依次用K1和K2回旋时,所得到的L、a和b通道图像对(分别为L1、a1和b1,和L2、a2和b2)以逐像素的方式,从彼此中扣除(即L12=L2-L1,a12=a2-a1,b12=b2-b1),而形成一个相应的有限差图像组,其中包括各个图像的每个像素具有指示的L12、a12或b12值(890、892、894)。如图中894所示,在数据必须作为非负值(例如8位,0-255数据)存储的情况下,可能需要在数据中加一些常数以确保负值在存储过程中不丢失。仅当为了重建绝对的色差而找回该数据时,将那个常数减去。
在步骤896,合适的图像处理软件,例如Image Pro Plus用来产生基于三个有限差图像中的每一个的线轮廓,这同样是为了容许更有意义的对高度非均匀基底的额外分析。三个轮廓的每一个(每个颜色通道一个)通过沿着1×50像素条平均各自的L12、a12或b12值而产生,该像素条平行于边界区定向,并且沿着垂直于边界区的线,逐像素递增。该结果作为穿过边界区垂直距离(“x”)的函数,产生平均L12、a12和b12值。如果来源于单一边界区,这样的线轮廓通常类似单模式(或多模式,如果边界区内颜色混合而形成第三种颜色),通常为钟形的曲线,如图46的842、846和850所示。
步骤898建立了在前述步骤中产生的对于每个颜色通道的平均有限差值与相应的导数之间的等式,从中单独的颜色通道数据可以结合而形成综合的“欧几里德颜色导数”(E.C.D.),其作为在边界区垂直距离的函数追踪平均颜色变化率(结合来自所有三个颜色通道的数据)。并且如所显示的,可能需要L值的比例因子,并且步骤894中的任何常数应该在此刻扣除。
如902所示,对这一点的计算用于确定过渡宽度和特征宽度。特征宽度的主题将在过渡宽度的这个讨论结束后提起。因此,讨论的下一步是904,涉及过渡宽度的计算。在步骤904中,欧几里德颜色导数的最大值(“E.C.D.max”)和其相应的x值(“Xmax”)用合适的图像处理软件计算。E.C.D.max代表了E的最大平均变化率作为沿着垂直于边界区延伸的50像素列宽的距离(x)的函数,或相应地,在其最大值(=ΔEmax/ΔX)的斜率ΔE/ΔX。认识到这两个斜率的等式产生设定E.C.D.max=ΔEmax/ΔX,从中得到
ΔX=过渡宽度=[ΔEmax/E.C.D.max]
图47C的步骤906指导计算特征宽度。简单地讲,特征宽度仅仅是特征或图案元素上最小的直接距离,它从相对的边界区内点测量,在该点颜色在邻接各自边界区的图案区之间最快速地过渡(使用与过渡宽度计算相关的Xmax值)。用图表示,特征宽度的概念在图52和53中示意性和简要的形式描述,其中前者描述了一种外观的特征宽度的测定,其具有的过渡宽度不精确地相应于图49的过渡宽度,后者另一种外观的特征宽度的测定,其具有的过渡宽度不精确地相应于图50的过渡宽度。
该方法更详细地在图46A中描述,从窄的820A所示的图案元素开始,由边界区820B和820C在扫描区821A限定。所有随后的图像处理步骤与以上关于图46的讨论基本相同,除了本领域的技术人员应该认识到需要处理定义特征的两个边界区。所得到的图像是不同的,特别是产生图840A至850A,其中有限差图像显示限制窄图案元素的两个清楚的边界区的存在,相应导出的线轮廓,在大多数情况下,显示双峰的外观,其中假定每个模式代表单个边界区。如果,例如在边界区内形成第三种颜色,在该单个边界区可能多于一个模式。注意在图47A-47C指明的图像处理中,在单一边界区实施而测定过渡宽度的所有操作,也在成对边界区的每一个上实施,包括欧几里德颜色导数的计算(步骤900)。然而,在这步之后,计算Xmax的两个分离值(即Xmax1和Xmax2,见图47C的步骤906)。特征宽度只是Xmax1与Xmax2之间的标量差,作为绝对值。
织物的制备和提花
使用以上技术,在各种基底上进行测量,使用上述提花系统:优选的提花系统(“PREF”),另外备选的按需滴墨提花系统(“DOD”)的代表性例子,和再循环提花系统(“RECIRC”)的代表性例子。总共使用5种基底,代表了当前地面覆盖物基底的合理取样,其结构和工艺相关的特征如表1所示。
                               表1
  基底A   基底B   基底C   基底D   基底E
  产品类型   粘合割绒   簇绒毛圈   簇绒割绒   簇绒割绒   簇绒割绒
  成品表面重(g/m2) 796 640.3 1355 1305.9 1364.4
成品绒毛高度(cm) 0.442   (50%绒头)0.437cm(50%绒头)0.556cm 0.754 1.39 0.709
  簇绒隔距(每米簇绒针) 528.3 393.7 393.7 315 315
  每米针数   393.7   422   439   425.2   433
  化学纤维类型 尼龙6,6纱 尼龙6,6纱 尼龙6,6纱 尼龙6,6纱   羊毛、尼龙6,6纱
绒毛纱线类型 Solutia纤维型198X切断机混合,7.5英寸(19.1cm)纤维,19dpf   两种长丝构成的簇绒:1120旦尼尔Solutia型KET和1315旦尼尔Solutia型CBT Solutia纤维型198X切断机混合,7.5英寸(19.1cm)纤维,19dpf 杜邦(DuPont)100%长丝,抗静电剂,类型846,半无光,三叶形,17dpf Lyles 80/20羊毛尼龙
  每厘米绒毛纱线圈数 1.77 1.77 1.77 1.97 2.26
  每长度地毯纱线质量(克/米) 0.203 0.15 0.203 0.154 0.259
  制造的印花吸湿率范围(克/平方厘米) 0.16-0.24 0.16-0.24 0.29-0.46 0.46-0.56 0.24-0.46
应注意以上给出的绒毛高度信息一般不对应于衬底上的簇绒高度(外露的绒毛高度),而是对应于制造工艺中使用的纱线长度。外露的绒毛高度的测量,对于本研究的五种基底的每一个,从附着在衬底表面的点(即绒毛元素的极端)测量:对于基底A约0.35cm,对于基底B约0.37cm,对于基底C约0.73cm,对于基底D约1.07cm,对于基底E约0.71cm。如本文所用的,绒毛高度将指外露的绒毛高度,相应于从它们极端到顶端(即绒毛元素的尖端)所测量的绒毛元素的长度。本领域的技术人员也应该理解本文所选择使用的基底代表了表面重量、绒毛高度、纤维类型大致相似的广泛的地毯基底。相信本文得到的结果通常适用于具有相同的一般纤维类型的相似基底,尤其是表面重量和绒毛高度大致相似的基底,例如表面重量和绒毛高度在表1所列出的那些基底的约30%内。
应当指出,为了测量例如本文所公开的高清晰度提花系统的潜在性能,上面的基底A由于其作为印花表面的相对均匀性而被认为最可能产生好的试验结果。
对于上列每一个基底,每制造一个样品图案,呈现其它试验变量或参数。这些参数中得每一个在下面列出和注释。
提花机:对于大多数基底使用三个不同的机器:(1)本文详细描述的优选的按需滴墨、固定头机器(标识为“PREF”),(2)如上所述带有移动头的商业上容易获得的按需滴墨机(标识为“DOD”,不用于提花基底E),和(3)也是如上所述的商品化的、再循环固定头机器(识别为“RECIRC”)。实际上,这个选择的结果影响分配技术(阀门类型,供料器相对于基底的移动等)以及所用染料的粘度和组成(再循环系统使用低粘度染料,并有点不耐表面活性剂)。印花隔距(d.p.i.)也由机器选择决定:PREF和RECIRC机是20隔距,而DOD机是16隔距(隔距测量是名义上的,无对于基底布局和染料泳移的影响的调节)。这意味着假定没有基底上染料泳移的影响,对于DOD设备1像素宽的线在实体宽度上稍大于其它设备。
方向:由于各种提花设备引入的各种速率组分,能够影响(或好或坏)染料在基底上的精确瞄准,在图40中显示的试验条实际上在相对于印花头的第一个方向,以及试验基底转动90°的第二个方向上印花到基底上,其中一个方向平行于本文分析的基底的簇绒线。这样,随着染料被分配到基底上,由于相对于染料流运动的特征方向的任何优点和缺点能够被关注。因此,图将列出一个“Dir”参数,其中“hor”值指示包括试验条的矩形的长轴平行于输送机行进的方向,或者“ver”指示包括试验条的矩形的长轴垂直于输送机行进的方向。应用于过渡宽度或者特征宽度数据的术语“方向平均化”是指在两个正交的方向,图案特征或元素,或者相关的边界区收集数据,该数据在这两个方向上平均化(例如平行于或垂直于基底的边缘)。在适当的情况下,类似的正交测量和随后的平均化也可以应用于滴尺寸的测量。对于下面的讨论应当理解,当用于描述印花的图案元素的方向时,水平和垂直方向的标示具有特别的意义。水平方向(对于整个印花的条形图案)将表明该条(或线)在平行于基底穿过印刷机的传送方向印花。垂直方向(对于整个印花的条形图案)将表明该条(或线)以垂直于基底穿过印刷机的传送方向印花。
为了用数字表征各种提花系统关于方向的性能,可以使用术语各向同性指数(Isotropy Index)。该术语仅仅是将一个方向上的一个参数值(例如特征宽度或者过渡宽度)除以正交方向上的相同参数而得到的两个商中的较大值,将总是一个大于1的数。这个商可以由过渡宽度或者特征宽度计算。
颜色:在上面关于优势边界色的讨论中,曾指出优势边界色的存在意谓着该颜色暗得多,或者具有高得多浓度,其对于边界区的外观的影响比仅包括非优势色时所观察到的要大得多。实际上,颜色支配是一个相对的现象:一个颜色如果与第一种颜色配对可能明显是占优势的,如果不是这样而是与第二种颜色配对,可能明显不占优势。由于归纳这种优势颜色相互作用的困难,包括优势颜色的各种不同颜色组合用于测量。在这些组合中,第一个提出的颜色表示图案元素或特征的颜色,第二个提出的颜色表明在其中分离该特征的“背景”或环境区域的颜色。使用的优势颜色组合如下(在配对中第一个提出的颜色认为是占优势的):
红色-绿色
黑色-红色
黄色-米色
棕色-米色
绿色-米色
黑色-米色
红色-米色
虽然在棕色-米色对中,棕色被认为是优势颜色,但对于本文报道的试验和测量,它倾向于比其它颜色较难泳移,例如红色、黑色、黄色和绿色这些相对慢固定的染料。因此,发现这些后面的颜色由于它们较大的迁移率(它们倾向于穿过边界泳移),或由于它们通过抵抗其它颜色的稀释而倾向于支配界面,或者两种原因都有,更可能涉及到典型的优势颜色边界性质。反之,发现棕色-米色对提供了合理的相互作用的替代,该相互作用基本上涉及这样的占较弱优势的颜色,在商品化织物图案中形成大量边界颜色的相互作用(也许是大多数),尤其是在地毯、小地毯、垫子和其它地面覆盖物中。在这样的配对中,包含的两种染料易于快速固定并且较少溶于水,因此趋向于从它们指定的目标像素泳移较小的程度。当这样的染料泳移和混合时,没有染料在视觉上占优势,即它们的混合是两种染料在视觉上的中间态。
关于过渡宽度和特征宽度的研究,也试验了在相反情况使用的以上颜色组合(即在组合中被认为是非支配的颜色代表图案元素或者特征,而在组合中被认为是支配的颜色代表背景,例如绿-红,红-黑等)。这样做是为了说明涉及窄特征的情况,背景的影响能够是深刻的-优势颜色作为背景色能有效地“挤压”在非优势颜色中印染的窄特征,也许磨灭。
吸湿率:吸湿率仅是在基底上每单位面积应用的染料量的测量。因为增加的吸湿率与由于伴随的芯吸而降低的细节再现能力之间的已知的一般关系,需要对每个提花机测量这个变量的典型值,并使选择的值适用于所有的提花机。因此,为了本文所报道的研究,对于每种提花机(和由此的每种染料系统)和每个基底测定合理的操作吸湿率范围。然后,比较这些范围,并建立共同范围的基底特定的吸湿率(如表1所列),其能在特定基底上由任何提花系统使用。除非另外规定,在表1中规定的这些范围用于产生图55至122报道的数据。列举现有的织物计量喷射印花技术的性能,能够指出PREF提花系统有能力印染具有的表面重量基本低于表1所列的基底A的织物基底,而具有高清晰度并且没有染料溢流。这源自于,与RECIRC和DOD系统,或者任何其它已知的可比的专门为提花织物设计的计量喷射系统相比,可靠和准确地分配低染料滴体积(例如体积在0.08g/cm2至0.04g/cm2或更小的范围)的能力。
表面纤维类型:可论证地,用于提花的地面覆盖物的两个最普及的纤维是羊毛和尼龙6,6。前者对于颜色的奢华和鲜艳有无比的声誉,而后者,甚至比羊毛更流行,在其具有耐久和适于染色的能力方面具有优势。为了本文所做的测量,使用四种不同的基底(基底A至D),每个都含有尼龙6,6纤维,以及一个样品(基底E),其含有80%羊毛,20%尼龙6,6的混纺。选择基底A至D代表宽范围的商品化的地面覆盖物,该地面覆盖物具有主要包括尼龙6,6纤维的绒毛结构,而术语“尼龙6,6”将指这样的基底。基底E被仔细选择,具有能够提供合理的与各种尼龙6,6样品比较的基础的结构,而关于这种比较的结果将在下面讨论。基底E是要代表广泛的商品化的地面覆盖物,该地面覆盖物具有主要包括羊毛的绒毛结构,绒毛高度和表面重量大致与基底C的可比,而术语“羊毛”将指这样的基底。通常,羊毛纤维较大程度上倾向于抵抗本文使用的提花染料的吸收。这个特性,可能是由于在羊毛纤维中天然存在的羊毛脂(即使在严格和极为有效的脱羊毛脂步骤之后),能够导致应用的染料在表面上或接近表面处形成洼和这些染料横向流出或泳移的趋势,因此降低了图案的清晰度。这个情况在基底E上形成的图案中一致地观察,将在下面更详细地讨论。
边缘处理:作为每个试验的提花机的一个特征,它可能将染料应用到特征边缘的量降低到某种程度。这种能力是理想的,因为它能够阻止不受控制的超过特征边缘的芯吸或者扩散,并由此促进在边界区到相邻图案区(其边缘可能进行了相似的处理)的颜色形成陡峭的转变。虽然可利用的灵活性在机器中不同,在每种情况都尝试,在设备容许的程度,使染料到试验条的边缘的传送最优化,从而使边界区的宽度最小化,在边界区内颜色过渡的陡度最大化,并因此使得到的图案的清晰度最大化。因此,由于在全部情况下都实行了边界处理(到可达到的程度),关于这个参数在图上没有区别。
染料渗透:如上所定义,染料渗透(和相关的术语分数渗透(fractional penetration))指的是在图案构型中应用到基底表面的染料沿着纱线或织物纤维(“绒头元素”)的长度方向泳移的程度,该纱线或织物纤维包括绒头元素的近侧部分(即绒头元素附着到基底衬底的点)的一般方向的绒毛,以及以基本均匀的方式对这样的绒头元素染色的程度。特别地,当连同下面所报道的数据测量,将染料渗透视为测量图案应用的染料已经沿着单个绒头元素移动,并有效均匀地将这些绒头元素染色的距离,并且沿着绒头元素的长度没有条纹、带、条痕、色调的显著变化(例如由于降低的染料浓度或者色层分离效果)出现,或者其它不完全、非均匀染色的迹象。显示相对浅的染料渗透的基底,在接近原状的基底表面可能显示完全的染色,但是当刷或分开绒头表面时,显示不完全染色的绒头元素(关于图案应用的染料)。这在图54A和54B中用图表描述。在前者中,染料渗透的深度用虚线的平面标明。后者是更加均匀和更具代表性的PREF提花产品,其中染料渗透的水平不仅较大,而且更均匀,获得再次用虚线标明的染料渗透水平。为了本文的目的,表示为外露纤维或者纱线长度分数(即分数渗透)的商业上可接受的染料渗透,假定对于主要包括尼龙6,6的绒头结构是50%或更大,对于主要包括羊毛的绒头结构是40%或更大。
染料配方:染料配方在实施例中说明。
染料应用的顺序:在每种情况,染料以下列顺序使用:米色、棕色、黑色、红色、绿色、黄色。
以下讨论的数据是使用根据以下的实施例制备的样品产生的。
实施例1
样品制备和使用PREF印花技术的印花:
构成用于这个评估而印染的颜色的特定染料显示在下表中。给出在说明书中提到的颜色的名称作为旁注。
  颜色   组成的染料(染料,g/L)
  米色   Erionyl Yollow MR(0.026g/L)Isolan Bordeaux R(0.054g/L)Erionyl Black MR(0.019g/L)
  棕色   Erionyl Yollow MR(0.791g/L)Isolan Bordeaux R(0.077g/L)Erionyl Black MR(0.105g/L)
  黑色   Erionyl Yollow MR(0.902g/L)Isolan Bordeaux R(0.279g/L)Erionyl Black MR(3.906g/L)
  红色   Isolan Red SRL(3.786g/L)Nylosan Yollow N7GL(1.817g/L)
  绿色   Nylosan Yollow N7GL(1.185g/L)Lanaset Blue 5G(0.699g/L)
  黄色   Supranol Yollow(3.0g/L)
Erionyl Yellow MR、Erionyl Black MR和Nylosan Yollow N7GL都是从北卡罗莱纳州Highpoint的Ciba Specialty Chemicals Corp.得到的。Isolan Bordeaux R、Isolan Red SRL、Lanaset Blue 5G和Supranol Yellow从北卡罗莱纳州夏洛特市的DyStar LP可得到。
为了形成表中列出的每种工艺染料,将特定的染料加入储备溶液中,该储备溶液通过将下列组分加入去离子水中而制备:
1.1g/L表面活性剂SynFac 9214,由美利肯公司生产
2.2g/L消泡剂FT-16,由美利肯公司生产
3.0.5g/L杀菌剂,例如Kathon,由宾夕法尼亚州费城的罗门哈斯(Rohm and Haas)生产
4.1g/L硫酸钠盐(Na2SO4),由乔治亚州亚特兰大市的飞世尔科学(Fisher Scientific),或密苏里州圣路易斯的Sigma-Aldrich经销
5.足够的黄原胶增稠剂,Keltrol T,由特拉华州威尔明顿的斯比凯克公司(CP Kelco)生产,为所得到的浆料提供大约1200厘泊的粘度,这通过使用LVT Brookfield粘度计用纺锤3在30rpm测得。
得到基底A到基底E未提花的方块地毯(36”×36”)。用中等硬度的毛刷轻轻地刷这些方块地毯,以排列簇绒并除去松散纤维。然后将这些方块地毯放入在100摄氏度的饱和蒸汽温度下操作的常压蒸气机中。方块在该蒸气机中处理15秒的时间以促使纱线起绒,并得到更均匀的印花表面。然后用包括表面活性剂和聚阳离子剂的化学浸湿剂处理该方块地毯,该浸湿剂有降低染料在方块地毯表面上横向散布以及将着色剂保持在接近地毯表面的效果,以使表面纤维更均匀地染色,得到较少结霜出现的表面印花。在去离子水中制备的该化学浸湿剂的具体配方如下:
1.1.5g/L聚阳离子剂,例如Polycat M-30,从乔治亚州罗马的Peach State Labs,Inc.可得到
2.3.0g/L Syn-O-Wet 324,由美利肯公司生产。
化学试剂应用于表面的量大约是基底表面重量的20%。对于基底A和B,使用16mg/cm2的吸湿率。对于基底C、D和E,使用27mg/cm2的吸湿率。
然后,将该方块放置在印花机的印花平台,实施提花。条元素图案的印花图案信息用内部的美利肯软件包设计和编码,该软件包用于基于像素的图案设计,利用PREF系统的20隔距(即名义上的20dpi)提花能力。图案通过视觉评估来优化,以提供锐边清晰度,并使条元素图案的隔距性能最优化。该条图案被印染在两个正交方向以测试在机械方向和垂直机械方向的印花质量差异(即印花质量各向异性)。
在实施提花后,通过经过一个由Radio Frequency Corporation制造的RF炉,Model 70301,经过6.5分钟以预热染料,将高50mm的排列的方块的表面温度提升到200;这得到更饱和的颜色和更清晰的图案边缘。然后将该方块置入与上面相同的蒸气机中经历5分钟(对于基底E是8分钟)以完成染料到基底纱线的固定。随后,将该方块放置到洗涤平台,并用喷射水饱和以帮助脱除过量的染料(即没有固定到地毯纱线的染料)、储存溶液等。然后将该湿块穿过轧点而除去过多的水,并置入干燥机,滞留温度大约340,经历约10分钟。然后在基底C、D和E的表面上修剪以除去松散纤维并使顶面更均匀。
实施例2
样品制备和使用RECIRC印花技术的印花:
构成用于RECIRC评估的印染颜色的特定染料,与用于PREF评估所使用的相同。RECIRC系统要求较低粘度的储备溶液,为了形成该系统的每种印花颜色,将特定的染料加入稍微改性的储备溶液中,该改性的储备溶液形成储备溶液的剩余部分。该储备溶液的剩余部分通过将下列组分加到去离子水中而制备:
1.1g/L消泡剂FT-24,由Milliken & Company生产
2.0.5g/L杀菌剂,例如Kathon,由由宾夕法尼亚州费城的罗门哈斯生产
3.足够的黄原胶增稠剂,Kelzan S,由特拉华州威尔明顿的斯比凯克公司生产,为所得到的浆料提供大约600厘泊的粘度,这通过使用LVT Brookfield粘度计用纺锤3在30rpm测得。对于基底E,用于印花的黄原胶增稠剂是特拉华州威尔明顿的斯比凯克公司生产的Keltrol T。所有其它成分是相同的。
该浆料于染料充分混合而制得最终的工艺着色剂。
使用36”×36”方块地毯形式的基底A到基底E。用中等硬度的毛刷轻轻地刷这些方块地毯,以排列簇绒并除去松散纤维。然后用包括表面活性剂和聚阳离子剂的化学浸湿剂处理该方块地毯,该浸湿剂有降低染料在方块地毯表面上横向散布以及将着色剂保持在接近地毯表面的效果,以使表面纤维更均匀地染色,得到较少结霜出现的表面印花。在去离子水中制备的该化学浸湿剂的具体配方如下:
1.1.5g/L聚阳离子剂,例如Polycat M-30,从乔治亚州罗马的Peach State Labs,Inc.可得到
2.3.0g/L Syn-O-Wet 324,由美利肯公司生产。
化学试剂应用于表面的量大约是基底表面重量的20%。对于基底A和B,使用约16mg/cm2化学品的吸湿率。对于基底C、D和E,使用约27mg/cm2的吸湿率。
然后,将该方块放置在RECIRC机的印花平台,实施提花。条元素图案的印花图案信息用内部的美利肯软件包设计和编码,该软件包用于基于像素的图案设计,利用RECIRC系统的20隔距(即名义上的20dpi)提花能力。图案通过视觉评估来优化,以提供锐边清晰度,并使条元素图案的隔距性能最优化。该条图案被印染在两个正交方向以测试在机械方向和垂直机械方向的印花质量的各向异性。
然后将这些方块地毯放入在100摄氏度的饱和蒸汽温度下操作的常压蒸气机中,经历5分钟,以完成染料到基底纱线的固定,除了基底E是在蒸汽机中停留8分钟。随后,将该方块放置到洗涤平台并用喷射水饱和,以帮助脱除过量的染料(即没有固定到地毯纱线的染料)和剩余的印花浆料。然后将该湿块穿过轧点而除去过多的水,并置入干燥机,滞留温度大约340,经历约10分钟。然后在基底C、D和E的表面上修剪以除去松散纤维并使顶面更均匀。
实施例3
样品制备和使用DOD印花技术的印花:
构成用于评估DOD印花技术的印染颜色的特定染料与实施例1中的相同。为了形成每种印花颜色,特定的染料(如实施例1)加入不同于前两个实施例的储备溶液中。该储备溶液是通过将下列组分加入去离子水中而制备的:
1.1g/L柠檬酸,由乔治亚州亚特兰大市的飞世尔科学,或密苏里州圣路易斯的Sigma-Aldrich得到
2.1g/L消泡剂,NoFome,从宾夕法尼亚州匹兹堡的拜耳公司可得到
3.0.5g/L表面活性剂,Tanasperse CJ,从宾夕法尼亚州匹兹堡的拜耳公司可得到
4.足够的丙烯酸增稠剂,Tanaprint ST 160C,由宾夕法尼亚州匹兹堡的拜耳公司生产,为储备溶液提供约1200厘泊的粘度,这通过使用LVT Brookfield粘度计用纺锤3在30rpm测得。Tanaprint的浓度随着染料的量以下列方式变化:米色(7.8g/L)、棕色(8.1g/L)、黑色(11.7g/L)、红色(12.5g/L)、绿色(10g/L)和黄色(8.7g/L)。
该储备溶液和染料充分混合而制得最终的工艺着色剂。
使用18”×36”方块地毯形式的基底A到基底E。用中等硬度的毛刷轻轻地刷这些方块地毯,以排列簇绒并除去松散纤维。然后将这些方块地毯放入在100摄氏度的饱和蒸汽温度下操作的常压蒸气机中。方块在该蒸气机中处理15秒的时间以促使纱线起绒,并得到更均匀的印花表面。
然后,将该方块放置在印花机的印花平台,实施提花。条元素图案的印花图案信息用内部的美利肯软件包设计和编码,该软件包用于基于像素的图案设计。将该文件转换成DOD专门设计码。需要将用于PREF和RECIRC的20隔距设计转变成DOD系统使用的16隔距设计。该技术容许边缘的染料减少50%以尝试优化边缘清晰度。并且,颜色分配阀可以装备具有限定染料流(染料喷射)的两个或三个孔的孔板。用这些装配中的每一个印制代表性的条图案。将条图案印染在两个正交方向,以测试在机械方向和垂直机械方向的印花质量的各向异性。
然后将这些方块地毯放入在100摄氏度的饱和蒸汽温度下操作的常压蒸气机中,经历5分钟,以完成染料到基底纱线的固定。随后,将该方块放置到洗涤平台并用喷射水饱和,以帮助脱除过量的染料(即没有固定到地毯纱线的染料)和剩余的印花浆料。然后将该湿块穿过轧点而除去过多的水,并置入干燥机,滞留温度大约340,经历约10分钟。然后在基底C、D和E的表面上修剪以除去松散纤维并使顶面更均匀。
应当指出,用DOD和RECIRC机器得到的印花性能水平,被证实与市场上可得到的样品所显示的印花性能水平大体一致。
数据讨论
图55至255显示了使用上述计量喷射提花设备,在上述基底上测量图案特性的过程中收集的不同表示的数据。由于数据的数量,已经尝试组织这些数据的表达,在某种程度上有利于评价数据的意义和相互关系,以及由这些数据支持的结论的形成和讨论。
来自五种基底中的每一个的数据以各组四个柱形图呈现,显示:
1.吸湿率平均数据
2.方向和吸湿率平均数据
3.最小数据
4.方向平均最小数据
通过检查这些柱形图能够得出结论,在非常低的吸湿率,这三个不同的提花技术(PREF、RECIRC和DOD)可以提供略微相等的过渡宽度(“TW”)和特征宽度(“FW”)性能,因为染料到绒头的渗透非常低。随着吸湿率增加而提供必需的绒毛渗透(表达为分数或百分数并称作“分数渗透”),三个印花技术的质量出现明显的不同。在较高的吸湿率,PREF技术提供略微缓慢降低(即改善)的过渡宽度(“TW”)和特征宽度(“FW”)性能。相反,在高的吸湿率,RECIRC和DOD提花系统的印花性能变得相对更差。为了证实这一点,图55-133包括了来自多种平均化的吸湿率印花试验的TW和FW数据,而提供图上数据,并因此被称为“平均吸湿率的”过渡宽度和特征宽度。适用于每种基底的吸湿率值数据平均化的范围,在表1中表示作为制造的吸湿率范围,并代表沿着绒头元素长度的至少50%(对于基底E,使用至少40%的标准,是考虑到其对使用本文说明的染料染色内在的抵抗性)提供可靠的染料渗透(如本文定义的)所需要的吸湿率,如通常所要求的,防止未染色的纤维或纱线显示达到商业上不可接受的程度。两个正交方向测量的吸湿率平均化的过渡宽度和特征宽度在图中显示,这是顾及印花质量是否依赖于印花方向的表征。通过这样比较数据,不同颜色(染料)对在印花质量的差异变得明显。
不同的前述图是方向和吸湿率平均的数据图。这些图是由两个正交方向取得吸湿率平均的数据,并在两个正交方向找到每个颜色的平均值而产生的。对于RECIRC和DOD印花技术,对于印花趋于有一致“好”和“坏”(相对的感觉)的方向。相反,PREF印花技术的印花质量倾向于各向同性(到基底容许的程度),这样在任何两个正交印花方向的印花质量趋于同等得“好”。方向平均是有用的,因为它显示印花图案是否看起来清晰的总体感觉,并且不管印花基底表面的图案元素的方向,都能够支持微小细节。
在一个分离的图中,显示了表1所示的吸湿率范围内测量的最小过渡宽度和特征宽度。最小值趋于在产生可接受的分数渗透的吸湿率范围内,用相对低的吸湿率印花的基底上测量。这些数据也在两个正交方向上呈现。这些图代表了在表1的吸湿率范围内得到的最好(即最小)过渡宽度和特征宽度值。由于上述指明的理由,这些值也以方向平均的形式显示。
在实施例中,表明循序地增加宽度的条或者线元素用各种颜色结合印染,以证实这三个印花技术在印花图案内对小尺寸细节和大尺寸图案元素着色的内在差异。在柱形图数据以及其它后面的数据的表达中,使用术语“1元素特征”和“5元素特征”。1元素特征规定为1个印花像素宽度的特征,即图案要求特定颜色到特征的分配具有与提花设备的标称隔距相等的最小尺寸。推广开来,5元素特征规定为5个印花像素的最小尺寸。单个像素的实体尺寸依赖于使用的印花技术的标称隔距。在PREF系统中,染料供料器以每英寸20个供料器的密度间隔排列,相应于0.05英寸的标称隔距。对于其它技术的供料器,供料器间隔对于RECIRC系统为0.05英寸(标称20隔距),对于DOD系统是0.0625英寸(标称16隔距)。对1元素特征的过渡宽度和特征宽度的测量,是对印花系统性能的直接测量,该性能是对最小尺寸为1像素的细微细节元素着色的性能。
2元素特征以相似的方式定义,除了期望的图案特征规定为具有等于两个像素的最小尺寸(例如对于PREF和RECIRC系统是0.1英寸,对于DOD系统是0.125英寸)。不管优势颜色的影响、不配合的绒头结构、或可能作为掩饰或消除所期望特征的其它因素,2元素特征是要模拟需要相对细微细节的情况,但是测量是可靠的而使细节可见。
当试图对1或2元素特征着色,整个特征可能受染料从边界区的泳移影响,由此影响那个图案元素的过渡宽度和特征宽度。当图案元素足够大,以致在限定特征的相对边缘的两个边界区内,染料不能彼此相互作用,对于边界区测量的过渡宽度开始为几乎无差异的,该图案元素尺寸基本上是“半无限的”。因此,为了本文的目的,5元素过渡宽度的测量直接测量每个印花技术对半无限边界着色的能力,这样假定5元素过渡宽度以合理的准确度应用于3或更大印花像素元素宽度的所有图案元素。当这个尺寸的图案区被着色时,与各种印花技术相关的特征宽度之间看起来几乎无视觉差异。然而,PREF系统平均对于所有测量的基底提供充分优异的过渡宽度的测量。
在实施例中,详细说明了六种有代表性的颜色用于印染表征三种印花技术的条图案。使用七种特定的颜色对:红色/米色、黑色/米色、绿色/米色、棕色/米色、黄色/米色、红色/黑色和红色/绿色。下面是使用红色/米色的一个例子,进行所有上述颜色对所做的操作。红色/米色颜色对的条图案首先以1和5像素宽特征印染红色在米色背景上,然后,用相同大小的特征将米色印染在红色背景上。因为5元素特征代表了半无限图案区(即相当于“背景”区),得到的米色特征在红色背景上的5元素过渡宽度,被认为基本等于红色特征在米色背景的5元素过渡宽度(两者仅仅模拟两个相邻的大尺寸区域)。因此,只有七个颜色组合显示在5元素过渡宽度图上。
还是用红色和米色,从1元素(和2元素)过渡宽度和特征宽度图,将认识到红色1或2元素特征在米色背景上得到的结果,非常不同于米色1或2元素特征在红色背景上所得到的结果。因此,对于1和2元素过渡宽度和特征宽度,显示所有14个颜色对的结果(七个颜色组合,两个颜色中的每一个轮流分别是特征或背景)。这是值得注意的,因为当使用优势染料时,优势染料的1元素特征在非优势背景中可以是视觉可辨别的,但是非优势染料的1元素特征在优势染料背景中可能有如此充分增加的过渡宽度(并且因此有与其邻接处充分减少的相对对比度),由于优势染料穿过边界的染料泳移,该特征会十分微弱,或者甚至完全消除。在图中使用的惯例将代表特征的颜色对的颜色列为第一个,代表背景的颜色为第二个。
应当指出,对细微的清晰细节着色的能力基本上是各向异性的(即基本不随方向变化),其依赖于印花基底。同样地,认识到基底A是密实的、均匀的印花基础,具有低和相对稳定的绒头表面,不使三个印花系统的固有提花特性失真到显著的程度,并且一般来说是最适于证实特定印花系统性能的基底。
对于基底A的吸湿率平均的5元素过渡宽度图,图55证实了对于RECIRC和DOD印花系统的固有各向异性,或者过渡宽度的方向依赖性。RECIRC印花系统表现出对于所有显示的颜色对的一致的各向异性。注意RECIRC系统对于印染在指定的水平(hor)方向的特征,一致地着色较窄的过渡宽度。对于在指定的水平方向用RECIRC印花系统印染的1元素直线,在阵列中的单一喷射器印染整条线,并且滴的印迹在与线相同的方向延长(由于在启动期间染料流的相对运动和其它因素)。通过比较,在垂直(ver)方向印染在基底A上的特征,其过渡宽度一向较大。对于用RECIRC印花系统在指定垂直方向印染的直线,需要一列相邻的喷射器印染该直线,并且滴的印迹延长穿过直线的边界。这个结果与本领域技术人员对使用RECIRC型印花系统所预期的结果一致。
对于DOD印花系统在基底A上的吸湿率平均的5元素过渡宽度数据(图55),也表现出对于所有显示的颜色组一致的各向异性。DOD系统对于印染在垂直(ver)方向的特征,一致地着色较窄的过渡宽度。对于用DOD印花系统在指定的垂直方向印染的直线,横动颜色计量头通过印刷头在基底上的单扫描印染该直线。通过比较,对于在水平(hor)方向印染在基底A上的特征,1元素过渡宽度一向较大。对于在指定的水平方向用DOD印花系统印染的直线,横动颜色计量头指引向前并试图印染其光栅扫描中(头的多光栅扫描产生线)相同的点,从而印染该直线。随着头光栅穿过图案,染料流启动的时机需要非常好地校准,以在这个印花方向得到好的边缘。这个结果与本领域技术人员对使用DOD印花系统所预期的结果一致。
与前面的讨论形成对比,PREF印花系统提供相对不依赖方向的结果。几乎无例外地,显示的所有颜色组所测量的过渡宽度值,在水平和垂直方向几乎是相同的。
应当指出,这种各向异性也能在最小5元素过渡宽度的图中看到,如图55-74所示。这些各向异性趋势倾向于适用于所有的五种基底,尽管不统一。注意到带有毛圈的基底倾向于具有平行于基底印花表面的芯吸通道,相信其沿着基底表面汲取染料并促进方向性差异。并且,多层基底布局可以适于引导染料远离它们在基底上预期的像素位置。对于有长绒头元素的基底,在印花时,绒头部分的上面部分相对容易离来它们的最初位置,并因此歪曲通过各种印花技术给予基底的固有印花性能。因此,意料中地,基底特定的效果可能掩饰每种印花系统中固有的方向性印花性能。如上所述,基底A通常看来是这些各种印花特性的最好展现,因为它几乎不提供上述掩蔽结构。
几乎毫无例外地,从吸湿率平均和最小5元素过渡宽度图可以看出,对于任何特定的颜色组合,与DOD和RECIRC系统相比,PREF印花系统能够在大的图案区之间以较小的过渡宽度(以及由此的更细边缘)对边界着色。有实例用DOD或者RECIRC系统可以印染一个方向,以使5元素过渡宽度与PREF的结果可比,但是通常竞争技术在正交方向比PREF的正交方向要差。当观察方向平均图时,这个结果变得非常清楚。这些方向平均的(吸湿率平均和最小值)5元素过渡宽度图,包含在图55-74,证实对于在边界的每种颜色组合,PREF数据几乎普遍地优于RECIRC和DOD印花系统。
虽然对于不同的颜色组合代表5元素过渡宽度的数值在一个范围内变化,PREF 5元素过渡宽度倾向于更加一致地群集。而且,PREF提花系统是能够辨别的,因为对于任何特定的基底,它能够对一些颜色组合产生最小的5元素过渡宽度。事实上,最低的5元素过渡宽度倾向于是棕色/米色颜色对。这是显著的,因为棕色和米色都是相对低浓度的染料,不容易泳移出它们指定的像素位置。在该颜色对中,这些颜色的相互作用,由本领域的技术人员看作密切代表通常在提花织物中发现的大多数颜色相互作用。因此,用这个颜色对将低的5元素过渡宽度着色的能力,对于通常用PREF提花系统印花的基底是效果显著的。进一步指出,这些数据中代表的大多数颜色是倾向于从它们像素区渗出的颜色-例如红色、黑色、绿色和黄色,都倾向于从它们指定的像素区相当容易地泳移出来,并因此被认为难以印染(至少如果期望细微细节的话)。因此,合起来看,相信使用相对容易和相对难的颜色组合的结果,产生将这些系统的性能有效分类的数据。
为了试图量化PREF对较窄的5元素过渡宽度着色的性能,图75-79显示了对于每种基底得到的最小5元素过渡宽度数据(吸湿率平均的或者最小的,在正交方向或者方向平均的,并对于所有的颜色),对相应的基底的绒毛高度(从尖端到外露底部测量)绘图。
本领域技术人员预计过渡宽度应该随着绒毛高度增加存在着几个原因。较长的绒头元素要求更多的染料来使提花具有可接受深度的染料渗透。当较大量的染料散布到地毯表面时,存在着较大可能性,形成基本大于为它指定的像素区域的液珠或洼。因此,在邻近的像素之间,可能有相当多的染料交叠。而且,在表面上较大量的染料,使得更可能发生沿着基底表面在横向方向中存在一些染料芯吸。此外,较长的绒头元素更可能“下垂”并从其“待染色的(as-dyed)”位置移出,由此一般来说使表面印迹失真并增加了过渡宽度。
观察图55-78,每5个基底中最好的(即最小的)5元素过渡宽度明显由PREF提花系统得到。在每种情况,能够在图上画一条线,将DOD和RECIRC技术的5元素过渡宽度的最低值与相应的PREF值分开。首先看如图77所显的从基底A至D(即尼龙6,6绒头)产生的数据,最小的5元素过渡宽度(在任何方向且对于任何列出的颜色组合)作为绒毛高度的函数,分隔线的方程如下:
(尼龙6,6):TWmin,任何方向(cm)=0.15·[测量的绒毛高度(cm)]+0.0g
图78中方向平均的5元素过渡宽度的相应线如下:
(尼龙6,6):TW方向平均的最小值(cm)=0.18·[测量的绒毛高度(cm)]+0.083
从基底E(即80%羊毛/20%尼龙6,6绒头)产生的数据看,染料渗透的程度典型地低于在基底A至D(100%尼龙6,6绒头)观察到的相应染料渗透。如前面的解释,由于在由羊毛组成的绒头中观察到的对渗透的抵抗性,染料有保持在或接近绒头表面的趋势,因此,与具有相似结构的、包括主要由或者唯一由尼龙6,6组成的绒头元素的基底相比,提高了染料横向泳移或者渗出的机会,并引起与那个图案特征相关的过渡宽度增加。
如本领域的技术人员所预期的,这个效果随着绒毛高度的减少而降低(不管绒毛的组成,绒毛的渗透变得同等地容易)。因此,随着绒毛高度接近可以忽略的值,基底E所观察到的过渡宽度性质,与基底A至D所观察到的相当,在任何方向的最小5元素过渡宽度作为基底E绒毛高度的函数,分隔线的相应方程如下给出
(羊毛):TWmin,任何方向(cm)=0.181·[测量的绒毛高度(cm)]+0.08
图78中方向平均的5元素过渡宽度的相应线如下
(羊毛):TW方向平均的最小值(cm)=0.193·[测量的绒毛高度(cm)]+0.083
关于不同的印花系统在图案中对细微细节着色的能力,1元素过渡宽度数据容许有很多差别。通常,之前对于5元素过渡宽度图所作出的陈述和说明适用于具有下面说明的1元素过渡宽度数据。常常是对于某些互换的颜色组合(例如红色特征/米色背景和米色特征/红色背景)的1元素过渡宽度数据显著不同。更特别地,对于非优势颜色是特征的情况,非优势的特征常常被已经从像素位置迁移到指定处的优势背景染料所淹没。因此,用优势颜色背景的非优势颜色特征的1元素过渡宽度,可能相当地大于优势颜色特征在非优势颜色背景的1元素过渡宽度。
为了看到在图上的这个基本差异,注意到优势颜色特征是具有下列指定的:红色/米色,黑色/米色,绿色/米色,棕色/米色,黄色/米色,黑色/红色和红色/绿色,使用与之前相同的惯例首先提出特征颜色。因此,非优势颜色特征是:米色/红色,米色/黑色,米色/绿色,米色/棕色,米色/黄色、红色/黑色和绿色/红色。因为非优势颜色特征可能完全被形成背景的优势颜色所淹没,因此本文使用的计算过渡宽度和特征宽度的算法有时候不能鉴别由图案指定的特征。在这种情况下,该特征的数据没有在柱形图中显示。换句话说,当柱形图上没有数据出现时(例如,见图91、93、115和117的柱形图的“米色/黑色”组缺DOD数据),这是由于非优势颜色特征被邻近的(背景)优势染料颜色的染料泳移所完全淹没,使该特征在所得到的印花图案中非常难以看到。
考察图79-82,基底A的吸湿率平均的1元素过渡宽度和最小的1元素过渡宽度,再次存在印花方向各向异性的一般趋势。如所预计的,该各向异性与对于5元素过渡宽度数据的描述相同。为了相同的理由,如上所述,由于基底的影响,这种各向异性能够被隐蔽。对于5元素过渡宽度,与RECIRC和DOD印花系统所得到的相比,特定颜色组合的PREF 1元素过渡宽度在基底B至E几乎普遍较小(产生更清晰的细微细节的边缘),特别是对于优势颜色组合(见图79-102)。因为,对于1元素特征,整个特征能够由从相邻像素的染料泳移或者侵入所支配(并且基本消除),1元素过渡宽度可能稍微大于5元素过渡宽度。在图79-102中,对于每个颜色组合,在方向平均的、吸湿率平均的和最小1元素过渡宽度图中,能够清楚地看出PREF印花系统的优越性,此外,PREF印花系统倾向于对于所有的颜色组合,有1元素过渡宽度值最紧密的分组(tightest grouping)。该紧密的分组是效果显著的,因为对于所有的颜色,能够印染通常较清晰的边缘,为多色印花图案产生总体优异的印花清晰度。
以与5元素过渡宽度图相同的方式,PREF系统通过对于任何颜色组合具有最低的1元素过渡宽度将自己区分出来。因此,用PREF印花系统能够对更清晰限定的1元素特征着色。为了从数字上量化这个事实,图99-102显示了对于每种基底得到的最小1元素过渡宽度(这显示了对于任何颜色组合在每个方向的吸湿率平均的和最小1元素过渡宽度的最小值,以及对于所有颜色组合得到的最小方向平均的吸湿率和最小1元素过渡宽度),对于相应的基底所测量的绒毛高度做图。这些图能够画一条线,将DOD和RECIRC技术能够印染的最小1元素过渡宽度,与PREF能够产生的相应的1元素过渡宽度分开。首先考虑基底A至D的数据,图101中在任何方向的最小1元素过渡宽度作为绒毛高度的函数,分隔线的方程如下给出:
(尼龙6,6):TW1元素,min,任何方向(cm)=0.202·[测量的绒毛高度(cm)]+0.062
图102中方向平均的最小1元素过渡宽度的相应线如下
(尼龙6,6):TW1元素,方向平均的最小值(cm)=0.188·[测量的绒毛高度(cm)]+0.091
从基底E(即80%羊毛/20%尼龙6,6绒头)产生的数据看,染料渗透的程度典型地低于在基底A至D(100%尼龙6,6绒头)观察到的相应染料渗透。由于在由羊毛组成的绒头中观察到的对渗透的抵抗性,染料有保持在或接近绒头表面的趋势,因此,与具有相似结构的、包括主要由或者唯一由尼龙6,6组成的绒头元素的基底相比,提高了染料横向泳移或者渗出的机会,并引起与那个图案特征相关的过渡宽度增加(不考虑特征宽度)。因此,对于羊毛相应的方程式(分别见图101和102)是:
(羊毛):TW1元素,min,任何方向(cm)=0.238·[测量的绒毛高度(cm)]+0.062
图102中方向平均的最小1元素过渡宽度的相应线如下
(羊毛):TW1元素,方向平均的最小值(cm)=0.223·[测量的绒毛高度(cm)]+0.091
定义在印花图案中产生细微细节的能力的另一个方面是特征宽度,或其相当的有效隔距。最小特征宽度(或者相当地,最大有效印花隔距)是测量基底上特定颜色能够实际和可靠地分配的最小面积。它是各种因素(基底结构、染料性质、印染方向等)的函数,但是假定基本由提花设备的标称隔距限制(仅仅测量特定颜色能够理论上分配到基底的最小面积,给出提花设备的实体布局)。应当记得PREF和RECIRC提花系统的标称隔距是20隔距(20滴或者素/英寸),而DOD系统标称是16隔距印花系统(16滴或像素/英寸)。
该1像素印花元素的最小宽度(即有效隔距)如较早描述的1元素特征宽度的测量方法测量。在讨论1元素特征宽度图的数据之前,需要一些说明。通常是这种情况,图案元素宽度能通过染料从趋于遮蔽那个图案元素存在的相邻像素侵入而减小。图显示出,在基底上着色的一些最细微的图案细节是非优势颜色特征。这种使用被相邻像素的染料(它们自己不对细微细节着色,因为它们容易从它们的像素区泳移出来)所淹没的颜色产生细微细节的能力,不是印刷机或者提花系统性能的可靠指示。因此,下面的讨论仅涉及在非优势(或者至少较少占优势的)背景上的优势染料特征。通过能够更有效地控制倾向于从它们各自的像素区泳移出来的染料,通常印刷机更有能力对所有颜色的细微细节着色。
基底A的吸湿率平均的1元素特征宽度数据,图103,显示了很多这种基底的过渡宽度数据的讨论中提到的相同特征。
例如,作为RECIRC和DOD提花设备的基础设计的结果,由于提花设备的固有设计,在对小特征着色中容易存在可辨别的方向效应或各向异性。对于优势颜色特征,PREF印花系统倾向于印染具有很少(如果有的话)方向依赖性的特征元素,而RECIRC和DOD提花系统都表现出对所有显示的优势颜色特征的更加一致的方向依赖性趋势。特别地,RECIRC系统一致地对印染在水平(hor)方向的特征提供较窄的特征宽度,而DOD系统一致地对于印染在垂直(ver)方向的特征提供较窄的特征宽度,这是由于在过渡宽度数据的各向异性的讨论中提到的相同原因。这样的结果与使用这些各个提花系统的本领域技术人员所预期的结果相一致。如过渡宽度数据所提到的,这个特征宽度印花的各向异性由于基底效应而改性到较大或较小的程度。
在大多数情况下,如图103-122所显示,PREF系统印花的1元素吸湿率平均的优势颜色特征宽度,小于任何特定颜色组合在RECIRC或者DOD中的任何正交方向所得到的。在一些例子中,DOD和RECIRC数据的好的方向与PREF数据有可比性,但是对于在所有基底上的大多数优势颜色,PREF印花工艺产生较窄的1元素优势颜色特征宽度。这个产生较窄的1元素特征的总能力能够在方向平均的(吸湿率平均的,以及最小的)1元素特征宽度图中看出,那里几乎普遍地,PREF提花系统产生比相应的方向平均的DOD或者RECIRC特征窄的方向平均的优势颜色特征。此外,1元素优势颜色特征宽度的数值,根据提供的优势颜色而变化。然而,如过渡宽度数据所指出的,通过PREF提花系统产生的1元素特征宽度数据(1)看来更紧密地群集,产生更普通的对任何颜色的细微细节着色的能力,和(2)对于某些颜色,反映产生比RECIRC或者DOD印花所产生的更小的优势颜色细节。
图123显示由PREF提花系统印花的基底A至D中,作为吸湿率的函数的颜色平均的(和方向平均的)1元素特征宽度数据。这些数据的吸湿率范围,大于表1中所规定的四种尼龙6,6基底中的每一个所制造的吸湿率范围。因此,存在比各个基底典型规定的吸湿率更高和更低的吸湿率数据。此外,1元素特征宽度数据,是以相似的吸湿率印染在相同基底上的所有优势颜色的颜色平均的数据。每种颜色的原始数据落在所有颜色所见到的数据范围的中心,因此可以把这些数据看作对于1元素特征宽度的平均期望值。下面讨论从图123中进行的一些重要观察。
因为该图包括了对于每种尼龙6,6基底的颜色和方向平均的1元素特征宽度数据,并且数据看起来落到连续曲线上,可以合理地推断特征宽度大体上是对尼龙6,6基底染色以得到适当的分数渗透所需的吸湿率的函数。这意味着当为得到颜色在基底上的高渗透而需要相当大的吸湿率时,例如,有长簇绒的地毯制品,其特征宽度将大于用较低的吸湿率能够达到充分渗透的制品。
图123显示了对吸湿率做图,颜色和方向平均的1元素特征宽度数据的幂律方程的最小均方回归拟合。该拟合的幂律指数近似为1/3。这是重要的,因为它确证了在表征PREF印花系统中非常有用的模型。如果假定在散布到基底表面之后,染料能够成滴并在表面上形成一个之后完整吸收的球(即完全在具有与那个球相同的直径的圆形“印迹”内,不向外扩展),那么在每个像素区内用这样的球提花时,人们预计特征宽度将等于相应的圆形印迹的直径。这样的模型是合理的,因为在PREF提花系统中使用的高粘度染料,结合应用到基底表面的化学物,将趋于减缓液滴进入基底的芯吸,并容许它在吸收入基底之前在表面形成液珠。使用这样的模型,特征宽度将通过球的直径描述,其体积由应用于基底的吸湿率和染料密度决定,对于PREF提花系统染料密度大约是1g/cm3。假设20隔距的提花系统,400滴将被分配到一平方英寸的基底上,在那个平方英寸的吸湿率同等地分成400滴。得到的将1元素特征宽度与吸湿率相关联的方程式如下,假定球的几何体积是(4/3)πr3,其中r是球的半径(=球直径/2):
FW1元素(cm)=2·((3/248·π)·吸湿率(g/cm2))1/3
拟合PREF颜色和方向平均的1元素特征宽度数据的1/3幂律指数,表明特征宽度的球形滴模型,可能是表征该PREF提花系统在基底上,尤其是尼龙6,6上,印染细微特征的性能的好方法。
图124显示了对于PREF、RECIRC和DOD印花系统,在尼龙6,6基底上颜色和方向平均的1元素特征宽度数据的比较。此外,该图显示考虑到相应的吸湿率的球形滴模型,对于1元素特征宽度的未定标的预测。这明确认识到,(1)PREF 1元素颜色和方向平均的特征宽度几乎与该球形滴模型的预测相等,表明PREF系统更紧密近似于那个模型,和(2)RECIRC和DOD数据都更偏离这个简单模型的预测。对于基底E,发现对于PREF 1元素特征宽度的相同的一般趋势,但是达到略微较小的程度(见图125)。这个效果的减小相信是由于染料保留在基底E表面的趋势增加,因而提高了染料横向泳移而不是垂直泳移的机会。
也相信染料的细节影响特征宽度。图126显示了五个优势颜色特征的方向平均的1元素特征宽度数据,在基底A-D对米色背景印花。对数据的幂曲线拟合支持下面的结论。总的来说,1元素特征宽度趋于单调地随着印花染料中单个染料的浓度而增加。因此,对于在实施例中用PREF印花的特定染料,特征宽度的降低顺序是:红色、黑色、黄色、绿色和棕色。
图127显示了对于尼龙6,6基底(基底A至D)的三种印花技术,方向平均的1元素特征宽度对所有优势颜色特征的吸湿率做图。此外,1元素特征宽度的球形滴模型的预测,在图上作为实线标绘。当标绘出所有颜色数据时,注意到一些PREF方向平均的1元素特征宽度小于球形滴模型的预测-相信是由于相邻的染料滴或者小尺寸基底结构特征导致的某些沟道效应的作用。令人关注地指出,除了一个例外(在相对高吸湿率值发现的),落在实线下(即值小于通过球形滴模型预测的值)的方向平均的1元素特征宽度数据都是PREF数据。实际上,在代表球形滴模型预测的线以下的大量方向平均的1元素特征宽度数据,是棕色特征的。这是有意义的,因为,如前所述,本领域技术人员相信棕色/米色对代表了实际上用于印花织物基底的大多数颜色对。
检查落在该线下的单个非-PREF数据点,并发现其具有相对大的1元素过渡宽度。如果作出附加的要求,曲线以下的数据也需要有小于,比方说,4.5mm的1元素过渡宽度,那么该球形滴模型提供了代表可靠地辨别PREF系统提花制品的有效隔距或特征宽度的截断(cut off)。稍后将显示以下这个需求,即印染的细微元素特征具有小的特征宽度和小的过渡宽度,以决定性的方式,来证明PREF提花系统相比于PECIRC和DOD印花系统的优势。
对于任意基底,人们能够计算将PREF印花与其竞争方法区分开的特征宽度,这通过获知在那个特定基底上沿着延伸到衬背上面的簇绒长度获得适当的渗透(例如,对于尼龙6,6基底至少为50%,对于羊毛基底至少为40%)所需的吸湿率,并使用1元素特征宽度作为吸湿率函数的球形滴模型方程,将那个吸湿率转化成能够唯一地表征PREF提花制品的特征宽度。为了使这个方法方便,对商业上可得的地面覆盖物印花的多个基底,图129显示印花绒头的表面重量和达到适当的渗透所需的染料吸湿率,如上所限定。从该表和球形滴模型,人们能够计算对于任何特定的尼龙6,6基底和相应的吸湿率,将PREF提花系统与RECIRC和DOD区分开的1元素特征宽度。本领域技术人员能够理解,因为方向平均的1元素特征宽度随着吸湿率而增加,它也能够预计随着绒毛高度而增加。这是因为增加的绒毛高度要求额外的吸湿率,以使绒头能够通过适当的渗透而染色。
图130显示了最大隔距,其通过从前面讨论的五个基底中的每一个的柱形图,计算得到的方向平均的最小1元素特征宽度的倒数而确定。如前所述,球形滴模型在生产小的1元素特征宽度和由此相对高效的印花隔距中,提供了区别PREF提花系统与RECIRC和DOD提花系统性能的分割线。出现在球形滴预测线上面的单个DOD数据点,同样是由于具有相对大的过渡宽度的特征,这样将不被认为是高清晰度图案的组分。图131显示了对于每种基底和提花技术的最大吸湿率平均的印花隔距,其从先前讨论的柱形图得来的方向和吸湿率平均的1元素特征宽度的最小值的倒数计算。在特定基底的平均吸湿率,PREF提花系统明显地能够生产比DOD或RECIRC提花系统更高的隔距(或者更小的1元素特征宽度)。因此,这里球形滴模型的使用提供了清楚的分割线,分隔PREF印染小的1元素特征宽度的性能,与DOD和RECIRC提花系统印染相应特征的性能。
该柱形图清楚地表明对于一些优势颜色,PREF系统能够印染比DOD或者RECIRC提花系统可能达到得,更小的1元素特征宽度。为了表征该性能,图132-133显示,对于每种提花系统在特定基底上的任何优势颜色,测量到的最小1元素特征宽度的最小值(在任一方向或方向平均的),对那种基底的平均吸湿率做图。明显地,PREF提花系统得到的方向平均的最小1元素特征宽度小于DOD或RECIRC系统的。广泛地看这些图,可以画一条线将DOD和RECIRC技术能够印染的最小1元素特征宽度,与PREF印花系统能够产生的相应的1元素特征宽度分开。图132为在任何方向的最小1元素特征宽度作为平均基底吸湿率的函数,该图所示的该分隔线的方程式如下
(尼龙6,6)FW1元素,min,任何方向(cm)=0.16·[平均基底吸湿率(g/cm2)]+0.12
图133中方向平均的最小1元素过渡宽度的相应线如下
(尼龙6,6)FW1元素,min,方向平均的(cm)=0.081·[平均基底吸湿率(g/cm2)]+
          0.188
从基底E(即80%羊毛/20%尼龙6,6绒头)产生的数据看,染料渗透的程度典型地低于在基底A至D(100%尼龙6,6绒头)观察到的相应染料渗透。如前面的解释,由于在由羊毛组成的绒头中观察到的对渗透的抵抗性,染料有保持在或接近绒头表面的趋势,因此,与具有相似结构的、包括主要由或者唯一由尼龙6,6组成的绒头元素的基底相比,提高了染料横向泳移或者渗出的机会,并引起与那个图案特征相关的特征宽度增加(见图132)。
(羊毛)FW1元素,min,任何方向(cm)=0.089·[平均基底吸湿率(g/cm2)]+0.12
图133中方向平均的最小1元素过渡宽度的相应线如下
(羊毛)FW1元素,min,方向平均的(cm)=0.045·[平均基底吸湿率(g/cm2)]+0.188
在数据讨论中到现在为止,通过只使用单个参数(即过渡宽度或特征宽度)将PREF提花系统的提花性能与DOD和RECIRC系统做了比较。然而,PREF提花系统真正的优势,是在多提花参数或品质参数(figures of merit)提供优异性能的能力。对于提花的织物基底理想的品质不仅是在大邻近图案区出现锐边(即前面描述的过渡宽度),而且是在提花区中存在细微细节,且与它们邻接的图案区有充分的颜色对比度(即最小特征宽度)。为了得到精细印染的细节连同细微元素与其相邻图案区的充分对比度,小的特征宽度和小的过渡宽度都是需要的。在一定程度上,一些生产商可能选择不在它们的产品中印染1元素特征(例如,为确保期望的特征出现在图案中,不管阻塞的染料喷射器等),在下面的图表和讨论中将引入2元素特征性能。这将证明当与RECIRC和DOD系统比较,PREF提花系统对于1元素和2元素图案特征都能够提供最小的过渡宽度和特征宽度。本领域技术人员将理解1元素和2元素细节通常能够相互区别,因为2元素细节具有的宽度通常大于印花机标称的印花隔距的两倍宽度。
对于在基底A至E上的每种印花技术,比较特征宽度和过渡宽度的二维图是图134-153。这些图包括所有的吸湿率数据-这些数据还没有被挑选以代表印染每种基底的典型吸湿率范围。因为它包括所有的吸湿率数据,该图趋于代表每种印花技术通过降低吸湿率而得到较细微、较清晰的印花细节的性能。该图将对于每种选择的基底依次显示,首先对于所有的优势颜色特征,以1元素过渡宽度对相应的1元素特征宽度做图(水平和垂直印花方向显示的原始数据),其次以方向平均的1元素过渡宽度数据对方向平均的1元素特征宽度数据做图。注意这些数据不包括吸湿率平均值或者测定的最小值。它是原始数据,因此趋于显示大多数PREF、RECIRC和DOD数据如何在这个参数空间群集。下面将显示2元素特征数据的相同次序和顺序的图。
对图134-153的检查显示了普遍趋势。PREF系统1元素和2元素特征倾向于向1元素和2元素特征图的低过渡宽度和低特征宽度部分群集。DOD和RECIRC系统特征宽度和过渡宽度对倾向于更广泛地分散,证实了这些印花技术得到好的特征宽度和过渡宽度的固有困难。PREF提花系统的特征宽度和过渡宽度数据对在所有优势颜色的低值群集,表明对于广泛的颜色类别,PREF系统更能够印染细微细节,且与相邻的图案元素有充分的对比度。比较1元素和2元素方向平均的过渡宽度和相应的方向平均的特征宽度数据,证明PREF系统在小过渡宽度和特征宽度值群集,这是其它印花系统不能达到的。
在大多数情况,代表最小过渡宽度和特征宽度的数据点是棕色/米色颜色对。如前所述,本领域技术人员认识到这个颜色对是用于图案印花织物基底的大多数颜色的好的代用品。方向平均的数据清楚地证明PREF印花技术与DOD和RECIRC系统之间积极的区别,因为PREF数据更加方向一致,表明在任何方向高清晰度的提花性能。相反,DOD和RECIRC系统都有好和坏方向,所以方向的平均值落在特征宽度对过渡宽度图的不同区域,有效地识别出PREF印花系统。
PREF提花系统一个额外的和值得注意的特征是,它能够在制品上产生清晰限定的、高清晰度的图案细节,同时也提供染料到基底绒头的充分渗透。如上所讨论,当使用减少的染料量时(因而使基底表面上横向的染料泳移最小化),实现具有高清晰度的图案特征一般较容易。然而,通过这样做,染料渗透通常有不利的影响。为此,进行渗透测量以确定能够同时保持小的特征宽度和过渡宽度,而在1元素和2元素图案细节中得到的渗透程度。以非常特定的渗透的限定进行渗透的测量。渗透在基底绒头的侧面测量,以使卡尺能够用于专门测量从基底绒头顶端到以任意方式染色部分不再均匀的点的距离。作为例子,随着染料渗透绒头,在一些点颜色可能减弱,这是由于染料不可控制地芯吸入不同的毛细管,或者色调可能相当大地改变。因此,通过这样测量渗透,染料渗透的最远程度可能不相关;更确切地,关键的测量涉及染料已经沿着纱线移动并以视觉上均匀的方式对其染色的那个点。做了大量的测量,为所述特征的染料渗透产生了合适的平均值,因而适应了由于基底的不完美性或者不规则性而不可避免的变化。
此外,测量了每种基底的绒毛高度(即形成绒毛的外露簇绒或纱线的长度,从簇绒的近端测量)。应当指出,表1中与基底A至E相关的生产规格给出了绒头元素的全长,包括用粘合剂、其它化学物密封,或在支撑地毯面的织物衬背层下面观察不到的绒头元素部分-比用于计算分数渗透(即均匀的染料渗透的长度,与全测的绒毛高度或者在衬背上延伸的长度的比值)的绒毛高度大得多的长度。
图154-167显示了对于每种基底和每种提花系统,每个颜色的渗透对吸湿率绘出的图。通常预期渗透将单调地随着吸湿率增加。由于染料芯吸入基底的复杂性和本文用于测定渗透的限定,尽管发现通常单调性地增加,但通常没有发现随着吸湿率的增加而线性增加的渗透。
用PREF系统提花的样品证实了最清楚的趋势。通常,有较浓浓度染料的颜色,例如黑色、红色和黄色,倾向于在较高的吸湿率具有高渗透,有时甚至在非常低的吸湿率具有高渗透。具有较低染料浓度的颜色,比如棕色和绿色,倾向于在较低的吸湿率具有减少的渗透。这个结果并不意外:当染料找到固定点时,染料分子从向下芯吸的流体移出,以使在接近绒头簇的底部染料不足以有效地对该绒头簇的最低部分染色。在较长的绒毛高度基底,例如基底C至E,非常明显地看出这个趋势。对于这些基底,在一定程度高浓度的染料之间的差异,由于长的绒毛而增强。对于用RECIRC和DOD提花系统提花的基底,渗透数据观察到相似的结果。
如上面已经讨论的,PREF提花系统与竞争的提花系统相比,能够同时提供小的特征宽度和小的过渡宽度。下面的讨论将考察当也考虑分数渗透时,PREF系统与RECIRC和DOD印花系统比较的结果如何。作为该讨论的一部分,将使用图168-247,即三维图的二维再现。该图形显示了特征宽度数据连同相应的过渡宽度数据和相应的渗透数据(或替代的吸湿率数据)。对所有优势颜色特征取样的所有吸湿率包括在这些图中-它们不限于预选的吸湿率范围。这些图以如下方式排列:第一类图显示水平和垂直方向特征的原始过渡宽度和特征宽度数据连同分数渗透(和替代地吸湿率),首先对于1元素优势颜色特征,然后对于2元素优势颜色特征。第二类图显示水平和垂直方向特征的方向平均的过渡宽度和方向平均的特征宽度数据连同分数渗透(和替代地吸湿率),首先对于1元素优势颜色特征,然后对于2元素优势颜色特征。与本讨论有关,在这些图中简写形式“平均”将用于指明数据已经沿着两个正交方向平均。第三类图是相应的三维图的放大,用来分离相应于低特征宽度、低过渡宽度和高分数渗透(或相应的吸湿率值的范围)的图区域。这些分离图显示PREF提花系统能够对于很多颜色制造结合过渡宽度、特征宽度和分数渗透的产品,这在以前的基底染色制品中是无法得到的,并且特别是通过使用计量的喷射提花系统无法得到的。
总的来说,由PREF提花系统印染的优势颜色图案元素具有在低值群集的过渡宽度和特征宽度,并且具有已经被选择用来限定认为是商业上可接受质量的分数渗透值(即对于尼龙6,6基底至少为0.5,对于羊毛基底至少为0.4)。对于所有基底这在一定程度上是正确的,表明在广泛多样的地面覆盖物基底上,与DOD和RECIRC印花系统相比,PREF系统能够印染较细微、较清晰的细节,同时获得好的分数渗透。这一陈述对于1元素和2元素特征都是正确的。分离图显示的三维图中的区域使得这个事实更加清楚,该区域代表只有PREF提花系统能够达到的理想的印花特征(例如具有锐边的细微细节和好的渗透)。
如以上讨论的分离图中用图显示的,存在过渡宽度和特征宽度参数(连同分数渗透或者吸湿率)确定值,其定义只有用PREF提花系统才能达到的性能参数空间。这些空间的边界随着基底和图案特征的本质而变化(即特定的图案特征是1元素还是2元素优势颜色特征)。
对于基底A,联合只有用PREF提花系统才能得到的1元素图案区(见图169),方向-特定(两个正交方向)的特征宽度、过渡宽度和分数渗透(和相当的吸湿率范围)值是:
(基底A)FW1元素<0.2cm,TW1元素<0.2cm,
       分数渗透≥0.5
或者同等地,图173,
(基底A)FW1元素<0.2cm,TW1元素<0.2cm,
       吸湿率范围:0.06-0.25g/cm2
对于基底A,相应于以上边界的方向平均的值(见图171)是:
(基底A)FW1元素,方向平均的<0.22cm,TW1元素,方向平均的<0.2cm,
       分数渗透≥0.5
或者同等地,图175,
(基底A)FW1元素,方向平均的<0.22cm,TW1元素,方向平均的<0.2cm,
        吸湿率范围:0.06-0.25g/cm2
对于基底A,联合只有用PREF提花系统才能得到的2元素图案区(见图209)。方向-特定(两个正交方向)的特征宽度、过渡宽度和分数渗透(和相当的吸湿率范围)值是:
(基底A)FW2元素<0.34cm,TW2元素<0.175cm,
       分数渗透≥0.5
或者同等地,图213,
(基底A)FW2元素<0.34cm,TW2元素<0.175cm,
       吸湿率范围:0.06-0.25g/cm2
对于基底A,相应于以上边界的方向平均的值(见图211)是:
(基底A)FW2元素,方向平均的<0.34,TW2元素,方向平均的<0.18,
       分数渗透≥0.5
或者同等地,图215,
(基底A)FW2元素,方向平均的<0.34,TW2元素,方向平均的<0.18,
       吸湿率范围:0.06-0.25g/cm2
对于基底B,联合只有用PREF提花系统才能得到的1元素图案区(见图177),方向-特定(两个正交方向)的特征宽度、过渡宽度和分数渗透(和相当的吸湿率范围)值是:
(基底B)FW1元素<0.25cm,TW1元素<0.21cm,
       分数渗透≥0.5
或者同等地,图181,
(基底B)FW1元素<0.25cm,TW1元素<0.21cm,
       吸湿率范围:0.06-0.25g/cm2
对于基底B,相应于以上边界的方向平均的值(见图179)是:
(基底B)FW1元素,方向平均的<0.27cm,TW1元素,方向平均的<0.215cm,
       分数渗透≥0.5
或者同等地,图183,
(基底B)FW1元素,方向平均的<0.27cm,TW1元素,方向平均的<0.215cm,
       吸湿率范围:0.06-0.25g/cm2
对于基底B,联合只有用PREF提花系统才能得到的2元素图案区(见图217),方向-特定(两个正交方向)的特征宽度、过渡宽度和分数渗透(和相当的吸湿率范围)值是:
(基底B)FW2元素<0.35cm,TW2元素<0.21cm,
       分数渗透≥0.5
或者同等地,图221,
(基底B)FW2元素<0.35cm,TW2元素<0.2cm,
       吸湿率范围:0.06-0.25g/cm2
对于基底B,相应于以上边界的方向平均的值(见图219)是:
(基底B)FW2元素,方向平均的<0.36,TW2元素,方向平均的<0.24,
       分数渗透≥0.5
或者同等地,图223,
(基底B)FW2元素,方向平均的<0.36,TW2元素,方向平均的<0.24,
       吸湿率范围:0.06-0.25g/cm2
对于基底C,联合只有用PREF提花系统才能得到的1元素图案区(见图185),方向-特定(两个正交方向)的特征宽度、过渡宽度和分数渗透(和相当的吸湿率范围)值是:
(基底C)FW1元素<0.25cm,TW1元素<0.245cm,
       分数渗透≥0.5
或者同等地,图189,
(基底C)FW1元素<0.25cm,TW1元素<0.245cm,
       吸湿率范围:0.16-0.55g/cm2
对于基底C,相应于以上边界的方向平均的值(见图187)是:
(基底C)FW1元素,方向平均的<0.275cm,TW1元素,方向平均的<0.25cm,
       分数渗透≥0.5
或者同等地,图191,
(基底C)FW1元素,方向平均的<0.275cm,TW1元素,方向平均的<0.265cm,
       吸湿率范围:0.16-0.55g/cm2
对于基底C,联合只有用PREF提花系统才能得到的2元素图案区(见图225),方向-特定(两个正交方向)的特征宽度、过渡宽度和分数渗透(和相当的吸湿率范围)值是:
(基底C)FW2元素<0.4cm,TW2元素<0.235cm,
       分数渗透≥0.5
或者同等地,图229,
(基底C)FW2元素<0.35cm,TW2元素<0.235cm,
       吸湿率范围:0.16-0.55g/cm2
对于基底C,相应于以上边界的方向平均的值(见图227)是:
(基底C)FW2元素,方向平均的<0.4,TW2元素,方向平均的<0.26,
       分数渗透≥0.5
或者同等地,图231,
(基底C)FW2元素,方向平均的<0.4,TW2元素,方向平均的<0.26,
       吸湿率范围:0.16-0.55g/cm2
对于基底D,联合只有用PREF提花系统才能得到的1元素图案区(见图193),方向-特定(两个正交方向)的特征宽度、过渡宽度和分数渗透(和相当的吸湿率范围)值是:
(基底D)FW1元素<0.3cm,TW1元素<0.27cm,
       分数渗透≥0.5
或者同等地,图197,
(基底D)FW1元素<0.3cm,TW1元素<0.27cm,
       吸湿率范围:0.16-0.55g/cm2
对于基底D,相应于以上边界的方向平均的值(见图195)是:
(基底D)FW1元素,方向平均的<0.3cm,TW1元素,方向平均的<0.35cm,
       分数渗透≥0.5
或者同等地,图199,
(基底D)FW1元素,方向平均的<0.3cm,TW1元素,方向平均的<0.35cm,
       吸湿率范围:0.16-0.55g/cm2
对于基底D,联合只有用PREF提花系统才能得到的2元素图案区(见图233),方向-特定(两个正交方向)的特征宽度、过渡宽度和分数渗透(和相当的吸湿率范围)值是:
(基底D)FW2元素<0.46cm,TW2元素<0.26cm,
       分数渗透≥0.5
或者同等地,图237,
(基底D)FW2元素<0.4cm,TW2元素<0.26cm,
       吸湿率范围:0.16-0.55g/cm2
对于基底D,相应于以上边界的方向平均的值(见图235)是:
(基底D)FW2元素,方向平均的<0.48,TW2元素,方向平均的<0.33,
       分数渗透≥0.5
或者同等地,图239,
(基底D)FW2元素,方向平均的<0.45,TW2元素,方向平均的<0.305,
       吸湿率范围:0.16-0.55g/cm2
对于基底E,联合只有用PREF提花系统才能得到的1元素图案区(见图201),方向-特定(两个正交方向)的特征宽度、过渡宽度和分数渗透(和相当的吸湿率范围)值是:
(基底E)FW1元素<0.3cm,TW1元素<0.31cm,
       分数渗透≥0.4
或者同等地,如图205所示,
(基底E)FW1元素<0.3cm,TW1元素<0.31cm,
       吸湿率范围:0.2-0.4g/cm2
对于基底E,相应于以上边界的方向平均的值(见图203)是:
(基底E)FW1元素,方向平均的<0.4cm,TW1元素,方向平均的<0.33cm,
       分数渗透≥0.4
或者同等地,如图207所示,
(基底E)FW1元素,方向平均的<0.3cm,TW1元素,方向平均的<0.4cm,
       吸湿率范围:0.2-0.6g/cm2
对于基底E,联合只有用PREF提花系统才能得到的2元素图案区(见图241),方向-特定(两个正交方向)的特征宽度、过渡宽度和分数渗透(和相当的吸湿率范围)值是:
(基底E)FW2元素<0.4cm,TW2元素<0.3cm,
       分数渗透≥0.4
或者同等地,如图245所示,
(基底E)FW2元素<0.4cm,TW2元素<0.3cm,
       吸湿率范围:0.04-0.4g/cm2
对于基底E,相应于以上边界的方向平均的值(见图243)是:
(基底E)FW2元素,方向平均的<0.4,TW2元素,方向平均的<0.29,
       分数渗透≥0.4
或者同等地,如图247所示,
(基底E)FW2元素,方向平均的<0.4,TW2元素,方向平均的<0.29,
       吸湿率范围:0.04-0.4g/cm2
对于每个特定的基底和图案区,在相应的分离图中确定了过渡宽度和特征宽度的边界值,在其中优势颜色特征的印花变量(过渡宽度、特征宽度、和分数渗透或者吸湿率范围)仅能由PREF印花系统得到。因此这些边界用作区分PREF印花的产品与由其它系统印花的产品,因为以前的产品不会包含细微、清晰的优势颜色图案区,且具有相同的1元素或2元素过渡宽度和特征宽度参数。为了理解只有通过PREF得到的过渡宽度和特征宽度值的范围如何随基底变化,制得仅以PREF的立方边界值(分离图极限边界)对绒毛高度所作的图。图248-255显示了1和2元素过渡宽度和特征宽度的这些边界值对绒毛高度作的图,该数据不管是方向的还是方向平均的数据。从该数据明显地看出,过渡宽度和特征宽度都是随基底的绒毛高度而单调地增加。
在用数字量化这个关系的尝试中,连接每个点或落在每一点下面的线单独用于每个数据图。它们容许我们在每种情况下量化PREF立方边界如何随绒毛高度而变化。对于非方向平均的尼龙6,6的1元素数据,图248-249,结果是
FW边界,1元素(cm)=0.14·(绒毛高度(cm))+0.15
TW边界,1元素(cm)=0.11·(绒毛高度(cm))+0.16
分数渗透≥0.5
将以上方程结合起来用来限定三维空间的上边界,在该空间只有PREF提花系统能够在任何方向以1元素过渡宽度、1元素特征宽度、和一个伴随的大于0.5的分数渗透(尼龙6,6基底)印染图案区。以不同的方式陈述,对于在主要是尼龙6,6的基底上以任何方向印染的(尤其是使用计量喷射提花技术印染的)优势颜色1元素图案区,其中该基底具有特定的绒毛高度和至少0.5的分数渗透,仅仅对于由PREF印花系统印染的这种基底,根据本文教导的方法测量的1元素特征宽度和1元素过渡宽度的值将小于以上方程指定的值。
非方向平均的2元素数据(图250-251)产生下列方程:
FW边界,2元素(cm)=0.169·(绒毛高度(cm))+0.28
TW边界,2元素(cm)=0.129·(绒毛高度(cm))+0.129
分数渗透≥0.5
对于方向平均的相同的1元素数据,图252和253,结果是:
FW边界,1元素,方向平均的(cm)=0.121·(绒毛高度(cm))+0.177
TW边界,1元素,方向平均的(cm)=0.183·(绒毛高度(cm))+0.135
分数渗透≥0.5
对于在主要是尼龙6,6的基底上以任何方向印染的(尤其是使用计量喷射提花技术印染的)优势颜色2元素图案区,其中该基底具有特定的绒毛高度和至少0.5的分数渗透,仅仅对于由PREF印花系统印染的这种基底,根据本文教导的方法测量的2元素特征宽度和2元素过渡宽度的值将小于以上方程指定的值。
此外,对于特定的优势颜色,在特定绒毛高度的基底上,在任何两个正交方向印染的(尤其是计量喷射印染的)1元素图案区能够被识别,考虑到特定基底的绒毛高度,结合大于0.5的分数渗透,仅仅对于由PREF印花系统印染的基底,根据本文教导的方法测量的所述两个正交的1元素图案区1元素特征宽度和1元素过渡宽度值,以及随后方向平均的值,将小于从上面方程指定的值。
对于方向平均的2元素数据,图254-255,结果是
FW边界,2元素,方向平均的(cm)=0.167·(绒毛高度(cm))+0.28
TW边界,2元素,方向平均的(cm)=0.189·(绒毛高度(cm))+0.113
分数渗透≥0.5
此外,对于特定的优势颜色,在特定绒毛高度的尼龙6,6基底上,在任何两个正交方向印染的(尤其是计量喷射印染的)2元素图案区能够被识别,考虑到特定基底的绒毛高度,结合大于0.5的分数渗透,仅仅对于由PREF印花系统印染的基底,根据本文教导的方法测量的所述两个正交的2元素图案区2元素特征宽度和2元素过渡宽度值,以及随后方向平均的值,将小于从上面方程指定的值。
转到主要有羊毛绒头纱线组成的基底E(图中用虚线表示),也能进行类似的分析,导致产生绒毛高度的函数的方程,该方程定义对于羊毛基底,将PREF提花的制品与RECIRC提花的制品有效分开的线。为了该分析,假定随着绒毛高度变小,在羊毛绒头纱线与尼龙6,6绒头纱线之间的提花性能的差异变小,直到绒毛高度接近微不足道的,过渡宽度和特征宽度的值将基本重合。
对于非方向平均的1元素数据,图248-249,结果是
FW边界,1元素(cm)=0.21·(绒毛高度(cm))+0.15
TW边界,1元素(cm)=0.21·(绒毛高度(cm))+0.16
分数渗透≥0.4
将以上方程结合起来用来限定三维空间的上边界,在该空间只有PREF提花系统能够在任何方向以1元素过渡宽度、1元素特征宽度、和一个伴随的至少0.4的分数渗透,印染羊毛基底上的图案区。以不同的方式陈述,对于在具有特定绒毛高度的羊毛基底上以任何方向印染的(尤其是计量喷射印染的)优势颜色1元素图案区,考虑到特定羊毛基底的绒毛高度,结合至少0.5的分数渗透,仅仅对于由PREF印花系统印染的基底,根据本文教导的方法测量的所述1元素图案区1元素特征宽度和1元素过渡宽度值,将小于从上面方程指定的值。
对于非方向平均的2元素数据,图250-251,结果是:
FW边界,2元素(cm)=0.169·(绒毛高度(cm))+0.28
TW边界,2元素(cm)=0.255·(绒毛高度(cm))+0.129
分数渗透≥0.4
对于在具有特定绒毛高度的羊毛基底上以任何方向印染的(尤其是计量喷射印染的)特定优势颜色2元素图案区,考虑到特定羊毛基底的绒毛高度,结合至少0.4的分数渗透,仅仅对于由PREF印花系统印染的基底,根据本文教导的方法测量的所述2元素图案区2元素特征宽度和2元素过渡宽度值,将小于上面方程指定的值。
对于方向平均的1元素数据,图252和253,结果是:
FW边界,1元素,方向平均的(cm)=0.315·(绒毛高度(cm))+0.177
TW边界,1元素,方向平均的(cm)=0.275·(绒毛高度(cm))+0.135
分数渗透≥0.4
对于特定的优势颜色,在特定绒毛高度的羊毛基底上,在任何两个正交方向印染的(尤其是计量喷射印染的)1元素图案区能够被识别,考虑到特定羊毛基底的绒毛高度,结合至少0.4的分数渗透,仅仅对于由PREF印花系统印染的羊毛基底,根据本文教导的方法测量的所述两个正交的1元素图案区1元素特征宽度和1元素过渡宽度值,以及随后方向平均的值,将小于上面方程指定的值。
对于方向平均的2元素数据,图254-255,结果是
FW边界,2元素,方向平均的(cm)=0.169·(绒毛高度(cm))+0.28
TW边界,2元素,方向平均的(cm)=0.25·(绒毛高度(cm))+0.113
分数渗透≥0.4
对于特定的优势颜色,在特定绒毛高度的羊毛基底上,在任何两个正交方向印染的(尤其是计量喷射印染的)2元素图案区能够被识别,考虑到特定基底的绒毛高度,结合至少0.4的分数渗透,仅仅对于由PREF印花系统印染的羊毛基底,根据本文教导的方法测量的所述两个正交的2元素图案区2元素特征宽度和2元素过渡宽度值,以及随后方向平均的值,将小于上面方程指定的值。
在所有上述PREF系统性能的讨论中,应当理解表征PREF生产的制品的数据中挑选的数值,限定了性能空间,在其中这些产品有独特性能。落在该性能空间内的数值,限定了被认为包括在本发明公开的范围内的产品。因此,如数据所示,单独或共同落在上述特定值的90%、80%、70%或60%内的过渡宽度或特征宽度(或它们的组合)的值,在同时保持或分数渗透提高时,也应认为是在那个性能空间内。关于单个值,并且不管前述,该数据支持约0.5mm的过渡宽度实际最小值,并且,独立地,最小特征宽度(对于优势颜色特征)等于所使用的提花设备的隔距。

Claims (10)

1.一种基本平坦的提花织物基底,其已经固定了大量的单个绒头纱线,其中每个所述单个纱线从所述基底向上延伸,并具有每个所述纱线附着到所述基底的近端部分和位置相对于所述近端部分的远端部分,并包括含有所述绒头纱线远端部分的绒头表面,所述绒头表面进一步包括邻接的图案区,其中在电子限定的提花数据控制下,将不同的染料选择性地和分别地分配到所述绒头纱线的所述远端部分,并容许染料从所述绒头纱线的所述远端部分泳移到所述绒头纱线各自的近端部分,所述邻接的图案区有共同的边界区,所述边界区具有小于1.3mm的最小半无限过渡宽度,其中包括所述边界区的大多数所述绒头纱线显示出染料渗透,对于包括所述大多数的每个绒头纱线,所述染料渗透从所述纱线的所述远端部分延伸到沿着所述纱线至少40%距离的位置,将所述纱线各自的远端和近端部分分开,并且其中对于包括所述大多数的至少一个这样的绒头纱线,染料渗透延伸到小于100%所述距离的位置。
2.一种基本平坦的提花织物基底,其已经固定了大量的单个绒头纱线,其中每个所述单个纱线从所述基底向上延伸,并具有每个所述纱线附着到所述基底的近端部分和位置相对于所述近端部分的远端部分,并包括含有所述绒头纱线远端部分的绒头表面,所述绒头表面进一步包括邻接的图案区,其中在电子限定的提花数据控制下,将不同的染料选择性地和分别地分配到所述绒头纱线的所述远端部分,并容许染料从所述绒头纱线的所述远端部分泳移到所述绒头纱线各自的近端部分,所述邻接的图案区有共同的边界区,所述边界区对于特定的吸湿率水平,具有不大于相应于该吸湿率水平的染料球形滴直径的最小特征宽度,边界区在任何方向具有小于1.5mm的最小特征宽度,所述特征宽度显示出小于1.1的各向同性指数,其中包括所述边界区的大多数所述绒头纱线显示出染料渗透,对于包括所述大多数的每个绒头纱线,所述染料渗透从所述纱线的所述远端部分延伸到沿着所述纱线至少40%距离的位置,将所述纱线各自的远端和近端部分分开,并且其中对于包括所述大多数的至少一个这样的绒头纱线,染料渗透延伸到小于100%所述距离的位置,所述距离至少为2mm。
3.一种用于制造如权利要求1或2所述的提花织物基底的阀门插件,其用于适合将处理流体可控地拔染到所述基底的基底处理装置,所述阀门插件包括以下组合:
在打开与关闭位置之间多个选择性地可操作阀门,其中至少一部分阀门与相应的专用流体排放喷射器流体窜流,其中当所述阀门处于打开位置时,所述流体排放喷射器将所述处理流体可控地拔染到所述基底上,所述处理流体由着色剂组合物或化学组合物组成,并且其中不同的处理流体被用于邻接的图案区;
适于安装电源线而为阀门插件供应电力的电源输入口;
指令数据输入口,其适于安装阀门控制电缆而将阀门操作指令从控制装置传送到阀门插件;和
集成电路板,其适于将来自数据输入口的指令数据转化为动力阀门操作命令,以使该阀门可以选择性地打开和关闭,从而当所述阀门打开时,将所述着色剂组合物或所述化学组合物拔染到所述基底上,其中所述阀门插件是适合于在基底处理装置中独立操作的组装式元件,并且是可从基底处理装置中拆除的一件结构,
而且,其中将所述着色剂组合物或所述化学组合物拔染到所述基底上发生在形成基底绒头表面的大多数绒头纱线的远端部分处,使得所述着色剂组合物或所述化学组合物从所述绒头纱线的所述远端部分泳移到所述绒头纱线各自的近端部分,使得邻接的图案区有共同的边界区,所述边界区具有小于1.3mm的最小半无限过渡宽度,其中包括所述边界区的大多数所述绒头纱线各自显示出着色剂或化学品渗透,所述着色剂或化学品渗透从所述纱线的所述远端部分延伸到沿着所述纱线至少40%距离的位置,将所述纱线各自的远端和近端部分分开,并且其中对于包括所述大多数的至少一个这样的绒头纱线,着色剂或化学品渗透延伸到小于100%所述距离的位置。
4.如权利要求3所述的阀门插件,其中所述阀门插件进一步包括适于保持和传输电子识别码的识别板。
5.如权利要求4所述的阀门插件,其中所述识别板适于通过电源输入口传输识别码。
6.一种用于制造如权利要求1或2所述的提花织物基底的基底处理装置,其适于将至少一种着色剂或化学组合物可控地拔染到所述的基底,所述基底处理装置包括:
多个可独立操作的组装式阀门插件,其适于将处理流体拔染到所述基底上,所述处理流体是所述着色剂或化学组合物,,其中至少一部分所述组装式阀门插件包括;
在打开与关闭位置之间多个选择性地可操作阀门,其中至少一部分阀门与相应的专用流体排放喷射器流体窜流,其中当所述阀门处于打开位置时,所述流体排放喷射器将所述处理流体可控地拔染到所述基底上,并且其中不同的处理流体被用于邻接的图案区;
适于安装电源线而为阀门插件供应电力的电源输入口;
指令数据输入口,其适于安装阀门控制电缆而将阀门操作指令从控制装置传送到阀门插件;和
集成电路板,其适于将来自数据输入口的指令数据转化为动力阀门操作命令,以使该阀门可以选择性地打开和关闭,从而当所述阀门打开时,将所述着色剂组合物或所述化学组合物拔染到所述基底上,其中所述至少一部分所述的组装式阀门插件适合于在基底处理装置中独立操作,并且是可从基底处理装置中独立拆除的单一结构,
而且,其中将所述着色剂组合物或所述化学组合物拔染到所述基底上发生在形成基底绒头表面的大多数绒头纱线的远端部分处,使得所述着色剂组合物或所述化学组合物从所述绒头纱线的所述远端部分泳移到所述绒头纱线各自的近端部分,使得邻接的图案区有共同的边界区,所述边界区具有小于1.3mm的最小半无限过渡宽度,其中包括所述边界区的大多数所述绒头纱线各自显示出染料渗透,所述染料渗透从所述纱线的所述远端部分延伸到沿着所述纱线至少40%距离的位置,将所述纱线各自的远端和近端部分分开,并且其中对于包括所述大多数的至少一个这样的绒头纱线,染色渗透延伸到小于100%所述距离的位置。
7.如权利要求6所述的基底处理装置,其中所述至少一部分所述的组装式阀门插件进一步包括适于保持和传输电子识别码的识别板。
8.如权利要求7所述的基底处理装置,其中所述识别板适于通过电源输入口传输识别码。
9.如权利要求6所述的基底处理装置,其中所述基底处理装置进一步包括调节装置,用于调节流体排放喷射器与基底之间的距离。
10.一种用于制造如权利要求1或2所述的提花织物基底的加工机组,其用于将至少一种着色剂或者化学组合物施用于所述的织物基底,所述加工机组包括:
适于将所述至少一种着色剂或化学组合物可控地拔染到基底上的基底处理装置;
适于在基底进入基底处理装置之前将其加热的预处理站;和
至少一个安置在预处理站下游的处理站,其中所述基底处理装置包括:
多个可独立操作的组装式阀门插件,其适于将处理流体拔染到所述基底上,所述处理流体是所述着色剂或所述化学组合物,其中至少一部分所述组装式阀门插件包括;
在打开与关闭位置之间多个选择性地可操作阀门,其中至少一部分阀门与相应的专用流体排放喷射器流体窜流,其中当所述阀门处于打开位置时,所述流体排放喷射器将所述处理流体可控地拔染到所述基底上,并且其中不同的处理流体被用于邻接的图案区;
适于安装电源线而为阀门插件供应电力的电源输入口;
指令数据输入口,其适于安装阀门控制电缆而将阀门操作指令从控制装置传送到阀门插件;和
集成电路板,其适于将来自数据输入口的指令数据转化为动力阀门操作命令,以使该阀门可以选择性地打开和关闭,从而当所述阀门打开时,将所述着色剂组合物或所述化学组合物拔染到所述基底上,其中所述至少一部分所述的组装式阀门插件适合于在基底处理装置中独立操作,并且是可从基底处理装置中独立拆除的单一结构,
而且,其中将所述着色剂组合物或所述化学组合物拔染到所述基底上发生在形成基底绒头表面的大多数绒头纱线的远端部分处,使得所述着色剂组合物或所述化学组合物从所述绒头纱线的所述远端部分泳移到所述绒头纱线各自的近端部分,使得邻接的图案区有共同的边界区,所述边界区具有小于1.3mm的最小半无限过渡宽度,其中包括所述边界区的大多数所述绒头纱线各自显示出染料渗透,所述染料渗透从所述纱线的所述远端部分延伸到沿着所述纱线至少40%距离的位置,将所述纱线各自的远端和近端部分分开,并且其中对于包括所述大多数的至少一个这样的绒头纱线,染色渗透延伸到小于100%所述距离的位置。
CNB2004800063819A 2003-01-14 2004-01-13 提花的纺织产品 Expired - Fee Related CN100337814C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US44005603P 2003-01-14 2003-01-14
US60/440,056 2003-01-14
US60/454,565 2003-03-14
US10/755,561 2004-01-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101465222A Division CN101100798A (zh) 2003-01-14 2004-01-13 提花纺织产品制造设备

Publications (2)

Publication Number Publication Date
CN1759005A CN1759005A (zh) 2006-04-12
CN100337814C true CN100337814C (zh) 2007-09-19

Family

ID=36703972

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2004800063819A Expired - Fee Related CN100337814C (zh) 2003-01-14 2004-01-13 提花的纺织产品
CNA2007101465222A Pending CN101100798A (zh) 2003-01-14 2004-01-13 提花纺织产品制造设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2007101465222A Pending CN101100798A (zh) 2003-01-14 2004-01-13 提花纺织产品制造设备

Country Status (1)

Country Link
CN (2) CN100337814C (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112938649B (zh) * 2021-01-29 2022-09-13 深圳市鸿富诚新材料股份有限公司 一种化学处理式碳纤维排序工艺及碳纤维切断装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578965A (en) * 1985-01-18 1986-04-01 Armstrong World Industries, Inc. Automatic pattern registration with oscillating structure
US20020034607A1 (en) * 2000-06-12 2002-03-21 Stoyles Richard W. Digitally designed and produced carpet and method
US20020136855A1 (en) * 2001-02-14 2002-09-26 Daniel Sydney D. Orthogonally ambiguous carpet tile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578965A (en) * 1985-01-18 1986-04-01 Armstrong World Industries, Inc. Automatic pattern registration with oscillating structure
US20020034607A1 (en) * 2000-06-12 2002-03-21 Stoyles Richard W. Digitally designed and produced carpet and method
US20020136855A1 (en) * 2001-02-14 2002-09-26 Daniel Sydney D. Orthogonally ambiguous carpet tile

Also Published As

Publication number Publication date
CN1759005A (zh) 2006-04-12
CN101100798A (zh) 2008-01-09

Similar Documents

Publication Publication Date Title
CN1218084C (zh) 皮革着色工艺以及由该工艺生产的着色皮革
CN1092568C (zh) 图像形成方法及图像形成装置
AU2004206226B2 (en) Patterned textile product
CN1288588C (zh) 用计算机辅助设计系统在吸收性被染物上构建彩色图像
CN1261811C (zh) 照片图像打印装置、照片图像打印方法、程序以及打印媒体单元
CN1095009C (zh) 印花方法、此方法中的一套油墨、印花布以及由此得到的加工制品
CN1076057C (zh) 制造喷墨印制产品的设备、方法和用该方法制造的产品
CN1385478A (zh) 液体组合物,油墨组件,在记录介质中形成着色部分的方法以及喷墨记录装置
CN1086344C (zh) 图象形成装置和图象形成方法
CN1192883C (zh) 适用于用含离子染料的墨进行印刷的印刷媒体及其应用
CN1160213A (zh) 减少了色彩不规则性的彩色滤光器的制造方法
CN100337814C (zh) 提花的纺织产品
CN107059279A (zh) 簇绒地毯的连续染色方法及连续染色机
CN1084456A (zh) 喷墨记录方法及装置
CN1308540C (zh) 轻质衬垫地毯及其制作方法
CN1486375A (zh) 用于纤维和膜制备的热塑性组合物
CN1103199C (zh) 服饰设计及制作的辅助方法及装置
CN1051346C (zh) 喷墨印刷布,喷墨印刷及其印品
CN1625592A (zh) 储存稳定且基于胆甾醇型液晶混合物含水微乳液
CN202069397U (zh) 涤纶印花无纺地毯
CN104047183B (zh) 用于对织物进行染色的方法
US7014665B2 (en) Selective application of chemical agents in the pattern dyeing of textiles
CN1092266C (zh) 皮革着色工艺、皮革着色设备以及由该工艺生产的着色皮革
CN1867638A (zh) 配制剂及其在基质着色中的用途
CN110373063A (zh) 一种水性纺织墨水及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070919

Termination date: 20190113