JPS61119678A - Lead-tin alloy plated steel sheet of high corrosion resistance - Google Patents

Lead-tin alloy plated steel sheet of high corrosion resistance

Info

Publication number
JPS61119678A
JPS61119678A JP24082784A JP24082784A JPS61119678A JP S61119678 A JPS61119678 A JP S61119678A JP 24082784 A JP24082784 A JP 24082784A JP 24082784 A JP24082784 A JP 24082784A JP S61119678 A JPS61119678 A JP S61119678A
Authority
JP
Japan
Prior art keywords
layer
lead
alloy
steel sheet
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24082784A
Other languages
Japanese (ja)
Other versions
JPS642195B2 (en
Inventor
Yukinobu Higuchi
樋口 征順
Kenichi Asakawa
麻川 健一
Toshinori Mizuguchi
俊則 水口
Minoru Fujinaga
藤永 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24082784A priority Critical patent/JPS61119678A/en
Publication of JPS61119678A publication Critical patent/JPS61119678A/en
Publication of JPS642195B2 publication Critical patent/JPS642195B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To develop Pb-Sn alloy plated steel sheet superior in corrosion resistance and of small Fe dissolution from defective plated part, by forming substrate plated layer of Ni, Co or Ni-Co alloy on Cr bearing steel sheet, then plating Pb-Sn alloy thereon. CONSTITUTION:Cr bearing steel sheet contg. <0.10% C, 0.005-0.08% sol Al, 0.5-20% Cr or further 0.03-0.5% one or >=2 kinds among Ti, Nb, V, Zr respectively is pretreated, i.e. degreased or pickled, etc., then substrate plated layer of Ni, Co or Ni-Co alloy is formed. Next, said sheet is heated to 600-850 deg.C in nonoxidizing atmosphere, to change the plated surface to diffusion treated layer of Ni-Fe, Co-Fe, Ni-Co-Fe, etc. Pb-Sn plated layer contg. 7-15% Sn is formed by 2-10mu thickness on surface of the substrate diffusion treated layer. Dissolution of steel sheet from pinhole of plated layer is prevented, and Pb-Sn alloy plated steel sheet superior in corrosion resistance is manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、 Fe溶出量の少ない、耐食性にTぐれ次鉛
−錫系合金メッキ鋼板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a lead-tin alloy plated steel sheet with a small amount of Fe elution and a T-grade corrosion resistance.

(従来の技術及びその問題点) 一般に、鉛−錫合金溶融メッキ鋼板は、耐食性・半田性
・加工性等が良好であるため種々の用途に供されている
。しかし、鉛は鉄と反応しにくく、従って合金層が均一
に生成されにぐいこと、或いは鉛が比較的酸化されやす
いことなどの友め、メッキ付着量を調整する几めのメッ
キ絞9方法の不備等によって、鉛−錫合金メッキではピ
ンホールの発生がしばしば生じることがある。
(Prior Art and its Problems) In general, lead-tin alloy hot-dip plated steel sheets have good corrosion resistance, solderability, workability, etc., and are therefore used for various purposes. However, lead does not easily react with iron, so it is difficult to form an alloy layer uniformly, or lead is relatively easily oxidized. Due to imperfections, pinholes often occur in lead-tin alloy plating.

更に、鉛−錫合金は非常に軟かい金属であるため、取り
扱い時或いは加工等によって、メッキ層の傷発生、ピン
ホールの拡大等により腐食環境によって赤錆の発生をみ
ることがある。
Furthermore, since the lead-tin alloy is a very soft metal, during handling or processing, the plating layer may be scratched, pinholes may be enlarged, and red rust may occur in a corrosive environment.

これらの問題点を解決するため、例えば特開昭50−2
3345号公報、特開昭51−115240号公報など
に紹介されているように、鉛−錫合金溶融メッキ前に亜
鉛、錫、銅或いはニッケル、コバルト。
In order to solve these problems, for example,
As introduced in Japanese Patent Application Laid-open No. 3345 and Japanese Patent Application Laid-Open No. 51-115240, zinc, tin, copper, nickel, and cobalt are applied before hot-dip lead-tin alloy plating.

ニッケルーコバルト合金を中間下地処理を施丁方法が看
なわtている。しかし、こnらの中間下地処理法のりち
、亜鉛及び錫メッキを行なう方法は、これら下地メッキ
層が溶融メッキ浴中に溶解するので、充分なピンホール
防止効果が得られない。
The application method for nickel-cobalt alloys involves intermediate surface treatment. However, these intermediate base treatment methods, which involve plating with zinc and tin, do not provide sufficient pinhole prevention effects because these base plating layers dissolve in the hot-dip plating bath.

又、中間下地処理法として銅メッキを行なう方法は、酸
性メッキ浴或いにピロリン酸性メッキ浴による鋼メッキ
自体が鋼材素材とのメッキ密着性が充分でない几め、充
分なピンホール防止効果が得られない。
In addition, the method of performing copper plating as an intermediate base treatment method is because steel plating itself using an acid plating bath or a pyrophosphoric acid plating bath does not have sufficient plating adhesion to the steel material, so it is difficult to obtain sufficient pinhole prevention effects. I can't do it.

ニッケル、コバルト、ニッケルーコバルト合金の中間下
地処理を施し之鉛−錫系合金メッキ鋼板はピンホールの
発生が少なく、取シ扱い時或いは加工等によシ、メッキ
層に傷が発生しても、下地メッキ金属の存在によって鋼
材表面までメッキ層に発生し之傷が到達することが比較
的少ない等の理由から良好な耐食性が得られる。しかし
ながら、ピンホールを皆無にする事は困難であシ、又鋼
表面にまで達する加工時の傷付きを完全に防止する事も
困1である。
Nickel, cobalt, and nickel-cobalt alloy intermediate base treatment is applied to the lead-tin alloy plated steel sheet, which has fewer pinholes and is resistant to scratches on the plating layer due to handling or processing. Good corrosion resistance can be obtained because, due to the presence of the base plated metal, it is relatively rare for scratches to occur in the plated layer to reach the surface of the steel material. However, it is difficult to completely eliminate pinholes, and it is also difficult to completely prevent scratches during machining that reach the steel surface.

近年耐久消費材の高級化指向或いは冬期の道路凍結防止
用散布塩による腐食に対する耐食性向上及びタンクの形
状から苛酷な成形加工となり傷付きによる腐食軽減に対
処しうる鉛−錫系合金メッキ鋼板が要求さnている。
In recent years, there has been a trend toward higher-grade durable consumer goods, and a demand for lead-tin alloy plated steel sheets that can improve corrosion resistance from salt sprayed to prevent roads from freezing in the winter, and that can reduce corrosion due to harsh forming processes due to the shape of the tank. I'm here.

一般に鉛−錫系合金メッキ層rN”x含有するSnとの
合金層等は、水分、Ct−イオン、ガソリン等に対し耐
食性がある。しかしながら、鉛−錫系合金メッキ層など
は、通常使用されているメッキ原板に比し腐食環境てお
いては著しくカソーディック(電位的に貴〕であ夛、鉛
−錫メッキ層とメッキ原板、Ni′t−含有するSnと
の合金層とメッキ原板の間の腐食電流が著しく大きい。
In general, a lead-tin alloy plating layer rN"x containing an alloy layer with Sn has corrosion resistance against moisture, Ct- ions, gasoline, etc. However, a lead-tin alloy plating layer etc. is not normally used. In a corrosive environment, it is significantly cathodic (potentially nobler) than the plated original plate, and the gap between the lead-tin plating layer and the plated original plate, and the Ni't-containing Sn alloy layer and the plated original plate The corrosion current is extremely large.

従って、メッキ層に鋼表面に達する欠陥等が存在する場
合、鉛−錫メッキ層とメッキ原板、或いはNi等の下地
金属を含有するSnとの合金層とメッキ原板の間に局部
電池が生成さn1メッキ原板がアノ−ディック(電位的
に卑)な几め、メッキ層欠陥部のFe露出部からのFe
の浴出、溶解が多くなシ、時によっては穿孔腐食が発生
する。
Therefore, if there is a defect in the plating layer that reaches the steel surface, a local battery is generated between the lead-tin plating layer and the plated original plate, or between the alloy layer of Sn containing a base metal such as Ni and the plated original plate. Since the plating original plate is anodic (potentially base), Fe is removed from the Fe exposed part of the plating layer defect.
There is a lot of bathing and dissolution, and in some cases, perforation corrosion occurs.

(問題点全解決するための手段1作用)本発明は、これ
らに対処してなされたものであシ、従来以上ζこ耐食性
のすぐれた鉛−錫系合金メッキ鋼板を提供することを目
的としたものである。
(Means 1 for solving all the problems) The present invention has been made in response to these problems, and its purpose is to provide a lead-tin alloy plated steel sheet that has better corrosion resistance than ever before. This is what I did.

本発明者らは、メッキ層に欠陥部等が存在又は発生して
も、Feの溶出、溶解が少なく、穿孔腐食の発生しにく
い、 Ni、 Co、 Ni −Co合金及びこれらの
拡散層を下地被覆層として有する鉛−錫系合金メッキ鋼
板について種々検討した結果、メッキ原板(鋼板〕を、
電位的に責な方向に近づけ(カソーディック化)るとと
もに、鋼板自体の耐食性を上げる(自己腐食速度の低減
〕事でよって可能である事を知見した。
The present inventors have developed a method using Ni, Co, Ni-Co alloys and their diffusion layers as base materials, which are less prone to elution and dissolution of Fe and less likely to cause pitting corrosion even if defects etc. exist or occur in the plating layer. As a result of various studies on the lead-tin alloy plated steel sheet that has the coating layer, we found that the plated original sheet (steel sheet) is
We discovered that this is possible by bringing the potential closer to the negative direction (cathodic) and increasing the corrosion resistance of the steel plate itself (reducing the self-corrosion rate).

本発明はこの知見に基いて構成したものでその要旨は、
C:0.10%以下、5olAt: 0.005〜0.
08%、Cr : 0.5〜20%あるいは必要によっ
てはIII i。
The present invention was constructed based on this knowledge, and its gist is as follows:
C: 0.10% or less, 5olAt: 0.005 to 0.
08%, Cr: 0.5-20% or IIIi as necessary.

Nb、 V、 Zrの1種又は2種以上をそれぞれ0.
03〜0.5%を含有して、残部が鉄および不可避的不
純物からなる鋼板に対し、Ni、 Co、 Ni −C
o合金の下地被覆層或いはこれらの拡散下地被覆層とさ
らにその上層として鉛−錫系合金被覆層を施した高耐食
性鉛−錫系合金メッキ鋼板である。
One or more types of Nb, V, and Zr are each added in an amount of 0.
Ni, Co, Ni-C
This is a highly corrosion-resistant lead-tin alloy plated steel sheet having a base coating layer of an o alloy or a diffusion base coating layer thereof, and a lead-tin alloy coating layer as an upper layer.

以下本発明について詳細?こ説明する。Details about the present invention below? I will explain this.

転炉、電気炉等の溶解された溶鋼を連続鋳造法または造
塊、分塊法を経てスラブとし熱間圧延、冷間圧延さらに
焼鈍工程を経て、C:O,10%以下、sol At:
 0.005〜0.08%、Cr : 0.5〜20%
を含有して残部が実質的(こFeからなるメッキ原板を
製造する。Cは含有量の増加に鋼板の加工性を劣化し、
鋼板表面に点在して析出した多量のセメンタイトが、N
i、 Co、 Ni −Co合金等の下地被覆処理後或
いは鉛−錫系合金メッキ後に多くのピンホール′(i−
発生させる原因となる。したがってC成分は耐食性を劣
化する有害元素として少ない方が好ましく、その上限を
0.10%とし、好ましいのは0.01%以下である。
The molten steel in a converter, electric furnace, etc. is made into a slab through a continuous casting method, ingot making, or blooming method, and is then hot rolled, cold rolled, and annealed to produce a slab with C:O, 10% or less, sol At:
0.005-0.08%, Cr: 0.5-20%
A plated original plate is produced in which the remainder is substantially composed of Fe. C deteriorates the workability of the steel plate as the content increases;
A large amount of cementite precipitated dotted on the surface of the steel plate is
Many pinholes' (i-
cause it to occur. Therefore, the C component is a harmful element that deteriorates corrosion resistance and is preferably as small as possible, with the upper limit being 0.10% and preferably 0.01% or less.

Atは高調の脱酸元素であるが、製造された鋼板中に残
存する5olAt量が0.005%未満では酸素ガスに
よる表面欠陥の発生率を著しく高め、下地処理面或いは
鉛−錫系合金メッキ面に多量のピンホールが発生し耐食
性を劣化する。また0、08%を越える過剰な5olA
tはAt系酸化物を鋼表面に多く点在せしめ、不メッキ
部分あるいはピンホールを発生してメッキの健全注金失
い、耐食性全劣化する。したがって鋼中に含有されるs
 o l klは、耐食性が安定して確保できる量とし
てo、o o 5−Lo、osチに限定した。
At is a highly effective deoxidizing element, but if the amount of 5olAt remaining in the manufactured steel sheet is less than 0.005%, the occurrence rate of surface defects due to oxygen gas will be significantly increased, and it will cause damage to the surface treated surface or lead-tin alloy plating. A large number of pinholes occur on the surface, which deteriorates corrosion resistance. Also, excess 5olA exceeding 0.08%
t causes many At-based oxides to be scattered on the steel surface, causing unplated areas or pinholes to be formed, resulting in loss of healthy plating, and complete deterioration of corrosion resistance. Therefore, the s contained in steel
o l kl was limited to o, o o 5-Lo, and o sti as an amount that could stably ensure corrosion resistance.

Crの添加は、腐食環境に曝された鋼板の電位を責な方
向に近づけ鋼板自体の耐食性を向上せしめるとともに、 ■メッキ原板とNi、 Co、 Ni −Co合金下地
被覆或いはこれらの拡散下地被覆層、 ■ メッキ原板とNi、 Co、 Ni −Co合金下
地被覆層或いはこれらの拡散下地被覆層と鉛−錫系合金
メッキ層中のSnとの反応生成物である合金層、■ ■メッキ原板と鉛−錫系合金被覆層、 の間の電位を各々近づけて、メッキ原板と上記の各層の
間のカップル電流金小さくする効果がちる。
The addition of Cr brings the potential of the steel sheet exposed to a corrosive environment closer to the positive direction, improving the corrosion resistance of the steel sheet itself, and also improves the corrosion resistance of the plated original sheet and Ni, Co, Ni-Co alloy base coating, or their diffusion base coating layer. , ■ An alloy layer that is a reaction product between the plating original plate and the Ni, Co, or Ni-Co alloy base coating layer or these diffusion base coating layers and Sn in the lead-tin alloy plating layer, ■ ■ The plating base plate and lead. - The potentials between the tin-based alloy coating layers are brought closer to each other, which has the effect of reducing the couple current between the plating original plate and each of the above layers.

すなわち、 Crの添加は鋼板が上記の、各層よシも電
位的には卑であるが、各層との電位差減少及びカップル
電流の減少によフ、Feの被覆層欠陥部の優先的な溶解
を著しく減少せしめる効果がある。
In other words, the addition of Cr makes the steel sheet as described above, and although each layer has a base potential, it reduces the potential difference with each layer and reduces the couple current, thereby preferentially dissolving the Fe coating layer defects. It has the effect of significantly reducing

従って、このCrの添加によって、鉛−錫系合金メッキ
層、下地とSnとの合金層、下地被覆層等のメッキ欠陥
や取扱い時及び成形加工時等に鋼表面に達する傷付き、
Feの露出部が生成されても、腐食環境におけるFeの
溶出、W!!解が少なく、欠陥部からの孔食が軽減され
、その耐食寿命の延長が可能である。
Therefore, the addition of Cr can cause plating defects in the lead-tin alloy plating layer, the base-Sn alloy layer, the base coating layer, etc., and scratches that reach the steel surface during handling, forming, etc.
Even if an exposed part of Fe is generated, elution of Fe in a corrosive environment, W! ! This reduces pitting corrosion from defective parts and extends the corrosion resistance life.

しかしながらCrの0.5%未満は上記の効果が得られ
ず、またCrの添加量が20%をこえると鋼板の降伏点
が高くな〕、成形加工性、溶接性の点で問題を生じるの
で好ましくない。従って、 Crの添加量は0.5〜2
0%と規制し、好ましくは5〜10 %である。特に燃
料容器等を適用対象にした場合は、成形加工時のりジン
グ防止の点から、Cr含有量10%以下がよい。
However, if the amount of Cr added is less than 0.5%, the above effects cannot be obtained, and if the amount of Cr added exceeds 20%, the yield point of the steel sheet will be high, causing problems in terms of formability and weldability. Undesirable. Therefore, the amount of Cr added is 0.5 to 2
It is regulated to 0%, preferably 5 to 10%. Particularly when the application is for fuel containers and the like, the Cr content is preferably 10% or less from the viewpoint of preventing sliding during molding.

又、本発明においては上記の鋼成分に対して、Ti、 
Nb、 V、 Zr (7) 18又ii Z mK上
tそれぞれO,Q3〜0.5%添加する。これは、本発
明が苛酷な成形加工が要求される用途、例えば深絞シ成
形形状が複雑な燃料容器のように鋼板自体に優れた成形
加工性と耐食性を要求される場合、Ti、 Nb、 V
、 Zrの1種又は2種以上を添加する事によって、鋼
中のCと結合せしめクロムカーバイドの析出を防止して
Crの有効化を計り、良好な成形加工性と、耐食性の向
上が可能となる。この場合T l&I Nbなどの鋼成
分の含有量が0.03%未満ではクロムカーバイドの析
出を防止して、成形加工性及び耐食性を向上せしめる効
果が少なく、またその含有量が0.50 %を越えると
その効果が飽和に達し経済的でなくなると共に、これら
成分の析出によって素材の硬質化を起し、成形加工性を
劣化する傾向にある。特に、好ましくはこれら元素の含
有量が0.05〜0.30%の範囲である。
In addition, in the present invention, for the above steel components, Ti,
Nb, V, Zr (7) Add 3 to 0.5% of O and Q on 18 or ii Z mK, respectively. This is because the present invention is suitable for applications where severe forming is required, for example, when the steel sheet itself is required to have excellent formability and corrosion resistance, such as fuel containers with complex deep drawing shapes, Ti, Nb, V
By adding one or more types of Zr, it is possible to combine with C in the steel, prevent the precipitation of chromium carbide, and make Cr more effective, resulting in good formability and improved corrosion resistance. Become. In this case, if the content of steel components such as Tl&I Nb is less than 0.03%, the effect of preventing precipitation of chromium carbide and improving formability and corrosion resistance will be small; If it exceeds this, the effect reaches saturation and becomes uneconomical, and the precipitation of these components tends to cause the material to become hard and deteriorate moldability. Particularly preferably, the content of these elements is in the range of 0.05 to 0.30%.

鋼中に含有される不可避的不純物のP、S等は結晶粒界
に析出して結晶粒界をぜい化するため少ない程よい。尚
、本発明においては、その用途によっては、Ti、Nb
等を添加した鋼板に対しては、0.0001〜0.00
3%以下のBi添加してもよい。すなわちBは結晶粒界
iこ析出するので、浴接或いはaつ付は作業等の高熱操
作を受ける場合に、これらの熱影響部での結晶粒の成長
、粗大化を防止する有効な成分である。
Unavoidable impurities such as P and S contained in steel precipitate at grain boundaries and embrittle the grain boundaries, so the smaller the amount, the better. In addition, in the present invention, depending on the application, Ti, Nb
For steel sheets added with etc., 0.0001 to 0.00
Bi may be added in an amount of 3% or less. In other words, since B precipitates at grain boundaries, bath welding or abrasion is an effective component for preventing the growth and coarsening of crystal grains in these heat-affected zones when subjected to high-temperature operations such as work. be.

上記のような成分組成にて構成されたメッキ原板は、脱
脂、酸洗等のメッキ前処理を施して、Ni。
The plated original plate having the above-mentioned composition is subjected to pre-plating treatment such as degreasing and pickling to coat Ni.

Co、 Ni−Co合金メッキの下地前処理が施される
Base pretreatment for Co and Ni-Co alloy plating is performed.

これらの下地前処理方法は、メッキ浴組戊、メッキ条件
等が特に規定されるものではないが、大体電流密度3〜
300A/d1r?、メッキ温度80℃以下がよい。メ
ッキ浴組成の一例及びメッキ条件の一例をあげれば下記
の如くである。
In these base pretreatment methods, the plating bath composition, plating conditions, etc. are not particularly specified, but the current density is generally 3 to 3.
300A/d1r? , the plating temperature is preferably 80°C or less. An example of the plating bath composition and plating conditions are as follows.

(1)Niメッキ浴 電流密度  15A/drr? <2) Coメッキ浴 (硫酸コバルト 300 g/l 電流密度  10A/d、、’ (3) Ni −Co合金メッキ浴 電流密度  7.5A/dぜ などを用いて、電気メッキを行なえばよい。(1) Ni plating bath Current density 15A/drr? <2) Co plating bath (Cobalt sulfate 300 g/l Current density 10A/d,,' (3) Ni-Co alloy plating bath Current density: 7.5A/dze Electroplating may be performed using, for example.

又、これらの電気メッキによる下地前処理後或いはこれ
らの金属イオンを含有する水溶液、例えばさく酸ニッケ
ル(100g/l )−界面活性剤系の水溶液全塗布乾
燥後に、各々非酸化性酸いは還元性雰囲気で、600〜
850℃で20〜180秒の加熱拡散処理を行ない、N
i −Fe、 Co −Fe、 Ni −Co −Fe
等からなる拡散処理層を設けてもよく、或は更にこれら
拡散被覆層の上層に前記のNi、 Co、 Ni −C
o合金被覆層を設けてもよい。
In addition, after pre-treatment of the base by electroplating, or after completely applying and drying an aqueous solution containing these metal ions, such as a nickel sulfate (100 g/l)-surfactant-based aqueous solution, a non-oxidizing acid or reducing solution is applied, respectively. 600~ for a sexual atmosphere
Heat diffusion treatment is performed at 850°C for 20 to 180 seconds, and N
i-Fe, Co-Fe, Ni-Co-Fe
Alternatively, a diffusion treatment layer consisting of the above-mentioned Ni, Co, Ni-C may be further provided on the upper layer of these diffusion coating layers.
o An alloy coating layer may be provided.

これらの下地前処理層は、その後行なわれる鉛−錫合金
メッキのピンホール減少成形加工時等における傷付き時
の鋼表面に達するのを防止するために極めて有効である
。鉛−錫系合金メッキが溶融メッキ法ζこより行なわれ
る場合には、メッキ浴中のSnとの反応性の増加により
、これら下地前処理層とSnからなる均一緻密な合金層
の生成によシ、ピンホールが減少される。
These base pretreatment layers are extremely effective in preventing scratches from reaching the steel surface during the subsequent pinhole reduction forming process of lead-tin alloy plating. When lead-tin alloy plating is performed using the hot-dip plating method, the increase in reactivity with Sn in the plating bath makes it difficult to form a uniform and dense alloy layer consisting of the base pretreatment layer and Sn. , pinholes are reduced.

また、電気メッキ法の場合においても、下地被覆層と電
気鉛−錫系合金メッキ層との重畳効果、及びメッキ後こ
れら下地被覆層とメッキ層中8nとの常温拡散によるv
j7に密な合金層の生成のためか、そのピンホールの減
少が極めて著しい。
In addition, in the case of electroplating, the superposition effect of the base coating layer and the electrolytic lead-tin alloy plating layer, and the room temperature diffusion between the base coating layer and the 8n in the plating layer after plating,
Perhaps due to the formation of a dense alloy layer on j7, the number of pinholes is significantly reduced.

さらにまた、これら下地被覆層が存在する事によって、
取扱い時或いは成形加工時に、鉛−錫系合金被覆層は軟
質なため傷が入り易いが、鋼表面に到達するのが防止さ
れる確率が高くなる。
Furthermore, due to the presence of these base coating layers,
During handling or molding, the lead-tin alloy coating layer is soft and is easily scratched, but there is a high probability that the scratches will be prevented from reaching the steel surface.

従って、これらの下地被覆層を設ける事によって、上記
の如(Feの露出部を減らす事が重要でちゃ、鋼素地を
如何に改良しても、鉛−錫系合金層のピンホール、不メ
ッキ等が多く又は鋼素地に達する傷付きが多い場合には
、Feの浴出、溶解量の減少、孔食の軽減に対する効果
が少なくなるので、下地被覆層を設け、Feの露出部を
減少せしめる事が1要である。さらに、下地被覆層を含
有するSnとの合金層は、FeとSnからなる合金層に
比して電位的に責なため、鋼素地と合金層の間の腐食電
流を減少する効果が得られ、 Feの溶出速度の減少、
及び孔食の軽減の点から有利である。
Therefore, by providing these base coating layers, it is important to reduce the exposed portion of Fe as described above, and no matter how much the steel base is improved, pinholes in the lead-tin alloy layer and unplated If there are many scratches that reach the steel base, the effect of reducing iron leakage, reducing the amount of dissolution, and reducing pitting corrosion will be reduced. Therefore, a base coating layer is provided to reduce the exposed portion of Fe. Furthermore, since the alloy layer with Sn that contains the base coating layer has a higher potential than the alloy layer consisting of Fe and Sn, the corrosion current between the steel base and the alloy layer will decrease. This has the effect of reducing Fe elution rate,
This is advantageous in terms of reducing pitting corrosion.

而して、その下地被覆層の厚さは合金メッキ層或いは拡
散被覆層の場合とも、0.01〜1μ厚さのものを使用
するとよい。下地被覆層の厚さが0.01μ未満では、
ピンホールの減少効果が少なく、又地鉄に達する表面か
らの傷付きを防止する効果も少ない。従って、下地被覆
層の厚さは、0.01μ以上、好ましくは0.05μ以
上が望ましい。
Therefore, the thickness of the base coating layer is preferably 0.01 to 1 μm, whether it is an alloy plating layer or a diffusion coating layer. If the thickness of the base coating layer is less than 0.01μ,
It is less effective in reducing pinholes and less effective in preventing scratches from the surface reaching the base metal. Therefore, the thickness of the base coating layer is preferably 0.01 μm or more, preferably 0.05 μm or more.

一方、下地被覆層の厚さが1μをこえる場合には、その
Feの露出部を減少する効果が飽和すると共1乙成形1
10工性が劣化するので好ましくない。
On the other hand, when the thickness of the base coating layer exceeds 1μ, the effect of reducing the exposed portion of Fe is saturated and
10 It is not preferable because the workability deteriorates.

従って、これら下地被覆層の厚さは1μ以下、好ましく
は0.5μ以下が望ましい。
Therefore, the thickness of these base coating layers is desirably 1 μm or less, preferably 0.5 μm or less.

さらに、これら下地被覆層の鋼表面における鉛−錫系合
金メッキ後の形態は、下地被覆層の厚さ、鉛−錫系合金
メッキのメッキ条件等によって、異なるが特にその形態
を規定するものではない。
Furthermore, the form of these base coating layers after lead-tin alloy plating on the steel surface varies depending on the thickness of the base coating layer, the plating conditions of lead-tin alloy plating, etc., but the form is not specifically specified. do not have.

即ち、下地被覆層を構成する下地金属とSnとの合金層
のみが鋼表面に生成されている場合、鋼表面に下地被覆
層を構成する金属の被覆層とその上層にこれら金属とS
nからなる合金層が生成されている場合、或いは拡散下
地被覆層を設ける場合に、拡散層と拡散層を構成する下
地金属、Fe、 Snからなる合金層が生成される場合
、拡散層、下地金属層、下地金属とSnからなる合金層
が生成される場合のいずれでもよい。
That is, when only an alloy layer of the base metal and Sn constituting the base coating layer is formed on the steel surface, a coating layer of the metal constituting the base coating layer and an upper layer of these metals and S are formed on the steel surface.
When an alloy layer consisting of n is formed, or when a diffusion base coating layer is provided, the diffusion layer and the base metal constituting the diffusion layer, Fe, and an alloy layer consisting of Sn are formed. Either a metal layer or an alloy layer consisting of a base metal and Sn may be formed.

次に、鉛−錫系合金メッキの条件については特に規定さ
れるものではないが、通常Sn含有量が3〜50%、好
ましくは7〜15%のものが使用され、メッキ厚さは2
〜10μ、好ましくは3〜7.5μ厚さのものを使用す
るとよい。メッキ層の成分組成についてはSn含有量が
3%未満では、ピンホールの生成量が多く、また半田性
の点で不利なため、3チ以上、好ましくは7%以上の8
nの含有量がよい。
Next, the conditions for lead-tin alloy plating are not particularly stipulated, but those with an Sn content of 3 to 50%, preferably 7 to 15%, are used, and the plating thickness is 2.
A thickness of ~10μ, preferably 3~7.5μ may be used. Regarding the component composition of the plating layer, if the Sn content is less than 3%, a large amount of pinholes will be generated and it will be disadvantageous in terms of solderability.
Good n content.

又、Sn含有量が多い場合は特に問題点はないが、経済
的でなくなるので50%未満、好ましくは15%以下の
Sn含有量の被覆層がよい。
Further, if the Sn content is high, there is no particular problem, but since it becomes uneconomical, a coating layer with a Sn content of less than 50%, preferably 15% or less is preferable.

また鉛−錫系合金メッキ層の厚さについては2〜10μ
厚さがよい。これは2μ未満の厚さではピンホールの生
成量が多く、また鋼素地に傷付きが発生し易く、耐食性
の点で好ましいものでなく、3μ以上の厚さの鉛−錫系
合金メッキ層が施される。又、その厚さが10μをこえ
ると成形加工性及び溶接性が劣化する傾向があるので、
10μ厚さ以下、好ましくは7.5μ厚さ以下の鉛−錫
系合金メッキ層を施すのがよい。
The thickness of the lead-tin alloy plating layer is 2 to 10 μm.
Good thickness. If the thickness is less than 2μ, a large number of pinholes will be formed, and the steel base will be easily scratched, which is not desirable in terms of corrosion resistance. administered. In addition, if the thickness exceeds 10μ, moldability and weldability tend to deteriorate.
It is preferable to apply a lead-tin alloy plating layer with a thickness of 10 μm or less, preferably 7.5 μm or less.

この鉛−錫系合金メッキ層を前記下地被覆層の上層とし
て設ける方法については、溶融メッキ法。
The method for providing this lead-tin alloy plating layer as an upper layer of the base coating layer is a hot-dip plating method.

電気メッキ法、気相メッキ法等のいずれの方法を用いて
もよい。
Any method such as electroplating or vapor phase plating may be used.

尚、鉛−錫系合金メッキ層としては、PbとSnの二元
合金組成のみならず、不純物としてsb、Znsが鉛−
錫系合金メッキ層中に含有されても差支えない。
The lead-tin alloy plating layer has not only a binary alloy composition of Pb and Sn, but also sb and Zns as impurities.
There is no problem even if it is contained in the tin-based alloy plating layer.

さら普こ本発明において、鉛−錫系合金被覆層の表面に
塗料密着性の向上或いはより一層のピンホール減少等の
目的からリン酸、フィチン酸、クロム酸等の水浴液によ
る化学処理(浸漬又は電解処理等)を施してもよい。
Furthermore, in the present invention, the surface of the lead-tin alloy coating layer is chemically treated (immersed) with a water bath solution such as phosphoric acid, phytic acid, or chromic acid for the purpose of improving paint adhesion or further reducing pinholes. or electrolytic treatment, etc.).

(実施例) 以下に本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

第1表にCrの添加量を変化させた場合のCr添加鋼を
用いて、脱脂、酸洗の通常表面処理鋼板に適用される表
面清浄化、活性化処理を行なってから。
Using Cr-added steels with varying amounts of Cr as shown in Table 1, the samples were subjected to surface cleaning and activation treatments, such as degreasing and pickling, which are commonly applied to surface-treated steel sheets.

各種の下地前処理を施した。次いで、鉛−錫系合金メッ
キ被覆層を各々所定厚さ施した鋼板について、下記に示
す性能評価を行なった。また、比較材として5crf、
添加していない鋼板について、下地被覆処理及び鉛−錫
系合金メッキ被覆層を設けた鋼板について同様の評価試
験を行なった。第2表に性能評価結果を示す。尚、評価
試験及び評価基準は以下の方法によシ行なった。
Various groundwork pretreatments were applied. Next, the following performance evaluations were performed on the steel plates each coated with a lead-tin alloy plating layer having a predetermined thickness. In addition, as a comparison material, 5crf,
A similar evaluation test was conducted on a steel plate without additives and a steel plate with a base coating treatment and a lead-tin alloy plating layer. Table 2 shows the performance evaluation results. The evaluation tests and evaluation criteria were conducted in accordance with the following methods.

■塩水噴霧試験による耐食性 塩水噴霧試験4000時間実施後の赤錆発生部の板厚減
少量の測定によシ、その耐食性金評価した。
■ Corrosion resistance by salt spray test The corrosion resistance was evaluated by measuring the amount of reduction in plate thickness at the area where red rust occurred after conducting the salt spray test for 4000 hours.

◎・・・板厚減少量0.15 tm p下0 ・・・0
.25 mm以下 Δ・・・0.35m以下 ×・・・0.35m超 ■サイクリックコミジョンテストによる耐食性第1図(
こ示すサイクルを1サイクルとして、150サイクル・
テスト後の赤錆発生部の板厚減少量の測定により、その
耐食性を評価した。
◎・・・Plate thickness reduction amount 0.15 tm p lower 0...0
.. 25 mm or less Δ... 0.35 m or less ×... 0.35 m or less ■ Corrosion resistance by cyclic commission test Figure 1 (
The cycle shown here is one cycle, 150 cycles.
The corrosion resistance was evaluated by measuring the amount of plate thickness reduction in the area where red rust occurred after the test.

◎・・・板厚減少量0.10m以下 O・”      0.20m以下 Δ−0,30m以下 x−0,30■超 ■チッピング試験による耐食性 本発明の塗装後の耐食性評価を対象として、メラミンア
ルキッド系塗料を5μ塗装した面に、直径約7.5μの
細石を圧力3.5 Kg//cdで10秒間、1−当シ
約2gが衝突するようlこチッピングさせてから、前記
■のサイクルテスト条件で関サイクルのテストを実施し
た。その後、赤錆発生部の板厚減少量を測定して耐食性
評価を行なった。
◎...Plate thickness reduction: 0.10 m or less O・" 0.20 m or less Δ - 0.30 m or less A fine stone with a diameter of about 7.5μ is applied to the surface coated with 5μ of alkyd paint for 10 seconds at a pressure of 3.5 kg//cd so that about 2g of the stone collides with the surface, and then A Seki cycle test was conducted under cycle test conditions.Then, the amount of plate thickness reduction in the area where red rust occurred was measured to evaluate corrosion resistance.

◎・・・板厚減少量0.3 tm以下 ○・−・  I  O,4−以下 Δ・”   I   O,5van以下X ・・・I 
  O,5m超 ■ガソリン系燃料を対象とした促進耐食性試験結果 ブランクサイズ0.8 X 500 X 5005m*
、潤滑油塗布後にしわ押え圧力30Tの条件で150 
X 150mm角のポンチで角筒絞夛ヲ行な込、深さ1
20 tmの角筒絞シ材内部に下記の溶液を充填してそ
の耐食性を評価した。
◎・・・Plate thickness reduction 0.3 tm or less ○・-・IO, 4- or less Δ・” I O, 5van or less X ・・・I
O, over 5m ■Accelerated corrosion resistance test results for gasoline-based fuel Blank size 0.8 x 500 x 5005m*
, after applying lubricating oil, under the condition of wrinkle presser pressure 30T.
X Use a 150mm square punch to squeeze out the square tube, depth 1
The following solution was filled into the inside of a 20 tm rectangular tube drawing material, and its corrosion resistance was evaluated.

評価法■:ガソリン(7部)十蒸溜水(3部〕からなる
溶液を充填、180日間静置後に、その赤錆の発生状況
、赤錆発生部の板厚減少量の測定。
Evaluation method (■): Filled with a solution consisting of gasoline (7 parts) and distilled water (3 parts), and after standing for 180 days, the occurrence of red rust and the amount of decrease in plate thickness in the area where red rust occurred were measured.

評価法■:ガソリン(7部)+2%NaCL水溶液(3
部〕からなる溶液を充填、180日間静置後にその赤錆
の発生状況、赤錆発生部の板厚減少量の測定。
Evaluation method ■: Gasoline (7 parts) + 2% NaCL aqueous solution (3 parts)
After filling with a solution consisting of [part] and leaving it to stand for 180 days, the state of red rust occurrence and the amount of decrease in plate thickness at the part where red rust occurred were measured.

によシ、各々耐食性を評価した。The corrosion resistance of each was evaluated.

◎・・・赤錆発生個数10ケ以下、孔食深さ0.1 w
以下○・・・      Iケ以下、  z   Q。
◎・・・Number of red rust occurrences is 10 or less, pitting depth is 0.1w
The following ○... I ke and below, z Q.

1m以下Δ・・・       加ケ超s     ’
   0.20m+以下×・・・      加ケ超、
10.20鱈超■成形加工性 ブランクサイズ0.8 X 500 X 500鱈、潤
滑油塗油後、しわ押え圧力30Tの条件で150 X 
150m角のポンチで140m深さの角筒絞Dt行なっ
た場合の、角筒絞り材外面の表面状況(特に絞勺材外面
部の鉛−錫系合金被覆層の損傷程度〕及び成形’101
00割れ発生状況の程度よシ、下記の評価基準で評価を
行なった。
1m or less Δ... Addition s'
0.20m+ or less
10.20 Cod Super ■Moldability Blank size 0.8 x 500 x 500 Cod, after applying lubricating oil, 150
Surface condition of the outer surface of the rectangular tube drawing material (particularly the degree of damage to the lead-tin alloy coating layer on the outer surface of the drawn material) and forming '101 when drawing the rectangular tube to a depth of 140m using a 150m square punch
The degree of occurrence of 00 cracking was evaluated using the following evaluation criteria.

◎・・・被覆層の損傷殆んどなく、加工割れの発生なし ○・・・被覆層の損傷殆んど認められないが、試験材の
加工割れが10%以下であるが発生Δ・・・被覆層の損
傷が若干認められると共に、試験材に対して加工割れが
20%以下で発生×・・・被覆層のカジリによる損傷が
著しく発生した場合或いは加工割れが試験材に対して、
20%よ勺多く発生
◎...There is almost no damage to the coating layer, and no processing cracks occur.○...Almost no damage to the coating layer is observed, but processing cracks of the test material are less than 10%, but occur Δ...・Some damage to the coating layer is observed, and processing cracks occur in 20% or less of the test material.
20% more occurrences

【図面の簡単な説明】 嘉1図は本発明の実施例における耐食性を評価する際の
1サイクルを示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing one cycle when evaluating corrosion resistance in an example of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.10%以下 solAl:0.005〜0.08% Cr:0.5〜20% を含有して残部が鉄および不可避的不純物からなる鋼板
に、Ni、Co、Ni−Co合金の下地被覆層或いはこ
れらの拡散下地被覆層その上層に鉛−錫系合金被覆層を
施した事を特徴とする高耐食性鉛−錫系合金メッキ鋼板
(1) Ni, Co, Ni- A highly corrosion-resistant lead-tin alloy plated steel sheet comprising a Co alloy base coating layer or a lead-tin alloy coating layer on the diffusion base coating layer.
(2)C:0.10%以下 solAl:0.005〜0.08% Cr:0.5〜20% Ti、Nb、V、Zrの1種又は2種以上でそれぞれ0
.03〜0.5%を含有して、残部が鉄および不可避的
不純物からなる鋼板にNi、Co、Ni−Co合金の下
地被覆層或いはこれらの拡散下地被覆層その上層として
鉛−錫系合金被覆層を施した事を特徴とする高耐食性鉛
−錫系合金メッキ鋼板。
(2) C: 0.10% or less solAl: 0.005-0.08% Cr: 0.5-20% One or more of Ti, Nb, V, and Zr, each 0
.. A base coating layer of Ni, Co, Ni-Co alloy, or a lead-tin alloy coating as a layer above the diffusion base coating layer of Ni, Co, Ni-Co alloy, etc. A highly corrosion-resistant lead-tin alloy plated steel sheet that is coated with a layer.
JP24082784A 1984-11-16 1984-11-16 Lead-tin alloy plated steel sheet of high corrosion resistance Granted JPS61119678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24082784A JPS61119678A (en) 1984-11-16 1984-11-16 Lead-tin alloy plated steel sheet of high corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24082784A JPS61119678A (en) 1984-11-16 1984-11-16 Lead-tin alloy plated steel sheet of high corrosion resistance

Publications (2)

Publication Number Publication Date
JPS61119678A true JPS61119678A (en) 1986-06-06
JPS642195B2 JPS642195B2 (en) 1989-01-13

Family

ID=17065284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24082784A Granted JPS61119678A (en) 1984-11-16 1984-11-16 Lead-tin alloy plated steel sheet of high corrosion resistance

Country Status (1)

Country Link
JP (1) JPS61119678A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903424A1 (en) * 1997-09-19 1999-03-24 Haldor Topsoe A/S Corrosion resistance of high temperarture alloys
US6602355B2 (en) 1997-09-19 2003-08-05 Haldor Topsoe A/S Corrosion resistance of high temperature alloys
JP2006172127A (en) * 2004-12-15 2006-06-29 Tlv Co Ltd Structure for mounting electronic tag on managed object

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903424A1 (en) * 1997-09-19 1999-03-24 Haldor Topsoe A/S Corrosion resistance of high temperarture alloys
US6602355B2 (en) 1997-09-19 2003-08-05 Haldor Topsoe A/S Corrosion resistance of high temperature alloys
JP2006172127A (en) * 2004-12-15 2006-06-29 Tlv Co Ltd Structure for mounting electronic tag on managed object

Also Published As

Publication number Publication date
JPS642195B2 (en) 1989-01-13

Similar Documents

Publication Publication Date Title
KR101674625B1 (en) Method for producing a steel component provided with a metal coating protecting against corrosion and steel component
JP5251078B2 (en) Steel plate for containers and manufacturing method thereof
JP5157487B2 (en) Steel plate for containers and manufacturing method thereof
US4461679A (en) Method of making steel sheet plated with Pb-Sn alloy for automotive fuel tank
JP4940813B2 (en) Method for producing hot-dip galvanized steel sheet having a value of TS × El of 21000 MPa ·% or more
JP2019026893A (en) High strength steel sheet excellent in delayed fracture resistance and corrosion resistance
JPS61119678A (en) Lead-tin alloy plated steel sheet of high corrosion resistance
JPS616293A (en) Production of sn-plated steel sheet having high corrosion resistance
CN113699475A (en) Hot-dip galvanizing method for steel
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JP3126623B2 (en) Rustproof steel plate for fuel tank
JPH0520513B2 (en)
JPH08269733A (en) Rust preventive steel sheet for fuel tank
JP3129628B2 (en) Rustproof steel plate for fuel tank
JPS61270391A (en) Steel sheet for fuel vessel
JPS61119679A (en) Zinc alloy plated steel sheet of high corrosion resistance
JPS5837165A (en) Al alloy hot dipped steel plate having excellent plating appearance and high corrosion resistance and high- temperature durability and production thereof
JPS61272389A (en) Steel sheet coated with al-si by hot dipping and having high corrosion resistance
JP3071667B2 (en) Rustproof steel plate for fuel tanks with excellent workability and corrosion resistance
JP2002105615A (en) HOT-DIP Sn-Mg COATED STEEL SHEET
JPS60145380A (en) Ni plated steel sheet having excellent corrosion resistance
JPH04221052A (en) Pretreatment of stainless steel material for hot dipping galvanizing
JPH0241594B2 (en)
JPS61257484A (en) Aluminized steel sheet having superior corrosion and heat resistance
JPS61243192A (en) Surface-treated steel sheet for fuel vessel