CA2210130C - Device for treating planar elements with a plasma jet - Google Patents

Device for treating planar elements with a plasma jet Download PDF

Info

Publication number
CA2210130C
CA2210130C CA002210130A CA2210130A CA2210130C CA 2210130 C CA2210130 C CA 2210130C CA 002210130 A CA002210130 A CA 002210130A CA 2210130 A CA2210130 A CA 2210130A CA 2210130 C CA2210130 C CA 2210130C
Authority
CA
Canada
Prior art keywords
wafer
plasma jet
holders
wafers
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002210130A
Other languages
French (fr)
Other versions
CA2210130A1 (en
Inventor
Iskander Malikovich Tokmulin
Igor Petrovich Bagry
Boris Mikhailovich Balats
Oleg Vyacheslavovich Sinyagin
Alexei Borisovich Virovets
Vyacheslav Gennadievich Shamshurin
Alexandr Mikhailovich Antropov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU9595100180A external-priority patent/RU2075135C1/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CA2210130A1 publication Critical patent/CA2210130A1/en
Application granted granted Critical
Publication of CA2210130C publication Critical patent/CA2210130C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67745Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber characterized by movements or sequence of movements of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices

Abstract

Used in the technical field of plasma treatment of planar elements such as plates, sheets and wafers in electronics and electrical engineering, the invention in essence is a device for treating wafers with a plasma jet. The device comprises the following elements mounted in a closed chamber (1): a drive (12) which effects angular displacement of the holders (14) which are provided with a common rotary drive (18); a plasma jet generator (10); and, mounted outside the closed chamber (1), a manipulator (27) and storage devices (28) for the wafers (29). The wafer (29) to be treated is picked up by the manipulator (27) from the storage device (28) and placed in the holder (14) which together with the wafer (29) passes over the plasma jet generator (10) used for the treatment. The cycle may be repeated a predetermined number of times.

Description

DEVICE FOR TREATING PLANAR ELEMENTS WITH A PLASMA JET
BACKGROUND OF THE INVENTION

Field of the Invention.

The present invention relates to the field of plasma technology and may be used in electronics and electrical engineering when treating planar elements, for example, semiconductor wafers, substrates, printed circuit boards, compact disks and other products.

Description of the Related Art.

There has long been known a device for studying a plasma-surface interaction, a device that comprises a plasma generator, a power source therefor, a system for the plasma generator displacement, a system for displacing samples, a gas distribution system and a control system (see, Theses of the Reports at the 10th All-Union Conference, P.P. Kulik et al., "Low-Temperature Plasma Generators," Part II, Minsk, ITMS Publishers, Academy of Sciences of Byelorussian Soviet Socialist Republic, 1986, p. 135). However, this device has a number of disadvantages.
The absence of a quick-operating loading-unloading system results in a large expenditure of time and, hence, plasma generator energy that is consumed to no purpose when plates-samples to be treated are replaced. The inability to simultaneously treat several plates-samples one right after another decreases the output of the device.
The fact that there are present in this device a number of control and measuring means that inhibit any repeated treatment of samples according to a rigidly prescribed cycle, unambiguously defines this device as one purely for research.
Taken together, the above-mentioned features result in the fact that the device cannot be used under conditions of series production.
The closest prior art has been described in International Application No. WO
I

92/21220, H05H 1/40, 1992, which discloses a device for treating wafers with a plasma jet, comprising a plasma jet generator; gas supplying means; a set of holders for wafers to be treated, said holders being structurally made in the form of a turntable having a drive for effecting angular displacement thereof and for facing a generator plasma jet turned downwards; each of the holders being made in the form of a horizontal platform mounted for rotation about the axis passing through the center thereof and being perpendicular to the plane of said platform; and said plasma jet and wafer holder having the possibility of being displaced with respect to each other in the direction of at least one axis of coordinates and may be in or out of contact with each other.
The main drawbacks associated with this device include an underproductivity created by the large number of manual operations necessary when loading-unloading the wafers to be treated. In addition, the wafers treated are inferior in quality due to the possibility of surface damage when contact-attaching in the holder.
Moreover, the direction of the plasma jet from top to bottom necessitates taking the measure of the cooling of the plasma generator from overheating caused by upwardly moving hot gases formed during operation of the plasma generator.

SUMMARY OF THE INVENTION

The application according to the present invention provides a device for treating wafers with a plasma jet, comprising a plasma jet generator, gas supplying means and a set of holders for wafers to be treated. The holders have a drive for effecting angular displacement of the wafers and face a generator plasma jet. Each of the holders is made in the form of a horizontal platform to rotate about the axis passing through the geometric center thereof and perpendicular to a plane of said platform. Said plasma jet and wafer holder can be displaced with respect to each other in the direction of at least one axis of coordinates, and they may be in or out of contact with each other.
The device further comprises a manipulator, storage devices for the wafers to be treated, and a closed chamber having a gas exchange system with the wafer holders and a plasma jet generator located inside said chamber in such a way that a plasma jet is directed from bottom upwards in respect of a plane of locating horizontal platforms of said wafer holders. The closed chamber is provided with a window in which a movable shutter is installed. The manipulator is located in such away that it contacts said storage devices directly and with said wafer holder indirectly, through the chamber window.
Each of the wafer holders is provided with a limiter at the edges and has its horizontal platform provided with at least three vortex chambers and three tangential channels perpendicular to a plane of said horizontal platform. Each of these vortex chambers is provided with an open portion located on a level end surface of the wafer holder, coupled through a tangential channel to the gas supplying means and located in such a way that the vortex flows that are formed make possible the positioning of the platform near the holder and the cooling of its individual areas to equalize, over the wafer surface, the amount of energy used for treatment thereof. The limiters on the wafer holder platforms are fabricated so that the rods are mounted at an angle a> 90 to the plane of said horizontal platform of the wafer holder. In so doing, their length, 1, is chosen such that 21 sin (a > 90 ) > A, where A denotes a maximum deviation from axisymmetric arrangement of the treated wafers in said storage devices.
The proposed device in accordance with the present invention achieves its technical results because it contains the following features:
(1) It provides the device with a common rotary drive for the holders, with this drive mounted inside the closed chamber and having its actuating mechanism connected to each of the holders. This drive greatly enhances the output of the device.
(2) It introduces a manipulator, with storage devices for the wafers, to be treated, which makes it possible to further enhance the treatment capacity while reducing the time needed for loading-unloading the wafers.
(3) It further introduces a wafer holder with at least three vortex chambers and three tangential channels with the axes of said vortex chambers perpendicular to the horizontal platform of the holder, where each of said vortex chambers being coupled to the tangential channel connected to the gas supplying means. This permits the stable positioning of the wafer to be treated in the vicinity of the holder with a gas gap without touching the wafer and the holder, which, in turn, makes it possible to upgrade treatment quality due to the absence of the touch traces (scratches).
(4) It arranges each of the vortex. chambers in the holder such that vortex flows formed by said vortex chambers make possible the fulfillment, at each side the wafer surface, of the condition Qo = QI+Q2, where:
Qo = a constant - an amount of energy for heating the wafer in the given site;
Ql - an amount of energy received by the given site of the wafer surface with due regard to thermal transparency thereof;
Q2 - an amount of energy available at the expense of interaction with a material of the wafer surface in the given site.
This makes it possible to produce more uniform, and hence, higher-quality treatment of the wafer. This result is based on fact that each vortex chamber, when creating a gas vortex, permits not only the positioning of the wafer near the holder but also the cooling of individual areas of the wafer to be treated. Since in the process for treatment, different sites on the surface of the wafer to be treated are originally under different thermal conditions, then the energy balance caused by these vortex flows make possible the establishment of conditions that equalize Qo at all sites of the wafer.
(4) It uses limiters on the holders in the rods mounted at an angle a> 90 to the horizontal platform of the holder, with their length 1 being chosen such that 21 sin (a > 90 ) > A, where A denotes a maximum deviation from axisymmetric arrangement of the wafers in said storage devices, creates the possibility of the accuracy needed when loading-unloading the wafers, without using additional centering means.
Therefore, in accordance with the present invention, there is provided a device for treating wafers with a plasma jet, comprising a plasma jet generator; gas supplying means; a set of holders for wafers to be treated, said holders having a drive for effecting angular displacement thereof and for facing a generator plasma jet; each of the holders being made in the form of a horizontal platform mounted for rotation about an axis passing through a geometric center thereof and perpendicular to a plane of said platform; said plasma jet and wafer holders being displaced with respect to each other and may be in or out of contact with each other, said plasma jet generator being located such that a plasma jet is directed upwardly in respect of a plane of said horizontal platforms of said wafer holders; and cooling means associated with each horizontal platform in fluid flow communication with said gas supplying means and located such that resulting gas flows permit the positioning of the platform near a holder and improve cooling of individual areas over the wafer surfaces while avoiding the need to provide additional cooling of said plasma generator due to natural convection of the hot gases.
Also in accordance with the present invention, there is provided a device for treating wafers with a plasma jet, comprising a plasma jet generator, gas supplying means; a set of holders for wafers to be treated, said holders having a drive for effecting angular displacement thereof and for facing a generator plasma jet;
each of the holders being made in the form of a horizontal platform mounted for rotation about an axis passing through a geometric center thereof and perpendicular to a plane of said platform; said plasma jet and wafer holders being displaced with respect to each other and may be in or out of contact with each other; a plasma jet generator located such that a plasma jet is directed in the direction of said horizontal platforms of said wafer holders, each wafer holder being provided with at least three vortex chambers and three tangential channels in fluid flow communication between said gas supplying means and said chambers, said chambers defining axes substantially perpendicular to a plane of said horizontal platforms; each of said vortex chambers being provided with an open portion located on a level end surface of the wafer holder, coupled through the tangential channel to said gas supplying means and located such that resulting vortex flows formed permit the positioning of each wafer near the holder and cooling of its individual areas to equalize, over each wafer surface, an amount of energy used for treating the wafer surfaces.
Still in accordance with the present invention, there is provided a device for treating wafers with a plasma jet, comprising a plasma jet generator; gas supplying means; a set of holders for wafers to be treated, each having an edge, said holders having a drive for effecting angular displacement thereof and for facing a generator plasma jet; each of the holders being made in the form of a horizontal platform mounted for rotation about an axis passing through a geometric center thereof and being perpendicular to a plane of said platform; said plasma jet and wafer holders being displaced with respect to each other and may be in or out of contact with each other, a plasma jet generator located such that a plasma jet is directed in the direction of said horizontal platforms of said wafer holders, each of the wafer holders being provided with a limiter at the edges and cooling means associated with each horizontal platform in fluid flow communication with said gas supplying means and located such that resulting gas flows permit the positioning of each wafer near a holder and cooling of its individual areas, said limiters on the wafer holder platforms having lengths and being arranged to limit maximum deviation from axisymmetric arrangement of the treated wafers during treatments thereof.
Still further in accordance with the present invention, there is provided a device for treating wafers with a plasma jet, comprising a plasma jet generator; gas supplying means; a set of holders for wafers to be treated, said holders having a drive for effecting angular displacement thereof and for facing a generator plasma jet; each of the holders being made in the form of a horizontal platform mounted for rotation about an axis passing through a geometric center thereof and perpendicular to a plane of said platform;
said plasma jet and wafer holders being displaced with respect to each other and may be in or out of contact with each other, said plasma jet generator being located such that a plasma jet is directed upwardly in respect of a plane of said horizontal platforms of said wafer holders; cooling means associated with each horizontal platform in fluid flow communication with said gas supplying means and located such that resulting gas flows permit the positioning of the platform near a holder and improve cooling of individual areas over the wafer surfaces while avoiding the need to provide additional cooling of said plasma generator due to natural convection of the hot gases; a manipulator; storage devices for the wafers to be treated; and a closed chamber having a gas exchange system with the wafer holders and a plasma jet generator located inside said chamber.
Still further in accordance with the present invention, there is provided a device for treating wafers with a plasma jet, the said device comprising: a plasma jet generator; gas supplying means; a set of holders for wafers to be treated, the said holders having a drive for effecting angular displacement thereof and for facing a generator plasma jet, each of the holders being made in the form of a horizontal platform mounted for rotation about an axis passing through a geometric center thereof and perpendicular to a plane of the said platform, the said plasma jet and wafer holders being displaceable with respect to each other and in or out of contact with each other; said plasma jet generator is located such that a plasma jet can be directed upwardly in respect of a plane of the said horizontal platforms of the said wafer holders; and in that cooling means is associated with each horizontal platform, the said cooling means being in fluid flow communication with the said gas supplying means, defining an axis substantially perpendicular to a plane of the said horizontal platforms, being provided with an open portion located on a level end surface of the wafer holder and being located such that gas vortex flows that are formed permit the positioning of the wafer near a holder and improve cooling of individual areas over the wafer surfaces while avoiding the need to provide additional cooling of the said plasma generator due to natural convention of the hot gases.

-6a-DOCSOTT: 485472\1 BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and advantages of the invention will become apparent from the following description, when taken in connection with the accompanying drawings, in which:

FIG. 1 is a view showing a device for treating wafers with a plasma jet;
FIG. 2 is a "breakaway" top plan view of FIG. 1;
FIG. 3 is a functional diagram of an actuating mechanism of a conunon rotary drive for holders;
FIG. 4 is a view showing a wafer holder; and FIG. 5 is a sectional view along line 5-5 of FIG. 4.
DESCRIPTION OF A PREFERRED EMBODIMENT

FIGS. 1, 2 illustrate a device for treating wafers with a plasma jet, comprising a closed chamber 1; a gas exchange system 2; a power supply unit 3; gas supplying means 4; and a control system 5. The closed chamber 1 is provided with a window 6 in which a movable shutter 7 with a drive 8 is installed. Inside the closed chamber 1, on a base 9, a generator 10 of a plasma jet 11 and an angular displacement drive 12 with its upright shaft 13 coupled to holders 14 are located. The generator 10 of the plasma jet 11 facing the holders 14 is mounted on the base 9 on a support 15 adjustable for height such that the axis of the plasma jet 11 and respective axes of each of the holders 14 are equidistant from the axis of the upright shaft 13 of the angular displacement drive 12.
Referring to FIG. 4, the holders 14 are made in the form of horizontal platforms 16 with limiters 17.
Said limiters 17 are fabricated as the rods, for example, cylindrical rods.
With reference to FIG. 3, horizontal platforms 16 are set in rotation about their axes by a drive 18, for example, by means of an actuating mechanism 19 through a step-by-step interaction of its gears 20, 21, 22 and pulleys 23, 24. In FIGS. 4 and 5 the horizontal platforms 16 are provided with vortex chambers 25 each having an open portion located on a level end surface of the holder 14 and coupled to a tangential channel 26 connected to said gas supplying means 4. In FIG. 1, outside the closed chamber 1, on the base 9, a manipulator 27 and storage devices 28 for wafers 29 are mounted.

The device operates as follows.
In the initial state, one of the storage devices 28 is provided with wafers 29, while the other is free from the wafers. The manipulator 27 grips a bottom wafer 29 in the storage device 28 and transports it through a window 6 (with a shutter 7 opened by a drive 8) into the closed chamber 1. At this moment, the first of the holders 14 is being loaded. The manipulator 27 conveys the wafer 29 into a position below the horizontal platform 16 of the first holder 14.
By switching on the gas supplying means 4 in the vortex chamber 25 and the channel 26, of the holder 14, gas vortex flows are generated for the positioning /
maintaining of the wafer 29 at a distance of about 0.5 - 1.0 mm from the level end surface of the platform 16 of the holder 14. At that moment, the manipulator releases the wafer 29. The wafer is now loaded. Thereupon, the next wafer is loaded.
In the embodiment illustrated here, a device for treating wafers with a plasma jet is provided with five wafer holders angularly displaced at an angle of 72 to one another in the horizontal plane. Feeding the next holder in the loading zone is performed with an angular displacement drive 12 for the holder 14.
Once all the holders are loaded, the manipulator 27 is withdrawn from the closed chamber 1 while closing the shutter 7 with the drive 8. The required gas is then supplied to the chamber. By means of the support 15, the generator 10 of the plasma jet 11 is mounted, with respect to the surface of the wafer 29 to be treated, at a height suitable for manufacture. On switching the drive 18, the holders 14 start to rotate about their axes together with the wafers 29. Simultaneously, the control system 5 is used to regulate the dynamics of the wafer movement. The generator 10 of the plasma jet 11 and the angular displacement drive 12 are switched and treatment is performed.
After a prescribed number of contacts of the wafer 29 with the plasma jet 11 of the generator 10, the drive 12 is brought to a halt, under the predetermined program from the control system 5, so that none of the wafers 29 in the holders 14 falls within the zone of action of the generator plasma jet. The drive 18 and the generator 10 are then turned off.
The cycle may then be repeated with the next batch of wafers.
Various modifications may be made to this device and to this embodiment without departing from the spirit or scope of the general inventive concept as defined by the appended claims.

Claims (12)

I/WE CLAIM:
1. A device for treating wafers with a plasma jet, the said device comprising: a plasma jet generator; gas supplying means; a set of holders for wafers to be treated, the said holders having a drive for effecting angular displacement thereof and for facing a generator plasma jet, each of the holders being made in the form of a horizontal platform mounted for rotation about an axis passing through a geometric center thereof and perpendicular to a plane of the said platform, the said plasma jet and wafer holders being displaceable with respect to each other and in or out of contact with each other; said plasma jet generator is located such that a plasma jet can be directed upwardly in respect of a plane of the said horizontal platforms of the said wafer holders; and in that cooling means is associated with each horizontal platform, the said cooling means being in fluid flow communication with the said gas supplying means, defining an axis substantially perpendicular to a plane of the said horizontal platforms, being provided with an open portion located on a level end surface of the wafer holder and being located such that gas vortex flows that are formed permit the positioning of the wafer near a holder and improve cooling of individual areas over the wafer surfaces while avoiding the need to provide additional cooling of the said plasma generator due to natural convention of the hot gases.
2. A device according to Claim 1, wherein the said plasma jet generator is mounted on a base on a height adjustable support that allows the treatment temperature to be changed according to desired treatment or processing of said wafers.
3. A device according to Claim 1, wherein the said cooling means comprises a plurality of chambers, each in proximity to an open in the direction of a wafer held in a position for treatment, the said chambers being connected to the said gas supplying means.
4. A device according to Claim 1, wherein the said cooling means comprises at least three vortex chambers and three tangential channels in fluid flow communication between the said gas supplying means and the said chambers, the said chambers defining axes substantially perpendicular to a plane of the said horizontal platforms; each of the said vortex chambers being provided with an open portion located on a level end surface of the wafer holder, coupled through the tangential channel to the said gas supplying means and located such that resulting vortex flows formed permit the positioning of each wafer near the holder and cooling of its individual areas to equalize, over each wafer surface, an amount of energy used for treating the wafer surfaces.
5. A device according to Claim 4, further comprising: a manipulator;
storage devices for the wafers to be treated; and a closed chamber having a gas exchange system with the wafer holders and a plasma jet generator located inside the said chamber.
6. A device according to Claim 5, wherein the said closed chamber is provided with a window in which a movable shutter is mounted, the said manipulator being located to contact with the said storage devices directly and with the said wafer holder indirectly, through the chamber window.
7. A device according to Claim 1, wherein each of the wafer holders has an edge and is provided with a limiter at the edge, the said limiters on the wafer holder platforms having lengths (l) and being arranged to limit maximum deviation from axisymmetric arrangement of the treated wafers during treatments thereof.
8. A device according to Claim 7, further comprising: a manipulator;
storage devices for the wafers to be treated; and a closed chamber having a gas exchange system with the wafer holders and a plasma jet generator located inside said chamber.
9. A device according to Claim 8, wherein the said closed chamber is provided with a window in which a movable shutter is mounted, the said manipulator being located to contact with the said storage devices directly and with the said wafer holder indirectly, through the chamber window.
10. A device according to Claim 7, wherein the said limiters on the wafer holder platforms are fabricated as rods mounted at an .alpha. > 90° to the plane of the said horizontal platform of the wafer holder, and their length, l, is chosen such that 21 sin (.alpha. > 90°) > .DELTA., where .DELTA. denotes a maximum deviation from axisymmetric arrangement of the treated wafers during treatment thereof.
11. A device according to Claim 1 further comprising: a manipulator;
storage devices for the wafers to be treated; and a closed chamber having a gas exchange system with the wafer holders and a plasma jet generator located inside said chamber.
12. A device as defined in Claim 11, wherein said closed chamber is provided with a window in which a movable shutter is mounted, said manipulator being located to contact with said storage devices directly and with said wafer holder indirectly, through the chamber window.
CA002210130A 1995-01-13 1995-04-11 Device for treating planar elements with a plasma jet Expired - Fee Related CA2210130C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU9595100180A RU2075135C1 (en) 1995-01-13 1995-01-13 Device for plasma flow processing of plates
RU95100180 1995-01-13
PCT/RU1995/000063 WO1996021943A1 (en) 1995-01-13 1995-04-11 Device for treating planar elements with a plasma jet

Publications (2)

Publication Number Publication Date
CA2210130A1 CA2210130A1 (en) 1996-07-18
CA2210130C true CA2210130C (en) 2007-08-14

Family

ID=38434440

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002210130A Expired - Fee Related CA2210130C (en) 1995-01-13 1995-04-11 Device for treating planar elements with a plasma jet

Country Status (1)

Country Link
CA (1) CA2210130C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402843B1 (en) * 1999-12-07 2002-06-11 Trusi Technologies, Llc Non-contact workpiece holder
US6534921B1 (en) 2000-11-09 2003-03-18 Samsung Electronics Co., Ltd. Method for removing residual metal-containing polymer material and ion implanted photoresist in atmospheric downstream plasma jet system

Also Published As

Publication number Publication date
CA2210130A1 (en) 1996-07-18

Similar Documents

Publication Publication Date Title
US6845733B1 (en) Device for treating planar elements with a plasma jet
EP0910868B1 (en) Method and apparatus for contactless treatment of a semiconductor substrate in wafer form
US6183565B1 (en) Method and apparatus for supporting a semiconductor wafer during processing
KR101246170B1 (en) Injection member used in manufacturing semiconductor device and plasma processing apparatus having the same
US7371998B2 (en) Thermal wafer processor
TW201131659A (en) Apparatus for thermal processing with micro-environment
KR20130024808A (en) Substrate heat treatment device
CN108432342A (en) High temperature heater (HTH) for processing chamber housing
CA2210130C (en) Device for treating planar elements with a plasma jet
JP3118681B2 (en) Processing device and processing method
JP3501768B2 (en) Substrate heat treatment apparatus and method of manufacturing flat panel device
JPH0420253B2 (en)
KR20020072762A (en) Multi-stage heating plate type thermal treatment unit
JP2742572B2 (en) Vertical heat treatment equipment for semiconductor wafers
JPH09237763A (en) Single wafer processing heat treatment apparatus
JP2001189250A (en) Heat treatment apparatus and method thereof
JP2003231970A (en) Substrate treating device and process
KR20100108321A (en) Plasma annealing apparatus
JPS5939341A (en) Apparatus for heat treatment of thin plate shaped object to be treated
JPH07321059A (en) Device and method for heat treatment
KR102099109B1 (en) Apparatus for treating substrate and methods of treating substrate
JP3149697B2 (en) Wafer processing equipment
KR0133679B1 (en) Treatment apparatus
JP2001267262A (en) Semiconductor producing system
JPS58220423A (en) Method and apparatus for continuous heat treatment of semiconductor substrate

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed