CA2397660C - Procede d'oxalatation de la surface zinguee d'une tole - Google Patents

Procede d'oxalatation de la surface zinguee d'une tole Download PDF

Info

Publication number
CA2397660C
CA2397660C CA002397660A CA2397660A CA2397660C CA 2397660 C CA2397660 C CA 2397660C CA 002397660 A CA002397660 A CA 002397660A CA 2397660 A CA2397660 A CA 2397660A CA 2397660 C CA2397660 C CA 2397660C
Authority
CA
Canada
Prior art keywords
zinc
oxalation
mol
solution
oxalic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002397660A
Other languages
English (en)
Other versions
CA2397660A1 (fr
Inventor
Jacques Petitjean
Genevieve Klam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
USINOR SA
Original Assignee
USINOR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by USINOR SA filed Critical USINOR SA
Publication of CA2397660A1 publication Critical patent/CA2397660A1/fr
Application granted granted Critical
Publication of CA2397660C publication Critical patent/CA2397660C/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/46Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing oxalates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Chemically Coating (AREA)
  • Coating With Molten Metal (AREA)

Abstract

Procédé pour former une couche d'oxalate de zinc sur la surface d'une bande ou d'une tôle métallique revêtue d'une couche de zinc ou d'alliage de zinc, à l'exception des alliages zinc-fer, au moyen d'une solution aqueuse constituée d'acide oxalique à une concentration comprise entre 5.10-3 et 0,1 mole/l, et d'au moins un composé et/ou un ion d'un métal oxydant du zinc à une concentration comprise entre 10 -6 et 10 -2 mole/l, et éventuellement un age nt mouillant. Ce procédé permet de traiter les tôles à des vitesses très élevées, sans utiliser d'oxydant en quantité importante; il facilite la gestion des bains de traitement. Utilisation de ce procédé pour la lubrification de tôle, notamment en vue de l'emboutissage.</ SDOAB>

Description

2 PCT/FR01/00049 Procédé d'oxalatation de la surface zinguée d'une tôle.

L'invention concerne un procédé pour déposer une couche à base d'oxalate de zinc sur le revêtement à base de zinc, à l'exclusion des alliages zinc-fer, de tôles ou de bandes métalliques zinguées, et les tôles ou bandes obtenues par ce procédé.
L'oxalatation est un traitement de conversion de surface appliqué depuis longtemps sur des surfaces métalliques, telles que l'acier, le zinc ou l'aluminium, et destiné à former sur la surface un dépôt à base d'oxalate dont les propriétés de pré-lubrification facilitent le formage à froid.
La présente invention concerne spécifiquement le traitement des surfaces zinguées, notamment celles de tôles ou de bandes en acier dit au carbone ;
on entend par acier au carbone , un acier dont la proportion d'éléments d'addition ou d'alliage est nettement inférieure à celle que l'on trouve dans les aciers inoxydables.
Généralement juste après l'étape d'oxalatation de la surface zinguée, on enduit la surface d'un film mince d'huile (de type QUAKER6130 par exemple) pour lui apporter une protection temporaire contre la corrosion, de manière à
ce que la tôle ainsi traitée puisse être stockée pendant quelques semaines avant d'être mise en forme ultérieurement.
Le traitement d'oxalatation des surfaces zinguées remplace à ce titre le traitement de pré-phosphatation conventionnel, et présente l'avantage d'être sans conséquence néfaste sur les opérations ultérieures d'assemblage et de mise en peinture pratiquées chez les clients, car il est totalement éliminé
lors de l'opération de dégraissage qui précède la phosphatation.
Ainsi, le brevet FR 1 066 186 (SOCIETE CONTINENTALE PARKER) décrit un procédé pour traiter des métaux tels que l'acier ou le zinc dans un bain d'une solution aqueuse comprenant de :
- 1 à 120 g/l d'acide oxalique soit 10-2 à 0,3 molell, - 0,2 à 50 g/1 de chlorure ferreux FeC12 ou de chlorure ferrique FeC13, soit 1,6.10-3 à 0,4 mole/1 de Fe2+ ou 1,2.10-3 à 0,3 mole/1 de Fe3+, et - 5 à 50 g/I de phosphate.

Les exemples indiquent que les temps de traitement sont de l'ordre de la minute. L'application de cette solution sur une surface métallique à l'aide de cette solution d'oxalate contenant des phosphates permet d'obtenir des revêtements présentant une bonne adhérence au substrat et facilitant le formage à froid. Cependant la présence de phosphates dans la solution n'est pas acceptable d'un point de vue écologique.
Le document US 2 809 138 (HOECHST) concerne un procédé de traitement des surfaces métalliques, telles que l'acier inoxydable ou le zinc, par une solution aqueuse comprenant de :
- 0,5 à 200 g/I d'acide oxalique soit 5.10"3 à 2,2 mole/l, - 0,5 à 15 g/l d'ion ferrique Fe3+ soit 9.10+3 à 0,27 mole/I, et -0,025 à 5 g/1 d'un composé soluble choisi parmi : les xanthates, les esters d'acides dithiophosphoriques, l'acide thioglycolique et,les thiourées.
Ces derniers composés ne sont pas non plus acceptable d'un de vue écologique, et présentent en outre une forte odeur gênante. Les temps de traitement sont de l'ordre de 5 minutes.
Face aux exigences environnementales, les industriels ont recherché
des solutions d'oxalatation des surfaces zinguées qui soient plus respectueuses de l'environnement que celles cités antérieurement. A ce titre, le phosphate, les xanthates, les esters d'acides dithiophosphoriques, l'acide thioglycolique et les thiourées contenus dans les solutions d'oxalatation de l'art antérieur font partie de ces composés dont les industriels doivent limiter au maximum l'utilisation, voire supprimer, en ràison des problèmes liés à leur toxicité et à leur retraitement.
L'acide oxalique, seul, ne présente aucune toxicité ; les industriels ont donc mis au point des procédés ne mettant en ceuvre que des solutions d'acide oxalique ne contenant aucun composé toxique.
Le document US 2 060 365 (CURTIN HOWE CORP.) concerne le traitement des surfaces zinguées au moyen d'une solution aqueuse comprenant de l'oxalate ferrique Fe2(C204)3 (1 à 10%, soit 0,05 à 0,5 mole/1 de Fe3+) et de l'acide oxalique libre en quantité suffisante pour inhiber l'hydrolyse du sel ferrique. Il est indiqué, page 1, colonne 2, lignes 37 à 42, que la solution comprend de préférence 4 à 5% d'oxalate ferrique (soit 0,2 à 0,26 mole/l) et 0,5
3 à 1% d'acide oxalique (soit 5.10"2 à 10"' mole/l d'acide oxalique). On forme ainsi sur la surface zinguée une couche mixte d'oxalate ferrique à 66 % et d'oxalate de zinc à 33 % qui n'est pas adaptée pour améliorer le formage du produit traité. En outre, en présence d'un agent de corrosion tel qu'une base, on assiste à la décomplexation de l'oxalate ferrique et on obtient de l'hydroxyde ferrique selon la réaction suivante :
Fe2(C2O4)3 + 6 OH" -> 2 Fe(OH)3 + 3C2042"
Or, l'hydroxyde ferrique présente un aspect de rouille rouge qui sera inacceptable pour le client.
En revanche, le produit résultant d'une attaque basique d'un substrat revêtu d'une couche d'oxalate de zinc, c'est à dire l'hydroxyde de zinc, présente un aspect gris qui ne sera pas pénalisant.
Comme la nature des éléments d'une surface zinguée est tout à fait différente de ceux d'une surface d'acier au carbone ou inoxydable, le schéma réactionnel d'oxalatation est différent. Sur l'acier, on obtient une couche d'oxalate ferreux FeC2O4 dont le comportement est similaire à celui de l'oxalate de zinc ZnC2O4; c'està-dire qu'é{lë âmélioré I'embôutissabilité du sûbstrat ainsi traité. Cependant la réaction d'oxalatation sur un substrat ferreux étant beaucoup plus lente que la réaction d'oxalatation sur un substrat zingué, cette réaction sur l'acier est incompatible avec les vitesses des lignes des procédés actuels. Pour obtenir des vitesses de réaction d'oxalatation sur substrat ferreux compatibles avec les vitesses de lignes actuelles, le seul moyen consiste à
traiter le substrat sous polarisation anodique. Il est alors nécessaire de travailler avec une installation de traitement équipée d'une cellule d'électrolyse et qui est dédiée uniquement à l'oxalatation, ce qui représente un coût d'investissement.
Par ailleurs, la plage de fonctionnement de ce type de procédé est étroite :
il faut oxyder le fer pour initier la réaction d'oxalatation, tout en évitant d'oxyder simultanément l'acide oxalique en CO2, ce qui limite considérablement la fourchette accessible en terme de densités de courant de dépôt et rend le procédé difficile à contrôler.
Les deux étapes mises en jeu dans un traitement d'oxalatation de tôle zinguée sont :

FEUILLE RECTIFIEE (REGLE 91) ISA/EP
4 1. la dissolution du zinc : Zn -> Zn2+ + 2 e-; dans le cas d'une dissolution chimique en milieu acide, on aurait en outre : 2 H+ + 2 e- -> H2, soit la réaction globale : Zn + 2 H+ -> Zn2+ + H2.
2. la complexation des ions formés et la précipitation de complexes oxalates du type Zn C204 ou autres.
Cependant, comme on l'a déjà mentionné précédemment, la formation d'une couche d'oxalate de fer étant beaucoup plus lente que la formation d'une couche d'oxalate de zinc (à conditions de traitement égales), il est plus avantageux pour un industriel de travailler avec de l'acier zingué qu'avec de l'acier nu. En outre en travaillant avec de l'acier zingué, il bénéficie de la protection contre la corrosion conférée par la couche de zinc.
L'oxalatation des surfaces métalliques est susceptible d'être mise en ceuvre par l'une des techniques suivantes : au trempé, pa'r enduction ou par aspersion.
La technique au trempé consiste à faire défiler à vitesse élevée (80 à 100 m/min) une bande d'acier, zinguée dans un bac contenant une solution ne comprenant que de l'acide oxalique et éventuellement un agent mouillant.
Lorsqu'on effectue le traitement d'oxalatation au trempé, le dépôt d'oxalate de zinc sur la tôle zinguée est hétérogène ; pour obtenir un effet pré-lubrifiant significatif sur la tôle ainsi traitée, il faut donc que l'épaisseur de la couche d'oxalate de zinc soit supérieur à environ 0,7 m, ce qui correspond à un grammage de l'ordre de 2 g/m2 d'oxalate de zinc. Or, la bande défilant à
vitesse élevée (80 m/min), le temps de traitement permettant d'obtenir une couche d'oxalate de zinc susceptible d'améliorer l'aptitude au formage à froid de la surface ainsi traitée, est très court, de l'ordre de 1 à 5 s. C'est pourquoi on a recours à des solutions d'acide oxalique fortement concentrées, comprises entre 0,3 et 0,8 mole/I, de manière à obtenir des couches d'oxalate de zinc sur le substrat qui soient suffisamment épaisses. Cependant, les solutions d'acide oxalique fortement concentrées présentent l'inconvénient d'être agressives vis à
vis de l'installation de traitement ; en effet, les bacs contenant la solution de traitement sont généralement en acier inoxydable. Pour éviter ce problème, on peut travailler avec des concentrations en solution d'acide oxalique beaucoup plus faibles (concentrations inférieures à 0,3 mole/1) ; cependant le temps de réaction pour obtenir une couche d'oxalate de zinc sur la surface zinguée est beaucoup plus long et dans ce cas :
- soit on ralentit la ligne de traitement et on pénalise la productivité
globale;
5 - soit on prévoit des bacs de traitement beaucoup plus longs, ce qui représente un surcoût d'investissement et par ailleurs n'est pas toujours possible en raison de l'encombrement.
Après application de cette solution, la tôle peut être rincée et séchée d'une manière classique. Elle est ensuite revêtue d'une fine couche d'huile de type QUAKER6130 pour lui apporter une protection temporaire contre la corrosion.
Ainsi, en travaillant avec des solutions fortement concentrées pendant un temps très court, la réaction d'oxalatation de la surface zinguée est très rapide et complète. La couche d'oxalate de zinc obtenue, qu'elle soit rincée ou non, ne présente pas de dégradation du comportement en tenue à la corrosion temporaire. Cependant on est confronté au problème de l'agressivité du bain acide vis à vis des installations.
Par ailleurs, en travaillant avec des solutions faiblement concentrées pendant des temps suffisamment longs pour avoir une réaction d'oxalatation complète, on n'observe pas non plus de dégradation du comportement en tenue à la corrosion temporaire (que le produit soit rincé ou non). Le problème réside ici dans les temps de traitement trop longs et incompatibles avec un procédé
au défilé à grande vitesse.
Le problème est encore aggravé si on travaille avec des solutions faiblement concentrées pendant des temps courts. On est alors confronté à
deux problèmes :
- la durée du traitement n'est pas suffisamment longue pour atteindre le gain escompté en emboutissage, que le produit soit rincé ou non ;
- la réaction de conversion n'est pas complète ; ainsi, le dépôt d'oxalate comporte de l'acide oxalique qui n'a pas réagi avec le zinc mais qui va réagir avec la couche d'huile dont on revêt ultérieurement le produit, si on ne l'élimine pas par rinçage ; dans ce cas les performances de l'huile sont fortement détériorées. Ceci étant, que le produit ait été rincé ou non, la couche déposée
6 est insuffisamment épaisse pour conduire à une amélioration de l'emboutissabilité du produit.

La technique par enduction consiste à faire défiler à grandes vitesses (80 à 100 m/min) une bande d'acier zinguée entre deux rouleaux d'enduction en rotation, lesquels trempent dans deux bacs contenant une solution ne comprenant que de l'acide oxalique additionné éventuellement d'un agent mouillant. Dans ce cas, l'épaisseur de la couche d'oxalate de zinc est gouvernée par la quantité de matière déposée par les rouleaux, et donc par la distance rouleau-tôle et le temps d'application de la solution d'acide oxalique est également très court, de l'ordre de la seconde. Or, l'application de la solution de traitement par enduction sans rinçage avant séchage permet d'accéder à une répartition plus homogène de la couche de conversion que l'application de la solution au trempé, et des grammages inférieurs à 0,5 g/m2 , voire inférieurs ou égaux à 0,1 g/m2, peuvent alors suffire pour obtenir les propriétés pré-lubrifiantes optimales. Dans ce cas, la concentration de la solution en acide oxalique est comprise entre 0,3 et 0,8 mole/l, de manière à
obtenir des couches d'oxalate de zinc sur le substrat qui soient suffisamment épaisses.
Cependant, l'utilisation de solutions d'acide oxalique fortement concentrées présente des inconvénients :
- d'une part, comme on l'a vu précédemment, les solutions acides concentrées sont agressives vis à vis de l'installation de traitement ; les bacs de traitement sont généralement en acier inoxydable, et les rouleaux d'enduction de la solution sont en caoutchouc ou en polyuréthane.
- d'autre part, immédiatement après l'enduction de la bande en défilement, on sèche la couche d'oxalate de zinc formée par des sécheurs portés à 180 C, et placés juste en dessous des bacs de traitement. La chaleur dégagée par les sécheurs provoque dans un premier temps l'évaporation des solutions aqueuses d'acide oxalique contenues dans les bacs, puis dans un deuxième temps la précipitation de l'acide oxalique. On obtient alors assez rapidement des solutions d'aspect laiteux inaptes à la réaction d'oxalatation recherchée.
On
7 doit donc stopper la ligne de production, nettoyer les bacs et les recharger en solution propre d'acide oxalique.
La plupart des lignes industrielles en ligne de revêtements par enduction ou au trempé ne prévoient pas d'étape de rinçage avant séchage, car cela alourdirait considérablement le coût de traitement d'oxalatation. En effet, il faudrait équiper la ligne de bacs de rinçage, ce qui n'est pas toujours possible à
cause de l'encombrement, mais surtout il faudrait retraiter les effluents de rinçage. Ainsi, la solution qui consiste à utiliser des compositions aqueuses faiblement concentrées (< 0,3 mole/1) en acide oxalique, et qui permettrait d'éviter les inconvénients précités, ne peut être mise en oruvre ; en effet, la réaction d'oxalatation devenant trop lente, l'acide oxalique ne réagit pas complètement avec le zinc et on dépose une couche qui contient, en plus de l'oxalate de zinc (ZnC2O4), de l'acide oxalique qui n'a pas réagi, et un complexe intermédiaire de type Zn(HC204)2. Ces entités réagissent, par l'intermédiaire de leurs fonctions acides carboxyliques libres avec l'huile dont on revêt ultérieurement la tôle ainsi traitée. Cela a pour effet d'affecter la tenue à
la corrosion temporaire de la tôle ainsi traitée.
Bien que les solutions mentionnées précédemment soient respectueuses de l'environnement, celles-ci sont très contraignantes et ne sont pas satisfaisantes d'un point de vue économique, dans la mesure où elles dégradent rapidement les installations, et où elles obligent à des arrêts fréquents de la ligne de traitement.
Au regard du schéma réactionnel d'oxalatation mentionné ci-dessus, il apparaît que l'étape 2 d'oxalatation ne peut se produire que si l'étape 1 de dissolution a été préalablement amorcée, ce qui est un schéma classique et général des traitements de conversion ; pour augmenter la vitesse d'oxalatation à un niveau compatible avec la vitesse de défilement de tôles d'acier dans les installations industrielles, il convient donc d'augmenter la vitesse de dissolution du zinc (étape 1) tout en se maintenant dans des conditions de précipitation de l'oxalate (étape 2). Ainsi, si l'on se fixe des critères concernant la vitesse minimum d'oxalatation et le grammage minimum de dépôt, on peut déterminer, notamment d'une manière expérimentale, la fourchette de concentration en acide oxalique que doit présenter la solution de traitement pour satisfaire ces
8 critères ; cette fourchette détermine la plage de fonctionnement du traitement, dont on souhaite qu'elle soit la plus large possible pour simplifier le contrôle des conditions industrielles de traitement de surface par oxalatation.
Une première solution pour augmenter la vitesse d'oxalatation consisterait à
créer des conditions plus oxydantes, par addition de quantités importantes d'eau oxygénée ou par polarisation électrochimique, ce qui est économiquement pénalisant ; le brevet US 5 795 661 (BETHLEHEM STEEL) décrit ainsi l'intérêt d'un traitement d'oxalatation pour la prélubrification de tôles zinguées, notamment dans le cadre de la mise en forme de ces tôles au moyen d'une solution aqueuse comprenant de l'acide oxalique et de l'eau oxygénée ;
Cependant, l'emploi de quantités importantes d'eau oxygénée dans les installations industrielles pose des problèmes de contrôle du procédé relatifs à
la stabilité de l'eau oxygénée, qui se transforme en eau et dilue le bain, et de graves problèmes de corrosion et de sécurité.
Une deuxième solution consisterait à diminuer le pH et à augmenter la concentration en acide oxalique ; malheureusement, cette solution présente les inconvénients de diminuer la largeur de la plage de fonctionnement précédemment décrite et complique sérieusement le contrôle des conditions industrielles d'application du traitement.
Par ailleurs, on a déjà évoqué le fait que, si on travaille avec des solutions d'acide oxalique peu concentrées, la réaction d'oxalatation n'est pas suffisamment rapide, et l'acide oxalique n'a pas le temps de réagir complètement avec la surface zinguée de la tôle. On obtient ainsi une couche d'un mélange d'oxalate de zinc, de complexe de type Zn(HC204)2 et d'acide oxalique résiduel. Lorsqu'on protège ultérieurement cette surface contre la corrosion temporaire par une couche d'huile, l'huile réagit avec les fonctions acides résiduelles ; on observe alors une mauvaise tenue à la corrosion temporaire des surfaces ainsi traitées.
Le but de la présente invention est donc de mettre à disposition un procédé permettant de traiter des bandes d'acier zinguées au moyen de solutions d'oxalatations écologiques, de manière à obtenir des dépôts d'oxalates de zinc présentant de bonnes propriétés de pré-lubrification (donc
9 d'épaisseur suffisante), tout en accroissant sensiblement la vitesse d'oxalatation, et en évitant ou en limitant les inconvénients précités.
A cet effet, l'invention a pour objet un procédé pour former une couche d'oxalate de zinc sur la surface d'une bande ou d'une tôle métallique revêtue d'une couche de zinc ou d'alliage de zinc, à l'exception des alliages zinc-fer, au moyen d'une solution aqueuse d'oxalatation contenant de l'acide oxalique caractérisé, en ce que ladite solution est une solution aqueuse d'acide oxalique à une concentration comprise entre 5.10"3 et 0,1 mole/I renfermant au moins un composé et/ou un ion d'un métal oxydant du zinc à une concentration comprise entre 10-6 et 10-2 mole/I, et éventuellement un agent mouillant.
En tout état de cause, la concentration en ions oxydants est inférieure au seuil de concentration à partir de laquelle on observe des précipitations du métal correspondant. J
L'invention peut également présenter une ou plusieurs des caractéristiques suivantes :
- la concentration en. acide oxalique est de préférence comprise entre 5.10'3 et 5.10-2 mole/I.
- la concentration en composés et/ou ions oxydants du zinc dans ladite solution est de préférence comprise entre 10-6 et 10-3 mole/I.
- l'au moins un ion est choisi dans le groupe comprenant Ni2+, Co2+, Cu2+, Fe2+, Fe3+, Mo3+, Sn2+, Sn4+.
- ladite solution est appliquée sur ladite surface zinguée sans polarisation électrique de ladite tôle.
- le grammage de ladite couche d'oxalate de zinc est compris entre 0,05 et 3 g/m2.
L'invention a également pour objet un procédé de lubrification et de protection temporaire d'une tôle zinguée, caractérisé en ce qu'il comprend une étape de traitement d'oxalatation de surface selon l'invention, suivie d'une étape d'application d'une couche d'huile.
De préférence, dans la mise en ceuvre de ce procédé de lubrification :
- ladite huile comprend au moins un ester gras et/ou du carbonate de calcium dans une proportion supérieure ou égale à 5%.

L'invention a également pour objet un procédé d'emboutissage d'une tôle zinguée caractérisé en ce qu'il comprend, préalablement à l'emboutissage, une étape de lubrification selon l'invention.
L'invention a enfin pour objet une bande ou une tôle métallique revêtue 5 d'une couche de zinc, puis revêtue d'une couche à base d'oxalate de zinc obtenue par le procédé d'oxalatation selon l'invention, caractérisée en ce que ladite couche d'oxalate comprend au moins 99 /o d'oxalate de zinc.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif.
10 De manière tout à fait inattendue, les inventeurs ont mis en évidence qu'en ajoutant une très faible quantité d'un composé et/ou d'un ion d'un métal susceptible d'oxyder le zinc dans la solution d'oxalatation selon l'invention, on obtenait une couche d'oxalate de zinc sur la surface zinguée des tôles ou des bandes d'acier traitées par ladite solution d'oxalatation, dont l'épaisseur est suffisante pour conférer à la tôle ou la bande ainsi traitée une bonne protection temporaire contre la corrosion et de bonnes propriétés pré-lubrifiantes.
On entend par surface zinguée d'une tôle ou d'une bande d'acier, une surface revêtue essentiellement de zinc, ou d'un alliage à base de zinc, à
l'exception pour cette invention des alliage zinc-fer.
Dans le cas du traitement d'oxalatation selon l'invention d'une tôle revêtue d'une couche de zinc, les inventeurs ont mis en évidence que la couche de conversion obtenue comportait au moins 99% d'oxalate de zinc.
La concentration en composés et/ou en ions métalliques oxydant du zinc est comprise entre 10-6 et 10-2 mole/I, de préférence entre 10-6 et 10-3 mole/I.
Pour une concentration en ions métalliques inférieure à 10-6 mole/I, l'effet de ces ions sur la vitesse d'oxalatation n'est pas significatif.
Pour une concentration en ions métalliques supérieure ou égale à 10-2 mole/I, on assiste au dépôt chimique par cémentation de l'élément métallique correspondant à ces ions, aux dépens de l'oxalatation poursuivie.
Pour des bains d'oxalatation dont la concentration en acide oxalique est supérieure à 0,1 molell, l'utilisation de ces ions métalliques n'est pas toujours indispensable pour accélérer la réaction d'oxalatation, sauf, par exemple, dans le cas de l'application par enduction pour obtenir rapidement une réaction
11 complète de la solution de traitement avec la surface ; notamment pour les bains d'oxalatation dont la concentration en acide oxalique est inférieure à
0,05 mole/I, l'addition de ces ions en faible concentration dans la solution de traitement est un moyen efficace et économique pour obtenir des cinétiques d'oxalatation industriellement viables en immersion. `L'invention s'applique donc aux bains d'oxalatation dont la concentration en acide oxalique est comprise entre 5.10-3 et 0,1 mole/I, de préférence entre 5.10"3 et 5.10-2 mole/l.
Grâce aux ions métalliques oxydants du zinc pourtant en faible concentration, on obtient alors une vitesse très élevée d'oxalatation, non seulement même si la concentration en acide oxalique est inférieure à 0,05 mole/I, mais également même si la solution ne contient pas d'oxydant comme l'eau oxygénée en quantités significatives et/ou même si la tôle n'est pas polarisée ; l'installation de traitement est donc plus économique et plus facile à
exploiter.
Le tableau I décrit des bains d'oxalatation de performances comparables ;
par rapport aux bains de l'art antérieur, on constate que le bain selon l'invention est moins concentré en acide oxalique ou ne contient pas d'eau oxygénée.

Tableau I: Bains d'oxalatation à performances en emboutissabilité
comparables.
Solution d'oxalatation US 5 795 661 Pratiques industrielles Invention Acide Oxalique : 7 à 14 g/I 27 à 72 g/I 9 g/I 'ki 0,1 mole/I
Eau oxygénée : 2 à 4 g/I Sans sans Ions métalliques Sans Sans 10-3 mole/1 oxydant du zinc (Ni2î,) De préférence, on choisit l'ion métallique dans le groupe d'ions répertoriés dans le tableau II ; ce tableau indique également la valeur du potentiel normal du couple redox (ion/élément métallique correspondant ou autre ion) en volts (V) par rapport à l'Électrode Normale à Hydrogène ( ENH ).

Tableau II : Ions utilisables dans les solutions d'oxalatation selon l'invention.
Ions Couple Potentiel Ions Couple Potentiel
12 Redox V/ENH Redox V/ENH
Ni2+ Ni2+/Ni -0,26 Fe3+ Fe3+/Fe -0,037 Co2+ Co2+/Co -0,28 Mo3+ Mo3+/Mo -0,20 Cu2+ Cu2+/Cu +0,34 Sn2+ Sn2+/Sn -0,14 Fe2+ Fe2+/Fe -0,44 Sn4+ Sn4+/Sn2+ -0,151 Enfin, le bain de traitement d'oxalatation peut comprendre des agents mouillants et d'inévitables impuretés.
Pour appliquer la solution de traitement contenant les ions métalliques de manière à obtenir un dépôt d'oxalate de zinc sur la surface zinguée de la tôle, on procède d'une manière classique, par exemple par trempé, par aspersion, ou par enduction ; l'étape d'application est suivie d'une étape de séchage ;
entre l'étape d'application et l'étape de séchage, on peut effectuer un rinçage de la tôle traitée.
La composition optimale du bain (concentrations en acide oxalique et en ions métallique) et la morphologie du dépôt obtenu à base d'oxalate dépendent des conditions d'application ; on adapte d'une manière connue en elle-même ces conditions pour obtenir le grammage de dépôt à base d'oxalate nécessaire à l'obtention des propriétés souhaitées, par exemple des propriétés pré-lubrifiantes.
Pour obtenir un effet prélubrifiant significatif sur une tôle zinguée, lorsqu'on effectue le traitement d'oxalatation au trempé, l'épaisseur minimum nécessaire est de l'ordre de 0,7 m environ, ce qui correspond à un grammage de l'ordre de 2 g/m2 d'oxalate de zinc ; l'application de la solution de traitement par enduction sans rinçage avant séchage permet d'accéder à une répartition plus homogène de la couche de conversion et des grammages inférieurs à 0,5 g/m2 , voire inférieurs ou égaux à 0,1 g/ma, peuvent alors suffire pour obtenir les propriétés prélubrifiantes optimales.
Le dépôt à base d'oxalate obtenu sur la surface zinguée de la tôle apporte des propriétés comparables à celles de dépôts classiques à base d'oxalate de l'art antérieur, du moins sur les plans suivants :
13 - effets prélubrifiants comparables : absence de broutage au frottement, diminution sensible du coefficient de frottement (> 50%) par rapport à la même tôle huilée sans oxalatation préalable.
- dégraissabilité aisée en milieu alcalin, élimination facile du dépôt d'oxalate permettant, par exemple, d'effectuer un,traitement de phosphatation dans de très bonnes conditions.
Le procédé selon l'invention permet d'élargir la plage de fonctionnement du traitement, c'est à dire la fourchette de concentrations en acide oxalique qui permettent d'obtenir un dépôt suffisamment prélubrifiant ;
par exemple :
- si la fourchette est comprise entre 0,3 à 0,8 mole/I d'acide oxalique sans addition d'ions oxydants du zinc, - la fourchette qu'on obtient avec addition d'ions oxydants du zinc selon l'invention est comprise entre 5.10-3 à 0,8 mole/litre.
Cet effet facilite la gestion des bains d'oxalatation en application industrielle.
Grâce à l'invention, on obtient ainsi des dépôts d'oxalate sur des tôles zinguées :
- à des vitesses plus élevées, sans utiliser d'oxydant en quantité
importantè comme de l'eau oxygénée et/ou sans polarisation de la tôle, - et/ou à l'aide de solutions moins concentrées en acide oxalique que dans l'art antérieur.
Comme illustré dans les exemples ci-après par des mesures comparatives de potentiel à l'abandon de tôles zinguées plongées dans différentes solutions d'oxalatation :
- En présence d'acide oxalique seul, on observe systématiquement un léger retard avant obtention d'une couche d'oxalate de zinc totalement couvrante, ce qui reflète un phénomène d'inhibition de formation du dépôt sur le revêtement zingué ; on observe également que ce retard est d'autant plus court que la concentration en acide oxalique est élevée.
14 - En présence d'ions métalliques oxydants du zinc selôn l'invention, on observe une diminution très importante voire la disparition de ce phénomène d'inhibition (voir en particulier la figure 3).
- En présence d'ions métalliques au contraire réducteurs du zinc, à
l'opposé de l'invention, on observe une aggravation de ce phénomène d'inhibition.
L'activité importante des ions oxydants du zinc à faible concentration indique un effet catalyseur empêchant l'inhibition temporaire de formation de la couche d'oxalate.
Le traitement d'oxalatation de tôles zinguées selon l'invention peut être utilisé pour toutes les applications usuelles de l'oxalatation telles celles décrites en introduction, notamment pour la prélubrification de ces tôles.
Observé au microscope électronique à balayage, lefdépôt obtenu se présente sous forme de cristaux cubiques, ou, dans le cas d'épaisseurs inférieures à 0,1 m, sous forme de paillettes ; la taille moyenne de ces cristaux peut être assez différente, notamment en fonction des conditions d'application de la solution de traitement :
- 0,1 à 0,5 m pour un dépôt appliqué par enduction, - 0,5 à 0,8 m pour un dépôt appliqué au trempé.
Grâce à l'analyse par spectroscopie de décharge luminescente ( SDL ) du taux de carbone de différents dépôts, qui sert d'élément traceur de l'oxalate, on constate que le dépôt selon l'invention présente un taux de carbone environ deux fois plus important que celui d'un dépôt effectué dans les mêmes conditions mais sans ajout d'ion métallique oxydant du zinc à la solution d'oxalatation (analyses basées sur des dépôts réalisés à l'aide d'une solution d'oxalatation contenant 0,1 mole/1 d'acide oxalique).
L'analyse par érosion ionique et spectroscopie de masse des ions éjectés (SIMS : Ion Mass Spectroscopy en langue anglaise) révèle la présence des ions oxydants du zinc (Ni2+) dans l'épaisseur du dépôt, comme l'illustre l'exemple 3; ces ions ne sont pas détectables en extrême surface du dépôt par spectroscopie de photoélectron X (XPS : X-Ray Photoelectron Spectroscopy en langue anglaise) ; ces ions ne pas détectables non plus dans l'épaisseur par analyse chimique.

Par rapport aux dépôts qu'on obtient sans addition d'ions oxydants du zinc dans la solution d'oxalatation, on constate, toujours par SIMS dans l'épaisseur du dépôt, une proportion plus importante de zinc oxydé à l'état Zn2+
ce qui expliquerait la couleur plus foncée que présente le dépôt selon l'invention 5 et illustre l'épaisseur plus importante de la couche déposée.
D'autres avantages du procédé de l'invention apparaîtront à la lecture des exemples présentés ci-après à titre non limitatif de la présente invention.
MATÉRIELS :
10 1) Tôle d'acier zinguée utilisée : tôle d'acier zingué USICARTM, revêtue par électrodéposition d'une couche de zinc d'une épaisseur de 7,5 m environ, dégraissée en milieu alcalin.

2) Bains d'oxalatation :
15 Concentration en acide oxalique : variable.
Nature et concentration en ions métalliques ajoutés : variable.
Autres composants : sans.

MÉTHODES :
1) Conditions de réalisation du dépôt :
Température du bain : sauf indications contraires, température ambiante (25 C environ).
Mode d'application : au trempé avec rinçage à l'eau décarbonatée, ou par enduction sans rinçage avant séchage.
Mode de séchage : à l'air chaud.
Densité surfacique de dépôt sec obtenu : sauf indication contraire, 2 g/m2 au trempé (soit 0,7 m environ), 0,1 à 0,3 g/m2 par enduction.

2) Évaluation de l'effet pré-lubrifiant :
On procède à l'évaluation du comportement tribologique de surfaces traitées ou non traitées par oxalatation d'éprouvettes d'acier zingué, en mesurant le coefficient de frottement comme suit :
16 - avant test de frottement, l'éprouvette est préalablement huilée d'une manière standard, sauf indication contraire, à l'aide d'huile référencée 6130 de la Société QUAKER, - le test de frottement est effectué à l'aide d'un tribomètre classique plan-plan, sous une pression de serrage croissante de 0 à 800.10+5 Pa ; la mesure retenue correspond en général à la moyenne des coefficients de frottement mesurés au cours de l'essai.

3) Évaluation du grammage du dépôt à base d'oxalate :
On procède en deux étapes :
- à partir d'une éprouvette d'acier zingué traitée par oxalatation, une première étape de dissolution du dépôt et de la couche sous-jacente de zinc, - à partir de la solution obtenue, une deuxième étape de dosage de la quantité d'acide oxalique contenue dans la solution.
On rapporte cette quantité à la surface traitée pour obtenir le grammage.
1 ère étape : à l'aide d'un montage à trois électrodes (l'éprouvette d'acier zingué traité, une contre-électrode en acier inoxydable, une électrode de référence au Calomel Saturé : ECS ), on réalise l'électro-dissolution du dépôt et du revêtement de zinc par application d'un potentiel de - 800 mV/ECS
à l'éprouvette d'acier zingué traité ; lorsque le courant s'annule, on considère que la totalité du zinc est passée en solution dans l'électrolyte ; dans la solution obtenue qui présente un pH très acide, on considère que l'oxalate de zinc est entièrement décomplexé selon la réaction :
2 H+ + ZnC2O4 --> Zn2+ + H2C204 2ème étape : dans la solution obtenue, on ajoute quelques gouttes de sulfate de manganèse pour catalyser la réaction d'oxydo-réduction ; on dose ensuite l'acide oxalique H2C204 à l'aide d'une solution de permanganate de potassium de normalité connue, selon les réactions :
- oxydation de l'acide oxalique : H2C204 -> 2 C02 + 2 H+ + 2 e-- réduction du permanganate : Mn04 + 8 H+ + 5 e- --> Mnz+ + 4 H20 Au cours de l'ajout de permanganate, on mesure l'évolution du potentiel de la solution entre une électrode de platine et une électrode au calomel saturé ; le saut de potentiel correspond au dosage d'équivalence selon la
17 formule : N. x V. = N X Véq. , où N. est la normalité de la solution d'acide oxalique à titrer, V. le volume de cette solution à titrer, N la normalité de la solution de permanganate de titrage et Véq. le volume de cette solution de titrage ajoutée pour aboutir au saut de potentiel.
A partir de N. , du volume de la solution d'électro-dissolution, de la surface traitée de l'éprouvette, on calcule d'une manière connue en elle-même la densité surfacique de dépôt à base d'oxalate de l'éprouvette initiale et/ou l'épaisseur moyenne de ce dépôt.

4) Caractérisation en corrosion humidotherme (Norme DIN 51160) :

Les éprouvettes à tester sont placées dans une enceinte climatique correspondant à la norme DIN 51160, ce qui simule les conditions de corrosion d'une spire extérieure de bobine de tôle ou d'une tôle découpée en feuille pendant le stockage.

Le détail du cycle (un cycle = 24 heures) en humidotherme est décrit ci-dessous :

- 8 h à 40 C et 100% d'humidité relative - 16 h à température et humidité ambiante.

Les éprouvettes sont suspendues individuellement verticalement.

L'observation visuelle des échantillons permet de quantifier la dégradation du revêtement par apparition de rouille blanche en fonction du nombre de cycles successifs d'exposition. Les cotations sont arrêtées lorsqu'au moins 10 % de la surface totale de l'échantillon est touchée par la rouille blanche.
Exemple comparatif 1 :
Cet exemple a pour but d'illustrer, en référence à{a figure 1, l'évolution de la vitesse d'oxalatation au trempé d'une tôle zinguée en fonction de la concentration en acide oxalique du bain de traitement et/ou en fonction de la température de ce bain.
18 La figure 1 représente la variation d'épaisseur de dépôt au trempé
d'oxalate de zinc ( m) en fonction de la durée du traitement d'oxalatation, soit ici la durée de trempage (s), pour différentes concentrations en acide oxalique -0,1, 0,3, 0,5 et 0,8 molellitre, et deux températures 25 C et 50 C, soit huit courbes au total (les courbes 0,1 mole/l à 25 C et à 50 C sont confondues).
Les résultats obtenus sont reportés à la figure 1 pour les solutions de traitement et les températures suivantes :
A:[H2C204] = 0,1 mole/1 soit à 25 C, soit à 50 C
B:[HZC204] = 0,3 mole/I à 25 C
C:[H2C204] = 0,5 mole/l à 25 C
D:[H2C204] = 0,8 mole/l à 25 C
E:[H2C204] = 0,3 mole/1 à 50 C
F:[H2C204] = 0,5 mole/I à 50 C
G:[H2C204] = 0,8 molell à 50 C
Pour obtenir un effet pré-lubrifiant significatif dans le cas de l'application au trempé, les essais de routine ont montré par ailleurs que l'épaisseur du dépôt d'oxalate de zinc devait être supérieure ou égale à 0,7 m environ.
Selon les courbes de la figure 1, pour une durée de 0,5 s de traitement, on constate qu'on parvient à cette épaisseur de 0,7 m :
- à 25 C, dès que [C2042-] _ 0,8 mole/litre, - à 50 C, dès que [C2042-] >_ 0,3 mole/litre.
On constate donc que, pour obtenir une vitesse d'oxalatation élevée sans polarisation électrique de la tôle à traiter et sans oxydant du zinc à une concentration élevée, il convient d'utiliser des solutions dont la concentration en acide oxalique est largement supérieure à 0,1 molell, au minimum: 0,3 molell à
50 C, 0,8.mole/1 à 25 C.

Les figures 2A, 2B et 3 illustrent les exemples 1 et 2 : en ordonnée, potentiel à l'abandon (mesuré en mV par rapport à.une Électrode au Calomel Saturé : ECS ) d'une tôle d'acier zingué en fonction du temps (s) en abscisse, mesuré à partir de l'instant d'immersion de la tôle (temps zéro) par chronopotentiométrie à courant quasi-nul.
19 Exemple 1 :
Cet exemple a pour but d'illustrer, selon l'invention, l'effet de l'addition, à
très faible concentration, d'ions Ni2+ dans la solution de traitement sur la vitesse d'oxalatation de la tôle zinguée, en utilisant ici, toujours au trempé, différentes solutions de traitement à 25 C contenant la mêm'e proportion de 0,5 mole/l d'acide oxalique ; les ions Ni2+ sont oxydants du zinc.
Pour évaluer en continu la vitesse d'oxalatation d'une solution d'oxalatation, on procède par mesure du potentiel à l'abandon de la tôle d'acier zingué à partir de l'instant (temps zéro) de début de trempage de cette tôle dans ladite solution ; l'électrode de tôle d'acier se présente sous la forme d'un disque circulaire de surface 0,2 cm2 ; pendant la mesure, l'électrode est entraînée en rotation à 1250 tours par minute.
Les résultats obtenus sont reportés à la figure 2A po'ur les solutions de traitement suivantes :
- C = comparatif :[H2C204] = 0,5 mole/l sans addition d'ions, - A:[H2C204] = 0,5 mole/I et [NiC12] = 10-3 mole/1 - B:[H2C204] = 0,5 mole/1 et [NiC12] = 10-4 mole/l La courbe C (comparatif) concerne une solution de l'art antérieur, sans addition d'ions oxydants du zinc ; elle montre une première phase d'augmentation régulière du potentiel jusqu'à 100 secondes environ suivie d'une deuxième phase de légère diminution lente et régulière ; dans la première phase, on constate que la vitesse d'oxalatation est très faible dans les premiers instants puis augmente régulièrement (augmentation de la pente de la courbe) ;
cette très faible vitesse d'oxalatation traduit un phénomène d'inhibition temporaire de la surface zinguée que l'invention permet précisément de limiter.
Les courbes A et B concernent des solutions selon l'invention, contenant des ions oxydants du zinc ; elles montrent que l'oxalatation est quasiment instantanée, ce qui indique que de très faibles quantités d'ions Ni2+ ajoutés à la solution permettent de limiter voire de supprimer ce phénomène d'inhibition, d'accroître considérablement la réactivité de la surface zinguée, et d'augmenter très fortement la vitesse d'oxalatation.

La figure 2B montre que cet effet résulte d'une synergie entre les ions C2042- et les ions Ni2+ ; les résultats reportés concernent les solutions de traitement suivantes :
- A:[H2C204] = 0,5 rnole/I et [NiC12] = 0,001 mole/1 5 - I: concerne une solution ne contenant que lês ions oxydants du zinc à
faible concentration, sans acide oxalique :[NiCI2] = 0,001 mole/I
Des résultats reportés sur cette figure, on déduit clairement que les ions Ni2+ seuls n'ont pas d'effet comparable à celui des ions C2O42- + Ni2+.

10 Exemple 2 :
Cet exemple a pour but d'illustrer que seuls les ions qui sont oxydants du zinc apportent, même à faible concentration, cet effet de synergie et permettent d'augmenter la vitesse d'oxalatation. ' Comme dans l'exemple 1, on utilise la mesure de potentiel à l'abandon de 15 la même tôle d'acier zingué trempée dans la solution de traitement à
évaluer.
Pour mieux différencier l'effet des ions métalliques ajoutés à la solution sur la vitesse d'oxalatation, on utilise ici des solutions ne contenant que 0,05 mole/1 d'acide oxalique, toujours à 25 C ; pour toutes les solutions (sauf celle de référence, B), la concentration en ions ajoutés est de 10-3 mole/I.
20 Sur la figure 3, on trouve, les courbes d'évolution de potentiel à
l'abandon correspondant aux solutions de traitement suivantes :
A:[H2C204] = 5.10-2 mole/1 et [MnC12] = 10"3 mole/1 B = référence : [H2C204] = 5.10"2 mole/1 C:[H2C204] = 5.10"2 mole/1 et [NiCI2] = 10"3 mole/I
D:[H2C204] = 5.10-2 mole/1 et [CoCI2] = 10"3 mole/1 E:[H2C204] = 5.10-2 mole/I et [CuC12] = 10-3 mole/1 Les ions Cu2+, Co2+ et Ni2+ sont oxydants du zinc et sont donc utilisables pour l'invention, les ions Mn2+ ne sont pas oxydants du zinc et ne sont pas utilisables pour l'invention.
Les potentiels normaux d'oxydo-réduction des couples (ions métalliques /
métal correspondant) par rapport à l'électrode normale à hydrogène sont :
- Eo (Cu2+/Cu) _ + 0,34 V
- Ep (Ni2+/Ni) 0,26 V
21 - Eo (Co2+/Co) 0,28 V
- Pour mémoire : Ep (Zn2+/Zn) 0,76 V
- Eo(Mn2+/Mn)=-1,18V
En comparant les courbes de la figure 3 et ces valeurs de potentiel d'oxydo-réduction, on déduit clairement que l'action accélératrice de l'ion métallique sur la vitesse d'oxalatation est d'autant plus prononcée que cet ion est oxydant du zinc ; à l'inverse, l'ion Mn2+, qui est réducteur et sort du champ de l'invention, a au contraire un effet ralentissant sur l'oxalatation.

Exemple 3 :
Cet exemple a pour but de rechercher dans quel domaine de concentration l'ion oxydant du zinc ajouté à la solution de traitement est efficace pour catalyser et accélérer l'oxalatation de la surfacé zinguée.
Comme dans l'exemple 2, on trace les courbes de potentiel à l'abandon d'une électrode d'acier zingué dans des solutions comprenant 0,05 mole/litre d'acide oxalique et différentes concentrations en NiCl2 s'échelonnant entre 10-et 10-1 mole/litre ; on constate que l'effet catalytique des ions Ni2+ se produit dès que la concentration NiCl2 atteint 10-6 mole/litre ; on observe toujours cet effet pour des concentrations supérieures, jusqu'à 10-2 mole/litre ; au delà
de cette concentration, on observe à l'oeil un dépôt de nickel chimique.

Exemple 4:
Cet exemple a pour but d'illustrer les caractéristiques physico-chimiques du dépôt selon l'invention qui le différencient d'un dépôt d'oxalatation effectué
selon l'art antérieur (référence).
La méthode analytique qui permet de repérer ces différences est la Spectroscopie de Masse des Ions éjectés du dépôt d'oxalate par bombardement ionique ( SIMS ).

La figure 4 illustre, du haut vers le bas, les profils de Ni+58, 0-16 et ZnO+go obtenus par spectroscopie de masse ionique ( SIMS ) sur un dépôt à
base d'oxalate réalisé selon l'invention (courbes A) et sur un dépôt réalisé
dans les mêmes conditions mais sans addition d'ions métalliques oxydants (courbes B) ; les courbes indiquent l'intensité du signal en fonction du temps d'érosion
22 ionique (0 à 25 min.), c'est à dire en fonction de la profondeur à partir de l'extrême surface.
La figure 4, subdivisée en trois parties repérées du haut vers le bas Ni , O et ZnO donne les résultats obtenus respectivement pour trois types d'ions : Ni+58 , 0-16 et ZnO+go ; sur chaque partie, ~on repère deux courbes ou profils : courbes A pour un dépôt effectué selon l'invention en présence d'ions de nickel, courbes B pour un dépôt de référence effectué dans les mêmes conditions mais sans addition d'ions de nickel.
Le temps d'érosion ( sputter time en langue anglaise) s'étend à 25 minutes et correspond à un'e profondeur de l'ordre de 1 à 1,5 m environ.
On déduit de ces résultats que :
- le nickel ajouté dans le bain d'oxalatation est présent dans l'épaisseur du dépôt réalisé en présence de Ni2+ à une concetltration au moins 5 fois plus élevée que dans l'épaisseur du dépôt de référence ; le nickel détecté dans le dépôt de référence correspond au nickel des impuretés inévitables présentes dans le bain.
- l'ajout de Ni2+ dans le bain d'oxalatation augmente la proportion de zinc à l'état oxydé Zn2+ dans le dépôt, ce qui confirme que cet ajout favorise la dissolution et l'oxydation du zinc (en Zn2+) de la surface à
traiter et permet d'augmenter l'épaisseur de la couche déposée.

Exemple 5 :
Cet exemple a pour but d'illustrer les synergies possibles entre le dépôt à
base d'oxalate et une huile de lubrification, notamment dans le cas où cette huile contient des esters gras et/ou du carbonate de calcium.
Les esters gras sont des composants classiques des huiles de lubrification ; les carbonates de calcium sont des additifs classiques de ces huiles, dispersés et mis en émulsion dans la phase huileuse en général à
l'aide de sulfonates d'alkyl ou de sulfonates d'alkyl-aryles ; le terme usuel pour ce mélange est sulfonate de calcium surbasé .
L'huile QUAKER 6130 utilisée dans la procédure d'évaluation de l'effet pré-lubrifiant (point 2, MÉTHODES ci-dessus) contient, outre de l'huile
23 minérale oléfinique ou paraffinique, les deux composants à la fois : 16%
environ d'esters gras et 5% environ de carbonate de calcium.
On procède à des essais de frottement (point 2, MÉTHODES ci dessus, ici, avec une pression de serrage constante de 400 10+5 Pa) sur des éprouvettes zinguées non traitées par oxalatation et sur des éprouvettes traitées par enduction selon l'invention de manière à obtenir un dépôt à base d'oxalate de grammage de l'ordre de 0,3 g/m2.
Avant l'essai de frottement, les éprouvettes sont revêtues :
- soit d'huile purement minérale ne contenant pas d'esters gras ni de carbonate de calcium (huile SHELL référencée 2881), - soit d'huile QUAKER 6130, - soit d'une couche de carbonate de calcium, appliquée par enduction d'une solution de sulfonates de calcium surbasés diluée dans de l'hexadécane ;
- soit d'une couche d'ester gras, appliquée également par enduction d'une solution d'oléate de méthyle (ester gras) dilué dans de l'hexadécane ;
Pour les tests de frottement, on mesure ensuite le coefficient de frottement minimum en fin d'essai les résultats obtenus sont reportés au tableau III.

Tableau III : résultats de frottement.
Huilage ,nin Huile SHELL 2881 0,19 Surface Carbonate calcium 0,25 non traitée Ester gras 0,25 Huile QUAKER 6130 0,16 Huile SHELL 2881 0,14 Surface traitée Carbonate calcium 0,1 (invention) Ester gras 0,1 Huile QUAKER 6130 0,09 On constate donc que le dépôt à base d'oxalate apporte un effet pré-lubrifiant beaucoup plus important avec une huile comprenant au moins un
24 ester gras et/ou du carbonate de calcium dans une proportion supérieure ou égale à 5% qu'avec une huile ne contenant pas ces composants ; les résultats mettent clairement en évidence la synergie du dépôt à base d'oxalate avec chacun de ces composants.
Exemple 6 Cet exemple a pour but d'illustrer que les tôles zinguées traitées selon l'invention (application de la solution selon l'invention par la technique de l'enduction) puis revêtues d'un film mince d'huile QUAKER 6130 ont un bon comportement à la fois en emboutissage et en corrosion temporaire.

Tableau IV : résultats du comportement en humidotherme et en emboutissage.
Comportement en Grammage humidotherme;
MODALITES (glm2+/- Nombre de cycles Emboutissage 0,02) avant apparition de 10% de rouille blanche Référence USICARTM - 20 cycles mauvais USICARTM traité par H2C204 à 0,1 M 0,2 Mauvais : 2 cycles excellent USICARTM traité par H2C204 à 0,05 M 0,2 Mauvais : 2 cycles excellent USICAR traité par H2C204 à 0,05 M + CuCIZ 10' M
Non rincé 0,23 Bon : 20 cycles excellent USICAR traité par H2C204 à 0,05 M+ CuClz 10 M
Rincé 0,21 Bon : 18 cycles excellent USICAR traité par H2C204 à 0,05 M+ CuC1210 M
Non rincé 0,16 Bon : 24 cycles excellent USICAR traité par H2C204 à 0,05 M + CuC1210' M
Rincé 0,18 Bon : 17 cycles excellent USICAR traité par H2C204 à 0,1 M + CuC1210 M
Non rincé 0,21 Bon : 20 cycles excellent USICAR traité par H2CaO4 à 0,1 M+ CuC1210 M
Rincé 0,19 Bon : 18 cycles excellent USICAR traité par H2C204 à 0,1 M + CuCI2 10" M
Non rincé 0,21 Bon : 20 cycles excellent USICAR traité par H2C204 à 0,1 M+ CuC1210' M
Rincé 0,20 Bon : 16 cycles excellent (Remarque : dans ce tableau, nous avons remplacé l'unité mole/1 par M) Ces résultats montrent que les tôles zinguées (USICARTM) traitées à
5 l'acide oxalique seul et à faibles concentrations (0,1 mole/l et 0,05 mole/I), et avec un grammage de 0,2 g/m2 présentent un bon comportement en emboutissage, mais un mauvais comportement en humidotherme. Ce mauvais comportement en humidotherme est très probablement lié au fait que la réaction d'oxalatation mise en jeu ne conduit pas à la seule formation d'un 10 complexe de type ZnC2O4, mais au dépôt d'une couche mixte constitué en plus du complexe précité, d'acide oxalique n'ayant pas réagi et/ou d'un autre complexe de type Zn(HC204)2, également porteur de fonctions acides. En présence de l'huile, les fonctions acides libres de la couche viendraient réagir avec les fonctions sulfonates de l'huile (composés inhibiteur de corrosion) par 15 une réaction acido-basique. De ce fait, l'huile serait appauvrie en espèces inhibitrices de corrosion et ne serait plus à même d'assurer sa fonction protectrice vis à vis de la corrosion.
Par ailleurs, l'ajout d'un activateur, tel que le Cu2+, en très faible quantité
dans un bain d'oxalatation faiblement concentré (10-3 ou 10"4 mole/1) permet 20 l'élaboration de dépôts sur la surface zinguée traitée qui sont quasi exempts de phase soluble. En effet, les résultats montrent clairement qu'il n'y a pas de différence significative de grammage entre les échantillons rincés et les échantillons non rincés.
En outre, à partir des solutions selon l'invention, c'est à dire celles dont la
25 concentration en acide oxalique varie de 0,05 moie/i à 0,1 mole/l et la concentration en CuCl2 varie de 10-3 à 10-4 mole/l, les grammages des couches d'oxalate de zinc déposées sur la surface zinguée traitée sont voisins du grammage visé (0,2 g/m2), et conduisent à un bon comportement en humidotherme, ainsi qu'à un excellent comportement en emboutissage.

Claims (9)

REVENDICATIONS :
1. Procédé pour former une couche d'oxalate de zinc sur la surface d'une bande ou d'une tôle métallique revêtue d'une couche de zinc ou d'alliage de zinc, à l'exception des alliages zinc-fer, au moyen d'une solution aqueuse d'oxalatation constitué de l'acide oxalique caractérisé, en ce que ladite solution est une solution aqueuse d'acide oxalique à une concentration comprise entre 5.10-3 et 0,1 mole/I renfermant au moins un composé et/ou un ion d'un métal oxydant du zinc à une concentration comprise entre 10-6 et 10-2 mole/l, et éventuellement un agent mouillant.
2. Procédé selon la revendication 1, caractérisé en ce que ladite concentration en acide oxalique est comprise entre 5.10-3 et 5.10-2 mole/I.
3. Procédé selon l'une des revendications 1 à 2, caractérisé en ce que la concentration en composés et/ou ions oxydants du zinc dans ladite solution est comprise entre 10-6 et 10-3 mole/l.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'au moins un ion est choisi dans le groupe comprenant Ni2+, Co2+, Cu2+ , Fe2+, Fe3+, Mo3+, Sn2+, Sn4+.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ladite solution est appliquée sur ladite surface zinguée sans polarisation électrique de ladite tôle.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le grammage de ladite couche d'oxalate de zinc est compris entre 0,05 et 3 g/m2.
7. Procédé de lubrification et de protection temporaire d'une tôle zinguée, caractérisé en ce qu'il comprend une étape de traitement d'oxalatation de surface selon l'une quelconque des revendications 1 à 6, suivie d'une étape d'application d'une couche d'huile.
8. Procédé de lubrification selon la revendication 7, caractérisé en ce que ladite huile comprend au moins un ester gras et/ou du carbonate de calcium dans une proportion supérieure ou égale à 5%.
9. Procédé d'emboutissage d'une tôle zinguée, caractérisé en ce qu'il comprend, préalablement à l'emboutissage, une étape de lubrification selon l'une quelconque des revendications 7 ou 8.
CA002397660A 2000-01-13 2001-01-09 Procede d'oxalatation de la surface zinguee d'une tole Expired - Fee Related CA2397660C (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0000370A FR2803855B1 (fr) 2000-01-13 2000-01-13 Procede d'oxalatation de la surface zinguee d'une tole
FR00/00370 2000-01-13
PCT/FR2001/000049 WO2001051682A1 (fr) 2000-01-13 2001-01-09 Procede d'oxalatation de la surface zinguee d'une tole

Publications (2)

Publication Number Publication Date
CA2397660A1 CA2397660A1 (fr) 2001-07-19
CA2397660C true CA2397660C (fr) 2009-04-21

Family

ID=8845852

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002397660A Expired - Fee Related CA2397660C (fr) 2000-01-13 2001-01-09 Procede d'oxalatation de la surface zinguee d'une tole

Country Status (10)

Country Link
US (1) US6991688B2 (fr)
EP (1) EP1252367B1 (fr)
AT (1) ATE312957T1 (fr)
AU (1) AU2001231855A1 (fr)
BR (1) BR0107593A (fr)
CA (1) CA2397660C (fr)
DE (1) DE60115843T2 (fr)
ES (1) ES2252190T3 (fr)
FR (1) FR2803855B1 (fr)
WO (1) WO2001051682A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1540027B1 (fr) * 2002-09-10 2008-05-14 Nippon Steel Corporation Bande d'acier recouverte de metal a base de sn presentant une excellente apparence et procede de production correspondant
FR2864552B1 (fr) * 2003-12-24 2006-07-21 Usinor Traitement de surface par hydroxysulfate
DE102010025707A1 (de) * 2010-06-30 2012-01-05 Rheinzink Gmbh & Co. Kg Verfahren zur Herstellung von Schutzschichten auf Flacherzeugnissen aus Titanzink
DE102017107584A1 (de) * 2017-04-07 2018-10-11 Rwe Power Aktiengesellschaft Zinkdosierung zur Dekontamination von Leichtwasserreaktoren
CN111748758B (zh) * 2019-03-27 2023-04-07 宝山钢铁股份有限公司 一种粘胶性优良的润滑处理热镀锌钢板及其制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2086712A (en) * 1932-01-21 1937-07-13 Parker Rust Proof Co Coating zinc and the coated article
GB394211A (en) * 1932-01-21 1933-06-22 Pyrene Co Ltd Improvements in methods of and materials for coating zinc surfaces
US1954744A (en) * 1932-06-07 1934-04-10 Delaney Chemical Company Method and solution for treating metal surfaces
US2060365A (en) * 1933-01-31 1936-11-10 Curtin Howe Corp Oxalate coating on nonferrous metal
US2081449A (en) * 1935-05-16 1937-05-25 Jr Charles B Cook Solution for treating the surface of steel or iron for the application of paint
DE976692C (de) * 1951-06-26 1964-02-27 Metallgesellschaft Ag Verfahren zum Aufbringen von Oxalatueberzuegen auf Metallen
US2809138A (en) * 1954-03-18 1957-10-08 Hoechst Ag Bath solution and a process of treating metal surfaces
JP2668555B2 (ja) * 1988-06-30 1997-10-27 日本ペイント株式会社 化成処理剤及び化成処理浴
US5795661A (en) * 1996-07-10 1998-08-18 Bethlehem Steel Corporation Zinc coated steel sheet and strip having improved formability and surface quality and method thereof

Also Published As

Publication number Publication date
FR2803855B1 (fr) 2002-05-31
AU2001231855A1 (en) 2001-07-24
WO2001051682A1 (fr) 2001-07-19
US6991688B2 (en) 2006-01-31
DE60115843T2 (de) 2006-07-27
EP1252367A1 (fr) 2002-10-30
EP1252367B1 (fr) 2005-12-14
US20030070731A1 (en) 2003-04-17
BR0107593A (pt) 2002-11-26
FR2803855A1 (fr) 2001-07-20
DE60115843D1 (de) 2006-01-19
ES2252190T3 (es) 2006-05-16
CA2397660A1 (fr) 2001-07-19
ATE312957T1 (de) 2005-12-15

Similar Documents

Publication Publication Date Title
CA2915780C (fr) Procede de traitement d&#39;une tole pour reduire son noircissement ou son ternissement lors de son stockage et tole traitee par tel procede
CA2343016C (fr) Toles d&#39;acier zingue revetues d&#39;une couche prelubrifiante d&#39;hydroxysulfate et procedes d&#39;obtention de cette tole
CA2397660C (fr) Procede d&#39;oxalatation de la surface zinguee d&#39;une tole
RU2581943C2 (ru) Применение раствора, содержащего сульфат-ионы, для уменьшения почернения или потускнения металлического листа при его хранении и металлический лист, обработанный таким раствором
CA2442502C (fr) Procede de traitement par carboxylatation de surfaces metalliques
CA2141710C (fr) Composition de bains de sels a base de nitrates alcalins pour oxyder du metal ferreux et ainsi ameliorer sa resistance a la corrosion
CA2632928C (fr) Procede de traitement par carboxylatation de surfaces metalliques, utilisation de ce procede pour la protection temporaire contre la corrosion, et procede de fabrication d&#39;une tole mise en forme ainsi carboxylatee
CN105256271B (zh) 一种铁基粉末冶金零件表面渗硫工艺
Cano et al. Effect of relative humidity on copper corrosion by acetic and formic acid vapours
Teixeira et al. Effect of porosity of phosphate coating on corrosion resistance of galvanized and phosphated steels Part II: Evaluation of corrosion resistance
Cristoforetti et al. Influence of deposition parameters on the behavior of nitro-cobalt-based and Ti-hexafluoride-based pretreatments
EP0085626B1 (fr) Composition et procédé pour le traitement de surfaces métalliques phosphatées
Lefebvre et al. Alternative reproductive strategies in the progenetic trematode Coitocaecum parvum: comparison of selfing and mating worms
Tokuda et al. Effect of precipitated Mg-containing corrosion products on the anodic behavior of steel in aqueous corrosion for Zn-Al-Mg coated steel
Arulmozhi et al. Experimental investigation on the properties of Manganese Phosphate Coating on AISI D2 Tool Steel
US20050126921A1 (en) Method for the darkening of a surface layer of a piece of material containing zinc
Mabuchi Inhibition of Cobalt Corrosion by Silane Coatings
JP5678817B2 (ja) 錫めっき鋼板の製造方法
BE876750A (fr) Materiaux d&#39;acier a revetement superficiel
JP2005113264A (ja) 合金化溶融亜鉛めっき鋼板
WO1997020640A1 (fr) Procede pour proteger contre la corrosion et/ou preparer a la mise en forme une piece metallique
FR2742159A1 (fr) Procede pour proteger contre la corrosion et/ou preparer a la mise en forme une piece metallique
WO1996034127A1 (fr) Compositions de bains de sels a base de nitrates alcalins pour oxyder du metal ferreux et ainsi ameliorer sa resistance a la corrosion

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed