US3849176A - Surface-treated steel plates high in anticorrosiveness - Google Patents

Surface-treated steel plates high in anticorrosiveness Download PDF

Info

Publication number
US3849176A
US3849176A US23586472A US3849176A US 3849176 A US3849176 A US 3849176A US 23586472 A US23586472 A US 23586472A US 3849176 A US3849176 A US 3849176A
Authority
US
United States
Prior art keywords
film
steel plate
nitrate
nickel
steel plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Hidejiro Asano
Yashichi Ouyagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3287469A external-priority patent/JPS4948823B1/ja
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to US23586472 priority Critical patent/US3849176A/en
Application granted granted Critical
Publication of US3849176A publication Critical patent/US3849176A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/16Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies using synthetic lacquers or varnishes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/60Adding a layer before coating
    • B05D2350/63Adding a layer before coating ceramic layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2504/00Epoxy polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/926Thickness of individual layer specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/1266O, S, or organic compound in metal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • ABSTRACT A surface-treated steel plate high in anti-corrosiveness which plate has been produced by coating a steel plate with an aqueous solution containing the nitrate or acetate of Ni as the principal component in conjunction with such metals as Cr, Mn, Zn and Al as selective components, followed by heating to produce a thermodecomposing reaction so as to cause a strong film containing metallic nickel and at least one metallic oxide to form on the surface of the steel plate.
  • the thus-produced surface-treated steel plate is especially adapted for making cans.
  • This invention relates to a method of making surfacetreated steel plates by thermodecomposing plating.
  • tin-plated steel plates are primarily used for producing cans.
  • tin has certain drawbacks in that it is expensive, it is not endurable at high temperatures, it is weak against corrosion in the atmosphere and further it turns black, depending on the contents of the can.
  • tin is in such short availability in the world, that its supply is unstable.
  • the present inventors have discovered that in order to produce surface-treated steel plates which are devoid of the above defects, it is necessary to form a film on the surface of the steel plate, which film is more stable than the steel plate to be plated.
  • the film formed herein is based on a technical idea different from that of plating, such as tin-plating to electrochemically protect the steel plate in a corrosive liquid.
  • metalplated surface-treated steel plates including tin-plated steel plates, as the material for making cans
  • lacquers of various kinds such as an epoxy resin series paint to prevent the metalplating layer from being corroded and the metal ions from being formed by such contents in the can as, for example, a beverage, liquor, oil or fat.
  • a metal-plated surface-treated steel plate should satisfy certain conditions. It should not only be high in antirusting properties in the atmosphere, but also, when coated with a lacquer and dipped in the above described corrosive liquid, the lacquer coating film should not peel off, and, moreover, it should not interfere with the can-manufacturing operations; for instance, it should be easy to solder and mold.
  • the present inventors have developed a novel process for obtaining a surface-treated steel plate high in anticorrosion by forming, on a steel plate, a film more stable than the iron base.
  • An object of the present invention is to provide surface-treated steel plates which are so high in anticorrosiveness that they can sufficiently serve in place of tin-plated steel plates.
  • the surface-treated steel plates are novel and economical and can be used as a material for manufacturing tin-free cans. These plates may also be used as materials for automobiles, various constructions and toys.
  • the following methods are provided, which are characterized by the following features: that is, a method for obtaining surface-treated steel plates having excellent anticorrosiveness, wherein an aqueous solution of nitrate and/or acetate of Ni is applied on the surface of the steel plates, previously subjected to a surfacecleaning treatment, and the surface treated steel plates are then heated in a nonoxidative gas atmosphere, so as to cause a thermodecomposing reaction, to thereby form a film containing metallic nickel on the surface of the steel plate; a method for forming a further improved film, that is, a method for obtaining surfacetreated steel plates having excellent anticorrosiveness wherein an aqueous solution of nitrate and/or acetate of Ni with the addition of one or more nitrates and acetates of Cr, Mn and Zn is applied on the surface of steel plates, previously subjected to a surface-cleaning treatment, and then heated in a nonoxidative gas atmosphere, so as to cause
  • the present invention is particularly economical because it is possible to utilize a heating cycle of annealing conditions for the thermodecomposing reaction, and the method of the present invention is therefore very high in practical value.
  • the present invention is particularly adapted as a method of making steel plates for making cans.
  • the essence of the present method is to form a very thin film of metallic nickel on the surface of a steel plate by applying an aqueous solution, for example, of nickel nitrate to coat the said surface of the steel plate and then heating it in a reductive or inert non-oxidative atmosphere so as to cause a thermodecomposing reaction of the treating solution and the reduction (complete or partial) of nickel nitrate to metallic nickel.
  • an aqueous solution for example, of nickel nitrate
  • Nickel nitrate or nickel acetate which is an essential component of the treating aqueous solution of the present invention, may be used individually or in admixture.
  • Ni compounds (particularly oxides) other than the aforementioned compounds should be avoided, since they involve difficulties in forming films of satisfactory anticorrosiveness, paint adhesiveness and workability.
  • aqueous solution containing a Ni-salt prepared as described above shall be called a treating solution.
  • the treating solutions of the present invention it is difficult to uniformly apply some of the treating solutions of the present invention to coat steel plates.
  • an improvement can be obtained by adding a proper amount of a surface active agent, such as a nonionic active agent.
  • the deposited amount of the treating solution differs remarkably, depending on the method of coating the surface of the steel plates, for example, by blowing a spray of the treating solution on the surface of the steel plates, applying the treating solution with a roller, or dipping the steel plate in the solution.
  • the concentration of the treating solution is difficult to uniformly define but, if the effective quantitative range is to be defined in relation to the viscosity of the solution or the uniformity of the decomposing reaction, Ni ions are to be contained in an amount of 0.5 to 100 g./l.
  • the later described Cr ions are present in amounts less than 20 g./l. or preferably g./l.
  • Al ions are present in amounts less than g./l. or preferably less than 10 g./l.
  • Zn ions are present in amounts less than 40 g./l. or preferably less than 10 g./l.
  • Mn ions are present in amounts less than 20 g./l. or preferably less than 10 g./l.
  • a nitrate or acetate of Mg, Ca or K may be added in an amount of about 1 g./
  • metal thickness may be less than 1 p. or, if possible, about 0.1 u or less).
  • the above described treating solution is applied and is then quickly heated to cause a thermodecomposing reaction at a temperature of 200 to 750C. in a furnace of a nonoxidative gas atmosphere such that it has, for example, a H content of 2 to 20% and wherein the remaining component is essentially N (as DX or NX gas) used as a brightly annealing gas to form a strong metallic nickel film.
  • a nonoxidative gas atmosphere such that it has, for example, a H content of 2 to 20% and wherein the remaining component is essentially N (as DX or NX gas) used as a brightly annealing gas to form a strong metallic nickel film.
  • N as DX or NX gas
  • the above described nonoxidative gas many contain a slight amount of carbon dioxide, carbon monoxide or water.
  • the heating atmosphere must not be oxidative (i.e. contain oxygen) to such a degree as to have an adverse influence on the reduction of the salt of nickel to metallic nickel; otherwise the salt of nickel applied to the surface of a steel plate may not be reduced to metallic nickel to the required amount during the annealing time and may remain as nickel oxide on the surface of the steel plate. The latter effect would not be in keeping with the object of the present invention.
  • thermodecomposition When the heating temperature is less than 200C, no effective thermodecomposition takes place. On the contrary, when it is more than 750C., there are produced undesirable results, such that all the metallic nickel produced by the thermodecomposition, will alloy with the iron base to form a hard film which is not only low in adhesiveness but also low in the anticorrosiveness, and further even impair the mechanical properties of the steel plate itself.
  • the surface film obtained by this method is thought to be a two-layer film high in anticorrosiveness, consisting of an Fe-Ni alloy in the lower layer and metallic nickel in the upper layer.
  • the present inventors have succeeded in developing an improved method of forming, on the surface of a steel plate, a film which is more excellent than the above described film.
  • This film is thought to be formed of two layers, wherein the lower layer is made of an Fe-Ni alloy and the upper layer is a mixture mainly composed of oxides of Cr, Mn and Zn and metallic nickel.
  • the improved method involves applying to the steel sheet, an aqueous solution (which shall be called a treating solution with additive for the convenience of the explanation hereinafter) obtained by adding one or more of nitrates and acetates of Cr, Mn and Zn to a nitrate and/or acetate of Ni and heating the thus-coated steel'sheet in a nonoxidative gas atmosphere furnace t ofofm a film consisting of one or more of oxides of Cr, Mn and Zn, and metallic nickel.
  • the above-mentioned treating solution with additive may be prepared by adding one or more members consisting of carbonates, oxalates and hydroxides of Cr, Mn and Zn to an aqueous solution of Ni nitrate and/or acetate.
  • any of the methods adopted when applying the above-mentioned treating solution may be used,
  • a surface active agent may be further added.
  • the heating can be carried out under exactly the same conditions and in the same manner, that is, in a temperature range of 200 to 750C. in a furnace of a nonoxidative gas atmosphere in which, for example, the H content is 2 to and the rest is mostly N
  • the thus obtained film is higher in anticorrosiveness than in the case of the above mentioned treating solution composed of the Ni salt only.
  • EXAMPLE 1 A cold-rolled steel plate of a thickness of 0.26mm., which had been cold-worked by a well known method, that is, by using a continous strip rolling apparatus, but had not yet been annealed, was subjected to a well known pretreatment, for example, such surface adjustments as alkali-defatting and sulfuric acid-pickling, was
  • 1, 2 and 3 in the belowmentioned performance test comparison table are steel plates having a film composed of metallic nickel, all prepared by the above-mentioned method.
  • a referential sample No. 13 in the same table was prepared by subjecting a steel to a cold- ]rolling with the above-mentioned continuous strip rolling apparatus, thereupon to alkali-defatting and picktion with additive (which contains one or more salts of ling and then to an annealing in the above-mentioned Cr, Mn and Zn in addition to Ni) is subjected to the thermodecomposition in a temperature range of from 200 to 750C.
  • the present invention provides for a method of inexpensively producing a steel plate having a strong inactive film on the gas atmosphere (this referential steel shall be called a nontreated steel plate hereinafter for the convenience of the explanation).
  • Performance test comparison table Performance tests sample Treating solution composition Treating process I) Antirusting 2) Corrosion 3) Paint ad- No. property resistance below hesiveness the coating film I Nickel nitrate g./l.) Dip-coating 5.0 3 4 2 Nickel acetate (30 g./l.) Heating atmos- 4.0 3 4 phere H, 6% 3 Nickel nitrate (l0 g./l.)+ N: rest 2.5 2 4 nickel acetate (10 g.ll.) Heating temperature: 600C.
  • Nickel nitrate (20 g./l.)+ Roller-coating 7.0 4 5 chromium acetate (l0 g./l.)
  • Performance test comparison table Performance tests Sample Treating solution composition Treating process 1) Antirusting 2) Corrosion 3) Paint ad- No. property resistance below hesiveness the coating film 9 Nickel nitrate (20 g.ll.)+ Dip-coating ll.5 5 5 aluminum nitrate (5 g.ll.)+ chromium acetate (5 g./l.) Heating atmosphere l Nickel nitrate (20 g./l.)+ H 6% aluminum nitrate g./l.)+ N, rest 10.0 5 5 5 zinc nitrate (5 g./l.) Heating temper ature: 250C. 1 l Nickel acetate g./l.)+
  • Example 2 The same cold-rolled steel plate as in Example 1 was defatted with an alkali and pickled with sulfuric acid, was then coated with a treating solution prepared by adding one or more of chromium acetate, manganese nitrate and zinc nitrate into an aqueous solution of nickel acetate or nickel nitrate by using a roller and was then immediately heated at a temperature of 600C. in a brightly annealing gas atmosphere of a H content of 10%, the rest being N to form a film.
  • the samples Nos. 4 to 8 in the above-mentioned performance test comparison table were steel plates prepared by the above-mentioned process.
  • the films obtained by applying a treating solution containing one or more salts of Cr, Mn and Zn in addition to a Ni salt shown properties which are performances more excel lent than that of the film prepared in Example 1. That is, they showed no rusting in 4 to 10 months in the rusting test by indoor exposure and were very high in their corrosion resistance below the coating film when placed in a carbonic acid beverage, after being coated with a lacquer.
  • EXAMPLE 3 A cold-rolled steel plate of a thickness of 026mm. which had been cold-worked by a well known method,: for example, by using a continuous strip rolling apparatus, thereafter alkali-defatted, sulfuric acid-pickled and then annealed in a reductive atmosphere was once more subjected to an alkali-defatting and sulfuric acid pickling surface treatment, and was then dip-coated with a treating solution prepared by adding one or more of chromium acetate, manganese nitrate and zinc nitrate into an aqueous solution of a mixture of nickel nitrate and aluminum nitrate and was then immediately heated at a temperature of 250C. in a heated gas atmosphere of a H content of 6%, the rest being N, to form a film.
  • a treating solution prepared by adding one or more of chromium acetate, manganese nitrate and zinc nitrate into an aqueous solution of a mixture of nickel nitrate and
  • the heating time was very short, amounting to several seconds, though there was a slight difference according to the temperature in the range of 200 to 750C.
  • An iron or steel product having, on the surface thereof, a film of a thickness of less than 1p. consisting essentially of nickel and at least one oxide selected from the group consisting of oxides of Cr, Mn and Zn with a coating of an organic resin paint on the surface of said film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

A surface-treated steel plate high in anti-corrosiveness which plate has been produced by coating a steel plate with an aqueous solution containing the nitrate or acetate of Ni as the principal component in conjunction with such metals as Cr, Mn, Zn and Al as selective components, followed by heating to produce a thermodecomposing reaction so as to cause a strong film containing metallic nickel and at least one metallic oxide to form on the surface of the steel plate. The thus-produced surface-treated steel plate is especially adapted for making cans.

Description

Asano et a1.
SURFACE-TREATED STEEL PLATES HIGH IN ANTICORROSIVENESS Inventors: Hidejiro Asano; Yashichi Ouyagi,
both of Kitakyushu, Japan Assignee: Nippon Steel Corporation, Tokyo,
Japan Filed: Mar. 17, 1972 Appl. No.: 235,864
Related US. Application Data Division of Ser. No. 32,439, April 27, 1970, Pat. No. 3,677,797.
Foreign Application Priority Data 29/l96.6, 195 M, 195 L; 148/62 Nov. 19, 1974 [56] References Cited UNITED STATES PATENTS 3,113,845 12/1963 Uchida et al ll7/7l M 3,468,724 9/1969 Reinhold 117/71 M 3,511,690 5/1970 Aharoni 117/71 M Primary Examiner-Cameron K. Weiffenbach Attorney, Agent, or FirmWenderoth, Lind & Ponack 5 7] ABSTRACT A surface-treated steel plate high in anti-corrosiveness which plate has been produced by coating a steel plate with an aqueous solution containing the nitrate or acetate of Ni as the principal component in conjunction with such metals as Cr, Mn, Zn and Al as selective components, followed by heating to produce a thermodecomposing reaction so as to cause a strong film containing metallic nickel and at least one metallic oxide to form on the surface of the steel plate. The thus-produced surface-treated steel plate is especially adapted for making cans.
2 Claims, No Drawings SURFACE-TREATED STEEL PLATES HIGH IN ANTICORROSIVENESS This is a division of application Ser. No. 32,439, filed Apr. 27, 1970, now US. Pat. No. 3,677,797.
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method of making surfacetreated steel plates by thermodecomposing plating.
2. Description of the Prior Art As is well known, tin-plated steel plates are primarily used for producing cans. However, tin has certain drawbacks in that it is expensive, it is not endurable at high temperatures, it is weak against corrosion in the atmosphere and further it turns black, depending on the contents of the can. Furthermore, tin is in such short availability in the world, that its supply is unstable. As a result of making researches on surface-treated steel plates, the present inventors have discovered that in order to produce surface-treated steel plates which are devoid of the above defects, it is necessary to form a film on the surface of the steel plate, which film is more stable than the steel plate to be plated. The film formed herein is based on a technical idea different from that of plating, such as tin-plating to electrochemically protect the steel plate in a corrosive liquid.
Further, when using metalplated surface-treated steel plates, including tin-plated steel plates, as the material for making cans, it is usual to coat the metalplating layer with well known lacquers of various kinds such as an epoxy resin series paint to prevent the metalplating layer from being corroded and the metal ions from being formed by such contents in the can as, for example, a beverage, liquor, oil or fat.
Therefore, a metal-plated surface-treated steel plate should satisfy certain conditions. It should not only be high in antirusting properties in the atmosphere, but also, when coated with a lacquer and dipped in the above described corrosive liquid, the lacquer coating film should not peel off, and, moreover, it should not interfere with the can-manufacturing operations; for instance, it should be easy to solder and mold.
To exemplify the peeling-off of such lacquer film, the case of an Alor Zn-plated steel plate coated with a lacquer will be explained. When dipping said steel sheet in the above described corrosive liquid, the corrosion of the Alor Zn-plating layer by said corrosive liquid proceeds faster than the corrosion of the iron base material on account of an anodic protective action of Al or Zn on the steel sheet, resulting in the peeling-off of the lacquer film.
As opposed to the case ofan Alor Zn-plated steel plate, there occurs no peeling-off of a lacquer from the surface of a Cror Ni-plated steel plate when dipped in a corrosive liquid because Cr or Ni is inherently high in antirusting properties and is more stable than the iron base; consequently the lacquer adheres firmly to the surface of the Cror Ni-plated steel plate. However, because the plating layer is thick, this plating method is not economical.
SUMMARY OF THE INVENTION On the basis of such knowledge, as is described above, the present inventors have developed a novel process for obtaining a surface-treated steel plate high in anticorrosion by forming, on a steel plate, a film more stable than the iron base.
An object of the present invention is to provide surface-treated steel plates which are so high in anticorrosiveness that they can sufficiently serve in place of tin-plated steel plates. The surface-treated steel plates are novel and economical and can be used as a material for manufacturing tin-free cans. These plates may also be used as materials for automobiles, various constructions and toys.
In order to attain the object of the present invention, the following methods are provided, which are characterized by the following features: that is, a method for obtaining surface-treated steel plates having excellent anticorrosiveness, wherein an aqueous solution of nitrate and/or acetate of Ni is applied on the surface of the steel plates, previously subjected to a surfacecleaning treatment, and the surface treated steel plates are then heated in a nonoxidative gas atmosphere, so as to cause a thermodecomposing reaction, to thereby form a film containing metallic nickel on the surface of the steel plate; a method for forming a further improved film, that is, a method for obtaining surfacetreated steel plates having excellent anticorrosiveness wherein an aqueous solution of nitrate and/or acetate of Ni with the addition of one or more nitrates and acetates of Cr, Mn and Zn is applied on the surface of steel plates, previously subjected to a surface-cleaning treatment, and then heated in a nonoxidative gas atmosphere, so as to cause a thermodecomposing reaction, to thereby form a film containing metallic nickel and one or more of oxides of Cr, Mn and Zn on the surface of the steel plates; and further a method for forming a more excellent film, that is, a method for obtaining surface-treated steel plates having particularly excellent anticorrosiveness, wherein an aqueous solution of a nitrate and/or acetate of Ni with the addition of one or more of nitrates and acetate of Cr, Mn and Zn and with a further addition of a nitrate and/or acetate of Al is applied on the surface of a steel plate, previously subjected toa surface-cleaning treatment, and then heating the thus-treated steel plates in a nonoxidative gas atmosphere, so as to cause a thermodecomposing reaction, to thereby form a film containing'metallic nickel and one or more of oxides of Cr, Mn, Zn and Al on the surface of the steel plates.
The present invention is particularly economical because it is possible to utilize a heating cycle of annealing conditions for the thermodecomposing reaction, and the method of the present invention is therefore very high in practical value.
Moreover, the thus obtained treated film is not only excellent in anticorrosive activity but is also very excellent in its paint adhesiveness and mechanical workability. Therefore, the present invention is particularly adapted as a method of making steel plates for making cans.
The method of the present invention shall be detailed in the following.
DESCRIPTION OF THE PREFERRED EMBODIMENT The essence of the present method is to form a very thin film of metallic nickel on the surface of a steel plate by applying an aqueous solution, for example, of nickel nitrate to coat the said surface of the steel plate and then heating it in a reductive or inert non-oxidative atmosphere so as to cause a thermodecomposing reaction of the treating solution and the reduction (complete or partial) of nickel nitrate to metallic nickel.
Nickel nitrate or nickel acetate, which is an essential component of the treating aqueous solution of the present invention, may be used individually or in admixture. However, Ni compounds (particularly oxides) other than the aforementioned compounds should be avoided, since they involve difficulties in forming films of satisfactory anticorrosiveness, paint adhesiveness and workability.
In the following, for the convenience of the explanation, the aqueous solution containing a Ni-salt prepared as described above shall be called a treating solution.
It is difficult to uniformly apply some of the treating solutions of the present invention to coat steel plates. However, in such case, an improvement can be obtained by adding a proper amount of a surface active agent, such as a nonionic active agent. The deposited amount of the treating solution differs remarkably, depending on the method of coating the surface of the steel plates, for example, by blowing a spray of the treating solution on the surface of the steel plates, applying the treating solution with a roller, or dipping the steel plate in the solution. The concentration of the treating solution is difficult to uniformly define but, if the effective quantitative range is to be defined in relation to the viscosity of the solution or the uniformity of the decomposing reaction, Ni ions are to be contained in an amount of 0.5 to 100 g./l. or preferably 1 to 20 g./l., the later described Cr ions are present in amounts less than 20 g./l. or preferably g./l., Al ions are present in amounts less than g./l. or preferably less than 10 g./l., Zn ions are present in amounts less than 40 g./l. or preferably less than 10 g./l. and Mn ions are present in amounts less than 20 g./l. or preferably less than 10 g./l.
Further, in order to improve the characteristics of the treated film. a nitrate or acetate of Mg, Ca or K may be added in an amount of about 1 g./|.
It is wise to prevent, as much as possible, the pH of the treating solution of the present invention from becoming excessively acidic to avoid an exchanging reaction with Fe. Therefore, in industrial practice, it is desirable to make the pH of the treating solution 3 to 4.
In regard to films which are heavily colored in their appearance after being heat-treated, there is observed a tendency ofthese films to reduce the adhesiveness of the lacquer and also to reduce the adhesion of the film itself to the base. Therefore, it is desirable to control the deposited amount of the film so that the appearance after heattreatment may have a transparency to such a degree as to not substantially impair the luster ofthe cold-rolled steel plate or to control the deposited film so that it has a light tone to such a degree as to be barely recognizable with the naked eye (that is, the
metal thickness may be less than 1 p. or, if possible, about 0.1 u or less).
Now, in the method of the present invention, the above described treating solution is applied and is then quickly heated to cause a thermodecomposing reaction at a temperature of 200 to 750C. in a furnace of a nonoxidative gas atmosphere such that it has, for example, a H content of 2 to 20% and wherein the remaining component is essentially N (as DX or NX gas) used as a brightly annealing gas to form a strong metallic nickel film. When the content of H in the gas atmosphere is less than 2%, the Ni salt is so hard to reduce that there is formed an undesirable film because the film containing metallic nickel becomes lusterless and blackish. On the other hand, when the content of H is more than 20%, there is a great economic loss. In addition, such a high content of H is not desirable, particularly in the method wherein salts of Al, Cr, Mn and Zn are added to a salt of Ni, because the reduction of salts of these metals proceeds too far with the result that such a metallic nickel-plated film containing oxides of these metals, as is intended in the present invention, can not be obtained.
The above described nonoxidative gas many contain a slight amount of carbon dioxide, carbon monoxide or water. However, the heating atmosphere must not be oxidative (i.e. contain oxygen) to such a degree as to have an adverse influence on the reduction of the salt of nickel to metallic nickel; otherwise the salt of nickel applied to the surface of a steel plate may not be reduced to metallic nickel to the required amount during the annealing time and may remain as nickel oxide on the surface of the steel plate. The latter effect would not be in keeping with the object of the present invention.
When the heating temperature is less than 200C, no effective thermodecomposition takes place. On the contrary, when it is more than 750C., there are produced undesirable results, such that all the metallic nickel produced by the thermodecomposition, will alloy with the iron base to form a hard film which is not only low in adhesiveness but also low in the anticorrosiveness, and further even impair the mechanical properties of the steel plate itself.
In the foregoing, an example of applying a treating solution composed of only a Ni-salt has been explained. The surface film obtained by this method is thought to be a two-layer film high in anticorrosiveness, consisting of an Fe-Ni alloy in the lower layer and metallic nickel in the upper layer. As a result of making further investigations, however, the present inventors have succeeded in developing an improved method of forming, on the surface of a steel plate, a film which is more excellent than the above described film. This film is thought to be formed of two layers, wherein the lower layer is made of an Fe-Ni alloy and the upper layer is a mixture mainly composed of oxides of Cr, Mn and Zn and metallic nickel.
The improved method involves applying to the steel sheet, an aqueous solution (which shall be called a treating solution with additive for the convenience of the explanation hereinafter) obtained by adding one or more of nitrates and acetates of Cr, Mn and Zn to a nitrate and/or acetate of Ni and heating the thus-coated steel'sheet in a nonoxidative gas atmosphere furnace t ofofm a film consisting of one or more of oxides of Cr, Mn and Zn, and metallic nickel. The above-mentioned treating solution with additive may be prepared by adding one or more members consisting of carbonates, oxalates and hydroxides of Cr, Mn and Zn to an aqueous solution of Ni nitrate and/or acetate.
In the foregoing, there have been shown examples of dissolvinga nitrate or acetate of Ni and carbonates, oxalates, hydroxides and oxides of Cr, Mn and Zn in an aqueous solution of nitric acid and/or acetic acid. However, the present invention is not limited to them except for the Ni salts. Any salts of Cr,-Mn and Zn may be used, if they leave no anion in an aqueous solution of nitric acid or acetic acid when dissolved in such solution.
As to the method of applying said treating solution with additive, any of the methods adopted when applying the above-mentioned treating solution may be used,
such as the spraying method, the roller-coating method and the dipping method. If necessary, also a surface active agent may be further added.
Also, the heating can be carried out under exactly the same conditions and in the same manner, that is, in a temperature range of 200 to 750C. in a furnace of a nonoxidative gas atmosphere in which, for example, the H content is 2 to and the rest is mostly N However, the thus obtained film is higher in anticorrosiveness than in the case of the above mentioned treating solution composed of the Ni salt only.
As a result of making further investigations, the present inventors have discovered that when an Al salt is further added to the above-mentioned treating solution with additive, a film having more excellent anticorrosiveness and workability can be obtained.
For example, when a treating solution prepared by adding an Al salt to the above-mentioned treating soluless steel. The thus-produced steel sheets are particularly suitable as a material for manufacturing cans therefrom because they are high in anticorrosiveness and excellent in paint adhesiveness.
The specific examples of the present invention shall be detailed below.
EXAMPLE 1 A cold-rolled steel plate of a thickness of 0.26mm., which had been cold-worked by a well known method, that is, by using a continous strip rolling apparatus, but had not yet been annealed, was subjected to a well known pretreatment, for example, such surface adjustments as alkali-defatting and sulfuric acid-pickling, was
dipped in an aqueous solution of nickel nitrate ornickel acetate so that the nickel salt might be deposited on the surface, and was immediately thereupon heated at a temperature of 600C. in an annealing gas atmosphere of a H content of 6% and the rest being N so as to effect a strain-removing annealing, and at the lsame time to form anicke l film, and was then rolled for irefining at reduction rate of 1%. A comparison of the lperformances of this steel was made, as mentioned below, in respect to the antirusting properties, corrosion resistance below the coating film and paint adhesivefness. The samples Nos. 1, 2 and 3 in the belowmentioned performance test comparison table are steel plates having a film composed of metallic nickel, all prepared by the above-mentioned method. On the other hand, a referential sample No. 13 in the same table was prepared by subjecting a steel to a cold- ]rolling with the above-mentioned continuous strip rolling apparatus, thereupon to alkali-defatting and picktion with additive (which contains one or more salts of ling and then to an annealing in the above-mentioned Cr, Mn and Zn in addition to Ni) is subjected to the thermodecomposition in a temperature range of from 200 to 750C. in a furnace of a nonoxidative gas atmosphere and a H content is 2 to 20%, there can be formed on the surface of a steel plate a very thin film. This film has proven to be all the more improved in anticorrosiveness and workability, as illustrated in the following examples.
As will be understood from the foregoing, the present invention provides for a method of inexpensively producing a steel plate having a strong inactive film on the gas atmosphere (this referential steel shall be called a nontreated steel plate hereinafter for the convenience of the explanation).
In the rusting test, by an indoor exposure, the non- ,treated steel plate rusted within one month, while samples Nos. 1, 2 and 3 did not rust in 3 to 5 months in the same indoor exposure. Further, in the corrosion test, in which samples were dipped in a carbonic acid beverage after being coated with an epoxy resin series paint, samples Nos. 1, 2 and 3 showed results much superior to the nontreated sample in anticorrosiveness, but somewhat inferior in paint adhesiveness.
Performance test comparison table Performance tests sample Treating solution composition Treating process I) Antirusting 2) Corrosion 3) Paint ad- No. property resistance below hesiveness the coating film I Nickel nitrate g./l.) Dip-coating 5.0 3 4 2 Nickel acetate (30 g./l.) Heating atmos- 4.0 3 4 phere H, 6% 3 Nickel nitrate (l0 g./l.)+ N: rest 2.5 2 4 nickel acetate (10 g.ll.) Heating temperature: 600C.
4 Nickel nitrate (20 g./l.)+ Roller-coating 7.0 4 5 chromium acetate (l0 g./l.)
Heating atmos- S Nickel acetate (20 g./l.)+ phere manganese nitrate l0 g./l.) H, IO% 60 3 4 N Z rest 6 Nickel nitrate (20 g./l.)+ Heating temper- 4.5 3 4 zinc nitrate (l0 g./l.) ature: 600C. 7 Nickel acetate (20 g./l.)+
chromium acetate (5 g./l.)+ 9.5 5 5 manganese nitrate (5 g./l.) 8 Nickel nitrate (20 g./l.)+
manganese nitrate (5 g./l.)+
zinc nitrate (5 g./l.)
Performance test comparison table Performance tests Sample Treating solution composition Treating process 1) Antirusting 2) Corrosion 3) Paint ad- No. property resistance below hesiveness the coating film 9 Nickel nitrate (20 g.ll.)+ Dip-coating ll.5 5 5 aluminum nitrate (5 g.ll.)+ chromium acetate (5 g./l.) Heating atmosphere l Nickel nitrate (20 g./l.)+ H 6% aluminum nitrate g./l.)+ N, rest 10.0 5 5 zinc nitrate (5 g./l.) Heating temper ature: 250C. 1 l Nickel acetate g./l.)+
aluminum nitrate (5 g./l.)+ 9.0 5 5 zinc nitrate (5 g. /l. Wm a A 12 Nickel acetate (10 g./l.)+
aluminum nitrate (5 g./l.)+ chromium nitrate (5 g./l.)+ 12.5 5 5 manganese nitrate (5 g./l.)
l3 (nontreated steel plate) 0.5 l 5 EXZWP LEQ The same cold-rolled steel plate as in Example 1 was defatted with an alkali and pickled with sulfuric acid, was then coated with a treating solution prepared by adding one or more of chromium acetate, manganese nitrate and zinc nitrate into an aqueous solution of nickel acetate or nickel nitrate by using a roller and was then immediately heated at a temperature of 600C. in a brightly annealing gas atmosphere of a H content of 10%, the rest being N to form a film. The samples Nos. 4 to 8 in the above-mentioned performance test comparison table were steel plates prepared by the above-mentioned process. It is apparent that the films obtained by applying a treating solution containing one or more salts of Cr, Mn and Zn in addition to a Ni salt shown properties which are performances more excel lent than that of the film prepared in Example 1. That is, they showed no rusting in 4 to 10 months in the rusting test by indoor exposure and were very high in their corrosion resistance below the coating film when placed in a carbonic acid beverage, after being coated with a lacquer.
EXAMPLE 3 A cold-rolled steel plate of a thickness of 026mm. which had been cold-worked by a well known method,: for example, by using a continuous strip rolling apparatus, thereafter alkali-defatted, sulfuric acid-pickled and then annealed in a reductive atmosphere was once more subjected to an alkali-defatting and sulfuric acid pickling surface treatment, and was then dip-coated with a treating solution prepared by adding one or more of chromium acetate, manganese nitrate and zinc nitrate into an aqueous solution of a mixture of nickel nitrate and aluminum nitrate and was then immediately heated at a temperature of 250C. in a heated gas atmosphere of a H content of 6%, the rest being N, to form a film.
The samples Nos. 9 to 12 in the above-mentioned performance test comparison table which correspond to this example, did not rust in 9 to 13 months in a rust-' ing test by indoor exposure, were not corroded at all below the lacquer-coated film, when placed in a carbonic acid beverage, after being coated with a lacquer and were high also in paint adhesiveness.
In all the Examples 1, 2 and i, the heating time was very short, amounting to several seconds, though there was a slight difference according to the temperature in the range of 200 to 750C.
The numerals in the above-mentioned performance test comparison table are defined as follows:
1. Antirusting property The period until a rust recognizable by observation with the naked eye was generated on the surface of the steel plate by the indoor exposure test was represented by the number of months. 2. Corrosion resistance below the coating film The steel plate was coated with an epoxy resin series lacquer, and then scratched, so that the scratch mark had a width of 0.1mm. and was dipped for one month in a cola series carbonic acid beverage, kept at such fixedfimp atua tiBilCdn theexamptc. and hentlic degree of corrosion below the coating film in the scratched part was observed. The numerals in the table were defined, as follows, by dividing the evaluations into five grades:
5When no coating film peeling was recognized all.
2.0mm. was recognized. 3. Paint adhesiveness A lacquer was applied and was then bonded with a binder; then the tensile strength was measured and was evaluated by making the maximum value 5 and the minimum value I as the scale of lacquer adhesiveness.
What is claimed is: 1. An iron or steel product having, on the surface thereof, a film of a thickness of less than 1p. consisting essentially of nickel and at least one oxide selected from the group consisting of oxides of Cr, Mn and Zn with a coating of an organic resin paint on the surface of said film.
2. An iron or steel product according to claim 1 wherein the organic resin paint is an epoxy resin paint.

Claims (2)

1. AN IRON OR STEEL PRODUCT HAVING, ON THE SURFACE THEREOF, A FILM OF A THICKNESS OF LESS THAN 1U CONSISTING ESSENTIALLY OF NICKEL AND AT LEAST ONE OXIDES SELECTED FROM THE GROUP CONSISTING OF OXIDES OF CR, MN AND ZN WITH A COATING OF AN ORGANIC RESIN PAINT ON THE SURFACE OF SAID FILM.
2. An iron or steel product according to claim 1 wherein the organic resin paint is an epoxy resin paint.
US23586472 1969-04-28 1972-03-17 Surface-treated steel plates high in anticorrosiveness Expired - Lifetime US3849176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US23586472 US3849176A (en) 1969-04-28 1972-03-17 Surface-treated steel plates high in anticorrosiveness

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3287469A JPS4948823B1 (en) 1969-04-28 1969-04-28
US3243970A 1970-04-27 1970-04-27
US23586472 US3849176A (en) 1969-04-28 1972-03-17 Surface-treated steel plates high in anticorrosiveness

Publications (1)

Publication Number Publication Date
US3849176A true US3849176A (en) 1974-11-19

Family

ID=27287880

Family Applications (1)

Application Number Title Priority Date Filing Date
US23586472 Expired - Lifetime US3849176A (en) 1969-04-28 1972-03-17 Surface-treated steel plates high in anticorrosiveness

Country Status (1)

Country Link
US (1) US3849176A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932144A (en) * 1973-12-07 1976-01-13 Nippon Steel Corporation Coated metallic sheet for use in making a container
US4035530A (en) * 1976-05-07 1977-07-12 Apollo Chemical Corporation Method of inhibiting sulfidation and modifying deposits
US4035248A (en) * 1975-06-23 1977-07-12 Nippon Steel Corporation Method for the manufacture of a steel sheet having a Ni-diffused base layer which is treated with a chromic acid
WO1982002683A1 (en) * 1981-02-11 1982-08-19 Steel Corp Nat Improved steel container stock,methods of forming drawn and ironed containers therefrom,and containers formed thereby
US4374902A (en) * 1981-02-11 1983-02-22 National Steel Corporation Nickel-zinc alloy coated steel sheet
US4407149A (en) * 1981-02-11 1983-10-04 National Steel Corporation Process for forming a drawn and ironed container
US4457450A (en) * 1981-02-11 1984-07-03 National Steel Corporation Nickel-zinc alloy coated drawn and ironed can
US4529487A (en) * 1983-09-29 1985-07-16 The Boeing Company Coating for increasing corrosion resistance and reducing hydrogen reembrittlement of metal articles
US4612236A (en) * 1983-09-29 1986-09-16 The Boeing Company Coating for increasing corrosion resistance and reducing hydrogen reembrittlement of metal articles
US4759955A (en) * 1985-05-20 1988-07-26 The Boeing Company Protective, decorative and restorative coating composition and method
US5380487A (en) * 1992-05-05 1995-01-10 Pasteur Sanofi Diagnostics Device for automatic chemical analysis
US20030080225A1 (en) * 2000-04-28 2003-05-01 Agidius Eckel Method and device for the prevention of wall adherences in shafts on the introduction of particles
CN110093595A (en) * 2019-04-16 2019-08-06 北京科技大学 A kind of method that high temperature hydro-thermal reaction prepares metalwork surface rust protection ceramic coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3113845A (en) * 1960-03-29 1963-12-10 Fuji Iron & Steel Co Ltd Chromium-plated steel
US3468724A (en) * 1966-03-31 1969-09-23 Amchem Prod Metal coating process
US3511690A (en) * 1967-06-05 1970-05-12 Nat Presto Ind Production of polytetrafluoroethylene-containing coatings on metallic bases

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3113845A (en) * 1960-03-29 1963-12-10 Fuji Iron & Steel Co Ltd Chromium-plated steel
US3468724A (en) * 1966-03-31 1969-09-23 Amchem Prod Metal coating process
US3511690A (en) * 1967-06-05 1970-05-12 Nat Presto Ind Production of polytetrafluoroethylene-containing coatings on metallic bases

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932144A (en) * 1973-12-07 1976-01-13 Nippon Steel Corporation Coated metallic sheet for use in making a container
US4035248A (en) * 1975-06-23 1977-07-12 Nippon Steel Corporation Method for the manufacture of a steel sheet having a Ni-diffused base layer which is treated with a chromic acid
US4035530A (en) * 1976-05-07 1977-07-12 Apollo Chemical Corporation Method of inhibiting sulfidation and modifying deposits
US4457450A (en) * 1981-02-11 1984-07-03 National Steel Corporation Nickel-zinc alloy coated drawn and ironed can
US4374902A (en) * 1981-02-11 1983-02-22 National Steel Corporation Nickel-zinc alloy coated steel sheet
US4407149A (en) * 1981-02-11 1983-10-04 National Steel Corporation Process for forming a drawn and ironed container
WO1982002683A1 (en) * 1981-02-11 1982-08-19 Steel Corp Nat Improved steel container stock,methods of forming drawn and ironed containers therefrom,and containers formed thereby
US4529487A (en) * 1983-09-29 1985-07-16 The Boeing Company Coating for increasing corrosion resistance and reducing hydrogen reembrittlement of metal articles
US4612236A (en) * 1983-09-29 1986-09-16 The Boeing Company Coating for increasing corrosion resistance and reducing hydrogen reembrittlement of metal articles
US4759955A (en) * 1985-05-20 1988-07-26 The Boeing Company Protective, decorative and restorative coating composition and method
US5380487A (en) * 1992-05-05 1995-01-10 Pasteur Sanofi Diagnostics Device for automatic chemical analysis
US20030080225A1 (en) * 2000-04-28 2003-05-01 Agidius Eckel Method and device for the prevention of wall adherences in shafts on the introduction of particles
US7182978B2 (en) * 2000-04-28 2007-02-27 Basf Aktiengesellschaft Method and device for the prevention of wall adherences in shafts on the introduction of particles
CN110093595A (en) * 2019-04-16 2019-08-06 北京科技大学 A kind of method that high temperature hydro-thermal reaction prepares metalwork surface rust protection ceramic coating

Similar Documents

Publication Publication Date Title
US3343930A (en) Ferrous metal article coated with an aluminum zinc alloy
US3849176A (en) Surface-treated steel plates high in anticorrosiveness
US4487663A (en) Steel sheets for preparing welded and coated cans and method for manufacturing the same
US4663245A (en) Hot-dipped galvanized steel sheet having excellent black tarnish resistance and process for producing the same
US3677797A (en) Method of forming corrosion resistant films on steel plates
US3895969A (en) Composition and process for inhibiting corrosion of non-ferrous metal surfaced articles and providing surface for synthetic resin coating compositions
JPS5930798B2 (en) Steel plate for welded can containers and its manufacturing method
US4790913A (en) Method for producing an Sn-based multilayer coated steel strip having improved corrosion resistance, weldability and lacquerability
US3062726A (en) Electrolytic tin plate production
US4261766A (en) Method for inhibiting fatigue of aluminum
US2230602A (en) Method of coating metals with lead
JPS63161176A (en) Treatment liquid for blackening zinc or zinc alloy and its method
JPS62297491A (en) Production of chromium electroplated steel sheet for vessel
GB2038371A (en) Process for Surface-finishing Shaped Elements Consisting of Zinc or Zinc Alloys
JPH07331403A (en) Production of high strength galvannealed steel sheet
US3998670A (en) Process for producing steel plate substrates for lacquering
JP2007262544A (en) Method for manufacturing hot-dip galvanized steel sheet
JPS60155695A (en) Surface treated steel sheet for manufacturing can
JP2726008B2 (en) High performance Sn-based multi-layer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion
JPS61113774A (en) Lead-tin alloy plated steel sheet having superior corrosion resistance
JPH05106091A (en) Material for welded can excellent in seam weldability and adhesive strength of paint
JPS61119678A (en) Lead-tin alloy plated steel sheet of high corrosion resistance
JPH02194158A (en) Alloyed hot-dip galvanized steel sheet and its production
JPS62297473A (en) Ni alloy multilayer plated steel sheet having superior corrosion resistance, weldability and paintability
JPS63266095A (en) Steel sheet for vessel having superior weldability, corrosion resistance and paintability and production thereof