CH426762A - Procédé de production d'acide adipique par oxydation du cyclohexane - Google Patents

Procédé de production d'acide adipique par oxydation du cyclohexane

Info

Publication number
CH426762A
CH426762A CH1147063A CH1147063A CH426762A CH 426762 A CH426762 A CH 426762A CH 1147063 A CH1147063 A CH 1147063A CH 1147063 A CH1147063 A CH 1147063A CH 426762 A CH426762 A CH 426762A
Authority
CH
Switzerland
Prior art keywords
phase
oxidation
cyclohexane
adipic acid
oily
Prior art date
Application number
CH1147063A
Other languages
English (en)
Original Assignee
Monsanto Chemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Chemicals filed Critical Monsanto Chemicals
Publication of CH426762A publication Critical patent/CH426762A/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • C07C51/313Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting with molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • C07C29/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • C07C51/316Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting with oxides of nitrogen or nitrogen-containing mineral acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Braking Arrangements (AREA)

Description


  
 



  Procédé de production d'acide adipique par oxydation du cyclohexane
 La présente invention a trait à un procédé de production d'acide adipique par oxydation de cyclohexane, procédé qui comporte l'oxydation du cyclohexane par de l'oxygène moléculaire en produits d'oxydation primaires, suivie d'une oxydation de ces produits primaires en acide adipique par exemple au moyen d'acide nitrique ou par tout autre moyen.



   Selon les techniques antérieures, le cyclohexane est oxydé au moyen d'air en cyclohexanol, cyclohexanone, peroxydes et divers autres produits, le cyclohexane qui n'a pas été oxydé est récupéré de ces produits d'oxydation primaires et le produit d'oxydation exempt de cyclohexane est soumis à une nouvelle oxydation en acide adipique au moyen d'acide nitrique. De cette manière, le cyclohexanol et la cyclohexanone ne sont pas isolés et le rendement final en acide adipique est élevé du fait que les divers précurseurs de l'acide adipique formés sont convertis en acide adipique dans l'opération d'oxydation au moyen de l'acide nitrique.



   Ce procédé n'est toutefois pas sans soulever des difficultés. La qualité de l'acide adipique ainsi obtenu n'est pas la meilleure et l'opération d'oxydation par l'acide nitrique n'est pas aussi efficace qu'elle pourrait être du fait de la présence des divers produits d'oxydation primaires dans la matière qui est envoyée à l'oxydation par l'acide nitrique. Certains de ces produits donnent lieu à la formation d'acide glutarique et d'acide succinique, et ces deux acides doivent être éliminés au cours de la recristallisation de l'acide adipique, ce qui augmente notablement le coût total du procédé.



   Diverses méthodes ont été étudiées en vue de traiter le produit d'oxydation du cyclohexane et d'obtenir ainsi une matière à soumettre à l'oxydation par l'acide nitrique qui contienne sélectivement des précurseurs de l'acide adipique, cependant toutes ces méthodes se sont révélées soit trop coûteuses pour l'augmentation de rendement obtenue en acide adipique, soit provoquer la perte de précurseurs de l'acide adipique dans les matières résiduaires ou dans les matières en traitement, que ce soit par estérification ou à la suite d'autres réactions.



   Dans un exemple de tel procédé auquel on accorde le plus d'intérêt dans l'industrie, le produit de réaction provenant de l'oxydation du cyclohexane par l'air est mélangé avec de l'eau et ce mélange aqueux est débarrassé du cyclohexane non oxydé, lequel retourne à la phase d'oxydation par l'air. Les queues provenant de l'opération d'élimination du cyclohexane, ou élimination d'hydrocarbures sont soumises à une nouvelle purification par distillation, cristallisation et filtration en vue d'obtenir   ni    courant d'alimentation pour l'oxydation par l'acide nitrique extrêmement riche en précurseurs de l'acide adipique.



  On a toutefois constaté que des pertes en précurseurs de l'acide adipique, pertes que   l'on    n'explique pas, se produisent dans ce procédé.



   La présente invention réside en un traitement du produit de réaction provenant de l'oxydation du cyclohexane permettant d'obtenir économiquement une matière destinée à être envoyée à l'oxydation ultérieure qui contient une quantité maximum de précurseurs de l'acide adipique et une quantité minimum d'acides succinique et glutarique ou de précurseurs de ces acides et qui permet d'éviter les pertes en précurseurs de l'acide adipique au cours de ce traitement.



   On a en effet trouvé que le procédé selon l'invention permet d'obtenir des rendements étonnamment  meilleurs en acide adipique dans l'oxydation de cyclohexane, que ceux qu'il était possible d'obtenir jusqu'à présent par les procédés connus. Le présent procédé comprend l'oxydation par de l'oxygène moléculaire, par exemple sous forme d'air, du cyclohexane en produits d'oxydation primaires, suivie d'une oxydation ultérieure de ces produits primaires en acide adipique.

   Le procédé selon l'invention est caractérisé en ce qu'on utilise comme matière oxydable pour l'oxydation ultérieure le produit précurseur de l'acide adipique obtenu dans les opérations suivantes: a) injection d'eau dans l'effluent provenant d'une
 opération d'oxydation du cyclohexane en phase
 liquide, b) séparation du mélange obtenu en une première
 phase huileuse et une première phase aqueuse, c) élimination de pratiquement la totalité du cyclo
 hexane non oxydé de cette première phase hui
 leuse, d) traitement d'évaporation de la première phase
 huileuse pratiquement exempte de cyclohexane
 dans la partie supérieure d'un appareil de distil
 lation, e)

   traitement d'évaporation de la première phase
 aqueuse dans la partie inférieure dudit appareil
 de distillation pendant un temps suffisant pour
 que pratiquement la totalité de l'eau de cette pre
 mière phase aqueuse passe en tête dans le dis
 tillat obtenu dans ladite distillation avec sensi
 blement la totalité de la première phase huileuse
 débarrassée du cyclohexane, f) séparation du distillat mélangé en une seconde
 phase huileuse et une seconde phase aqueuse, g) récupération de cette seconde phase huileuse du
 distillat et réunion de cette phase avec les pré
 curseurs de l'acide adipique sélectivement préci
 pités provenant des queues de ladite distillation,
 ce qui donne un produit précurseur d'acide adi
 pique utilisable comme matière oxydable pour
 l'oxydation ultérieure.



   Par rapport aux procédés antérieurs, le procédé selon l'invention donne une meilleure utilisation de l'appareillage et permet la production de quantités accrues d'acide adipique par une utilisation plus efficace des précurseurs d'acide adipique disponibles en empêchant leur perte au cours du traitement. En outre, par suite de la quantité inférieure de chaleur requise, on peut traiter de plus grands volumes de matière dans une installation de dimensions données.



   La description qui va suivre en regard du dessin annexé donné à titre d'exemple, montre comment l'invention peut être réalisée.



   Ce dessin schématique représente l'oxydation du cyclohexane suivie de la séparation des divers produits de réaction en vue de l'oxydation ultérieure en acide adipique au moyen d'acide nitrique.   I1    montre l'oxydation par exemple par l'air du cyclohexane en phase liquide par un procédé dans lequel le cyclohexane est pompé en 1 à partir du réservoir de stockage de cyclohexane (non représenté) dans le récipient d'oxydation 2, où se fait l'oxydation par l'air qui pénètre en 3 dans le récipient 2. A titre d'exemple, une installation d'oxydation type peut être constituée par 3 autoclaves montés en série, munis d'agitateurs et de condenseurs de reflux pour l'élimination d'eau, et travaillant à une température de 130 à 1900 C sous des pressions supérieures à la pression atmosphérique.

   On ajoute de l'eau en 4 au produit d'oxydation quittant l'oxydeur en 5 afin d'éviter le bouchage des conduites par les matières solides solubles dans l'eau que contient ce produit, et ce mélange aqueux peut être refroidi ou non avant d'arriver dans le décanteur 6 où on laisse se séparer la couche huileuse et la couche aqueuse, et d'où la couche huileuse est soutirée dans le réservoir de stockage 7 pour la couche supérieure et la couche aqueuse dans le réservoir de stockage 8 pour la couche inférieure.



   La couche supérieure ou couche huileuse, riche en cyclohexanone et cyclohexanol et qui contient le cyclohexane non oxydé ainsi que d'autres produits d'oxydation insolubles dans l'eau, passe par le conduit 9 dans un séparateur d'hydrocarbure sec 10 qui peut être constitué par toute colonne de rectification ordinaire, par exemple une colonne à plateaux perforés ou une colonne à plateaux de barbotage con çue en vue d'éliminer une majeure partie du cyclohexane non oxydé de la couche supérieure du produit d'oxydation. Le cyclohexane non oxydé est éliminé de la colonne par le conduit 16 et retourne à l'oxydation par le conduit 13. Comme exemple type, le séparateur d'hydrocarbures 10 peut être une colonne à 30 plateaux de barbotage fonctionnant à une température de haut de colonne de 60 à 1000 C et à la pression atmosphérique.

   On peut si l'on veut travailler sous vide ou sous une pression supérieure à l'atmosphère.



   Le produit d'oxydation d'où a été enlevée une majeure partie du cyclohexane non oxydé quitte le séparateur d'hydrocarbure sec 10 et arrive au séparateur d'hydrocarbure humide 18 par le conduit 17.



  Le séparateur 18 peut être constitué par toute colonne de rectification ordinaire, par exemple par une colonne à plateaux perforés ou une colonne à plateaux de barbotage conçue pour éliminer essentiellement la totalité du cyclohexane non oxydé restant de la couche supérieure du produit d'oxydation.



   L'eau qui arrive dans le séparateur d'hydrocarbure en 11, de la couche aqueuse du décanteur 12, passe en tête également dans le séparateur d'hydrocarbure humide 18. Ce courant de tête 19 peut être refroidi et on le laisse se séparer en une couche de cyclohexane et une couche aqueuse dans le décanteur 14, le cyclohexane retournant à l'oxydeur par le conduit 13 et la couche aqueuse étant rejetée par le conduit 15. Une partie de l'eau résiduaire sortant par le conduit 15 peut retourner au séparateur d'hydrocarbure humide 18 si   l'on    veut, par le conduit 31.



  Les queues provenant du séparateur d'hydrocarbure humide arrivent par le conduit 20 au rectificateur  
KA 22 où se fait l'opération de purification finale par distillation.



   Comme exemple type, le séparateur d'hydrocarbure humide 18 peut être constitué par une colonne à 30 plateaux de barbotage fonctionnant à une température de haut de colonne de 60 à 1000 C et sous une pression appropriée pour effectuer la séparation désirée.



   Dans le rectificateur KA se fait simultanément la séparation des précurseurs de l'acide adipique de la couche supérieure et de la couche inférieure mais pratiquement sans contact de ces précurseurs. La couche aqueuse inférieure 8 qui contient l'acide adipique, l'eau, des esters solubles dans l'eau, des traces de cyclohexanone ainsi que d'autres résidus non volatils solubles dans l'eau, est envoyée à la partie inférieure du rectificateur KA, par le conduit 21. Les queues provenant du séparateur d'hydrocarbure humide qui contiennent de la cyclohexanone, du cyclohexanol ainsi que d'autres produits d'oxydation insolubles dans l'eau, sont envoyées à la partie supérieure du rectificateur KA, lequel est constitué par une colonne de rectification ordinaire d'un type quelconque, par exemple une colonne à plateaux perforés ou à plateaux de barbotage.

   Après refroidissement, le courant 23 provenant du rectificateur KA passe dans le décanteur 12 où la couche aqueuse et la couche huileuse se séparent, la couche aqueuse retournant au séparateur d'hydrocarbure humide par le conduit 11, comme il a déjà été dit. Une partie du courant aqueux 11 peut être renvoyée au rectificateur KA si   l'on    veut, par le conduit 24. La couche huileuse provenant du décanteur 12 est pompée dans le réservoir de stockage 25 des précurseurs de l'acide adipique, par le conduit 26, et les queues provenant du rectificateur KA vont au cristalliseur 27 par le conduit 28.

   Comme exemple type, le rectificateur KA peut être constitué par une colonne de rectification à 30 plateaux de barbotage fonctionnant à une température de haut de colonne de 80 à 1200 C et à une température de bas de colonne de 100 à 1400 C, selon que la pression dans la colonne est inférieure, égale ou supérieure à l'atmosphère.



   Le cristalliseur 27 travaille de manière à précipiter sélectivement les précurseurs de l'acide adipique de la matière arrivant par le conduit 28 et il peut être d'un type quelconque, par exemple un récipient sous vide muni d'un système d'agitation. Dans un exemple type de cristalliseur sous vide avec agitation, la température peut être de 30 à 600 C selon la pression qui règne dans ce récipient.



   Par le conduit 29 la matière quittant le cristalliseur arrive au filtre 30 où les précurseurs d'acide adipique sélectivement précipités dans le cristalliseur sont éliminés du liquide restant. Le gâteau de filtration contenant l'acide adipique, le résidu non volatil insoluble dans la liqueur non aqueuse restante dans les conditions opératoires du cristalliseur, ainsi qu'une petite quantité d'acide glutarique et d'acide succinique, est transféré dans le réservoir de stockage 25 des précurseurs d'acide adipique, comme la matière arrivant par le conduit 26. Les précurseurs de l'acide adipique dans ce réservoir 25 sont alors prêts pour le traitement ultérieur d'oxydation par l'acide nitrique ou autre, et ils sont évacués de ce réservoir par le conduit 33. La liqueur-mère quittant le filtre 30 par le conduit 32 peut être utilisée comme combustible ou bien rejetée.



   La description précédente de la circulation des divers courants de matière selon le procédé de l'invention montre clairement que la couche supérieure ou couche huileuse d'une part, et d'autre part la couche inférieure ou couche aqueuse des produits de l'oxydation par l'air de cyclohexane ne viennent en contact l'une avec l'autre à aucun moment où les conditions de température et de pression peuvent contribuer à des réactions mutuelles des produits au détriment du rendement en précurseurs de l'acide adipique.

   L'augmentation de rendement en précurseurs de l'acide adipique qui résulte du traitement séparé de la couche supérieure et de la couche inférieure est tout à fait inattendue et bien qu'on ne connaisse pas les réactions exactes que   l'on    pense être empêchées par le traitement individuel des couches, on suppose qu'une estérification des précurseurs de l'acide adipique contenus dans la couche huileuse avec les précurseurs d'acide adipique ou le résidu non volatil soluble dans l'eau contenus dans la couche aqueuse se produisait dans les procédés antérieurs soit au cours de l'élimination du cyclohexane soit au cours de la séparation de l'eau et du résidu non volatil des précurseurs de l'acide adipique, soit au cours de ces deux opérations.

   Le procédé selon   Invention    évite la possibilité de réactions nuisibles au cours de ces opérations.



   Dans ce procédé, seules la couche huileuse ou couche supérieure et l'eau éliminée de la couche aqueuse ou inférieure sont soumises au traitement d'élimination du cyclohexane non oxydé et dans les séparations ultérieures dans le rectificateur KA, les entrées des courants de matières dans cette colonne de rectification,   l'un    à la partie supérieure et l'autre à la partie inférieure, dans les conditions de température et de pression régnantes, sont telles que pratiquement seule la vapeur d'eau provenant de la couche aqueuse vient en contact avec les précurseurs d'acide adipique contenus dans le courant de couche huileuse et seul le résidu non volatil insoluble dans   l'eau    provenant de la couche huileuse vient en contact avec les précurseurs d'acide adipique contenus dans le courant de couche aqueuse.

   Comme il a été dit précédemment, la couche huileuse d'où le cyclohexane a été séparé est envoyée à la partie supérieure du rectificateur KA et la couche aqueuse à la partie inférieure de la colonne. Avec les conditions voulues de température et de pression dans la colonne, la totalité de la couche aqueuse passe en tête dans le courant excepté une petite quantité de résidu non volatil ou à haut point d'ébullition insoluble dans l'eau, matière à rejeter et qui traverse la  colonne de haut en bas et se trouve dans les queues du rectificateur KA. En même temps, seule l'eau provenant de la couche aqueuse passe vers le haut dans la colonne pour venir en contact avec la couche huileuse et passe en tête dans le courant avec les précurseurs de l'acide adipique qui s'y trouvent.



   L'amélioration du rendement en acide adipique et en précurseurs de l'acide adipique que permet d'obtenir le procédé selon l'invention est montrée à titre d'exemple par les chiffres du tableau ci-après dans lequel sont comparés les rendements en acide adipique et précurseurs d'acide adipique obtenus dans le procédé antérieur auquel on accorde le plus d'intérêt dans l'industrie et dans le nouveau procédé selon cette invention. Il est à souligner que les installations et appareillages, c'est-à-dire les colonnes de distillation, les dispositifs d'oxydation par l'air et autre, sont les mêmes dans ces deux procédés et que seule est changée l'utilisation des installations pour conduire les opérations.

   Les chiffres indiqués pour le procédé   antérieur   sont obtenus lorsque la couche supérieure et la couche inférieure, 7 et 8 sur le dessin, sont envoyées conjointement à des débits mesurés aux séparateurs d'hydrocarbures 10 et 18 montés en série et que les queues provenant de l'opération de   séparation sont envoyées au rectificateur I KA 22. Les    chiffres indiqués pour le procédé     nouveau      correspondent au procédé selon l'invention. Tous ces chiffres ont été obtenus dans un procédé continu et sont indiqués dans les mêmes unités, à savoir des kilogrammes par unité de temps, rapportés à un débit constant à partir des dispositifs d'oxydation du cyclohexane par l'air.



   Potentiel d'acide adipique dans les courants de matière
 avant et après la séparation d'hydrocarbure et la rectification
 Après séparation Produit utilisable
 Avant séparation de l'hydrocarbure pour l'oxydation
 Constituants de   rhydrocarbure    et avant rectification par l'acide nitrique 1. Précurseurs de l'acide adipique a) Procédé antérieur 224,9   218,0    194,0 b) Nouveau procédé 224,9 222,4   201,7    2. Acide adipique a) Procédé antérieur 24,3 18,0 10,8 b) Nouveau procédé 24,3 23,7 13,2 3. Esters a) Procédé antérieur 18,3 25,0 4,7 b) Nouveau procédé 18,3   16,9    4,7 4.

   Acide valérique a) Procédé antérieur 17,2   18,8      3,4    b) Nouveau   procédé    17,2 16,9 2,8
 Le tableau ci-dessus montre que le potentiel total en acide adipique des courants de matière quittant les dispositifs d'oxydation par l'air et arrivant à la récupération, c'est-à-dire la somme des précurseurs de l'acide adipique et de l'acide adipique disponibles dans les courants, est le même dans le nouveau procédé selon l'invention et dans le procédé antérieur auquel on accordait jusqu'à présent le plus d'intérêt dans l'industrie.

   Mais dans le procédé de l'invention, dans lequel seule la couche huileuse est soumise à une séparation et la couche aqueuse est dérivée pour être envoyée à la partie inférieure du rectificateur, il y a une augmentation totale d'environ 5   o/o    du rendement en acide adipique potentiel dans la matière destinée à être envoyée aux opérations ultérieures d'oxydation, par exemple à l'oxydation par l'acide nitrique, par rapport à ce qu'on obtient lorsque la couche huileuse et la couche aqueuse sont envoyées ensemble au séparateur d'hydrocarbure et que le produit résultant est mélangé dans l'opération de rectification. Cet accroissement de rendement est obtenu, ainsi que le montre le tableau, sans augmentation de la formation d'autres sous-produits.



   Un autre avantage important qui ressort de la description précédente est la diminution de la chaleur nécessaire pour l'élimination du cyclohexane et le plus grand volume de vapeur utilisable dans les colonnes de séparation d'hydrocarbures, par suite de l'absence d'eau, ce qui permet un accroissement notable de débit pour une dimension de colonne donnée par rapport à ce qui était possible dans les procédés antérieurs et conduit ainsi à des economies importantes dans les frais opératoires et dans la consommation de calories.
  

Claims (1)

  1. REVENDICATION Procédé de production d'acide adipique par oxydation du cyclohexane en phase liquide avec de l'oxygène moléculaire en produits d'oxydation primaires comprenant principalement du cyclohexanol et de la cyclohexanone, oxydation suivie d'une oxydation ultérieure de ces produits primaires en acide adipique, caractérisé en ce qu'on utilise comme matière oxydable pour l'oxydation ultérieure le produit précurseur de l'acide adipique obtenu dans les opérations suivantes a) injection d'eau dans l'effluent provenant d'une opération d'oxydation du cyclohexane en phase liquide, b) séparation du mélange obtenu en une première phase huileuse et une première phase aqueuse, c) élimination de pratiquement la totalité du cyclo hexane non oxydé de cette première phase hui leuse, d)
    traitement d'évaporation de la première phase huileuse pratiquement exempte de cyclohexane dans la partie supérieure d'un appareil de dis tillation, e) traitement d'évaporation de la première phase aqueuse dans la partie inférieure dudit appareil de distillation pendant un temps suffisant pour que pratiquement la totalité de l'eau de cette pre mière phase aqueuse passe en tête dans le dis tillat obtenu dans ladite distillation avec sensible ment la totalité de la première phase huileuse débarrassée du cyclohexane, f) séparation du distillat mélangé en une seconde phase huileuse et une seconde phase aqueuse, g) récupération de cette seconde phase huileuse du distillat et réunion de cette phase avec les pré curseurs de l'acide adipique sélectivement préci pités provenant des queues de ladite distillation,
    ce qui donne un produit précurseur d'acide adi pique utilisable comme matière oxydable pour l'oxydation ultérieure.
    SOUS-REVENDICATIONS 1. Procédé selon la revendication, caractérisé en ce que ladite oxydation ultérieure est une oxydation par l'acide nitrique effeotuée en deux stades de température.
    2. Procédé selon la revendication, caractérisé en ce que l'oxydation du cyclohexane en phase liquide est effectuée à une température comprise entre 130 et 1900 C et sous une pression comprise entre 3,5 et 10 kg/cm2.
    3. Procédé selon la revendication, caractérisé en ce que les conditions du traitement d'évaporation dans la distillation comprennent une température de haut de colonne comprise entre 80 et 1200 C et une température de bas de colonne comprise entre 100 et 1400 C.
    4. Procédé selon la revendication, caractérisé en ce que l'on a) injecte de l'eau dans le produit d'oxydation du cyclohexane, b) sépare du mélange formé une première phase huileuse et une première phase aqueuse, c) élimine du cyclohexane non oxydé de la première phase huileuse, d) traite par évaporation la première phase aqueuse dans la partie inférieure d'un appareil de distilla tion, e) traite par évaporation la première phase huileuse débarrassée du cyclohexane dans la partie supé rieure du même appareil de distillation, f) retourne au moins une partie de cette seconde phase aqueuse à l'opération d'élimination du cyclohexane, g) précipite d'une façon sélective des précurseurs de l'acide adipique des queues de l'appareil de dis tillation.
    5. Procédé selon la sous-revendication 4, caractérisé en ce que au moins une partie de l'élimination du cyclohexane de la première phase huileuse est d'abord réalisée en l'absence d'eau.
CH1147063A 1962-09-18 1963-09-17 Procédé de production d'acide adipique par oxydation du cyclohexane CH426762A (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22443562A 1962-09-18 1962-09-18

Publications (1)

Publication Number Publication Date
CH426762A true CH426762A (fr) 1966-12-31

Family

ID=22840667

Family Applications (1)

Application Number Title Priority Date Filing Date
CH1147063A CH426762A (fr) 1962-09-18 1963-09-17 Procédé de production d'acide adipique par oxydation du cyclohexane

Country Status (10)

Country Link
JP (1) JPS5019533B1 (fr)
BE (1) BE637535A (fr)
CH (1) CH426762A (fr)
DE (1) DE1468280A1 (fr)
DK (1) DK114764B (fr)
GB (1) GB1013619A (fr)
LU (1) LU44452A1 (fr)
NL (1) NL298067A (fr)
NO (1) NO116848B (fr)
SE (1) SE312332B (fr)

Also Published As

Publication number Publication date
NO116848B (fr) 1969-06-02
GB1013619A (en) 1965-12-15
SE312332B (fr) 1969-07-14
BE637535A (fr)
LU44452A1 (fr) 1964-03-17
JPS5019533B1 (fr) 1975-07-08
DE1468280A1 (de) 1969-01-02
DK114764B (da) 1969-08-04
NL298067A (fr)

Similar Documents

Publication Publication Date Title
EP0047204B1 (fr) Procédé de production d'alcools deshydratés utilisables comme composants d'un carburant pour moteur
CA2135127C (fr) Procede de separation des composes oxygenes d'hydrocarbures, combinant une distillation et une permeation et son utilisation en etherification
CH400116A (fr) Procédé de préparation de l'acide adipique
JP4304067B2 (ja) 酸化プロピレンの精製
US2824048A (en) Process for separating the ingredients of a reaction mixture
US4026791A (en) Treatment of aqueous waste
WO2017125657A1 (fr) Procede de purification d'esters (meth)acryliques
US5723026A (en) Process for recovering pure benzene and pure toluene from aromatic hydrocarbon products
EP0129459B1 (fr) Procédé de purification d'un mélange eau-alcool en C1-C2-impuretés, issu d'un procédé de fabrication industriel d'alcool en C1-C2 au moyen d'un agent d'extraction
EP0576346B1 (fr) Procédé de déshydratation du solvant provenant d'une opération de déparaffinage d'hydrocarbures
FR2683523A1 (fr) Procede de separation d'ethyl tertiobutyl ether et d'ethanol.
CH426761A (fr) Procédé de production d'acide adipique par oxydation du cyclohexane
FR2470762A1 (fr) Procede de traitement d'un residu de production d'acide adipique
CH426762A (fr) Procédé de production d'acide adipique par oxydation du cyclohexane
US3555083A (en) Process for the purification of lower fatty acids
CH435236A (fr) Procédé de production d'acide adipique par oxydation du cyclohexane
US2442804A (en) Purification of sirups by solvent extraction
FR2549043A1 (fr) Procede de fractionnement d'une solution aqueuse de butanol et d'acetone
US2454692A (en) Preparation of tocopherol concentrate
US2888491A (en) Separation of phenols from their mixtures with neutral oils
US2870203A (en) Chloroform extraction process for improving recovery of adipic acid
BE512888A (fr)
US4049543A (en) Method for the separation of a mixture of petroleum acids from petroleum distillates containing such a mixture
FR2474512A1 (fr) Procede et installation d'epuration de monomeres et de solvants dans une installation de polymerisation
US2916422A (en) Extractive distillation of formaldehyde