JPH0420253B2 - - Google Patents

Info

Publication number
JPH0420253B2
JPH0420253B2 JP11993284A JP11993284A JPH0420253B2 JP H0420253 B2 JPH0420253 B2 JP H0420253B2 JP 11993284 A JP11993284 A JP 11993284A JP 11993284 A JP11993284 A JP 11993284A JP H0420253 B2 JPH0420253 B2 JP H0420253B2
Authority
JP
Japan
Prior art keywords
wafer
quartz
gas
heat treatment
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11993284A
Other languages
Japanese (ja)
Other versions
JPS611017A (en
Inventor
Kazuo Hiura
Masayuki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP11993284A priority Critical patent/JPS611017A/en
Publication of JPS611017A publication Critical patent/JPS611017A/en
Publication of JPH0420253B2 publication Critical patent/JPH0420253B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (技術分野) 本発明は半導体装置の製造工程において、赤外
線またはは可視光線によつて半導体基板を急速に
加熱し熱処理を行う装置に関するものである。こ
のような加熱処理は特に微細加工の製造プロセス
において有効であつて、たとえばイオン注入され
た半導体基板においては、注入イオンの分布変化
を極小にする電気的活性化や、PSG(リンケイ酸
ガラス)等の層間絶縁膜の短時間リフローによる
平坦化、シリサイド(ケイ素化物)の形成、浅い
酸化膜の形成などに有効で用途が広い。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an apparatus that rapidly heats a semiconductor substrate using infrared rays or visible light to perform heat treatment in the manufacturing process of a semiconductor device. Such heat treatment is particularly effective in microfabrication manufacturing processes. For example, in ion-implanted semiconductor substrates, it is used for electrical activation to minimize distribution changes of implanted ions, and for PSG (phosphosilicate glass), etc. It is effective for flattening interlayer insulating films by short-time reflow, forming silicides, and forming shallow oxide films, and has a wide range of uses.

(従来の技術) 半導体基板の熱処理装置については従来からら
種々のものが提案されているが、本発明者も特願
昭58−89139号、特願昭58−217835号、実願昭58
−178820号等の提案を行つている。
(Prior Art) Various heat treatment apparatuses for semiconductor substrates have been proposed in the past, and the present inventors have also proposed Japanese Patent Application No. 58-89139, Japanese Patent Application No. 217835-1983, and Utility Application No. 1983.
-We are making proposals such as No. 178820.

まず加熱系について説明する。赤外線などの光
熱線照射によつウエハを加熱することは公知であ
るが、従来はウエハを支持板(サセプタと呼ぶ)
上に置き、ウエハ面の上方から赤外線を照射する
方法が用いられた。しかしこの方法ではウエハの
上面が急速に温度上昇するに反して、熱容量の大
きいサセプタに接するウエハの下面は温度上昇が
遅れ、ウエハの上、下面間に大きな温度勾配を生
じ種々な欠陥の原因になる。この対策としてサセ
プタを石英などの赤外線透過材で製作し、サセプ
タ下側からも赤外線照射を行い、またサセプタ上
に3点程の突起を設け、この突起上にウエハを置
けば温度勾配はかなり減少するが、赤外線源の配
置間隔や赤外線源放射量のばらつきなどによつ
て、ウエハ面での温度勾配を除くことはできない
ことが知られている。このウエハ表面の温度勾配
を除くにはサセプタを回転させればよいが、装置
が複雑になるという欠点があるので、本発明者は
前記の提案においてほゞ円板状の薄いウエハの両
面より赤外線源を照射し、サセプタは使用せずに
ウエハを下面から不活性ガスを噴射させることに
よつて浮揚状態で回転させ、均一な加熱処理を得
ることを示したが、後記のような改善すべき問題
があることが明らかになつた。
First, the heating system will be explained. It is well known that wafers are heated by irradiation with photothermal rays such as infrared rays, but in the past, wafers were heated using a support plate (called a susceptor).
A method was used in which infrared rays were irradiated from above the wafer surface. However, with this method, the temperature of the top surface of the wafer increases rapidly, while the temperature of the bottom surface of the wafer, which is in contact with the susceptor with a large heat capacity, rises slowly, creating a large temperature gradient between the top and bottom surfaces of the wafer, which can cause various defects. Become. As a countermeasure to this, the temperature gradient can be significantly reduced by making the susceptor from an infrared transmitting material such as quartz, by irradiating infrared rays from the bottom of the susceptor, and by providing about three protrusions on the susceptor and placing the wafer on these protrusions. However, it is known that it is not possible to eliminate the temperature gradient on the wafer surface due to variations in the arrangement interval of the infrared sources and the amount of radiation from the infrared sources. This temperature gradient on the wafer surface can be removed by rotating the susceptor, but this has the disadvantage of complicating the apparatus. The wafer was rotated in a floating state by irradiating the wafer with a susceptor and injecting inert gas from the bottom surface without using a susceptor, and it was shown that uniform heat treatment could be obtained. It became clear that there was a problem.

第1図は従来の半導体基板熱処理装置の一例の
基板浮揚保持部分の横断面図A、上面図B、半導
体基板表面のシート抵抗特性図Cを示す。これら
の図中の1は半導体基板、2は石英などの近赤外
線および可視光透過材を用いて作られた構造物
で、この上下に設けられた熱源(図示せず)によ
つて基板1を加熱する。この構造体(以下台とい
う)の表面には、不活性ガスを基板1に向け噴射
するための小孔が複数個設けてあり、3は半導体
基板(以下ウエハという)を浮揚または回転させ
るための小孔、3′はウエハを一定位置に浮揚保
持するための小孔で、矢印はガス噴出方向を示
す。4はウエハを台2上にその一方側から搬入
し、同一側または反対側に搬出するための溝溝で
ある。
FIG. 1 shows a cross-sectional view A, a top view B, and a sheet resistance characteristic diagram C of the semiconductor substrate surface of a substrate floating and holding portion of an example of a conventional semiconductor substrate heat treatment apparatus. In these figures, 1 is a semiconductor substrate, and 2 is a structure made using a near-infrared and visible light transmitting material such as quartz.The substrate 1 is heated by heat sources (not shown) installed above and below the structure. Heat. The surface of this structure (hereinafter referred to as the stand) is provided with a plurality of small holes for injecting inert gas toward the substrate 1, and 3 is for levitating or rotating the semiconductor substrate (hereinafter referred to as the wafer). The small hole 3' is a small hole for floating and holding the wafer in a fixed position, and the arrow indicates the direction of gas jetting. Reference numeral 4 denotes a groove for carrying the wafer onto the table 2 from one side thereof and carrying it out to the same side or the opposite side.

台2の上に搬入されたウエハは下方からのガス
噴出によつて浮揚しながら、あるいは浮揚回転状
態にて上下から加熱される。第1図Cはイオン注
入されたウエハを加熱処理した後、ウエハ表面の
シート抵抗を測定した結果の一例図である。この
図に示すように台2には溝があるためにシート抵
抗(面積抵抗率)の不均一が生じている。すなわ
ちウエハの径方向に不均一な温度分布が生じたこ
とを示している。また後述の溝のない台を用いた
場合と比較して浮揚および回転のためのガス流量
が同じなら、ウエハの浮揚と回転状態はより不安
定で、安定性を増すにはガス流量を増す必要があ
ることがわかつた。さらにこの台の構造は溝があ
るため構造が複雑で高価となり、製造方法によつ
ては加熱時熱歪によつてクラツクが入ることがあ
るなどの欠点がある。
The wafer carried onto the table 2 is heated from above and below while being floated by gas jets from below or in a floating rotation state. FIG. 1C is an example of the results of measuring the sheet resistance of the wafer surface after heat-treating the ion-implanted wafer. As shown in this figure, since the table 2 has grooves, the sheet resistance (area resistivity) is non-uniform. In other words, this indicates that an uneven temperature distribution occurred in the radial direction of the wafer. Also, compared to the case of using a table without grooves, which will be described later, if the gas flow rate for levitation and rotation is the same, the wafer levitation and rotation state will be more unstable, and it is necessary to increase the gas flow rate to increase stability. It turns out that there is. Furthermore, the structure of this table has grooves, making it complicated and expensive, and depending on the manufacturing method, there are drawbacks such as cracks may occur due to thermal strain during heating.

次に本発明者の提案になる前記特願昭58−
89139号では第2図Aにその断面図を示したが、
この図において11はウエハ、12はウエハ保持
板、13はガス排出口、14はウエハの浮揚位置
決めガス噴出口、15は浮揚ガス噴出口、16は
回転用ガス噴出口、17は上蓋、18は反射板付
赤外線照射装置、19は赤外線透過性のガス導管
である。第2図Bは保持板12上のガス排出口と
噴出口の配置図である。
Next, the above-mentioned patent application filed in 1983 proposed by the present inventor
In No. 89139, the cross-sectional view is shown in Figure 2A,
In this figure, 11 is a wafer, 12 is a wafer holding plate, 13 is a gas outlet, 14 is a wafer floating positioning gas outlet, 15 is a levitation gas outlet, 16 is a rotating gas outlet, 17 is an upper lid, and 18 is a The infrared irradiation device with a reflector, 19, is an infrared transparent gas conduit. FIG. 2B is a layout diagram of the gas discharge ports and jet ports on the holding plate 12.

第2図に示した装置では、第1図の装置のよう
な溝を設けてないためウエハの温度分布は良好に
できる点があるが、ウエハをこの加熱位置に搬送
する場合に問題がある。すなわち図示のように狭
い空間にウエハ上面を何にも触れずに搬入、搬出
することはかなり困難である。なお12の上面と
浮揚したたウエハ下面の間隔はたとえば0.2〜0.3
mm程度である。
The apparatus shown in FIG. 2 does not have grooves as in the apparatus shown in FIG. 1, so the temperature distribution of the wafer can be improved, but there is a problem when transporting the wafer to this heating position. That is, it is quite difficult to carry the wafer into and out of a narrow space as shown in the figure without touching anything with the upper surface of the wafer. The distance between the upper surface of 12 and the lower surface of the levitated wafer is, for example, 0.2 to 0.3.
It is about mm.

次にウエハを浮揚回転させながら加熱処理する
方法には次にような欠点がある。
Next, the method of heating the wafer while floating and rotating it has the following drawbacks.

a ガスを噴出しているため一般にウエハに対す
る冷却効果があり、ガスを噴出させないでウエ
ハを3点にて支持し加熱する場合に比べると約
5%のパワー損失がある。
a Since gas is ejected, there is generally a cooling effect on the wafer, and there is a power loss of approximately 5% compared to the case where the wafer is supported at three points and heated without ejecting gas.

b ガスとしてN2ガスを用いるとウエハ裏面が
シリコンのとき裏面のガス噴出部位にリンク状
の膜(分析によりSiN膜であることがわかつ
た)を生じると共に、保持板や台のガス噴出口
の近傍に付着物が生じることがある。この付着
物は蒸発したSiがガスの冷却効果によつて生じ
たものであろう。
b When N2 gas is used as the gas, a link-shaped film (which was found to be a SiN film by analysis) is formed at the gas ejection site on the back side when the back surface of the wafer is silicon, and it also forms a link-like film (which was found to be a SiN film by analysis), as well as formation of a link-like film at the gas ejection port on the holding plate or the table. There may be deposits in the vicinity. This deposit is probably caused by the cooling effect of the gas from the evaporated Si.

c 一般にウエハにはオリエンテイシヨンフラツ
ト(第5図の32に一例を示す)があるので、
ウエハの回転はやゝ不安定になる傾向がある。
c Since wafers generally have an orientation flat (an example is shown at 32 in Figure 5),
Wafer rotation tends to be rather unstable.

d ウエハの直径によつて位置決め用の穴位置が
異なり、浮揚回転させるための保持板や台の構
造を変更することが必要である。
d) The positions of the positioning holes vary depending on the diameter of the wafer, and it is necessary to change the structure of the holding plate and stand for floating and rotating the wafer.

(発明の目的) 本発明は上記の欠点を取除くために行つたもの
で具体的には a 溝がなく一様な石英製保持板面を用い、温度
分布がよく構造が簡単である。
(Objective of the Invention) The present invention has been carried out to eliminate the above-mentioned drawbacks, and specifically uses a uniform quartz holding plate surface without grooves, and has a simple structure with good temperature distribution.

b ウエハは回転できるが回転は安定である。b The wafer can rotate, but the rotation is stable.

c ウエハの搬送は容易である。c Wafer transport is easy.

d ウエハや石英板面にガス冷却による汚れが発
生しない。
d No contamination occurs on the wafer or quartz plate surface due to gas cooling.

e ウエハに対する浮揚ガスによる冷却効果を生
じない。
e There is no cooling effect on the wafer due to floating gas.

f 直径の異るウエハや円形でないウエハに対し
ても石英台や板を取替えずに使用できる。
f Can be used for wafers with different diameters or non-circular wafers without replacing the quartz stand or plate.

等の要求を満足する装置を提供することである。The objective is to provide a device that satisfies the following requirements.

(発明の構成) 第3図〜第5図は本発明実施例装置を説明する
ための図で、第3図は装置の構造例断面図であ
る。この図において26と27は互に上、下でか
つ直角な方向に配置された多数の棒状タングステ
ンハロゲンランプ、24,25はランプから放射
された光を効率良く反射するるためのリフレクタ
である。上下のランプ群27と26を互に直交配
置とすることは熱処理中にウエハ1を十分早い速
度で回転すれば特に必要はないが、通常用いられ
る回転速度20〜40rpmで、かつごく短時間(約5
秒以下)で熱処理が行われる場合には回転数を補
う効果がある。23は側面のリフレクタ、21は
加熱用の光を透過させる石英製チヤンバ(熱処理
室)で、処理用雰囲気を周辺から隔離する。28
は本発明の特徴となる石英円板、29はウエハ1
を石英円板28上に保持するための突起物すなわ
ち石英ピンで、28上に同心円状に3個取付けて
あることは第3図の一部を拡大して示した第4図
Aと、その上面図である第4図Bに示す通りであ
る。
(Structure of the Invention) FIGS. 3 to 5 are diagrams for explaining an apparatus according to an embodiment of the present invention, and FIG. 3 is a sectional view of an example of the structure of the apparatus. In this figure, 26 and 27 are a number of rod-shaped tungsten halogen lamps arranged above and below each other at right angles to each other, and 24 and 25 are reflectors for efficiently reflecting the light emitted from the lamps. It is not particularly necessary to arrange the upper and lower lamp groups 27 and 26 orthogonally to each other if the wafer 1 is rotated at a sufficiently fast speed during heat treatment, but it is not necessary to arrange the upper and lower lamp groups 27 and 26 at right angles to each other if the wafer 1 is rotated at a sufficiently high speed during heat treatment. Approximately 5
If the heat treatment is performed at a speed of less than 2 seconds), there is an effect of compensating for the rotation speed. 23 is a reflector on the side, 21 is a quartz chamber (heat treatment chamber) through which heating light is transmitted, and isolates the processing atmosphere from the surroundings. 28
29 is a quartz disk which is a feature of the present invention, and wafer 1.
These are protrusions or quartz pins for holding the quartz disk on the quartz disk 28, and the fact that three of them are attached concentrically on the quartz disk 28 can be seen in Figure 4A, which is an enlarged view of a part of Figure 3. This is shown in FIG. 4B, which is a top view.

また第4図30はウエハを熱処理室21へ搬入
および搬出を行うためのフオークであつて、一般
に石英製である。31は石英円板28をウエハ1
をのせたまゝ浮揚し円転させるための石英構造物
(石英台または基台)22にガスを導入するため
の導入口で、石英台22には第1図同様のガス噴
出孔3と3′が設けられている。なお上下のラン
プ群はそれぞれ複数のゾーンに分割して、それぞ
れの電源供給を制御して照度分布の制御を行える
ようにすることは、本発明者の前願(実願昭58−
178820号)と同様である。
Further, FIG. 4 30 is a fork for carrying the wafer into and out of the heat treatment chamber 21, and is generally made of quartz. 31, the quartz disk 28 is attached to the wafer 1
This is an inlet for introducing gas into the quartz structure (quartz stand or base) 22 for floating and circularly rotating the quartz structure (quartz stand or base). is provided. It should be noted that it is possible to divide the upper and lower lamp groups into multiple zones and control the power supply to each zone to control the illumination distribution, as described in the inventor's previous application (Utility Application No. 1983-
178820).

(作用の説明) 第5図はウエハ1を均一に加熱する方法の説明
図で、ウエハの中心に極座標の原点とりウエハを
回転させると回転方向θの均一加熱化が図られ、
光源26,27のゾーンコントロールを行うこと
によつて、ウエハの半径r方向の均一化が図られ
るが、これらは極めて有効であることが、加熱初
期においては十分活性化されていないイオン打込
みされたウエハの加熱後のシート抵抗測定などに
よつてて実験的に確かめられている。
(Explanation of operation) FIG. 5 is an explanatory diagram of a method for uniformly heating the wafer 1. When the origin of polar coordinates is set at the center of the wafer and the wafer is rotated, uniform heating in the rotational direction θ is achieved.
By performing zone control of the light sources 26 and 27, uniformity in the radial direction of the wafer can be achieved, but these are extremely effective because ions implanted that are not sufficiently activated in the initial stage of heating can be made uniform. This has been experimentally confirmed by measuring sheet resistance after heating the wafer.

本発明は前記従来の浮揚一回転法の欠点を排除
して、どのようにウエハの回転を行うかというこ
とに重点がある。第3図において石英チヤンバ2
1内部には常時浮揚一回転用石英治具とも言える
石英台22と、石英ピン29が取付けてある石英
円板28が配設されている。チヤンバ21の外部
でウエハ1を石英フオーク30上にのせてから、
フオーク30を水平に移動させてウエハ1をチヤ
ンバ内に入れ、石英円板28の直上でフオークを
僅か下降させれば、第4図に示すようにウエハ1
は石英ピン29の上にこれと接触して停止し、フ
オーク30はウエハや石英円板28とは非接触の
状態になる。フオーク30はこのまゝ再び水平移
動させてチヤンバ21の外部に移す。または十分
に細いフオークを用いてウエハの加熱結果に有意
な影響を与えずにチヤンバ21内に停めることも
可能である。
The present invention focuses on how to rotate a wafer while eliminating the drawbacks of the conventional levitation and rotation method. In Figure 3, quartz chamber 2
A quartz stand 22, which can be called a quartz jig for constant levitation and one rotation, and a quartz disk 28 to which a quartz pin 29 is attached are disposed inside the quartz holder 1. After placing the wafer 1 on the quartz fork 30 outside the chamber 21,
By moving the fork 30 horizontally to place the wafer 1 into the chamber, and lowering the fork slightly just above the quartz disk 28, the wafer 1 is placed in the chamber as shown in FIG.
The fork 30 rests on the quartz pin 29 in contact with it, and the fork 30 is not in contact with the wafer or the quartz disk 28. The fork 30 is moved horizontally again and moved to the outside of the chamber 21. Alternatively, a sufficiently thin fork may be used to park within the chamber 21 without significantly affecting the heating results of the wafer.

つぎにガス導入口31からガスを供給すると、
ガス噴出口3および3′からのガスの流れによつ
て石英円板28は従来の装置同様浮揚回転する。
この状態でランプ26,27に所定の電力を投入
する。(電力の設定についてウエハ周辺の構造の
熱履歴の影響を避けるためと、ランプ群の寿命を
延ばすためなどの理由から、ウエハの搬入、搬出
時にもある電力が加えられたまゝのこともある。)
ウエハ1の搬出には前記の搬入時と逆のシーケン
スで行う。
Next, when gas is supplied from the gas inlet 31,
The quartz disk 28 levitates and rotates as in the conventional device due to the flow of gas from the gas outlets 3 and 3'.
In this state, a predetermined power is applied to the lamps 26 and 27. (Concerning power settings, a certain amount of power is sometimes applied even when wafers are loaded and unloaded, in order to avoid the influence of the thermal history of the structure around the wafer, and to extend the life of the lamp group. )
The unloading of the wafer 1 is performed in the reverse sequence of the loading process described above.

ここで実際の数値を例示すると、本発明の装置
では石英円板28は厚さ0.7〜1mmで、その直径
は175〜200mmである。この直径は直径150mmのウ
エハを処理するに必要であるが、これより小さい
ウエハにも使用できることは明らかである。石英
ピン29は長さ約3mm、下部は石英円板に溶着さ
せるがその直径は約2mm、その上端はウエハとの
間の熱伝導を防止するためにR(丸味)をつけ点
接触に近付ける。
To give an example of actual numerical values, in the device of the present invention, the quartz disk 28 has a thickness of 0.7 to 1 mm and a diameter of 175 to 200 mm. This diameter is necessary to process wafers with a diameter of 150 mm, but it is clear that smaller wafers can also be used. The quartz pin 29 has a length of about 3 mm, the lower part is welded to the quartz disk, and its diameter is about 2 mm, and the upper end is rounded to approximate point contact in order to prevent heat conduction with the wafer.

ウエハ浮揚回転用のガス噴出口の配置が噴出方
向はたとえば第2図Bと同じである。たゞし構造
を簡単にするために実施例ではガス導入口31は
1個所とし、浮揚と回転用のガス噴出孔は兼用と
した。さらに石英円板28の回転の開始と停止時
に石英円板28が所定の位置からそれるのを防止
するために防壁32を設けた。
The arrangement and direction of gas ejection ports for floating and rotating the wafer are, for example, the same as in FIG. 2B. In order to simplify the structure, in this embodiment there is only one gas inlet 31, and the gas injection hole is used for both levitation and rotation. Further, a barrier 32 is provided to prevent the quartz disk 28 from deviating from a predetermined position when the rotation of the quartz disk 28 starts and stops.

本発明装置は従来の浮揚一回転を用いた装置と
比較して石英円板28があるため光透過率の低下
と、石英ピンを通じての熱伝導が問題になると思
われるが、実測によればウエハの温度度上昇およ
び加熱むら共に処理上有意な相違は見出されなか
つた。たゞし石英ピン29は点接触に近くしない
と加熱によつて結晶欠陥を生ずることがあること
がわかつた。
Compared to the conventional device using one rotation of levitation, the device of the present invention has a quartz disk 28, which seems to cause problems with lower light transmittance and heat conduction through the quartz pin, but according to actual measurements, the wafer No significant differences were found in terms of temperature rise or heating unevenness. However, it has been found that if the quartz pin 29 is not in close to point contact, crystal defects may occur due to heating.

またガスによるウエハの冷却効果や汚れは生じ
ないことも実験で確認され、発明の目的に掲げた
各項が達成されたことがわかつた。
It was also confirmed through experiments that the gas did not have a cooling effect on the wafer or cause contamination, and it was found that each of the objectives of the invention had been achieved.

(発明の効果) 本発明の効果は発明の目的に示したa)〜f)
の各項を達成できることである。また加熱対象物
が半導体基板に限られることはなく、比較的軽い
薄板状物体の浮揚や浮揚回転等に利用できること
は明白である。
(Effects of the invention) The effects of the invention are a) to f) shown in the purpose of the invention.
The goal is to be able to achieve each of the following items. Furthermore, the object to be heated is not limited to semiconductor substrates, and it is clear that the present invention can be used to levitate, levitate, and rotate relatively light thin plate-like objects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体基板熱処理装置の一例の
基板浮揚保持部分の横断面図A、上面図Bおよび
イオン打込み後熱処理した半導体基板のシート抵
抗分布図Cを示す。第2図は別な従来の装置の断
面図Aとガス噴出と排出口の配置図Bを示し、第
3〜第5図は本発明を実施した装置に関するもの
で、第3図は構造例断面図、第4図は第3図中の
主要部の拡大図でAは断面図、Bはその上面図、
第5図は半導体基板を均一に加熱する方法の説明
図である。 1…半導体基板(ウエハ)、3…浮揚回転ガス
噴出孔、3′…位置決めガス噴出孔、21…熱処
理室(チヤンバ)、22…石英製基台、23…側
面のリフレクタ、24,25…リフレクタ、2
6,27…赤外線ランプ(丸棒状)、28…石英
円板、29…石英製突起(石英ピン)、30…フ
オーク、31…ガス導入口、32…ウエハのはず
れ防止壁。
FIG. 1 shows a cross-sectional view A and a top view B of a substrate floating and holding portion of an example of a conventional semiconductor substrate heat treatment apparatus, and a sheet resistance distribution diagram C of a semiconductor substrate heat-treated after ion implantation. Figure 2 shows a cross-sectional view A of another conventional device and a layout diagram B of gas jets and exhaust ports, and Figures 3 to 5 relate to a device embodying the present invention, and Figure 3 is a cross-sectional view of a structural example. Figure 4 is an enlarged view of the main parts in Figure 3, A is a sectional view, B is a top view,
FIG. 5 is an explanatory diagram of a method for uniformly heating a semiconductor substrate. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate (wafer), 3... Levitating rotating gas outlet, 3'... Positioning gas outlet, 21... Heat treatment chamber (chamber), 22... Quartz base, 23... Side reflector, 24, 25... Reflector ,2
6, 27... Infrared lamp (round bar shape), 28... Quartz disk, 29... Quartz projection (quartz pin), 30... Fork, 31... Gas inlet, 32... Wafer removal prevention wall.

Claims (1)

【特許請求の範囲】 1 外部雰囲気に対して密閉され上、下の面を赤
外線または可視光線に対してほゞ透明な材料にて
構成し、その上、下面を通して被加熱物が外部よ
り加熱される熱処理室と、その内部に設けられガ
ス導入口と複数のガス噴出孔を有する赤外線また
は可視光線透過性の基台と、該基台のガス噴出孔
より噴出するガスによつてほゞ一定位置に浮揚し
かつ回転する赤外線または可視光線透過性の円板
と、該円板上に取付けられ熱処理すべき半導体基
板を載置する複数個の突起体よりなることを特徴
とする半導体基板の熱処理装置。 2 基台上面の周縁に半導体基板を塔載して浮揚
回転する前記円板が定位置よりはずれることを防
止する壁を設けたことを特徴とする特許請求の範
囲第1項記載の半導体基板の熱処理装置。
[Scope of Claims] 1. The device is sealed from the external atmosphere, and the upper and lower surfaces are made of a material that is substantially transparent to infrared rays or visible light, and the object to be heated is heated from the outside through the lower surface. a heat treatment chamber, an infrared or visible light transparent base provided inside the heat treatment chamber and having a gas inlet and a plurality of gas ejection holes; 1. A heat treatment apparatus for semiconductor substrates, comprising: an infrared or visible light transparent disk that levitates and rotates; and a plurality of protrusions attached to the disk and on which semiconductor substrates to be heat treated are placed. . 2. The semiconductor substrate according to claim 1, characterized in that a wall is provided on the periphery of the upper surface of the base to prevent the floating and rotating disk on which the semiconductor substrate is mounted from moving out of a fixed position. Heat treatment equipment.
JP11993284A 1984-06-13 1984-06-13 Heat treating device of semiconductor substrate Granted JPS611017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11993284A JPS611017A (en) 1984-06-13 1984-06-13 Heat treating device of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11993284A JPS611017A (en) 1984-06-13 1984-06-13 Heat treating device of semiconductor substrate

Publications (2)

Publication Number Publication Date
JPS611017A JPS611017A (en) 1986-01-07
JPH0420253B2 true JPH0420253B2 (en) 1992-04-02

Family

ID=14773734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11993284A Granted JPS611017A (en) 1984-06-13 1984-06-13 Heat treating device of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS611017A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2163388T3 (en) * 1988-05-24 2002-02-01 Unaxis Balzers Ag VACUUM INSTALLATION
JPH0622980Y2 (en) * 1988-09-28 1994-06-15 日本エー・エス・エム株式会社 Substrate support device in CVD device
JPH073640Y2 (en) * 1989-12-20 1995-01-30 日本真空技術株式会社 Transport room with heating lamp
JPH09181155A (en) * 1995-09-29 1997-07-11 Applied Materials Inc Susceptor of depositing equipment
US6067931A (en) * 1996-11-04 2000-05-30 General Electric Company Thermal processor for semiconductor wafers
US6449428B2 (en) * 1998-12-11 2002-09-10 Mattson Technology Corp. Gas driven rotating susceptor for rapid thermal processing (RTP) system
KR100434019B1 (en) * 2001-06-30 2004-06-04 동부전자 주식회사 Spindle fork assembly equiped with heater block
DE10260672A1 (en) 2002-12-23 2004-07-15 Mattson Thermal Products Gmbh Method and device for the thermal treatment of disk-shaped substrates

Also Published As

Publication number Publication date
JPS611017A (en) 1986-01-07

Similar Documents

Publication Publication Date Title
US6805749B2 (en) Method and apparatus for supporting a semiconductor wafer during processing
US3627590A (en) Method for heat treatment of workpieces
EP0910868B1 (en) Method and apparatus for contactless treatment of a semiconductor substrate in wafer form
JP6084479B2 (en) Heat treatment method, heat treatment apparatus and susceptor
KR920701534A (en) Semiconductor Wafer Processing Apparatus and Method
EP0902962B1 (en) Apparatus for plasma jet treatment of substrates
US8355624B2 (en) Susceptor for heat treatment and heat treatment apparatus
TW201903903A (en) Heat treatment method
KR20120011878A (en) Quartz window having gas feed and processing equipment incorporating same
JPH0420253B2 (en)
JPH0855898A (en) Suscepter for accumulation device
JP2008112801A (en) Pin holder and substrate processing device
JPS59215718A (en) Infrared heat treatment apparatus for semiconductor wafer
TW202021011A (en) Optically transparent pedestal for fluidly supporting a substrate
JPH05198514A (en) Single wafer epitaxial growth device
JPH09237763A (en) Single wafer processing heat treatment apparatus
JPH1097999A (en) Heating device, processing device, heating method and processing method
JPH07254557A (en) Method of heating and cooling semiconductor wafer and heating and cooling device
JPH04216619A (en) Semiconductor manufacturing device
KR100538279B1 (en) Wafer Transfer System of Diffusion Process Equipment
JPH10229114A (en) Substrate heating device
JPS60110114A (en) Apparatus for heat treating semiconductor substrate with infrared rays
JPS60247934A (en) Heat treatment device
JPH08139046A (en) Heat treatment equipment
JP2003092238A (en) Substrate treatment apparatus