US2060365A - Oxalate coating on nonferrous metal - Google Patents

Oxalate coating on nonferrous metal Download PDF

Info

Publication number
US2060365A
US2060365A US654551A US65455133A US2060365A US 2060365 A US2060365 A US 2060365A US 654551 A US654551 A US 654551A US 65455133 A US65455133 A US 65455133A US 2060365 A US2060365 A US 2060365A
Authority
US
United States
Prior art keywords
coating
zinc
metal
oxalate
nonferrous metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US654551A
Inventor
Leo P Curtin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CURTIN HOWE CORP
CURTIN-HOWE Corp
Original Assignee
CURTIN HOWE CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CURTIN HOWE CORP filed Critical CURTIN HOWE CORP
Priority to US654551A priority Critical patent/US2060365A/en
Application granted granted Critical
Publication of US2060365A publication Critical patent/US2060365A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/46Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing oxalates

Definitions

  • the surface of freshly galvanized material or of newly made zinc castings is particularly diiilcult to paint or lacquer.
  • the coating liquid appears to make a good bond at the time of its application, but some time later it frequently peels off in large flakes showing the underlying zinc metal as bright and clean as though the paint or lacquer had never been applied.
  • solid zinc objects and galvanized materials are subject to a form of oxidation known as white rust which seems to take place as well when such articles are held in storage as when exposed to the elements.
  • This white rust, which 55 is supposed to consist of oxides and carbonates of zinc, is the cause of many rejections by purchasers.
  • the coating consists of a complexmixture of oxalates of iron and zinc.
  • the following chemi- 15 cal reaction illustrates how the coating may be produced on the surface of the metal, although other reactions may occur.
  • the coating consists of a mixture of insoluble oxalates of zinc and iron and that according to the foregoing equation the zinc metal provides only one-third of the metal going into the coating, the remaining two-thirds 20 being obtained from the iron oxalate in solution.
  • This is an important advantage particularly in the case of galvanized materials. It is known that it is possible to produce a coating on metallic zinc by means of oxalic acid alone. This coating is not nearly so adherent or otherwise satisfactory, however, and it consumes three times as much of the zinc metal in its formation v as when ferric oxalate is used. The coating formed by oxalic acid is quite likely to be nonadherent and in such cases can be removed from the metal by brushing or wiping.
  • ferric oxalate This difliculty has not been encountered with the ferric oxalate type of bath.
  • the temperature of the bath is not at all critical, good results being obtained at temperatures from 50 C. to 99 C.
  • the concentration of ferric oxalate may vary within considerable limits, say from 1% to 10%. I prefer to use, however, a bath containing 4% to 5% 40 of ferric oxalate and. 0.5% to 1.0% of free oxalic acid.
  • non-ferrous metals capable of being coated by this process may be mentioned aluminum, magnesium and 'lead.
  • non-ferrous mtal of the class consisting of zinc, aluminum, magnesium and lead, which'comprises exposing a surface of the metal to the action of an aqueous 2 2,oso,ses
  • non-ferrous metal 02 the class consisting of zinc, aluminum, magnesium and lead, which comprises exposing asurface of the metal to the action of an aqueous solution containing from 4 to 5 per cent of ferric oxalate and from 0.5 to 1.0 per cent of oxalic acid, until a coating 0! the desired thickness is formed thereon.

Description

Patented Nov. 10, 1936 Leo P. Gnrtin, Cranbnry, N. J., assignor to Curtin- Howe Corporation, New York, N. Y., a corporation of New York No Drawing. Application January 31, 1933. Serial No. 654,551
3 Claims. (cl. 148-6) In an application Serial No. 591,932, filed February 9, 1932, issued January 31, 1933, as U. 8. Patent No. 1,895,569, in the name of Leo P. Curtin and Bernard L. Kline, there is described a 5 method of producing protective coatings on iron and steel articles by subjecting them to the action of a bath in which ferric oxalate is the principal component.
Most of the non-ferrous metals below calcium in the electromotive series acquire coatings as a result of oxidation by air, these coatings in some instances, because of their impervious nature, providing the underlying metal with partial or complete protection against further oxidation. It is often the case, however, that such coatings fail to give the expected protection and oxidation of the metal continues at a rapid rate. This is especially true in the case of zinc and some of the new alloys which contain magnesium.
Furthermore, it is sometimes desired to apply a lacquer, enamel or paint coating over such metals, and if oxidation takes place after the application of such a coating, the enamel or lacquer film is disrupted.- In addition, the physical nature of such metallic surfaces is often such that the lacquer or other coating material does not make a satisfactory bond with the metal. This is particularly the case with zinc, whether it be zinc sheets or castings or the thin coating of metallic zinc over iron produced by the galvanizing process.
Now I have discovered that similar coatings may be formed in a similar manner on nonferrous metals. The invention will be described and illustrated hereinafter by reference to the coating of zinc, it being understood that the invention is not limited thereto but is applicable generally for coating metals which react with ferric oxalate to the formation of ferrous oxalate and the oxalate of the metal.
The surface of freshly galvanized material or of newly made zinc castings is particularly diiilcult to paint or lacquer. The coating liquid appears to make a good bond at the time of its application, but some time later it frequently peels off in large flakes showing the underlying zinc metal as bright and clean as though the paint or lacquer had never been applied. Furthermore, solid zinc objects and galvanized materials are subject to a form of oxidation known as white rust which seems to take place as well when such articles are held in storage as when exposed to the elements. This white rust, which 55 is supposed to consist of oxides and carbonates of zinc, is the cause of many rejections by purchasers. I
I have found that, if zinc is immersed ina hot aqueous solution of ferric oxalate containing barely enough free oxalic acid to inhibit hydroly- 5 sis of the ferric salt, the zinc receives alight but continuous coating which very slightly roughens the surface and provides an admirable base for a subsequent coating of enamel, lacquer, paint or oil. When zinc is so treated the lacquer or other coating clings tenaciously and shows no disposition to peel oil as is the case when it is applied directly over the bright metal.
The coating consists of a complexmixture of oxalates of iron and zinc. The following chemi- 15 cal reaction illustrates how the coating may be produced on the surface of the metal, although other reactions may occur.
It will be noticed that the coating consists of a mixture of insoluble oxalates of zinc and iron and that according to the foregoing equation the zinc metal provides only one-third of the metal going into the coating, the remaining two-thirds 20 being obtained from the iron oxalate in solution. This is an important advantage particularly in the case of galvanized materials. It is known that it is possible to produce a coating on metallic zinc by means of oxalic acid alone. This coating is not nearly so adherent or otherwise satisfactory, however, and it consumes three times as much of the zinc metal in its formation v as when ferric oxalate is used. The coating formed by oxalic acid is quite likely to be nonadherent and in such cases can be removed from the metal by brushing or wiping. This difliculty has not been encountered with the ferric oxalate type of bath. The temperature of the bath is not at all critical, good results being obtained at temperatures from 50 C. to 99 C. The concentration of ferric oxalate may vary within considerable limits, say from 1% to 10%. I prefer to use, however, a bath containing 4% to 5% 40 of ferric oxalate and. 0.5% to 1.0% of free oxalic acid.
Among other non-ferrous metals capable of being coated by this process may be mentioned aluminum, magnesium and 'lead.
I claim:
1. The process of coating 9. non-ferrous mtal of the class consisting of zinc, aluminum, magnesium and lead, which'comprises exposing a surface of the metal to the action of an aqueous 2 2,oso,ses
solution containing from i to 10 per cent of ferric oxalate. until a coating of the desired thickness is formed thereon.
2. A process as set forth in claim 1, wherein the solution of ferric oxalate is acidulated merely to such extent as to prevent hydrolysis oi the ferric oxalate.
3. The process of coating 9. non-ferrous metal 02 the class consisting of zinc, aluminum, magnesium and lead, which comprises exposing asurface of the metal to the action of an aqueous solution containing from 4 to 5 per cent of ferric oxalate and from 0.5 to 1.0 per cent of oxalic acid, until a coating 0! the desired thickness is formed thereon.
LEO P. CURTm.
US654551A 1933-01-31 1933-01-31 Oxalate coating on nonferrous metal Expired - Lifetime US2060365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US654551A US2060365A (en) 1933-01-31 1933-01-31 Oxalate coating on nonferrous metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US654551A US2060365A (en) 1933-01-31 1933-01-31 Oxalate coating on nonferrous metal

Publications (1)

Publication Number Publication Date
US2060365A true US2060365A (en) 1936-11-10

Family

ID=24625315

Family Applications (1)

Application Number Title Priority Date Filing Date
US654551A Expired - Lifetime US2060365A (en) 1933-01-31 1933-01-31 Oxalate coating on nonferrous metal

Country Status (1)

Country Link
US (1) US2060365A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2774696A (en) * 1950-10-19 1956-12-18 Parker Rust Proof Co Method of forming oxalate coating on chromium alloys
US3469980A (en) * 1966-06-27 1969-09-30 Mona Industries Inc Descumming solution for etching
US3650861A (en) * 1965-07-01 1972-03-21 Imp Metal Ind Kynoch Ltd Surface treatment of titanium
US4349390A (en) * 1979-12-07 1982-09-14 Norsk Hydro A.S. Method for the electrolytical metal coating of magnesium articles
US5795661A (en) * 1996-07-10 1998-08-18 Bethlehem Steel Corporation Zinc coated steel sheet and strip having improved formability and surface quality and method thereof
WO2001051682A1 (en) * 2000-01-13 2001-07-19 Usinor Method for oxalating the galvanized surface of sheet metal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2774696A (en) * 1950-10-19 1956-12-18 Parker Rust Proof Co Method of forming oxalate coating on chromium alloys
US3650861A (en) * 1965-07-01 1972-03-21 Imp Metal Ind Kynoch Ltd Surface treatment of titanium
US3469980A (en) * 1966-06-27 1969-09-30 Mona Industries Inc Descumming solution for etching
US4349390A (en) * 1979-12-07 1982-09-14 Norsk Hydro A.S. Method for the electrolytical metal coating of magnesium articles
US5795661A (en) * 1996-07-10 1998-08-18 Bethlehem Steel Corporation Zinc coated steel sheet and strip having improved formability and surface quality and method thereof
WO2001051682A1 (en) * 2000-01-13 2001-07-19 Usinor Method for oxalating the galvanized surface of sheet metal
FR2803855A1 (en) * 2000-01-13 2001-07-20 Usinor PROCESS FOR OXALATION OF THE ZINC PLATED SURFACE OF A SHEET
US20030070731A1 (en) * 2000-01-13 2003-04-17 Jacques Petitjean Method for oxalating the galvanized surface of sheet metal
US6991688B2 (en) 2000-01-13 2006-01-31 Usinor Method for oxalating the galvanized surface of sheet metal

Similar Documents

Publication Publication Date Title
US3343930A (en) Ferrous metal article coated with an aluminum zinc alloy
US2106904A (en) Coating malleable non-noble heavy metals
US3320040A (en) Galvanized ferrous article
US2329065A (en) Corrosion resistant coating for metal surfaces
US2298280A (en) Treatment of metal
US3620949A (en) Metal pretreatment and coating process
US2686355A (en) Process for coating metals with aluminum
US3393089A (en) Method of forming improved zinc-aluminum coating on ferrous surfaces
US2375468A (en) Phosphate coating of metals
US2060365A (en) Oxalate coating on nonferrous metal
US4451304A (en) Method of improving the corrosion resistance of chemical conversion coated aluminum
US3849176A (en) Surface-treated steel plates high in anticorrosiveness
US3506499A (en) Method of surface-treating zinc,aluminum and their alloys
US3895969A (en) Composition and process for inhibiting corrosion of non-ferrous metal surfaced articles and providing surface for synthetic resin coating compositions
US2244526A (en) Process of treating metal surfaces
US3437531A (en) Anhydrous chromic acid metal treating solution
JPS62103373A (en) Rust preventive treatment for iron and steel products
US2327002A (en) Coated article and method of making the same
US3081238A (en) Electrolytic treatment of metal surfaces
US2271375A (en) Process of coating metal surfaces
US3791940A (en) Process for sealing anodized aluminum
US2230602A (en) Method of coating metals with lead
US2548419A (en) Method for production of lustrous zinc
US2784122A (en) Process of retarding corrosion of coated metal articles and coated metal article
US3518169A (en) Alkali solution treatment of cathodically chromated metal surface