JPS59215718A - Infrared heat treatment apparatus for semiconductor wafer - Google Patents

Infrared heat treatment apparatus for semiconductor wafer

Info

Publication number
JPS59215718A
JPS59215718A JP8913983A JP8913983A JPS59215718A JP S59215718 A JPS59215718 A JP S59215718A JP 8913983 A JP8913983 A JP 8913983A JP 8913983 A JP8913983 A JP 8913983A JP S59215718 A JPS59215718 A JP S59215718A
Authority
JP
Japan
Prior art keywords
gas
holding plate
wafer
semiconductor substrate
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8913983A
Other languages
Japanese (ja)
Inventor
Kazuo Hiura
日浦 和夫
Kiyohiko Hamaoka
浜岡 清彦
Mikio Tanabe
幹雄 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP8913983A priority Critical patent/JPS59215718A/en
Publication of JPS59215718A publication Critical patent/JPS59215718A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To reduce a heat loss and even the temperature of the surface of a wafer by a method wherein floating gas outlets and rotating gas outlets are provided, and a wafer being gas-supported is rotated during a predetermined period of heat treatment. CONSTITUTION:A wafer 2 is disposed at a predetermined position. Thereupon, the wafer 2 is rotated in a state of floatation, while being in close proximity to the surface of a retaining plate 1, by virtue of the gas jetting out of floating gas outlets 5. The wafer 2 is furthermore forced from every direction toward the central portion by the gas emitting from positioning gas outlets 4. Then the wafer 2 halts and remains static at a position where the pushing forces are well balanced. The gas is spouted from rotating gas outlets 6 which are arranged at equal spacings on the inside concentric circle neighbouring to the circle defined by the gas outlets 5. As a result, the wafer 2 being in a state of flotation rotates in such manner that the center of the wafer 2 is retained by means of the positioning gas. In this condition, the infrared irradiation is effected, whereby there is no partial thermal loss caused by the contact with solid substances and it is possible to make uniform the temperature of the wafer surface.

Description

【発明の詳細な説明】 によって半導体基板を急速加熱し、熱処理を行なう装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for rapidly heating a semiconductor substrate to perform heat treatment.

従来から赤外線照射によって被加熱物である半導体基板
(以下ウェーハという)を加熱する方法はすでに実施さ
れている。しかし一般にはこの方法はサセプタ上にウェ
ーハを載置し、上面から赤外線を照射して加熱している
ので、ウ屋一ハの上面が急速に温度上昇し、熱容量の大
きいサセプタに接しているウェーハの下面の製置上昇が
遅れるためにウェーハ内で上面と下面との間に大きな温
度勾配が生じ、イオン注入されたウェーハなどでは注入
されたイオンの分布変化を生じる原因ともなりかねない
。これをさけるためにサセプタを石英などの赤外線透過
物質で作シ、このサセプタの下側からも赤外線照射を行
なえば上記の温度勾配を減少させることが出来るが、石
英などの赤外線吸収率は低く、サセプタが直接発熱しに
くく、ウェーハ下面からサセプタへ熱伝導によって熱量
が逃げるために前記の温度勾配はさほど改善されない。
2. Description of the Related Art Conventionally, a method of heating a semiconductor substrate (hereinafter referred to as a wafer), which is an object to be heated, using infrared irradiation has already been implemented. However, in general, this method places the wafer on a susceptor and heats it by irradiating infrared rays from the top surface, so the temperature of the top surface of the wafer increases rapidly, and the wafer is in contact with the susceptor, which has a large heat capacity. The delay in raising the bottom surface of the wafer causes a large temperature gradient between the top and bottom surfaces of the wafer, which may cause changes in the distribution of implanted ions in ion-implanted wafers. To avoid this, the above temperature gradient can be reduced by making the susceptor with an infrared transmitting material such as quartz and irradiating infrared rays from the bottom of the susceptor, but the infrared absorption rate of quartz and other materials is low. Since the susceptor does not easily generate heat directly, and the amount of heat escapes by heat conduction from the lower surface of the wafer to the susceptor, the temperature gradient described above cannot be improved much.

この温度勾配は前記の注入イオン分布の変化原因のほか
にもウェーハのそ9などの欠陥原因ともなシ、好ましく
ない。
This temperature gradient is undesirable because it causes the above-mentioned change in the implanted ion distribution and also causes defects such as defects on the wafer.

この欠陥原因をさけるためにサセプタ上に3点程度の突
起を設け、この突起上にウェーハを載置すれば前記熱伝
導による前記温度勾配は相当程度除去出来るが、赤外線
源の配置間隔や赤外線p放射量のばらつきなどにより、
ウェーハ表面での温度勾配を除去することは出来ない。
In order to avoid this cause of defects, if about three protrusions are provided on the susceptor and the wafer is placed on these protrusions, the temperature gradient caused by the heat conduction can be eliminated to a considerable extent. Due to variations in radiation amount, etc.
The temperature gradient at the wafer surface cannot be eliminated.

このウエーハ狭面の温度勾配を除去するためにはサセプ
タを回転させれば良いが装置が複雑となる。壕だこの方
法を量産用の連続熱処理装置に使用するためにはウェー
ハの複雑なローディングおよびアンローディング装置が
必要となるうえ、これらの装置のハンドリング機構の熱
容量が大きいために昇温および冷却時間が必要となり、
急速な動作が出来ず、ウェーハの処理枚数を低下させる
ことになる。
In order to remove this temperature gradient on the narrow surface of the wafer, it is sufficient to rotate the susceptor, but the apparatus becomes complicated. The use of the trench method in continuous heat treatment equipment for mass production requires complex loading and unloading equipment for wafers, and the large heat capacity of the handling mechanisms of these equipment increases heating and cooling times. It becomes necessary,
Rapid operation is not possible, which reduces the number of wafers processed.

本発明はこのような問題点を解決するためになされたも
ので、ウェーハ内の温度勾配を発生させずに急速加熱を
行なえ、かつ量産用の流れ生産にも容易に適用出来る熱
処理装置を提供するものである。以下図面により詳細に
説明する。
The present invention has been made to solve these problems, and provides a heat treatment apparatus that can perform rapid heating without creating a temperature gradient within the wafer, and that can be easily applied to flow production for mass production. It is something. This will be explained in detail below with reference to the drawings.

第1図は本発明の一実施例の装置で熱処理を行なうウェ
ーハを保持する中心点を通る垂直断面図である。石英な
どの赤外線を透過し易い材料で作られた保持板1にはウ
ェーハ2を保持する位置の中心点にウェーハ2を浮揚状
態に維持したガスの排出口3が設けられている。この排
出口3を中心とし、この上に保持されるウェーハ2の外
周よりわずかに大きい円周4′上に分散配置され、かつ
前記排出口3側に傾斜して複数個の位置決めガス噴出口
4が設けられている。第2図は保持板1上の排出口3お
よび位置決めガ゛ス噴出口4および後述する各種のガス
噴出口の配置を示す平面図である。つぎに複数個の位置
決めガス噴出口4の並んだ円周4′と排出口3との中間
に位置する同心円5′上に均等に分散配置された複数個
の浮揚ガス噴出口5が設けられている。これらの浮揚ガ
ス噴出口5は保持板1に対して全数が垂直か、もしくは
全数が排出口3側に一定角度だけ傾斜して設けられてい
る。第1図は垂直の場合が示しである。
FIG. 1 is a vertical cross-sectional view through the center point of holding a wafer to be heat-treated in an apparatus according to an embodiment of the present invention. A holding plate 1 made of a material that easily transmits infrared rays, such as quartz, is provided with a gas outlet 3 at the center of the position where the wafer 2 is held, for maintaining the wafer 2 in a floating state. A plurality of positioning gas jet ports 4 are arranged around the discharge port 3 and distributed over a circumference 4' slightly larger than the outer circumference of the wafer 2 held thereon, and are inclined toward the discharge port 3 side. is provided. FIG. 2 is a plan view showing the arrangement of the discharge port 3 on the holding plate 1, the positioning gas jet port 4, and various gas jet ports described later. Next, a plurality of floating gas nozzles 5 are provided evenly distributed on a concentric circle 5' located between the circumference 4' where the plurality of positioning gas nozzles 4 are lined up and the discharge port 3. There is. All of these floating gas ejection ports 5 are provided perpendicularly to the holding plate 1, or all of them are provided inclined at a certain angle toward the discharge port 3 side. FIG. 1 shows the vertical case.

さらにこれらの浮揚ガス噴出口5を通る前記円周5′と
排出口3との中間の位置にある同心円6′上に均等に分
散配置でれてこの同心円の切線方向に一定角度にかつ前
記排出口3の位置から見て同一方向に1頃斜して回転用
ガス噴出口6が設けられている。また保持板1の上側は
浮揚状態で保持されているウェーハ2を収納する形でか
つ石英などの赤外線を透過し昂い材料で作られた上蓋7
で被われている。この上蓋7の上側および保持板1の下
側にはそれぞれ赤外線照射装置8が前記浮揚状態で保持
されているウェーハ2を照射するように設けられている
。なお、前記の排出口3、位置決めガス噴出口4、浮揚
ガス噴出口5および回転用ガス噴出口6にはそれぞれ石
英などの赤外線を透過し易い材料で作られた導管13,
14.15および16が接続してあって、必要な時に必
要なガスを噴出および排出することが出来るようになっ
ている。
Further, the floating gas is distributed evenly on a concentric circle 6' located midway between the circumference 5' passing through these floating gas jet ports 5 and the discharge port 3, and is arranged at a constant angle in the tangential direction of this concentric circle and the discharge port 3. A rotational gas ejection port 6 is provided obliquely in the same direction as viewed from the position of the outlet 3. Further, the upper side of the holding plate 1 has an upper lid 7 which is made of a material such as quartz that transmits infrared rays and is made of a material that is transparent to infrared rays and is shaped to house the wafer 2 held in a floating state.
covered with Infrared ray irradiation devices 8 are provided above the upper lid 7 and below the holding plate 1, respectively, so as to irradiate the wafer 2 held in the floating state. Note that the discharge port 3, the positioning gas outlet 4, the floating gas outlet 5, and the rotating gas outlet 6 are each provided with a conduit 13 made of a material that easily transmits infrared rays, such as quartz.
14, 15 and 16 are connected so that the necessary gas can be ejected and discharged when necessary.

つぎに、本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.

第3図は保持板1上の排出口3および各種のガス噴出口
の配置を示す平面図である。排出口3および回転用ガス
噴出口6は前記実施例と同様であるので、説明を省略す
る。排出口3の中心を通る直線9′上に列をなし、一定
間隔でかつ一定方向に傾斜して複数の搬送ガス噴出口9
が設けられている。さらにこの搬送ガス噴出口9の列と
平行し、かつ排出口3を中心にして保持されるシェーバ
の外周に相当する保持板1上の円周12′の両側に接す
る2本の直線10’上に等間隔でかつ搬送ガス噴出口9
の列の方向に傾斜して複数の誘導ガス質出口10が設け
られている。また搬送ガス噴出口9の列の両側に、誘導
ガス噴出口1oの列との間でこれらの列に平行した直線
11’上に一定間隔で保持板1に垂直もしくは搬送ガス
噴出口9の列の方向に傾斜して浮揚ガス噴出口11が設
けられている。式らに前記誘導ガス噴出口10の列が接
する保持板1上の円周上で、搬送ガス噴出口9の列と浮
揚ガス噴出口11の列との中間部分にはそれぞれ同数の
位置決めガス噴出口12が設けられておシ、これらの位
置決めガス噴出口I2は排出口3を通り搬送ガス噴出口
9の列に垂直な平面の方向に傾斜して設けられている。
FIG. 3 is a plan view showing the arrangement of the discharge port 3 and various gas jet ports on the holding plate 1. Since the discharge port 3 and the rotating gas jet port 6 are the same as those in the previous embodiment, their explanation will be omitted. A plurality of carrier gas jet ports 9 are arranged in a row on a straight line 9' passing through the center of the discharge port 3, and are arranged at regular intervals and inclined in a fixed direction.
is provided. Furthermore, two straight lines 10' are parallel to the row of the carrier gas jet ports 9 and are in contact with both sides of the circumference 12' on the holding plate 1, which corresponds to the outer circumference of the shaver held with the discharge port 3 as the center. At regular intervals, the carrier gas outlet 9
A plurality of induced gaseous outlets 10 are provided inclined in the direction of the rows. Further, on both sides of the row of carrier gas jet ports 9, there are arranged perpendicular to the holding plate 1 or rows of carrier gas jet ports 9 at regular intervals on a straight line 11' parallel to these rows between the row of guiding gas jet ports 1o. A floating gas outlet 11 is provided so as to be inclined in the direction of . On the circumference of the holding plate 1 where the row of guiding gas jet ports 10 is in contact with, the same number of positioning gas jets are arranged between the row of carrier gas jet ports 9 and the row of floating gas jet ports 11, respectively. An outlet 12 is provided, and these positioning gas outlets I2 are inclined in the direction of a plane passing through the outlet 3 and perpendicular to the row of carrier gas outlets 9.

以上の各噴出口のうち誘導ガス噴出口10および浮揚ガ
ス噴出口11で第1のグループを構成し、位置決めガス
噴出口12のうち搬送されて来る手前側12−1が第2
のグループを、同じく搬送されて行く側(後側)J2−
2が第3のグ)b−プを、搬送ガス噴出口9が第4のグ
ループを、回転用ガス噴出口が第5のグループ0を構成
しており、各グループごとに別々に保持板1の下側で石
英などの赤外線を透過し易い材料で作られた導管が接続
してあり、必要な時に必要なガスを噴出および排出する
ことが出来るようになっている。このよう゛な保持板1
のほかに上蓋7および赤外線照射装置8は前記実施例と
同様であるので説明は省略する。
Of the above-mentioned jet ports, the guiding gas jet port 10 and the floating gas jet port 11 form a first group, and among the positioning gas jet ports 12, the front side 12-1 that is conveyed is the second group.
The group is also transported to the same side (rear side) J2-
2 constitutes the third group b), the carrier gas outlet 9 constitutes the fourth group, and the rotating gas outlet constitutes the fifth group 0. A conduit made of a material that easily transmits infrared rays, such as quartz, is connected to the bottom of the tube, allowing the necessary gas to be ejected and discharged when needed. Holding plate 1 like this
Besides, the upper cover 7 and the infrared ray irradiation device 8 are the same as those in the previous embodiment, so their explanation will be omitted.

つぎに本発明の装置の動作について説明する。Next, the operation of the apparatus of the present invention will be explained.

まず、第1の実施例について説明する。この実施例の場
合は保持板1にはウェーハを搬送する機能はなく、一定
の場所に浮揚保持して赤外線による加熱を行うものであ
る。ウェーハ2を載置する前に各噴出口から必要量のガ
ス(例えば窒素ガスなど)を噴出させておく。噴出する
方向は前記説明の通シ噴出口の向いて居る方向であり、
保持板1の面に対し垂直な方向から第2図の矢印方向に
約30度傾斜させである。なお浮揚ガス噴出口5は垂直
方向か約30度傾斜させるか、倒れか一方を選択すれば
よいのヂ、第2図では矢印を付してない。このような状
態のときにウェーハ2を所定の位置に置くと、5から噴
出する浮揚ガスによシ保持板1上に浮揚状態で保持され
る。浮揚する高さは浮揚ガスの噴出量によって調節出来
るので、0.5胴以下の浮揚で十分である。さらに4か
ら噴出する位置決めガスによシ、ウェーハ2にはそれぞ
れの位置決めガス噴出口4からウェーハ2の中心方向に
押されている。したがってこの噴出口が分散配置しであ
るので、ウエーノ・2は各方向から中心部に押てれ、こ
れらの力のバランスの取れた所で静止する。この静止点
が排出口3を中心とする円と同心円となるように噴出口
が配置されて居れば良いので、第1の実施例の場合は均
等に分散配置してあれば良い。
First, a first example will be described. In this embodiment, the holding plate 1 does not have the function of transporting the wafer, but instead holds the wafer floating in a fixed position and heats it with infrared rays. Before placing the wafer 2, a required amount of gas (for example, nitrogen gas) is ejected from each ejection port. The direction of ejection is the direction in which the through-hole spout described above is facing,
It is inclined by about 30 degrees in the direction of the arrow in FIG. 2 from the direction perpendicular to the surface of the holding plate 1. Note that the floating gas outlet 5 may be vertically oriented, inclined at an angle of about 30 degrees, or tilted, but arrows are not shown in FIG. 2. When the wafer 2 is placed in a predetermined position in such a state, the wafer 2 is held in a floating state on the holding plate 1 by the floating gas ejected from the wafer 5. Since the levitation height can be adjusted by the amount of levitation gas ejected, levitation of 0.5 or less is sufficient. Furthermore, the wafer 2 is pushed toward the center of the wafer 2 from each positioning gas outlet 4 by the positioning gas ejected from the wafer 4 . Therefore, since the ejection ports are distributed, Ueno 2 is pushed toward the center from each direction and comes to rest at a place where these forces are balanced. It is sufficient that the jet ports are arranged so that this stationary point is concentric with a circle centered on the discharge port 3, so in the case of the first embodiment, it is sufficient that they are evenly distributed.

つぎにウェーハ2の回転について説明する。浮揚ガス噴
出口列の内側の同心円上に均等に分散配置された回転ガ
ス噴出口6からmW方向に対して約30度の傾斜した方
向に回転ガスを噴出すると、浮揚状態のウエーノ・2は
位置決めガスによって中心を保持された状態で回転する
Next, the rotation of the wafer 2 will be explained. When rotating gas is ejected in a direction inclined at approximately 30 degrees with respect to the mW direction from the rotating gas nozzles 6 evenly distributed on a concentric circle inside the levitating gas nozzle row, Ueno-2 in a levitating state is positioned. It rotates while being held centered by gas.

このような状態で上蓋7を閉じ、赤外線照射装置8を点
灯すれば、ウェーハ2は上下から赤外線の照射を受け、
急速に加熱される。実施例では赤外線のエネルギー照射
密度を20〜30 W/ca程度とするとウェーハ2は
約10秒で常温から1000℃以上の高温にすることが
出来る。またウェーハ2の上下両面の温度差は上下の赤
外線照射装置8へ供給する電力を調節することにより、
容易に均衡を保たせることが出来る。さらにウエーノ・
2を回転させているので、赤外線照射装置8の配置およ
び赤外線照射量のばらつきによるウェーハ2の同一表面
上の温度差もなくして、均一に加熱することが出来る。
If the top lid 7 is closed in this state and the infrared irradiation device 8 is turned on, the wafer 2 will be irradiated with infrared rays from above and below.
heats up rapidly. In the embodiment, when the energy irradiation density of infrared rays is set to about 20 to 30 W/ca, the wafer 2 can be heated from room temperature to a high temperature of 1000° C. or more in about 10 seconds. Moreover, the temperature difference between the upper and lower surfaces of the wafer 2 can be controlled by adjusting the power supplied to the upper and lower infrared irradiation devices 8.
Balance can be easily maintained. In addition, Ueno
Since the wafer 2 is rotated, temperature differences on the same surface of the wafer 2 due to variations in the arrangement of the infrared irradiation device 8 and the amount of infrared irradiation can be eliminated, and uniform heating can be achieved.

なお、ガスの噴出によるウェーハ2の下面の冷却は、そ
の冷却量に相当するだけ下側の赤外線照射装置8の照射
量を多くすれば良い。
Note that the lower surface of the wafer 2 may be cooled by gas jetting by increasing the amount of irradiation from the lower infrared irradiation device 8 by an amount corresponding to the amount of cooling.

つぎに第2の実施例の動作について説明する。Next, the operation of the second embodiment will be explained.

第6図は本実施例の保持板1上の排出口3および各噴出
口の配置図で、矢印はその噴出口の方向が保持板1上の
垂線から傾斜している方向を示しているもので、本実施
例でも傾斜角は垂線から約30度としである。
FIG. 6 is a layout diagram of the discharge port 3 and each jet port on the holding plate 1 of this embodiment, and the arrow indicates the direction in which the direction of the jet port is inclined from the perpendicular line on the holding plate 1. Also in this embodiment, the inclination angle is approximately 30 degrees from the perpendicular.

これらの噴出口のうち最初からガスが噴出しているのは
前記第1のグループの誘導ガスおよび浮揚ガスの噴出口
10および11で、このグループのガスは動作中常時噴
出している。つぎに第3のグループの位置決めガスを1
2−2から噴出させ、第4のグループの搬送ガスを9か
ら噴出させてから前記2列の誘導ガス噴出口10の間で
第6図の右端にウエーノ・2を置くと、ウェー・・2は
浮揚ガスで0.5mm程度保持板lから浮上し、誘導ガ
スで搬送路の中心線上に誘導されながら搬送ガスで搬送
されて第6図の中央部分の排出口3の真上まで来る。こ
の位置に来るとすでに12−2から噴出している第3グ
ループの位置決めガスの噴出流によシ進行が止められる
。このときに第4グループの搬送ガスの噴出を止めると
同時に第2グループの位置決めガスおよび第5グループ
の回転用ガスをそれぞれの噴出口12−1および6から
噴出させる。この状態ではウエーノ蔦2は第1グループ
の浮揚ガスで保持板1から浮上したまま、同じく第1グ
ループの誘導ガスおよび第2、第3グループの位置決め
ガスによって排出口3の真上に中心を置く位置に位置決
めされ、第5グループの回転用ガスにより回転を始める
Of these jet ports, gas is spouted from the beginning from the first group of induction gas and floating gas jet ports 10 and 11, and gas of this group is constantly spouted during operation. Next, add 1 positioning gas to the third group.
2-2, the fourth group of carrier gases are ejected from 9, and then the Ueno 2 is placed at the right end in FIG. 6 between the two rows of induced gas ejection ports 10. floats up from the holding plate 1 by about 0.5 mm by the floating gas, is guided by the guiding gas onto the center line of the conveying path, and is conveyed by the carrier gas until it reaches just above the discharge port 3 in the central part of FIG. When it reaches this position, its progress is stopped by the ejected flow of the third group of positioning gases already ejected from 12-2. At this time, the ejection of the fourth group of carrier gases is stopped, and at the same time, the second group of positioning gases and the fifth group of rotational gases are ejected from the respective ejection ports 12-1 and 6. In this state, Ueno Tsuta 2 remains floating from the holding plate 1 with the levitation gas of the first group, and is also centered directly above the discharge port 3 by the guiding gas of the first group and the positioning gas of the second and third groups. It is positioned at this position and starts rotating by the rotation gas of the fifth group.

なおこの時にはすでに赤外線照射装置8は点灯されてい
るので、一定位置で浮揚状態で回転しているウェーハ2
けト下両面カ)ニ色演f ≠、つ杓竺に加熱される。
At this time, the infrared irradiation device 8 is already turned on, so the wafer 2, which is floating and rotating at a certain position,
Both sides of the bottom (bottom side) are heated to a minimum.

つぎに所定時間熱処理を行った後ウェーハ2を搬出する
ために、第3グループの位置決めガスの噴出を止めると
同時に第4グループの搬送ガスの噴出を再開すれば、1
2−1から噴出している第2グループの位置決めガスと
第4グルーゾの搬送ガスとによって第3図の左方向へ始
動し、以後搬送ガスのみにて左端まで移動して行く。
Next, in order to carry out the wafer 2 after heat treatment for a predetermined time, if the ejection of the positioning gas of the third group is stopped and the ejection of the carrier gas of the fourth group is restarted,
The positioning gas of the second group ejected from 2-1 and the carrier gas of the fourth grouto cause the machine to start moving to the left in FIG. 3, and thereafter move to the left end using only the carrier gas.

なお第5グループの回転用ガスはウェー・・2を回転さ
せる時のみ噴出させても、または第1グループの誘導ガ
スおよび浮揚ガスのように常時噴出させていても何れで
も良い。
Note that the rotational gas of the fifth group may be ejected only when the wafer 2 is rotated, or may be ejected all the time like the induction gas and floating gas of the first group.

この第2の実施例の場合には第6図に示すウェーハ2の
走行区間の右端および左端に本出願人が出願した特願昭
57−103524号「半導体基板の連続熱処理方法お
よび装置」に記載したウェーハ供給カセットおよびウェ
ーハ収納カセットを設ければカセットからカセットまで
の動作の自動化を容易に実施することが出来る。
In the case of this second embodiment, the description is given in Japanese Patent Application No. 103524/1983 filed by the present applicant entitled "Method and Apparatus for Continuous Heat Treatment of Semiconductor Substrates" at the right and left ends of the running section of the wafer 2 shown in FIG. By providing a wafer supply cassette and a wafer storage cassette, it is possible to easily automate the operation from cassette to cassette.

以上のように、本発明の装置ではウェーハ2は噴出ガス
によって浮上しているので、固形物との接触による部分
的な熱損失がなく、さらに所定の熱処理期間中は回転し
ているので、赤外線照射装置8の配置状況および照射量
のばらつきなどによるウェーハ2の表面の温度むらも均
−fヒ出来る。
As described above, in the apparatus of the present invention, the wafer 2 is floated by the ejected gas, so there is no partial heat loss due to contact with solid objects, and furthermore, since it is rotating during the predetermined heat treatment period, it Temperature unevenness on the surface of the wafer 2 due to variations in the arrangement of the irradiation device 8 and the amount of irradiation can also be equalized.

また浮揚搬送が可能であるので、連続的に熱処理する装
置の自動化も容易に行うことが出来る。さらに熱容量の
大きい部分を加熱する必要がないので、急速加熱、急速
冷却も容易に実施出来るなど、実用効果は極めて大きい
Furthermore, since floating transportation is possible, automation of continuous heat treatment equipment can be easily performed. Furthermore, since there is no need to heat parts with large heat capacity, rapid heating and rapid cooling can be easily carried out, and the practical effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の装置のウエーノ・を保持す
る中心点を通る垂直断面図である。第2図は第1図の装
置の保持板上のガスの排出口および噴出口の配置図であ
る。第6図は本発明の他の実施例の装置の保持板上のガ
スの排出口および噴出口の配置図である。 図において、1は保持板、2はウェーハ、3は排出口、
4は位置決めガス噴出口、5は浮揚ガス噴出口、6は回
転用ガス噴、出口、7は上蓋、9は搬送ガス噴出口、1
0は誘導ガス噴出口、11は浮揚ガス噴出口、12−1
.12−2は位置決めガス噴出口である。 特許出願人 国際電気株式会社 代理人 弁理士 山元俊仁
FIG. 1 is a vertical cross-sectional view of an apparatus according to an embodiment of the present invention through the center point holding the wafer. FIG. 2 is a layout diagram of gas discharge ports and jet ports on the holding plate of the device shown in FIG. 1. FIG. 6 is a diagram illustrating the arrangement of gas discharge ports and jet ports on a holding plate of an apparatus according to another embodiment of the present invention. In the figure, 1 is a holding plate, 2 is a wafer, 3 is a discharge port,
4 is a positioning gas outlet, 5 is a floating gas outlet, 6 is a rotating gas outlet, 7 is an upper lid, 9 is a carrier gas outlet, 1
0 is a guiding gas outlet, 11 is a floating gas outlet, 12-1
.. 12-2 is a positioning gas outlet. Patent applicant: Kokusai Denki Co., Ltd. Agent: Toshihito Yamamoto, patent attorney

Claims (1)

【特許請求の範囲】 ■、半導体基板を赤外線で加熱する熱処理装置において
、半導体基板を浮揚状態で水平に保持するようにガスを
噴出せしめる噴出口を設けかつ前記赤外線を透過する保
持板と、この保持板上に浮揚状態で保持されている前記
半導体基板を内部に収納するように前記保持板の上側を
被いかつ前記赤外線を透過する上蓋と、前記保持板の下
側および前記上蓋の上側から浮揚状態で保持された前記
半導体基板にそれぞれ赤外線を照射する赤外線照射装置
からなシ、前記保持板には前記半導体基板を浮揚状態で
保持する位置の中心、誠に前記浮揚状態を維持したガス
の排出口と、この排出口を中心として前記半導体基板の
外径よシわずかに大きい円周上に分散配置しかつ前記保
持板に対する垂線よ ・り一定角度だけ前記排出口側に
傾斜した方向に設けられた複数の位置決めガス噴出口と
、この位置決めガス噴出口を通る前記円周と前記ガス排
出口との中間の位置にあ不同心円上に均等に分散配置さ
れかつ一定方向に設けられた複数の浮揚ガス噴出口と、
この浮揚ガス噴出口を通る前記円周と前記ガス排出口と
の中間の位置にある同心円上に均等に分散配置されてこ
の同心円の切線方向に一定角度にかつ前記ガス排出口の
位置から見て同一方向に傾斜して設けられた回転用ガス
噴出口とを具備したことを特徴とする半導体基板の赤外
線熱処理装置。 2、特許請求の範囲第1項記載の半導体基板の赤外線熱
処理装置において、前記複数の浮揚ガス噴出口が前記保
持板に対し垂直方向に設けられである前記半導体基板の
赤外線熱処理装置。 3、特許請求の範囲第1項記載の半導体基板の赤外線熱
処理装置において、前記複数の浮揚ガス噴出口が前記保
持板に対し一定角度だけ前記排出口側に傾斜して設けら
れである前記半導体基板の赤外線熱処理装置。 4、半導体基板を赤外線で加熱する熱処理装置において
、半導体基板を浮揚状態で水平に搬送および保持するよ
うにガスを噴出せしめる噴出口を設けかつ前記赤外線を
透過する保持板と、この保持板上に浮揚状態で搬送およ
び保持されている前記半導体基板を内部に収納するよう
に前記保持板の上側を被いかつ前記赤外線透過する上蓋
と、前記保持板の下側および前記上蓋の上側から浮揚状
態で保持された前記半導体基板にそれぞれ赤外線を照射
する赤外線照射装置からなり、前記保持板には前記半導
体基板を浮揚状態で保持する位置の中心点に前記浮揚状
態を維持したガスの排出口と、このガス排出口の中心を
通る直線上に列をなして一定間隔でかつこの直線を含魯
前記保持板に垂直な平面上で一定方向に傾斜した搬送ガ
ス噴出口と、この搬送ガス噴出口の列に平行しかつ前記
半導体基板を保持する位置に保持された半導体基板の外
周に相当する前記保持板上の円周に接しこの円周の両側
に1本ずつある2本の直線上に列をなして一定間隔でか
つ一定角度だけ前記搬送ガス噴出口の列の方に傾斜して
設けた誘導ガス噴出口と、この誘導ガス噴出口の列と前
記搬送ガス噴出口の列との中間でこれらの列に平行して
列をなしかつ一定方向にガスを噴出させる浮揚ガス噴出
口と、前記半導体基板を保持すべき位置に半導体基板の
位置決めを行なうためにこの半導体基板の外周よりわず
かに大きい前記保持板上の円周上に分散配置しかつ前記
力゛ス排出口の中心を通り前記搬送ガス噴出口の列に垂
直な平面の方向に傾斜して設けられた位置決めガス噴出
口と、前記ガス排出口と前記位置決めガス噴出口を通る
円周との中間の同心円上に均等に分散配置し同心円の切
線方向に一定角度でかつ前記排出口の位置から見て同一
方向に傾斜して設けられた回転用ガス噴出口とを具備し
たことを特徴とする半導体基板の赤外線熱処理装置。 5、特許請求の範囲第4項記載の半導体基板の赤外線熱
処理装置において、前記複数の浮揚ガス噴出口が前記保
持板に対して垂直方向に設けられである前記半導体基板
の赤外線熱処理装置。 6、特許請求の範囲第4項記載の半導体基板の赤外線熱
処理装置において、前記複数の浮揚ガス噴出口が前記保
持板に対して一定角度だけ前記搬送ガス噴出口の列の方
向へ傾斜している前記半導体基板の赤外線熱処理装置。
[Scope of Claims] (1) A heat treatment apparatus that heats a semiconductor substrate with infrared rays, which includes: a holding plate that is provided with a jet port that blows out gas so as to hold the semiconductor substrate horizontally in a floating state and that transmits the infrared rays; an upper cover that covers the upper side of the holding plate and transmits the infrared rays so as to house the semiconductor substrate held in a floating state on the holding plate; and a top cover that is levitated from below the holding plate and above the upper cover. The holding plate includes an infrared irradiation device that irradiates infrared rays to each of the semiconductor substrates held in the floating state, and the holding plate has an outlet for gas that maintains the floating state at the center of the position where the semiconductor substrate is held in the floating state. and are distributed over a circumference slightly larger than the outer diameter of the semiconductor substrate with this discharge port as the center, and are provided in a direction inclined toward the discharge port by a certain angle from a perpendicular to the holding plate. a plurality of positioning gas outlets, and a plurality of floating gases that are evenly distributed on non-concentric circles and provided in a fixed direction at intermediate positions between the circumference passing through the positioning gas outlets and the gas discharge port; A spout and
They are evenly distributed on a concentric circle located midway between the circumference passing through the floating gas outlet and the gas outlet, and are arranged at a constant angle in the tangential direction of this concentric circle and viewed from the position of the gas outlet. What is claimed is: 1. An infrared heat treatment apparatus for semiconductor substrates, characterized in that the device includes a rotating gas outlet inclined in the same direction. 2. The infrared heat treatment apparatus for semiconductor substrates according to claim 1, wherein the plurality of floating gas jet ports are provided in a direction perpendicular to the holding plate. 3. The infrared heat treatment apparatus for a semiconductor substrate according to claim 1, wherein the plurality of floating gas ejection ports are provided to be inclined at a predetermined angle toward the discharge port side with respect to the holding plate. infrared heat treatment equipment. 4. In a heat treatment apparatus that heats a semiconductor substrate with infrared rays, a holding plate that is provided with a jet port that blows out gas so as to horizontally transport and hold the semiconductor substrate in a floating state and that transmits the infrared rays; a top cover that covers the upper side of the holding plate and transmits infrared rays so as to store the semiconductor substrate transported and held in a floating state; The holding plate includes an infrared irradiation device that irradiates infrared rays to each of the semiconductor substrates held in the floating state, and the holding plate has an outlet for the gas that maintains the floating state at the center point of the position where the semiconductor substrate is held in the floating state, and an outlet for the gas that maintains the floating state. A line of carrier gas outlets arranged at regular intervals on a straight line passing through the center of the discharge port and tilted in a certain direction on a plane perpendicular to the holding plate; They are arranged in rows on two straight lines that are parallel to each other and that are in contact with a circumference on the holding plate corresponding to the outer circumference of the semiconductor substrate held at the position where the semiconductor substrate is held, one on each side of this circumference. guiding gas jetting ports provided at regular intervals and inclined at a certain angle toward the row of carrier gas jetting ports; and a row of guiding gas jetting ports provided midway between the row of guiding gas jetting ports and the row of carrier gas jetting ports. floating gas jetting ports that are arranged in parallel rows and spout gas in a fixed direction; and the holding plate, which is slightly larger than the outer circumference of the semiconductor substrate, for positioning the semiconductor substrate at a position where the semiconductor substrate is to be held. positioning gas outlets distributed on the upper circumference and inclined in the direction of a plane passing through the center of the force gas outlet and perpendicular to the row of the carrier gas outlets; and the gas outlet; and a circumference passing through the positioning gas outlet, and are arranged at a constant angle in the tangential direction of the concentric circle and inclined in the same direction when viewed from the position of the discharge outlet. 1. An infrared heat treatment apparatus for semiconductor substrates, characterized by comprising a gas outlet. 5. The infrared heat treatment apparatus for semiconductor substrates according to claim 4, wherein the plurality of floating gas jet ports are provided in a direction perpendicular to the holding plate. 6. In the infrared heat treatment apparatus for semiconductor substrates as set forth in claim 4, the plurality of floating gas outlets are inclined at a predetermined angle with respect to the holding plate in the direction of the row of the carrier gas outlets. The infrared heat treatment apparatus for the semiconductor substrate.
JP8913983A 1983-05-23 1983-05-23 Infrared heat treatment apparatus for semiconductor wafer Pending JPS59215718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8913983A JPS59215718A (en) 1983-05-23 1983-05-23 Infrared heat treatment apparatus for semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8913983A JPS59215718A (en) 1983-05-23 1983-05-23 Infrared heat treatment apparatus for semiconductor wafer

Publications (1)

Publication Number Publication Date
JPS59215718A true JPS59215718A (en) 1984-12-05

Family

ID=13962536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8913983A Pending JPS59215718A (en) 1983-05-23 1983-05-23 Infrared heat treatment apparatus for semiconductor wafer

Country Status (1)

Country Link
JP (1) JPS59215718A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045012A (en) * 1983-08-23 1985-03-11 Toshiba Corp Short-time heat treatment device
JPS6163023A (en) * 1984-09-04 1986-04-01 Tokyo Denshi Kagaku Kabushiki Heat treating device for thin plate type substance to be treated
WO1992009103A1 (en) * 1990-11-16 1992-05-29 Kabushiki-Kaisha Watanabe Shoko Device and method for carrying thin plate-like substrate
NL1003538C2 (en) * 1996-07-08 1998-01-12 Advanced Semiconductor Mat Method and device for contactless treatment of a disc-shaped semiconductor substrate.
WO1998042017A1 (en) * 1997-03-14 1998-09-24 Kabushiki Kaisha Watanabe Shoko Floating apparatus of substrate
JP2000200815A (en) * 1998-12-17 2000-07-18 Eaton Corp Treatment equipment for semiconductor wafer, probe for temperature measurement and temperature measuring method thereof
US6461439B1 (en) 1996-07-08 2002-10-08 Asm International N.V. Apparatus for supporting a semiconductor wafer during processing
JP2002343697A (en) * 2001-05-11 2002-11-29 Ricoh Opt Ind Co Ltd Method and device for heating polymer material layer
WO2006025183A1 (en) * 2004-08-30 2006-03-09 Daikin Industries, Ltd. Wafer temperature adjusting apparatus and wafer temperature adjusting method
US7098157B2 (en) 2002-12-23 2006-08-29 Mattson Thermal Products Gmbh Method and apparatus for thermally treating disk-shaped substrates
JP2008039408A (en) * 2006-08-01 2008-02-21 Justem:Kk Thickness multipoint measurement method and its apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107275A (en) * 1977-02-28 1978-09-19 Ibm Device for stopping articles moving in fluid manner
JPS5469384A (en) * 1977-11-14 1979-06-04 Matsushita Electric Ind Co Ltd Electric furnace unit
JPS57147237A (en) * 1981-03-06 1982-09-11 Sony Corp Heat treatment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107275A (en) * 1977-02-28 1978-09-19 Ibm Device for stopping articles moving in fluid manner
JPS5469384A (en) * 1977-11-14 1979-06-04 Matsushita Electric Ind Co Ltd Electric furnace unit
JPS57147237A (en) * 1981-03-06 1982-09-11 Sony Corp Heat treatment device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045012A (en) * 1983-08-23 1985-03-11 Toshiba Corp Short-time heat treatment device
JPS6163023A (en) * 1984-09-04 1986-04-01 Tokyo Denshi Kagaku Kabushiki Heat treating device for thin plate type substance to be treated
US5921744A (en) * 1990-11-16 1999-07-13 Kabushiki-Kaisha Watanabe Shoko Wafer carrying device and wafer carrying method
WO1992009103A1 (en) * 1990-11-16 1992-05-29 Kabushiki-Kaisha Watanabe Shoko Device and method for carrying thin plate-like substrate
EP0747931A2 (en) * 1990-11-16 1996-12-11 Kabushiki Kaisha Watanabe Shoko Sheet-like base carrying method
EP0747931B1 (en) * 1990-11-16 2000-07-12 Kabushiki Kaisha Watanabe Shoko Sheet-like base carrying method
US5518360A (en) * 1990-11-16 1996-05-21 Kabushiki-Kaisha Watanabe Shoko Wafer carrying device and wafer carrying method
WO1998001890A1 (en) * 1996-07-08 1998-01-15 Advanced Semiconductor Materials International N.V. Method and apparatus for contactless treatment of a semiconductor substrate in wafer form
NL1003538C2 (en) * 1996-07-08 1998-01-12 Advanced Semiconductor Mat Method and device for contactless treatment of a disc-shaped semiconductor substrate.
US6461439B1 (en) 1996-07-08 2002-10-08 Asm International N.V. Apparatus for supporting a semiconductor wafer during processing
WO1998042017A1 (en) * 1997-03-14 1998-09-24 Kabushiki Kaisha Watanabe Shoko Floating apparatus of substrate
JP2000200815A (en) * 1998-12-17 2000-07-18 Eaton Corp Treatment equipment for semiconductor wafer, probe for temperature measurement and temperature measuring method thereof
JP4671142B2 (en) * 1998-12-17 2011-04-13 アクセリス テクノロジーズ インコーポレーテッド Semiconductor wafer processing apparatus, temperature measurement probe, and temperature measurement method thereof
JP2002343697A (en) * 2001-05-11 2002-11-29 Ricoh Opt Ind Co Ltd Method and device for heating polymer material layer
JP4683763B2 (en) * 2001-05-11 2011-05-18 リコー光学株式会社 Method and apparatus for heating polymer material layer
US7098157B2 (en) 2002-12-23 2006-08-29 Mattson Thermal Products Gmbh Method and apparatus for thermally treating disk-shaped substrates
WO2006025183A1 (en) * 2004-08-30 2006-03-09 Daikin Industries, Ltd. Wafer temperature adjusting apparatus and wafer temperature adjusting method
JP2008039408A (en) * 2006-08-01 2008-02-21 Justem:Kk Thickness multipoint measurement method and its apparatus

Similar Documents

Publication Publication Date Title
JP6863041B2 (en) Substrate heating device
US8025925B2 (en) Heating apparatus, coating and development apparatus, and heating method
JP4632551B2 (en) Wafer and ring transfer method, heat treatment equipment ring combination, and wafer and ring set
KR101177965B1 (en) Coating-developing apparatus, method and storage medium
JPH0358530B2 (en)
EP0910868B1 (en) Method and apparatus for contactless treatment of a semiconductor substrate in wafer form
US6613685B1 (en) Method for supporting a semiconductor wafer during processing
KR101524177B1 (en) Thermal treatment apparatus and thermal treatment method
JPS59215718A (en) Infrared heat treatment apparatus for semiconductor wafer
US6877250B2 (en) Apparatus, method and system for the treatment of a wafer
JP2976085B2 (en) Processing equipment
JP3499145B2 (en) Heat treatment method, heat treatment apparatus and treatment system
CA2285393C (en) Device for conveying substrates through a substrate processing plant
JPS611017A (en) Heat treating device of semiconductor substrate
JPH0234164B2 (en)
JPS58220423A (en) Method and apparatus for continuous heat treatment of semiconductor substrate
JPH0855814A (en) End station for ion implanting apparatus
KR101971453B1 (en) Substrate processing module and substrate processing system having the same
JPH02263984A (en) Ccvd reactor system
KR101898066B1 (en) Substrate processing module and substrate processing system having the same
JPH10275776A (en) Semiconductor wafer manufacturing equipment
JPS61187341A (en) Heat-treatment device for semiconductor substrate
JPH05326532A (en) Baking device
JPH0131686B2 (en)
JP4849004B2 (en) Heating device, heating method and coating, developing device and storage medium