JPH0520513B2 - - Google Patents

Info

Publication number
JPH0520513B2
JPH0520513B2 JP23487184A JP23487184A JPH0520513B2 JP H0520513 B2 JPH0520513 B2 JP H0520513B2 JP 23487184 A JP23487184 A JP 23487184A JP 23487184 A JP23487184 A JP 23487184A JP H0520513 B2 JPH0520513 B2 JP H0520513B2
Authority
JP
Japan
Prior art keywords
plating
lead
layer
less
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23487184A
Other languages
Japanese (ja)
Other versions
JPS61113774A (en
Inventor
Yukinobu Higuchi
Kenichi Asakawa
Toshinori Mizuguchi
Minoru Fujinaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23487184A priority Critical patent/JPS61113774A/en
Publication of JPS61113774A publication Critical patent/JPS61113774A/en
Publication of JPH0520513B2 publication Critical patent/JPH0520513B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はFeの溶出量の少ない、耐食寿命にす
ぐれたPb−Sn系合金メツキ鋼板に関するもので
ある。 (従来の技術) 一般に、鉛−錫合金溶融メツキ製品は、耐食
性・半田性・加工性等が良好であるため種々の用
途に供されている。 しかし、鉛は鉄と反応しにくく、従つて合金層
が均一に生成されにくいこと、或いは鉛が比較的
酸化されやすいことなどのため、メツキ付着量を
調整するためのメツキ絞り方法の不備等によつ
て、鉛−錫合金メツキではピンホールの発生がし
ばしば生じることがある。 更に、鉛−錫合金は非常に軟かい金属であるた
め、取り扱い時或いは加工等によつて、メツキ層
の傷発生、ピンホールの拡大等により腐食環境に
よつて赤錆の発生をみることがある。 これらの問題点を解決する方法として、従来か
ら特開昭50−23345号公報、特開昭51−115240号
公報などで発表されているように、鉛−錫合金溶
融メツキ前に亜鉛、錫、銅或いはニツケル、コバ
ルト、ニツケル−コバルト合金の中間下地処理を
施す方法が行なわれている。しかし、これらの中
間下地処理法のうち、亜鉛及び錫メツキを行なう
方法は、こられ下地メツキ層が溶融メツキ浴中に
溶解するので、充分なピンホール防止効果が得ら
れない。 又、中間下地処理法として銅メツキを行なう方
法は、酸性メツキ浴或いはピロリン酸銅メツキ浴
による銅メツキ自体が鋼材素材とのメツキ密着性
が充分でないため、充分なピンホール防止効果が
得られない。 更に、ニツケル、コバルト、ニツケル−コバル
ト合金の中間下地処理を施した鉛−錫系合金メツ
キ鋼板はピンホールの発生が少なく、取り扱い時
或いは加工時にメツキ層に傷が発生しても、下地
メツキ金属の存在によつて鋼材表面までメツキ層
に発生した傷が到達することが比較的少ない等の
理由から、良好な耐食性が得られる。しかしなが
ら、ピンホールを皆無にする事は困難であり、又
鋼表面にまで達する加工時の傷付きを完全に防止
する事も困難である。 (発明が解決しようとする問題点) 近年耐久消費材の高級化指向或いは冬期の道路
凍結防止用散布塩の腐食に対する耐食性向上及び
タンクの形状から苛酷な成形加工となり傷付きに
よる腐食の軽減を計る鉛−錫系合金メツキ鋼板が
要求されている。 一般に鉛−錫系合金メツキ層、Niを含有する
Snとの合金層等は、水分、Cl-イオン、ガソリン
等に対し耐食性がある。しかしながら、鉛−錫系
合金メツキ層などは、通常使用されているメツキ
原板に比し、腐食環境においては著しくカソーデ
イツク(電位的に貴)であり、鉛−錫メツキ層と
メツキ原板、Niを含有するSnとの合金層とメツ
キ原板の間の腐食電流が著しく大きい。従つて、
メツキ層に鋼表面に達する欠陥等が存在する場
合、鉛−錫メツキ層とメツキ原板、或いはNi等
の下地金属を含有するSnとの合金層とメツキ原
板の間に局部電池が生成され、メツキ原板がアノ
ーデイツク(電位的に卑)なため、メツキ層欠陥
部のFe露出部からのFeの溶出、溶解が多くなり、
時によつては穿孔腐食が発生する。 本発明は、これらに対処してなされたものであ
り、従来以上に耐食性のすぐれた鉛−錫系合金メ
ツキ鋼板を提供することを目的としたものであ
る。 (問題点を解決するための手段) 本発明者らは、メツキ層に欠陥部等が存在又は
発生しても、Feの溶出、溶解が少なく、穿孔腐
食の発生しにくいNi,Co,Ni−Co合金及びこれ
らの拡散層を下地被覆層として有する鉛−錫系合
金メツキ鋼板について種々検討した結果、メツキ
原板(鋼板)を、電位的に貴な方向に近づけ(カ
ソーデイツク化)るとともに、鋼板自体の耐食性
を上げる(自己腐食速度の低減)事によつて可能
である事を知見した。 本発明はこの知見に基いて構成したもので、そ
の要旨は、C;0.10%以下、solAl;0.005〜0.08
%、Cu;0.05〜0.8%、あるいは必要によつては
Ti,Nb,Bの一種又は二種以上を含有させるに
際し、TiとNbは0.03〜0.5%、Bは0.0003%以下、
を含有して残部がFeおよび不可避的不純物から
なる鋼板にNi,Co,Ni−Co合金の下地被覆層ま
たは拡散下地被覆層を施し、さらにはその上層に
鉛−錫系合金被覆層を施した耐食性にすぐれた鉛
−錫系合金メツキ鋼板である。 以下本発明について詳細に説明する。 転炉、電気炉等の溶解された溶鋼を連続鋳造法
または造塊、分塊法を経てスラブとし熱間圧延、
冷間圧延さらに焼鈍工程を経て、C:0.10%以
下、solAl:0.005〜0.08%、Cu:0.05〜0.8%を含
有して残部が実質的にFeからなるメツキ原液を
製造する。Cは含有量の増加に鋼板の加工性を劣
化し、鋼板表面に点在して析出した多量のセメン
タイトが、Ni,Co,Ni−Co合金等の下地被覆処
理後或いは鉛−錫系合金メツキ後に多くのピンホ
ールを発生させる原因となる。したがつてC成分
は耐食性を劣化する有害元素として少ない方が好
ましく、その上限を0.10%とした。好ましいのは
0.01%以下である。 Alは溶鋼の脱酸元素であるが、製造された鋼
板中に残存するsolAl量が0.005%未満では酸素ガ
スによる表面欠陥の発生率を著しく高め、下地処
理面或いは鉛−錫系合金メツキ面に多量のピンホ
ールが発生し耐食性を劣化する。 また0.08%を越える過剰なsolAlはAl系酸化物
を鋼表面に多く点在せしめ、不メツキ部分あるい
はピンホールを発生してメツキの健全性を失い、
耐食性を劣化する。したがつて鋼中に含有される
solAlは、耐食性が安定して確保できる量として
0.005〜0.08%に限定した。 Cuの添加は、腐食環境に曝される鋼板の電位
をNi,Co,Ni−Co合金及びこれらの拡散被覆
層、これらの下地被覆層と鉛−錫系合金メツキ層
中のSnとの反応生成物、及び鉛−錫系合金被覆
層の電位に近づけて、鋼板自体の耐食性を向上せ
しめるものである。 すなわちCuは、鉛−錫系合金メツキ層下地層
とSnとの合金層、下地被覆層等のメツキ欠陥や
取扱い時及び成形加工時に鋼表面に達する傷付き
でFeの露出部が生成されても、腐食環境におけ
る溶出、溶解が少なく、欠陥部からの孔食が軽減
され、その耐食寿命の延長が可能である。 而して、Cuの含有量が0.05%未満では上記の効
果が得られず、またCuの含有量が0.8%をこえる
と熱間圧延工程において、熱間圧延温度を如何に
調整しても熱間脆性による表面割れ、表面傷等が
発生する。従つて、Cuは0.05〜0.80%とし、特に
0.1〜0.3%が好ましい。 又、本発明においては、上記の鋼成分に対し
て、Ti,Nb,Bの一種又は二種以上で、Ti,
Nbについては0.03〜0.5%、Bについては0.0003
%以下を添加する。 Ti,Nbは鋼中のC,Nを固定して鋼の成形加
工性を向上し、時効硬化を防止する効果を有す
る。而して、こられの効果を得るために0.03%以
上、好ましくは0.05%以上が必要である。また、
その含有量が0.5%をこえると効果が飽和に達し、
経済的でなくなるとともに、鋼を硬質化する。そ
の上限は0.5%以下で0.3%以下が好ましい。 鋼中に含有される不可避的不純物であるP,S
等の結晶粒界への析出が増加して結晶粒界をぜい
化するためと考えられる。Bは結晶粒界に析出し
て不可避的不純物のP,Sの粒界析出を防止し、
溶接、ロウ付け作業等の高熱操作を受ける熱影響
部での結晶粒の成長、粗大化を防止して加工性の
劣化を抑制する。その含有量は0.0003%以下で、
好ましくは0.0001%以下である。またBが0.0003
%をこえると鋼板を硬質化し、成形加工法を劣化
せしめる。 上記のような成分組成に構成されたメツキ原板
は、脱脂、酸洗等の通常のメツキ前処理を施し
て、Ni,Co,Ni−Co合金メツキの下地前処理が
施される。 これらの下地前処理方法は、メツキ浴組成、メ
ツキ条件等が特に規定されるものではないが、大
体電流密度3〜300A/dm2,メツキ温度80℃以
下がよい。メツキ浴組成の一例及びメツキ条件の
一例をあげれば下記の如くである。 (1) Niメツキ浴 硫酸ニツケル 240g/ 塩化ニツケル 45g/ ほう酸 30g/ 電流密度 15A/dm2 (2) Coメツキ浴 硫酸コバルト 300g/ 塩化コバルト 50g/ ほう酸 30g/ 電流密度 10A/dm2 (3) Ni−Co合金メツキ浴 硫酸ニツケル 150g/ 硫酸コバルト 120g/ 塩化ニツケル 30g/ 塩化コバルト 24g/ ほう酸 40g/ 電流密度 7.5A/dm2 などを用いて、電気メツキを行なえばよい。 又、これらの電気メツキによる下地前処理後或
いはこれらの金属イオンを含有する水溶液、例え
ばさく酸ニツケル(100g/)−界面活性剤系の
水溶液を塗布乾燥後に、各々非酸化性或いは還元
性雰囲気で、600〜850℃で20〜180秒の加熱拡散
処理を行ない、Ni−Fe,Co−Fe,Ni−Co−Fe
等からなる拡散処理層を設けてもよい。或は更に
これら拡散被覆層の上層に前記のNi,Co,Ni−
Co合金被覆層を設けてもよい。 こられの下地前処理層は、その後行なわれる鉛
−錫合金メツキ層のピンホール減少、成形加工時
等における傷付き等の鋼表面に達するのを防止す
るために極めて有効である。鉛−錫系合金メツキ
が溶融メツキ法により行なわれる場合は、メツキ
浴中のSnとの反応性の増加により、これら下地
前処理層とSnからなる均一緻密な合金層の生成
により、ピンホールが減少される。 また、電気メツキ法の場合においても、下地被
覆層と電気鉛−錫系合金メツキ層との重畳効果、
及びメツキ後これら下地被覆層とメツキ層中Sn
との常温拡散による緻密な合金層の生成のため、
ピンホールの減少が極めて著しい。 さらにまた、これら下地被覆層が存在する事に
よつて、取扱い時或いは成形加工時に、鉛−錫系
合金被覆層は軟質なため傷が入り易いが、鋼表面
に到達するのが防止される確率が高くなる。 従つて、これらの下地被覆層を設ける事によつ
て、上記の如くFeの露出部を減らす事が重要で
あり、鋼素地を如何に改良しても、鉛−錫系合金
層のピンホール、不メツキ等が多く又は鋼素地に
達する傷付きが多い場合には、Feの溶出、溶解
量の減少、孔食の軽減に対する効果が少なくなる
ので、下地被覆層を設け、Feの露出部を減少せ
しめる事が重要である。さらに、下地被覆層を含
有するSnとの合金層は、FeとSnからなる合金層
に比して電位的に貴なため、鋼素地と合金層の間
の腐食電流を減少する効果が得られ、Feの溶出
速度の減少、及び孔食の軽減の点から有利であ
る。 而して、その下地被覆層の厚さは合金メツキ層
或いは拡散被覆層の場合とも、0.01〜1μ厚さのも
のを使用するとよい。下地被覆層の厚さが0.01μ
未満では、ピンホールの減少効果が少なく、又地
鉄に達する表面からの傷付きを防止する効果も少
なくなる。従つて、下地被覆層の厚さは、0.01μ
以上、好ましくは0.05μ以上が望ましい。 一方、下地被覆層の厚さが1μをこえる場合に
は、そのFeの露出部を減少する効果が飽和する
と共に、成形加工性が劣化するので好ましくな
い。従つて、これら下地被覆層の厚さは1μ以下、
好ましくは0.5μ以下が望ましい。 さらに、これら下地被覆層の鋼表面における鉛
−錫系合金メツキ後の形態は、下地被覆層の厚
さ、鉛−錫系合金メツキのメツキ条件等によつて
異なるが特にその形態を規定するものではない。 即ち、下地被覆層を構成する下地金属とSnと
の合金層のみが鋼表面に生成されている場合、鋼
表面に下地被覆層を構成する金属の被覆層とその
上層にこれら金属とSnからなる合金層が生成さ
れている場合、或いは拡散下地被覆層を設ける場
合に、拡散層と拡散層を構成する下地金属、Fe,
Snからなる合金層が生成される場合、拡散層、
下地金属層、下地金属とSnからなる合金層が生
成される場合のいずれでもよい。 次に、鉛−錫系合金メツキの条件については特
に規定されるものではないが、通常Sn含有量が
3〜50%、好ましくは7〜15%のものが使用さ
れ、メツキ厚さは2〜7.5μ、好ましくは3〜5.5μ
厚さのものを使用するとよい。 メツキ層の成分組成についてはSn含有量が3
%未満では、ピンホールの生成量が多く、また半
田性の点で不利なため、3%以上、好ましくは7
%以上のSnの含有量がよい。又、Sn含有量が多
い場合は特に問題点はないが、経済的でなくなる
ので、50%未満、好ましくは15%以下のSn含有
量の被覆層がよい。 また鉛−錫系合金メツキ層の厚さについては2
〜10μ厚さがよい。これは2μ未満の厚さではピン
ホールの生成量が多く、また鋼素地に傷付きが発
生し易く、耐食性の点で好ましいものでなく、
3μ以上の厚さの鉛−錫系合金メツキ層がよいよ
うである。又、その厚さが10μをこえると成形加
工性及び溶接性が劣化する傾向があるので、10μ
厚さ以下、好ましくは7.5μ厚さ以下の鉛−錫系合
金メツキ層を施するのがよい。 この鉛−錫系合金メツキ層を前記下地被覆層の
上層として設ける方法については、溶融メツキ
法、電気メツキ法、気相メツキ法等のいずれの方
法を用いてもよい。 尚、鉛−錫系合金メツキ層としては、PbとSn
の二元合金組成のみならず、不純物としてSb,
Zn等が鉛−錫系合金メツキ層中に含有されても
差支えない。 又本発明において、鉛−錫系合金被覆層の表面
に塗料密着性の向上或いはより一層のピンホール
減少等の目的によつて、リン酸、フイチン酸、ク
ロム酸等の水溶液による化学処理(浸漬又は電解
処理等)を施してもよい。 以下に本発明の実施例について説明する。 第1表にCuの添加量を変化させた場合のCu添
加鋼を用いて、脱脂、酸洗の通常表面処理鋼板に
適用される表面清浄化、活性化処理を行なつてか
ら、各種の下地前処理を施した。次いで、鉛−錫
系合金メツキ被覆層を各々所定厚さ施した鋼板に
ついて、下記に示す性能評価を行なつた。また、
比較材として、Cuを添加していない鋼板につい
て、下地被覆処理及び鉛−錫系合金メツキ被覆層
を設けた鋼板について同様の評価試験を行なつ
た。 性能評価試験 塩水噴霧試験による耐食性 塩水噴霧試験3000時間実施後の赤錆発生部の板
厚減少量の測定により、その耐食性を評価した。 ◎…板厚減少量0.15mm以下 ○…板厚減少量
0.25mm以下 △… 〃 0.35mm以下 ×… 〃
0.35mm超 サイクリツクコロジヨンテストによる耐食性 上記サイクルを1サイクルとして、120サイク
ル・テスト後の赤錆発生部の板厚減少量の測定に
より、その耐食性を評価した。 ◎…板厚減少量0.10mm以下 ○…板厚減少量
0.20mm以下 △… 〃 0.30mm以下 ×… 〃
0.30mm超 塩水散布、屋外曝露試験による耐食性評価 1週間に1回、試験片に3%NaCl水溶液を散
布して、6ケ月間屋外曝露試験を行ない、赤錆の
発生状況及び赤錆発生部の板厚減少量より、その
耐食性を総合的に評価した。 ◎…耐食性非常に良好 ○…耐食性比較的良好 △…耐食性比較的劣る ×…耐食性不良 ガソリン系燃料を対象とした促進耐食性試験
結果 ブランクサイズ0.8×500×500mm、潤滑油塗布
後にシワ押え圧力30Tの条件で150×150mm角のポ
ンチで角筒絞りを行ない、深さ120mmの角筒絞り
材内部に下記の溶液を充填してその耐食性を評価
した。 評価法;ガソリン(7部)+蒸溜水(3部)か
らなる溶液を充填、180日間静置後に、その
赤錆の発生状況、赤錆発生部の板厚減少量の
測定。 評価法;ガソリン(7部)+2%NaCl水溶液
(3部)からなる溶液を充填、180日間静置後
にその赤錆の発生状況、赤錆発生部の板厚減
少量の測定により、各々耐食性を評価した。 ◎…赤錆発生個数10ケ以下、孔食深さ0.1mm以
下 ○… 〃 20ケ以下、 〃 0.1mm以
下 △…赤錆発生個数20ケ超、孔食深さ0.20mm以下 ×… 〃 20ケ超、 〃 0.20mm超 成形加工性評価 ブランクサイズ0.8×500×500mm、潤滑油塗布
後、シワ押え圧力30Tの条件で150×150mm角のポ
ンチで角筒絞りを行ない、絞り深さ限界と角筒絞
り材外面のカジリの発生状況より評価した。 ◎…成形加工性極めて良好 ○…成形加工性比
較的良好 ×…成形加工性極めて劣る 二次加工性評価 板厚0.8mmの試料を用い、ブランク径133.2mmで
各々絞り比が1段絞り(2.22)→2段絞り
(2.89)→3段絞り(3.6)の3段絞りを行ない、
−40℃で上記加工材に円錐ポンチを押し込み、上
記加工材に縦割れが発生するか否かでその二次加
工性を評価した。 ◎…縦割れ発生なく、二次加工性良好 ×…縦割れ発生し、二次加工性劣る 測定不可…3段絞りによつて割れが発生し、二
次加工性評価不能(加工性が劣る)
(Industrial Application Field) The present invention relates to a Pb-Sn alloy plated steel sheet that has a small amount of Fe elution and has an excellent corrosion-resistant life. (Prior Art) Generally, lead-tin alloy hot-plated products have good corrosion resistance, solderability, workability, etc., and are therefore used for various purposes. However, lead does not easily react with iron, and therefore it is difficult to form an alloy layer uniformly, or lead is relatively easily oxidized, resulting in problems such as inadequacies in the plating method used to adjust the amount of plating deposited. Therefore, pinholes often occur in lead-tin alloy plating. Furthermore, since lead-tin alloy is a very soft metal, during handling or processing, the plating layer may be scratched, pinholes may become enlarged, and red rust may occur in a corrosive environment. . As a method to solve these problems, as previously announced in JP-A-50-23345 and JP-A-51-115240, zinc, tin, etc. are A method of performing an intermediate undercoat treatment of copper, nickel, cobalt, or nickel-cobalt alloy has been used. However, among these intermediate base treatment methods, the method of performing zinc and tin plating does not provide a sufficient pinhole prevention effect because the base plating layer dissolves in the hot-dip plating bath. In addition, in the method of performing copper plating as an intermediate base treatment method, the copper plating itself using an acid plating bath or a copper pyrophosphate plating bath does not have sufficient plating adhesion to the steel material, so a sufficient pinhole prevention effect cannot be obtained. . In addition, lead-tin alloy plated steel sheets that have been treated with nickel, cobalt, or nickel-cobalt alloy as an intermediate base treatment have fewer pinholes, and even if the plating layer is scratched during handling or processing, the base plated metal will remain intact. Good corrosion resistance can be obtained because scratches generated in the plating layer are relatively less likely to reach the surface of the steel material due to the presence of . However, it is difficult to completely eliminate pinholes, and it is also difficult to completely prevent scratches during processing that reach the steel surface. (Problems to be solved by the invention) In recent years, there has been a trend toward higher-grade durable consumer products, or improvements in the corrosion resistance of salt sprayed to prevent roads from freezing in winter, and reduction in corrosion caused by severe molding processes due to the shape of the tank. Lead-tin alloy plated steel sheets are required. Generally contains lead-tin alloy plating layer, Ni
The alloy layer with Sn has corrosion resistance against moisture, Cl - ions, gasoline, etc. However, the lead-tin alloy plating layer is significantly more cathodic (potentially noble) in a corrosive environment than the normally used plating base plate, and the lead-tin alloy plating layer and the plating base plate contain Ni. The corrosion current between the Sn alloy layer and the plating original plate is extremely large. Therefore,
If there are defects in the plating layer that reach the steel surface, local batteries are generated between the lead-tin plating layer and the plating original plate, or between the alloy layer of Sn containing a base metal such as Ni and the plating original plate, and the plating original plate Since it is anodic (potentially base), Fe elution and dissolution from the Fe exposed part of the plating layer defect increases.
Sometimes drilling corrosion occurs. The present invention has been made in response to these problems, and an object of the present invention is to provide a lead-tin alloy plated steel sheet that has better corrosion resistance than before. (Means for Solving the Problems) The present inventors have discovered that Ni, Co, Ni- As a result of various studies on Co alloys and lead-tin alloy plated steel sheets having these diffusion layers as the underlying coating layer, we have found that the plated original plate (steel plate) is moved closer to the noble direction in terms of potential (cathodicization), and the steel plate itself is We found that this is possible by increasing the corrosion resistance of (reducing the self-corrosion rate). The present invention was constructed based on this knowledge, and the gist thereof is: C: 0.10% or less, solAl: 0.005 to 0.08
%, Cu; 0.05-0.8%, or as necessary
When containing one or more of Ti, Nb, and B, Ti and Nb are 0.03 to 0.5%, B is 0.0003% or less,
A Ni, Co, Ni-Co alloy base coating layer or diffusion base coating layer is applied to a steel plate containing Fe and the remainder is Fe and unavoidable impurities, and a lead-tin alloy coating layer is further applied on top of that. This is a lead-tin alloy plated steel sheet with excellent corrosion resistance. The present invention will be explained in detail below. Molten steel melted in a converter, electric furnace, etc. is converted into a slab through continuous casting, ingot making, or blooming, followed by hot rolling.
Through cold rolling and further annealing, a plating stock solution containing 0.10% or less of C, 0.005 to 0.08% of solAl, 0.05 to 0.8% of Cu, and the remainder substantially consisting of Fe is produced. As C content increases, the workability of the steel sheet deteriorates, and a large amount of cementite precipitates scattered on the surface of the steel sheet. This will cause many pinholes to occur later. Therefore, as the C component is a harmful element that deteriorates corrosion resistance, it is preferable to have a small amount, and the upper limit thereof is set at 0.10%. What is preferable is
Less than 0.01%. Al is a deoxidizing element for molten steel, but if the amount of solAl remaining in the manufactured steel sheet is less than 0.005%, the incidence of surface defects due to oxygen gas increases significantly, and the surface defects on the surface treated or plated with a lead-tin alloy are A large number of pinholes are generated, which deteriorates corrosion resistance. In addition, excessive solAl exceeding 0.08% causes many Al-based oxides to be scattered on the steel surface, causing unplated areas or pinholes, which impairs the integrity of the plating.
Deteriorates corrosion resistance. Therefore, it is contained in steel.
solAl is defined as the amount that can stably ensure corrosion resistance.
Limited to 0.005-0.08%. The addition of Cu increases the potential of a steel sheet exposed to a corrosive environment by reducing the potential of Ni, Co, and Ni-Co alloys, their diffusion coating layers, their base coating layers, and the reaction formation with Sn in the lead-tin alloy plating layer. The corrosion resistance of the steel sheet itself is improved by bringing the potential closer to that of the steel plate and the lead-tin alloy coating layer. In other words, Cu can be used even if exposed parts of Fe are generated due to plating defects in the lead-tin alloy plating layer base layer, Sn alloy layer, base coating layer, etc., or scratches that reach the steel surface during handling and forming processing. , there is little elution and dissolution in corrosive environments, pitting corrosion from defective parts is reduced, and its corrosion-resistant life can be extended. Therefore, if the Cu content is less than 0.05%, the above effects cannot be obtained, and if the Cu content exceeds 0.8%, no matter how the hot rolling temperature is adjusted, the Surface cracks, surface scratches, etc. occur due to inter-embrittlement. Therefore, Cu should be 0.05 to 0.80%, especially
0.1-0.3% is preferred. In addition, in the present invention, one or more of Ti, Nb, and B are added to the above steel components.
0.03-0.5% for Nb, 0.0003 for B
% or less. Ti and Nb have the effect of fixing C and N in the steel, improving the formability of the steel, and preventing age hardening. Therefore, in order to obtain these effects, 0.03% or more, preferably 0.05% or more is required. Also,
When its content exceeds 0.5%, the effect reaches saturation,
It becomes uneconomical and also makes the steel harder. Its upper limit is 0.5% or less, preferably 0.3% or less. P, S, which are inevitable impurities contained in steel
This is thought to be due to the increase in precipitation at grain boundaries, which embrittles the grain boundaries. B precipitates at grain boundaries and prevents grain boundary precipitation of inevitable impurities P and S,
Prevents the growth and coarsening of crystal grains in the heat-affected zone that undergoes high-temperature operations such as welding and brazing operations, thereby suppressing deterioration in workability. Its content is less than 0.0003%,
Preferably it is 0.0001% or less. Also, B is 0.0003
If it exceeds %, the steel plate becomes hard and the forming process deteriorates. The plating original plate having the above-mentioned composition is subjected to usual plating pretreatments such as degreasing and pickling, and is then subjected to base pretreatment for Ni, Co, and Ni-Co alloy plating. Although the plating bath composition, plating conditions, etc. of these base pretreatment methods are not particularly specified, it is preferable that the current density be 3 to 300 A/dm 2 and the plating temperature be 80° C. or less. An example of the plating bath composition and plating conditions are as follows. (1) Ni plating bath Nickel sulfate 240g / Nickel chloride 45g / Boric acid 30g / Current density 15A/dm 2 (2) Co plating bath Cobalt sulfate 300g / Cobalt chloride 50g / Boric acid 30g / Current density 10A/dm 2 (3) Ni -Co alloy plating bath Nickel sulfate 150g/cobalt sulfate 120g/nickel chloride 30g/cobalt chloride 24g/boric acid 40g/current density 7.5A/dm2, etc. may be used for electroplating. In addition, after pre-treatment of the base by electroplating, or after coating and drying an aqueous solution containing these metal ions, such as a nickel sulfate (100 g/)-surfactant-based aqueous solution, it is treated in a non-oxidizing or reducing atmosphere, respectively. , Ni−Fe, Co−Fe, Ni−Co−Fe
A diffusion treatment layer consisting of, etc. may be provided. Alternatively, the above-mentioned Ni, Co, Ni-
A Co alloy coating layer may also be provided. These base pretreatment layers are extremely effective in reducing pinholes in the subsequent lead-tin alloy plating layer and preventing scratches from reaching the steel surface during molding and the like. When lead-tin alloy plating is carried out by the hot-dip plating method, the increase in reactivity with Sn in the plating bath causes the formation of a uniform and dense alloy layer consisting of the base pretreatment layer and Sn, which reduces pinholes. reduced. In addition, in the case of the electroplating method, the superposition effect of the base coating layer and the electrolytic lead-tin alloy plating layer,
And after plating, Sn in the base coating layer and the plating layer
Due to the formation of a dense alloy layer through room-temperature diffusion with
The reduction in pinholes is extremely significant. Furthermore, the presence of these base coating layers prevents scratches from reaching the steel surface, even though the lead-tin alloy coating layer is soft and easily scratched during handling or molding. becomes higher. Therefore, it is important to reduce the exposed portion of Fe as described above by providing these base coating layers, and no matter how much the steel base is improved, pinholes and If there are many imperfections or scratches that reach the steel base, the effect of reducing Fe elution, dissolution amount, and pitting corrosion will be reduced, so a base coating layer will be provided to reduce exposed Fe parts. It is important to encourage them. Furthermore, since the alloy layer with Sn that contains the base coating layer has a higher potential than the alloy layer consisting of Fe and Sn, it is effective in reducing the corrosion current between the steel base and the alloy layer. This is advantageous in terms of reducing Fe elution rate and reducing pitting corrosion. Therefore, the thickness of the base coating layer is preferably 0.01 to 1 μm, whether it is an alloy plating layer or a diffusion coating layer. Base coating layer thickness is 0.01μ
If it is less than that, the effect of reducing pinholes will be small, and the effect of preventing scratches from the surface reaching the base metal will also be small. Therefore, the thickness of the base coating layer is 0.01μ
Above, preferably 0.05μ or more. On the other hand, if the thickness of the base coating layer exceeds 1 μm, the effect of reducing the exposed portion of Fe will be saturated and the moldability will deteriorate, which is not preferable. Therefore, the thickness of these base coating layers is 1μ or less,
Preferably, it is 0.5μ or less. Furthermore, the form of the base coating layer after the lead-tin alloy plating on the steel surface varies depending on the thickness of the base coating layer, the plating conditions of the lead-tin alloy plating, etc., but the form is particularly determined. isn't it. In other words, when only an alloy layer of the base metal and Sn that constitutes the base coating layer is formed on the steel surface, the metal coating layer that constitutes the base coating layer and the upper layer are formed on the steel surface and are made of these metals and Sn. When an alloy layer is formed or when a diffusion base coating layer is provided, the diffusion layer and the base metal that constitutes the diffusion layer, Fe,
When an alloy layer consisting of Sn is generated, a diffusion layer,
Either a base metal layer or an alloy layer made of the base metal and Sn may be formed. Next, the conditions for lead-tin alloy plating are not particularly stipulated, but those with an Sn content of 3 to 50%, preferably 7 to 15%, are used, and the plating thickness is 2 to 50%. 7.5μ, preferably 3-5.5μ
It is best to use a thick one. Regarding the component composition of the plating layer, the Sn content is 3
If it is less than 3%, the amount of pinholes will be large and it will be disadvantageous in terms of solderability.
% or more of Sn content is preferable. Further, if the Sn content is high, there is no particular problem, but since it becomes uneconomical, a coating layer with a Sn content of less than 50%, preferably 15% or less is preferable. The thickness of the lead-tin alloy plating layer is 2.
~10μ thickness is good. If the thickness is less than 2μ, a large number of pinholes will be formed, and the steel base will be easily scratched, which is not desirable in terms of corrosion resistance.
A lead-tin alloy plating layer with a thickness of 3μ or more seems to be good. In addition, if the thickness exceeds 10μ, the formability and weldability tend to deteriorate.
It is preferable to apply a lead-tin alloy plating layer having a thickness of less than 7.5 microns, preferably less than 7.5 microns. As for the method of providing this lead-tin alloy plating layer as an upper layer of the base coating layer, any method such as hot-dip plating method, electroplating method, vapor phase plating method, etc. may be used. In addition, as the lead-tin alloy plating layer, Pb and Sn
In addition to the binary alloy composition of
There is no problem even if Zn or the like is contained in the lead-tin alloy plating layer. In addition, in the present invention, the surface of the lead-tin alloy coating layer is subjected to chemical treatment (immersion) with an aqueous solution of phosphoric acid, phytic acid, chromic acid, etc. for the purpose of improving paint adhesion or further reducing pinholes. or electrolytic treatment, etc.). Examples of the present invention will be described below. Table 1 shows the results of using Cu-added steel with varying amounts of Cu added. After degreasing and pickling, which are the same surface cleaning and activation treatments that are applied to normal surface-treated steel sheets, various types of substrates were prepared. Pretreatment was performed. Next, the following performance evaluations were performed on the steel plates each coated with a lead-tin alloy plating layer having a predetermined thickness. Also,
As comparative materials, similar evaluation tests were conducted on steel sheets to which no Cu was added, and steel sheets with a base coating treatment and a lead-tin alloy plating layer. Performance Evaluation Test Corrosion Resistance by Salt Spray Test Corrosion resistance was evaluated by measuring the amount of plate thickness reduction in the area where red rust occurred after conducting the salt water spray test for 3000 hours. ◎…Plate thickness reduction 0.15mm or less ○…Plate thickness reduction
0.25mm or less △… 〃 0.35mm or less ×… 〃
More than 0.35 mm Corrosion resistance by cyclic corrosion test The above cycle was taken as one cycle, and the corrosion resistance was evaluated by measuring the amount of plate thickness reduction in the area where red rust occurred after 120 cycle tests. ◎…Plate thickness reduction 0.10mm or less ○…Plate thickness reduction
0.20mm or less △… 〃 0.30mm or less ×… 〃
More than 0.30 mm Corrosion resistance evaluation by salt water spraying and outdoor exposure test A 3% NaCl aqueous solution was sprayed on the test piece once a week, and an outdoor exposure test was conducted for 6 months to evaluate the occurrence of red rust and the plate thickness of the area where red rust occurred. The corrosion resistance was comprehensively evaluated based on the amount of decrease. ◎...Very good corrosion resistance ○...Comparatively good corrosion resistance △...Comparatively poor corrosion resistance ×...Poor corrosion resistance Accelerated corrosion resistance test results for gasoline-based fuel Blank size 0.8 x 500 x 500 mm, wrinkle pressing pressure of 30T after applying lubricating oil Square tube drawing was performed using a 150 x 150 mm square punch under the following conditions, and the following solution was filled inside the square tube drawing material with a depth of 120 mm to evaluate its corrosion resistance. Evaluation method: Fill with a solution consisting of gasoline (7 parts) + distilled water (3 parts), and after standing for 180 days, measure the occurrence of red rust and the amount of decrease in plate thickness in the area where red rust occurs. Evaluation method: Filled with a solution consisting of gasoline (7 parts) + 2% NaCl aqueous solution (3 parts), and after standing for 180 days, the corrosion resistance was evaluated by measuring the occurrence of red rust and the amount of reduction in plate thickness in the area where red rust occurred. . ◎…Number of red rust occurrences is 10 or less, pitting depth is 0.1mm or less ○… 〃 20 or less, 〃 0.1mm or less △…Number of red rust occurrence is more than 20, pitting depth is 0.20mm or less ×… 〃 More than 20, 〃 Over 0.20mm Formability evaluation Blank size 0.8 x 500 x 500 mm. After applying lubricant, perform square tube drawing with a 150 x 150 mm square punch under the condition of wrinkle presser pressure 30T, and determine the drawing depth limit and square tube drawing material. Evaluation was made based on the occurrence of galling on the outer surface. ◎...Extremely good formability ○...Relatively good formability ×...Extremely poor formability Evaluation of secondary workability Using a sample with a plate thickness of 0.8 mm, the blank diameter was 133.2 mm, and the drawing ratio was 1 stage (2.22 ) → 2-stage aperture (2.89) → 3-stage aperture (3.6)
A conical punch was pressed into the workpiece at −40°C, and the secondary workability of the workpiece was evaluated based on whether or not longitudinal cracks occurred in the workpiece. ◎…No vertical cracks occur, good secondary workability ×…Vertical cracks occur, poor secondary workability Cannot be measured…Cracks occur due to 3-stage drawing, secondary workability cannot be evaluated (poor workability)

【表】【table】

【表】【table】

【表】【table】

【表】 注 ** 耐食評価用の角筒絞り試験片が、成形加工
性が劣るため作成できなかつたので、耐食性
評価は不可能であつた。
[Table] Note ** Corrosion resistance evaluation was not possible because rectangular cylinder drawing test pieces for corrosion resistance evaluation could not be made due to poor formability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における耐食性を評価
する際の1サイクルを示す図である。
FIG. 1 is a diagram showing one cycle when evaluating corrosion resistance in an example of the present invention.

Claims (1)

【特許請求の範囲】 1 C:0.10%以下、solAl:0.005〜0.08%、
Cu:0.05〜0.80%を含有して残部がFeおよび不可
避的不純物からなる鋼板に、Ni,Co,Ni−Co合
金の下地被覆層または拡散下地被覆層を施し、さ
らにその上層に鉛−錫系合金被覆層を施した事を
特徴とする耐食性にすぐれた鉛−錫系合金メツキ
鋼板。 2 C:0.01%以下、solAl:0.005〜0.08%、
Cu:0.05〜0.80%にTi,Nb,Bの一種又は二種
以上を含有させるに際し、TiとNbは0.03〜0.5
%、Bは0.0003%以下、を含有して残部がFeおよ
び不可避的不純物からなる鋼板に、Ni,Co,Ni
−Co合金の下地被覆層または拡散下地被覆層を
施し、さらにはその上層に鉛−錫系合金被覆層を
施した事を特徴とする耐食性にすぐれた鉛−錫系
合金メツキ鋼板。
[Claims] 1 C: 0.10% or less, solAl: 0.005 to 0.08%,
A steel plate containing 0.05 to 0.80% Cu with the balance consisting of Fe and unavoidable impurities is coated with a base coating layer of Ni, Co, or Ni-Co alloy or a diffusion base coating layer, and then a lead-tin based layer is applied on top of that. A lead-tin alloy plated steel sheet with excellent corrosion resistance that is coated with an alloy coating layer. 2 C: 0.01% or less, solAl: 0.005-0.08%,
When Cu: 0.05 to 0.80% contains one or more of Ti, Nb, and B, Ti and Nb are 0.03 to 0.5%.
%, B is 0.0003% or less, and the balance is Fe and unavoidable impurities.
- A lead-tin alloy plated steel sheet with excellent corrosion resistance, characterized by having a Co alloy base coating layer or a diffusion base coating layer, and further having a lead-tin alloy coating layer thereon.
JP23487184A 1984-11-09 1984-11-09 Lead-tin alloy plated steel sheet having superior corrosion resistance Granted JPS61113774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23487184A JPS61113774A (en) 1984-11-09 1984-11-09 Lead-tin alloy plated steel sheet having superior corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23487184A JPS61113774A (en) 1984-11-09 1984-11-09 Lead-tin alloy plated steel sheet having superior corrosion resistance

Publications (2)

Publication Number Publication Date
JPS61113774A JPS61113774A (en) 1986-05-31
JPH0520513B2 true JPH0520513B2 (en) 1993-03-19

Family

ID=16977638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23487184A Granted JPS61113774A (en) 1984-11-09 1984-11-09 Lead-tin alloy plated steel sheet having superior corrosion resistance

Country Status (1)

Country Link
JP (1) JPS61113774A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631442B2 (en) * 1989-03-15 1994-04-27 東洋鋼鈑株式会社 Multi-layer plated steel sheet for solder
JP6597947B1 (en) * 2018-04-26 2019-10-30 日本製鉄株式会社 Molten Sn-Zn alloy-plated steel sheet and method for producing the same

Also Published As

Publication number Publication date
JPS61113774A (en) 1986-05-31

Similar Documents

Publication Publication Date Title
JP2000104180A (en) Surface treated steel sheet for fuel vessel excellent in corrosion resistance, workability and weldability
JPS5930798B2 (en) Steel plate for welded can containers and its manufacturing method
JP3399729B2 (en) Manufacturing method of rustproof steel plate for fuel tank with excellent press workability and corrosion resistance
JP4036347B2 (en) Rust-proof steel plate for fuel tanks with excellent corrosion resistance after molding
JP3485457B2 (en) Corrosion-resistant steel plates for fuel tanks with excellent corrosion resistance and weldability
JP7247946B2 (en) Hot-dip galvanized steel sheet and its manufacturing method
JPH0520513B2 (en)
JP3126622B2 (en) Rustproof steel plate for fuel tank
JPS642195B2 (en)
JP3126623B2 (en) Rustproof steel plate for fuel tank
JP3129628B2 (en) Rustproof steel plate for fuel tank
JP2583297B2 (en) Ultra-thin welding can material with excellent seam weldability, paint adhesion and post-paint corrosion resistance
TWI690604B (en) HOT DIP Sn-Zn TYPE ALLOY PLATED STEEL SHEET, AND MANUFACTURING METHOD THEREFOR
JP3071667B2 (en) Rustproof steel plate for fuel tanks with excellent workability and corrosion resistance
JP3717114B2 (en) Molten Sn-Zn plated steel sheet
JPS61270391A (en) Steel sheet for fuel vessel
JPH0431039B2 (en)
JPH0520514B2 (en)
JPS61270390A (en) Steel sheet for fuel vessel
JP2785672B2 (en) Zn-based alloy-plated steel sheet with excellent perforation resistance and plating adhesion
JPS61243192A (en) Surface-treated steel sheet for fuel vessel
JPS61270388A (en) Steel sheet for fuel vessel
JPH0241594B2 (en)
JPH03287788A (en) Zinc plated steel sheet having superior press formability, chemical convertibility and weldability
JPS61270389A (en) Steel sheet for fuel vessel