BE1030270B1 - Appareil de séchage de particules avec recyclage d'une partie du gaz chaud - Google Patents

Appareil de séchage de particules avec recyclage d'une partie du gaz chaud Download PDF

Info

Publication number
BE1030270B1
BE1030270B1 BE20225095A BE202205095A BE1030270B1 BE 1030270 B1 BE1030270 B1 BE 1030270B1 BE 20225095 A BE20225095 A BE 20225095A BE 202205095 A BE202205095 A BE 202205095A BE 1030270 B1 BE1030270 B1 BE 1030270B1
Authority
BE
Belgium
Prior art keywords
plate
gas
particles
dryer
hot gas
Prior art date
Application number
BE20225095A
Other languages
English (en)
Other versions
BE1030270A1 (fr
Inventor
Léon Crosset
Original Assignee
Crosset Leon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crosset Leon filed Critical Crosset Leon
Priority to BE20225095A priority Critical patent/BE1030270B1/fr
Priority to PCT/EP2023/052348 priority patent/WO2023151990A1/fr
Publication of BE1030270A1 publication Critical patent/BE1030270A1/fr
Application granted granted Critical
Publication of BE1030270B1 publication Critical patent/BE1030270B1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/001Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement the material moving down superimposed floors
    • F26B17/005Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement the material moving down superimposed floors with rotating floors, e.g. around a vertical axis, which may have scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/24Wood particles, e.g. shavings, cuttings, saw dust

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

La présente invention concerne un sécheur (1) pour sécher des particules comprenant une enceinte, un plateau circulaire monté dans l’enceinte, dont la surface est perforée et perméable aux gaz, un système de répartition et un système de récupération de particules. Le sécheur comprend en outre un système de soufflage de gaz chaud comprenant N ventilateurs configurés pour générer un flux de gaz chaud suivant N colonnes de gaz, chaque colonne de gaz i traversant une section angulaire (1.i) différente du plateau. Après avoir traversé les (N-1) premières sections angulaires du plateau, les (N-1) premières colonnes de gaz sont extraites hors de l’enceinte ou recirculées après séchage et chauffage. Après avoir traversé la Nième section angulaire (1.N) du plateau, le gaz chaud de la Nième colonne de gaz est recirculé par le Nième ventilateur (5N) pour former la première colonne de gaz (1.1) traversant le premier secteur angulaire (1.1) du plateau.

Description

1 BE2022/5095
APPAREIL DE SÉCHAGE DE PARTICULES AVEC RECYCLAGE D'UNE PARTIE DU GAZ
CHAUD
DOMAINE DE L’INVENTION
[0001] L’invention se rapporte à un sécheur industriel pour sécher en continu des particules, de préférence des particules organiques, par exemple d’origine agro-alimentaire, telles des céréales, ou de déchets servant comme combustible ou matériaux de construction tels des copeaux ou fibres de bois, ou autre végétal.
ARRIÈRE-PLAN TECHNOLOGIQUE
[0002] De nombreux procédés industriels nécessitent le séchage de particules avant leur utilisation ultérieure, que ce soit avant l'emballage de produits granulaires agro-alimentaires ou de produits industriels, ou avant la combustion de déchets broyés utilisés comme combustibles.
Selon le type d'utilisation prévu, les particules doivent être séchées de sorte à atteindre des teneurs en humidité finales comprises dans des plages cibles (H1t+e) bien définies. Par exemple, des copeaux de bois devront être séchés dans des plages cibles différentes selon qu'ils seront destinés à la combustion, la production de pellets, la production de litières ou la production de panneaux agglomérés. Il est possible bien entendu d’effectuer le séchage des particules par batch en déposant les particules sur des plateaux préférablement perforés afin de laisser passer un gaz chaud au travers et de permettre à l’eau et la vapeur d’eau de s’évacuer. Dans certains cas un lit — fluidisé est formé par les particules en suspension sous l’action du flux de gaz chaud. Cependant la plupart des applications industrielles demandent des débits qu’un procédé de séchage par batch ne peut atteindre. Pour cette raison, le même principe de déposer les particules à sécher sur un support perforé et de les exposer à un flux de gaz chaud a été appliqué à des appareils permettant le séchage en continu, avec une source continue des particules à sécher en amont du — sécheur proprement dit et une décharge continue des particules séchées en aval de celui-ci.
[0003] En particulier, un sécheur à bande (belt dryer) comprend une bande perforée souple continue tendue entre deux rouleaux motorisés formant une boucle. De l’air ou autre gaz chaud est soufflé sous la toile supérieure sur laquelle on dépose en continu les particules à sécher. La longueur d’un sécheur à bande dépend du type de particules à sécher, de leur charge en eau et de la plage cible (H1t+e) de teneur en eau à atteindre. Ainsi, une bande peut atteindre une longueur de 200 m qui est très chère et difficile à monter / démonter sur l’appareil. Un sécheur à bande est donc généralement réservé pour le séchage d’un seul type de particules, car il serait anti-économique de changer de bande pour optimaliser le type de perforation à un nouveau type de particules. Un sécheur à bande est très onéreux et peu efficace en termes de dimensions, — puisque les particules ne sont séchées que sur moins de la moitié de la longueur de la bande.
[0004] Il existe également des sécheurs à plateaux perforés qui ressemblent à des sécheurs à bande, sauf que la bande est remplacée par des plateaux perforés couplés l’un à l’autre formant
2 BE2022/5095 une sorte de chenille. La différence avec un sécheur à bande est que les plateaux sont articulés de manière à présenter la même face qu’ils soient sur la bande supérieure ou inférieure de la boucle. Ceci permet de réduire pratiquement de moitié la longueur du sécheur, puisque les particules sont soumises deux fois au flux de gaz chaud : une première fois lors de leur passage sur la partie supérieure de la boucle et une seconde fois lors de leur passage en sens inverse sur la partie inférieure. Bien qu’avantageux à ce point de vue-là par rapport à un sécheur à bande, il est clair que la mécanique nécessaire aux mouvements des plateaux est délicate et donc onéreuse et fragile, surtout lorsqu’exposée à des particules fines venant gripper les roulements.
De plus, les ouvertures créées entre deux plateaux adjacents et, surtout, les espaces s’ouvrant dans le mécanisme de transfert des plateaux lors de chaque transfert d’un plateau de la portion supérieure à la portion inférieure de la chenille créent autant de passages préférentiels de moindre résistance pour le flux de gaz chaud, qui entraînent une importante chute de l'efficacité de ce type de sécheurs.
[0005] EP0197171 décrit un sécheur comprenant plusieurs plateaux perforés, circulaires, superposés et montés à rotation sur un axe central creux. Chaque plateau est enfermé dans une chambre cylindrique individuelle munie d’un toit et d’un plancher qui le séparent des autres plateaux. Des moyens de transfert de la poudre à sécher sont prévus entre chaque plateau adjacent. Chaque chambre est munie, d’une part, d’une première ouverture d’introduction d’air chaud, en communication fluidique avec la cavité de l’axe central creux, la première ouverture étant positionnée au-dessus du plateau se trouvant dans la chambre correspondante et, d’autre part, d’une seconde ouverture d’évacuation sur la paroi périphérique de la chambre en communication avec l'extérieur, la seconde ouverture se trouvant en-dessous du plateau correspondant. De l'air chaud est soufflé dans la cavité de l’axe creux et est distribué en parallèle dans chaque chambre par la première ouverture d'introduction d’air chaud. L'air chaud est obligé de passer à travers le plateau perforé circulaire avant d’être évacué par la seconde ouverture se trouvant sur la paroi périphérique de chaque chambre. En réalité, un tel système est semblable en principe à un sécheur à bande dont le mouvement linéaire a été remplacé par un mouvement circulaire réparti sur plusieurs étages avec des moyens de transfert de la poudre d’un plateau à l’autre. Certes, un tel système rotatif a un avantage considérable de gain de place au sol par rapport à un sécheur à bande linéaire, mais un tel système manque d'efficacité. En effet, si l’air chaud ayant traversé les premiers plateaux chargés de particules fort humides ressort relativement saturé en humidité, l’air chaud traversant les derniers plateaux chargés de particules déjà partiellement séchés sur les plateaux précédents, ne ressort que peu chargé d'humidité, ce qui représente un gaspillage d’énergie considérable.
[0006] EP2828595 décrit un sécheur illustré à la Figure 1, comprenant un premier et second (ou plus de) plateaux perforés (14, 1b), superposés et montés à rotation autour d’un axe vertical (Z).
Un système de ventilation souffle un gaz chaud verticalement en passant d’abord par le second plateau (1b), avant de passer directement à travers le premier plateau (1a). Comme il s’agit d’un sécheur, le gaz chaud, après être passé à travers le second plateau (1b) puis le premier plateau
3 BE2022/5095 (1a) est soit évacué, soit recirculé, mais une telle recirculation est conditionnée par le séchage et le réchauffement de l’air à recirculer avant de le réinjecter à travers le second plateau.
[0007] Les particules humides sont distribuées le long d’un rayon du premier plateau (1a) par une première unité de répartition (2a) et emportées par la rotation du premier plateau sur une distance angulaire (ou azimutale) d’un peu moins de 360° avant d’être recueillies par une première unité de récupération (3a). Pendant la rotation du premier plateau (1a), les particules sont exposées au courant de gaz chaud qui est auparavant passé à travers le second plateau où il a perdu un peu de son énergie calorifique et s’est chargé d’un peu d'humidité. Les particules partiellement séchées sont transférées par une unité de transfert (4t) de la première unité de récupération vers un second système (3a) de répartition (2b) qui distribue les particules partiellement séchées le long d’un rayon du second plateau (1b) qui tourne autour de l’axe vertical (Z) dans le sens inverse du premier plateau (1a). Les particules partiellement séchées sont emportées par la rotation du second plateau (1b) (en sens inverse du premier plateau) sur une distance angulaire (ou azimutale) d’un peu moins de 360° avant d’être recueillies par une seconde unité de récupération. (3b) et évacuées. Pendant la rotation du second plateau (1b), les particules sont exposées au courant de gaz chaud directement depuis le système de ventilation, où le gaz chaud a sa température maximale et sa teneur en humidité minimale.
[0008] Comme on le voit sur la Figure 1, comme les plateaux tournent en sens inverse, le gaz chaud qui atteint les particules juste après avoir été déposées le long du rayon du premier plateau, — où elles ont leur teneur en humidité maximale (HOa / H0a = 100%) a la plus haute température et la plus basse teneur en humidité de tout le gaz chaud qui atteint le premier plateau, car il est passé auparavant à travers les particules pratiquement sèches (teneur finale en humidité H1b) juste avant d’être évacuées avec une teneur en humidité qui peut être de l’ordre (à titre d'exemple) de
H1b / H0a) = 12%, où HOa est la teneur initiale en humidité des particules à l’entrée du premier plateau (1a) et H1b est la teneur finale des particules à la sortie du second plateau (1b).
[0009] Le sécheur décrit dans EP2828595 est particulièrement efficace en termes énergétiques, d'utilisation et occupation de l’espace au sol et de débit. On peut optimiser le débit de particules à sécher d’un sécheur en modifiant les dimensions des plateaux et de l’enceinte. Pour des hauts débits, on augmente le rayon des plateaux. Pour des très grands débits, un troisième plateau est même décrit dans EP2828595. Cependant, pour des débits plus modestes, la réduction correspondante de la taille des plateaux n’est pas compensée par une réduction correspondante en coût de production du sécheur, puisque quelle que soit la taille des plateaux, il en faut au moins deux, ainsi que deux jeux d'unités de répartition et de récupération, ainsi qu’une unité de répartition, dont les prix sont incompressibles.
[0010] II demeure donc un besoin pour un sécheur industriel pour sécher des particules en continu à des débits plus modestes que ceux contemplés par le sécheur décrit dans EP2828595 et qui soit efficace et moins coûteux à produire.
4 BE2022/5095
RESUME DE L’INVENTION
[0011] La presente invention est definie dans les revendications independantes. Des variantes préférées sont définies dans les revendications dépendantes. En particulier, la présente invention concerne un sécheur pour sécher des particules comprenant, (a) une enceinte comprenant une paroi essentiellement cylindrique s’étendant le long d’un axe vertical (Z), (b) un plateau qui est circulaire et monté dans l’enceinte, sensiblement normal à l’axe vertical (Z) en rotation dans un sens de rotation autour de l’axe vertical (Z), la surface du plateau étant perforée et perméable aux gaz tels l'air et la vapeur d’eau et à l’eau, (C) un système de répartition qui est configuré pour répartir les particules avant séchage le long d’un rayon du plateau, (d) un système de récupération qui est configuré pour recueillir les particules déposées sur le plateau après une rotation du plateau d’un angle formé entre le système de répartition et le système de récupération, le système de récupération étant situé en aval du, préférablement adjacent au système de répartition.
[0012] Le sécheur comprend en outre un système de soufflage de gaz chaud comprenant N ventilateurs configurés pour générer des flux de gaz chaud suivant N colonnes de gaz sensiblement parallèles à l’axe vertical (Z), chaque colonne de gaz traversant une section — angulaire différente du plateau, avec N € Net N > 1, dans lequel (e) les N sections angulaires du plateau couvrent une entièreté d’une aire du plateau comprise entre le système de répartition et le système de récupération, () un premier ventilateur configuré pour générer un flux de gaz chaud suivant une première colonne de gaz est positionné en aval du système de répartition, la première colonne de gaz traversant une première section angulaire du plateau adjacente à ou incluant le système de répartition, (g) un Nème ventilateur configuré pour générer un flux de gaz chaud suivant une Nèm® colonne de gaz est positionné en amont du système de récupération, la Né" colonne de gaz traversant une N°"° section angulaire du plateau adjacente à ou incluant le système de récupération, dans lequel les termes « amont » et « aval » sont définis par rapport au sens de rotation du plateau, et (h) des second à (N-1)*"° ventilateurs sont répartis angulairement autour de l’axe vertical (Z) entre les premier et N°7® ventilateurs, configurés pour générer des flux de gaz chaud suivant des seconde à (N-1)°"° colonnes de gaz traversant des second à (N-1)ê"° secteurs angulaires compris entre les premier et N°"° secteurs angulaires, (0) après avoir traversé les première à la (N-1)°"° sections angulaires du plateau, les première à la (N-1)*"° colonnes de gaz sont soit extraites hors de l’enceinte ou le gaz de ces colonnes est séché et réchauffé avant d’être recirculé par les second au N°me ventilateurs pour traverser dans un nouveau cycle les seconde à la Né"° sections angulaires du plateau.
[0013] La présente invention se distingue des sécheurs de l’art antérieur en ce qu’après avoir 5 traversé la Né"° section angulaire du plateau, le gaz chaud de la N°"° colonne de gaz est recirculé pour former seul ou en complément d’un gaz chaud supplémentaire, la première colonne de gaz traversant le premier secteur angulaire du plateau.
[0014] Dans un mode de réalisation, le plateau comprend une cheminée centrée sur l’axe vertical (Z) et traversant le plateau à travers une ouverture circulaire, ayant un rayon interne inférieur à un rayon du plateau. Les ventilateurs peuvent alors être disposés à l’intérieur de la cheminée et être chacun associé à un système de déflection vertical configuré pour guider le gaz chaud généré par chaque ventilateur dans l’enceinte et hors de la cheminée et l’orienter sensiblement parallèle à l’axe vertical (Z) vers les secteurs angulaires correspondants et ainsi former les colonnes de gaz correspondantes. Le système de déflection vertical peut comprendre de préférence au moins un parmiun tube, une surface déflectrice ou un réseau de surfaces déflectrices, qui est couplé à au moins une ouverture dans une paroi de la cheminée.
[0015] De manière préférentielle, le sécheur comprend en outre un système de déflection de recirculation configuré pour recirculer le gaz de la N°"° colonne vers le premier ventilateur en le guidant vers l’intérieur de la cheminée. Le système de déflection de recirculation comprend de préférence un ou plusieurs parmi un tube, une surface déflectrice ou un réseau de surfaces déflectrices, un ventilateur, qui est couplé à au moins une ouverture dans une paroi de la cheminée.
[0016] Le sécheur peut comprendre en outre un contrôleur configuré pour contrôler un ou plusieurs des paramètres suivants, e un débit de gaz d’un ou plusieurs des N ventilateurs, e une proportion dans la première colonne de gaz constituée de gaz provenant de la Nèms colonne recyclé vers le premier ventilateur, e une géométrie du système de déflection verticale de sorte à modifier une étendue de chaque secteur angulaire et un degré de chevauchement entre deux secteurs angulaires adjacents.
[0017] Il est préférable que le sécheur comprenne également un capteur de température et un capteur d’humidité configurés pour mesurer la température et la teneur en humidité du gaz chaud sortant de la N°"° section angulaire avant d’être recirculé vers la première colonne de gaz, et dans lequel le contrôleur est configuré pour déterminer la proportion dans la première colonne de gaz constituée de gaz provenant de la N°"° colonne recyclé vers le premier ventilateur sur base des valeurs de la température et de la teneur en humidité mesurées par les capteurs de température et d’humidité.
[0018] Le système de soufflage de gaz chaud comprend préférentiellement e un ventilateur, de préférence N ventilateurs situés en amont du plateau et configurés pour souffler le gaz chaud, de préférence de l’air chaud, et e un dispositif de chauffage de gaz configuré pour chauffer le gaz chaud ainsi soufflé en amont du premier plateau, où le terme « amont » est défini par rapport à la direction du flux de gaz chaud.
[0019] Le système de soufflage de gaz chaud peut également ou alternativement comprendre, e un ventilateur, de préférence N ventilateurs, situés en aval du plateau et configurés pour aspirer le gaz chaud, de préférence de l'air chaud et e un dispositif de chauffage de gaz configuré pour chauffer le gaz chaud ainsi aspiré, et situé en amont du premier plateau, dans lequel le dispositif de chauffage de gaz comprend au moins l’un parmi un échangeur de chaleur ou un bruleur à gaz, où les termes « amont » et « aval » sont définis par rapport à la direction du flux de gaz chaud.
[0020] Le gaz chaud peut circuler du haut vers le bas, alternativement, le gaz chaud peut circuler du bas vers le haut. Le gaz chaud est préférablement de l’air chaud.
[0021] Le plateau peut comprendre en outre une structure rigide auto-portante à haute perméabilité de type caillebotis, sur laquelle est posée une couche filtrante comprenant des ouvertures de taille et densité correspondant à la perméabilité désirée selon le type et taille des — particules à sécher.
[0022] Le système de répartition des particules à sécher sur le plateau peut comprendre au moins une vis d’Archimède s’étendant le long d’un rayon du plateau, ladite au moins une vis d’Archimède étant enfermée dans une enceinte munie d’une ou plusieurs ouvertures s’étendant le long dudit rayon du plateau.
[0023] Le système de récupération du plateau peut comprendre au moins une vis d’Archimède s’étendant le long d’un rayon dudit plateau qui est enfermée dans une enceinte munie d’une ou plusieurs ouvertures s'étendant le long dudit rayon du plateau, lesdites ouvertures étant reliées à un racleur ou brosse apte à récolter et diriger les particules amenées par la rotation du plateau vers la vis d’Archimède.
[0024] Le sécheur comprend avantageusement un plancher statique situé en dessous du plateau selon l’axe vertical, Z, le plancher comprenant une ouverture d’évacuation des particules les plus fines qui se seraient déposées sur le plancher. Le sécheur peut en outre comprendre un racleur fixé de manière solidaire au plateau et apte à suivre le mouvement de rotation de celui-ci pour pousser les particules déposées sur le plancher vers ladite ouverture d’évacuation.
[0025] Les particules à sécher peuvent comprendre de manière préférentielle des déchets de bois de scieries, des déchets de bois de matériaux de construction, des déchets papier ou cartons, des produits agroalimentaires et sont sous forme de poudre, de granulés, de copeaux, de pellets, de tourteaux, ou de morceaux généralement ne dépassant pas 10 cm de longueur.
BRÈVE DESCRIPTION DES FIGURES
[0026] Pour une meilleure compréhension de la nature de la présente invention, il est fait référence aux Figures suivantes, dont la ;
Figure 1 : illustre un sécheur à disque de l’art antérieur, tel que décrit dans EP197171.
Figure 2 : illustre un sécheur selon la présente invention.
Figure 3: illustre une variante de sécheur selon la présente invention.
Figure 4 : illustre une vue de dessus de sécheur selon la présente invention.
Figure 5 : illustre la recirculation du gaz chaud dans un sécheur selon la présente invention.
Figure 6(a) & 6(b) : illustrent un exemple de système de répartition adaptée à la présente invention, (a) vue en perspective, (b) vue du dessus.
Figure 7(a) & 7(b) : illustrent un exemple de système de récupération adaptée à la présente invention, (a) vue du dessus, (b) coupe transversale.
Figure 7(c) & 7(d) : illustrent un autre exemple de système de récupération adaptée à la présente invention, (c) vue du dessus, (d) coupe transversale.
Figure 8(a) : illustre le plateau (1) comprenant une structure rigide autoportante (1) comprenant des ouvertures de diamètre donné.
Figure 8(b) : illustre le plateau (1) comprenant une structure rigide autoportante (1c) à haute perméabilité de type caillebotis recouverte par une couche souple (1p) amovible comprenant des ouvertures de diamètre désiré selon l'application.
DESCRIPTION DÉTAILLÉE
[0027] Le sécheur selon la présente invention est de préférence une variation d’un sécheur du type décrit dans EP2828595, qui est discuté dans la section « arrière-plan technologique » supra et illustré à la Figure 1 avec ses deux plateaux (1a, 1b) superposés tournant à contre-sens.
Cependant, adapté à des débits de particules à sécher plus modestes que le sécheur décrit dans
EP2828595, le sécheur de la présente invention ne comporte qu’un seul plateau (1).
[0028] Le sécheur de la présente invention comprend une enceinte (10) comprenant une paroi essentiellement cylindrique s'étendant le long d’un axe vertical (Z). Contrairement au sécheur décrit dans EP2828595, l'enceinte enferme un unique plateau (1) circulaire monté sur la paroi de l'enceinte sensiblement normal à l’axe vertical (Z). Le plateau (1) est monté en rotation dans un
8 BE2022/5095 sens autour de l’axe vertical (Z) dont la rotation est actionnée par un premier moteur. La surface du plateau (1) est perforée par des ouvertures de diamètre optimisé pour le type de particules à sécher, le rendant ainsi à la fois apte à retenir les particules à sécher et perméable aux fluides tels l’air, la vapeur d’eau et l’eau. Un tel sécheur est illustré aux Figures 2 et 3.
[0029] Un système de répartition (2) des particules à sécher s’étend le long d’un rayon du plateau (1) et est configuré pour recevoir les particules à sécher depuis une unité d’alimentation (9) et pour répartir avant séchage ces particules le long d’un rayon du plateau (1). L’unité d’alimentation permet de contrôler le débit d’alimentation ou de chargement des particules à sécher sur le plateau (1).
[0030] Un système de récupération (3) s’étend le long d’un second rayon du plateau, situé en aval du, préférablement adjacent au système de répartition (2). Le système de récupération (3) est configuré pour récupérer les particules déposées sur le plateau (1) après une rotation d’un angle donné de celui-ci. L’angle de rotation est de préférence au moins égal à 300°, de préférence au moins égal à 320°, encore de préférence au moins égal à 340°, et de préférence le plus grand angle permettant d’accommoder le système de répartition (2) et le système de récupération (3) le long des rayons respectifs du plateau (1). Un grand angle de rotation permet d’allonger le temps d'exposition aux gaz chauds des particules déposées sur le plateau pour une vitesse de rotation donnée. Un angle de pratiquement 360° peut être obtenu en superposant le système de répartition (2) au-dessus du système de récupération (3).
[0031] Le sécheur comprend un système de soufflage de gaz chaud comprenant N ventilateurs (51-5N) configurés pour générer des flux de gaz chaud suivant N colonnes de gaz sensiblement parallèles à l’axe vertical (Z), Chaque colonne de gaz traverse une section angulaire (1.1 -1.N) différente du plateau (1), avec NEN et N> 1, C’est le gaz chaud et sec qui en contactant les particules humides qui va (a) augmenter leur température et (b) évacuer une partie de leur — humidité. Il s'ensuit que la température du gaz chaud baisse et sa teneur en humidité augmente lorsqu’il passe au travers du plateau (1). La température du gaz chaud en aval du plateau baisse et sa teneur en humidité augmente avec l’augmentation des gradients de température et de teneur en humidité entre le gaz chaud en amont du plateau et les particules au travers desquelles il s'écoule. La température des particules augmente et leur teneur en humidité baisse avec langle de rotation du plateau et donc dans une séquence des sections angulaires (1.1 à 1.N). Pour une température et une teneur en humidité constante du gaz chaud en amont du plateau (1), la température du gaz chaud en aval du plateau baisse et sa teneur en humidité augmente avec l'angle de rotation et donc séquentiellement de la première section angulaire (1.1) à la Nè7® section angulaire (1.N).
[0032] Le gaz des colonnes de gaz sortant des sections angulaires (1.1 à 1.(N-1)) du plateau (1) supportant les particules ayant des teneurs en humidité élevées a une teneur en humidité trop élevée pour être recirculé tel quel. Il est donc évacué hors de l'enceinte, comme illustré aux
Figures 2 à 5 ou, alternativement, déshumidifié et réchauffé avant de le réinjecter le long des
9 BE2022/5095 colonnes de gaz. Par contre, les particules se trouvant dans la N°"® section angulaire (1.N) ont, après une rotation de l’ordre de 300°, une température élevée et une teneur en humidité basse (cf. e.g., Figure 2, 12% d'humidité). Ainsi, après avoir traversé la N°"° section angulaire (1.N), le gaz chaud en aval du plateau a une température suffisamment élevée et une teneur en humidité suffisamment basse pour ne pas être simplement rejeté dans l’atmosphère. Le système de soufflage (5) de gaz chaud de la présente invention permet de récupérer le gaz chaud en aval de la NèT° section angulaire (1.N) et de le recirculer dans la première section angulaire (1.1), où les particules ont la température la plus basse et la teneur en humidité la plus haute du reste du plateau.
[0033] Comme illustré à la Figure 2, les N sections angulaires (1.1 -1.N) du plateau couvrent une entièreté d’une aire du plateau comprise entre le système de répartition (2) et le système de récupération (3). Dans le système de soufflage (5) de gaz chaud de la présente invention, un premier ventilateur (51) est configuré pour générer un flux de gaz chaud suivant une première colonne de gaz parallèle à l’axe vertical (Z). Il est positionné en aval du système de répartition (2) relatif à la rotation du plateau, afin que la première colonne de gaz traverse la première section angulaire (1.1) du plateau, adjacente à ou incluant le système de répartition (2). Un Ne ventilateur (5N) est configuré pour générer un flux de gaz chaud suivant une N°" colonne de gaz parallèle à l’axe vertical (Z). II est positionné en amont du système de récupération. La Nême colonne de gaz traverse la Né"° section angulaire (1.N) du plateau adjacent à ou incluant le système de récupération (3), dans lequel les termes « amont » et « aval » sont définis par rapport au sens de rotation du plateau. Des second à (N-1)°"° ventilateurs (52, 5(N-1)) sont répartis angulairement autour de l’axe vertical (Z) entre les premier et N°"° ventilateurs (51, 5N). Ils sont configurés pour générer des flux de gaz chaud suivant des seconde à (N-1)°"° colonnes de gaz parallèles à l’axe vertical (Z). Ils traversent des second à (N-1)è"° secteurs angulaires (1.2-1.(N-1)) compris entre les premier et Né"° secteurs angulaires (1.1, 1.N).
[0034] Après avoir traversé les première à la (N-1)°"° sections angulaires (1.1, N-1) du plateau, les première à la (N-1)*"° colonnes de gaz sont soit extraites hors de l’enceinte (cf. Figures 2 à 5) ou le gaz de ces colonnes est séché et réchauffé avant d’être recirculé par les second au Nèm® ventilateurs (52-5N) pour traverser dans un nouveau cycle les seconde à la Nê"° sections — angulaires (1.2, N) du plateau soit évacués hors de l'enceinte, par exemple par une cheminée.
[0035] Contrairement aux premières à la (N-1)°"° colonnes de gaz, après avoir traversé la Nème section angulaire (1.N) du plateau, le gaz chaud de la N°"° colonne de gaz est recirculé par le
Nème ventilateur (5N) pour former seul ou en complément d’un gaz chaud supplémentaire, la première colonne de gaz traversant le premier secteur angulaire (1.1) du plateau.
[0036] Avec ce système de soufflage (5), le sécheur de la présente invention permet de faire des économies d'énergie de chauffage du gaz chaud de l’ordre de (100 / N)%, soit de 20 à 25% d'énergie pour un sécheur comprenant N=5 ou 4 ventilateurs (51 à 55 ou 51 à 54), respectivement.
10 BE2022/5095
[0037] Tel qu’illustré à la Figure 2, après avoir traversé la Nêre = 5ême section angulaire (1.5) du plateau, le gaz chaud de la 5°"° colonne est recirculé par le premier ventilateur (51) pour former seul ou en complément d’un gaz chaud supplémentaire, la première colonne de gaz (1.1) traversant le premier secteur angulaire (1.1) du plateau.
[0038] Si Hi est la teneur en humidité des particules dans chaque section angulaire (1.1-1.5) du plateau, il est évident que H1>H2>H3>H4>H5. De même, la teneur en humidité de chaque colonne d’air chaud correspondant à une section du plateau, après avoir traversé chaque section angulaire du plateau, diminue. Dès lors, la teneur en humidité contenue dans le gaz chaud de la 5ème colonne, après avoir traversé la 5ème section angulaire, est suffisamment faible que pour pouvoir être directement recirculée vers le premier ventilateur afin de sécher les particules se trouvant dans la première section angulaire, dans laquelle la teneur en humidité H1 des particules est la plus haute.
[0039] Le recyclage de lair chaud traversant la N°7° section angulaire permet d’économiser énormément d’énergie, sans pour autant perdre en efficacité, étant donné la très faible teneur en humidité de lair chaud ayant traversé la N°"° section angulaire.
[0040] Par exemple, pour un sécheur de particules à air chaud, comprenant 4 ventilateurs avec une recirculation de l'air allant du 4°"° ventilateur (54) au premier ventilateur (51), une amélioration énergétique fut observée. Les inventeurs ont mesuré une baisse de 25% de débit d'air en moins, 16,5% de puissance électrique consommée en moins, et 25 % de puissance de chauffage en moins comparé au même sécheur sans la recirculation du 4°"° ventilateur (54) au premier ventilateur (51).
[0041] Tel qu’illustrés aux Figures 3 et 4, la teneur en humidité des particules entre chaque section angulaire du plateau diminue lors du processus de séchage. Par exemple, la teneur en humidité initiale est de 100%, après passage sur la première section angulaire 1.1, la teneur en …— humidité des particules est de 75%, après passage sur la deuxième section angulaire 1.2, la teneur en humidité est de 50%, après le passage sur la troisième section angulaire 1.3, la teneur en humidité est de 32%, après le passage sur la quatrième section angulaire 1.4, la teneur en humidité est de 12%. L’air chaud traversant la quatrième section angulaire est donc très peu chargé en humidité. Il peut être donc recyclé et redirigé vers la première section angulaire afin de — sécher les particules entrantes et ayant un taux d'humidité élevé, par exemple de 100%.
[0042] Le plateau (1) peut comprendre en outre une cheminée (6) centrée sur l’axe vertical (Z) et traversant le plateau à travers une ouverture circulaire, ayant un rayon interne (R6) inférieur à un rayon (R1) du plateau.
[0043] Les ventilateurs sont préférentiellement disposés à l’intérieur de la cheminée (6) et — comprennent chacun un système de déflection vertical configuré pour guider le gaz chaud généré par chaque ventilateur dans l’enceinte et hors de la cheminée (6) et l’orienter sensiblement parallèle à l’axe vertical (Z) vers les secteurs angulaires (1.1-1.N) correspondants et ainsi former les colonnes de gaz correspondantes. Le système de déflection vertical comprend de préférence
11 BE2022/5095 au moins un parmi un tube, une surface déflectrice ou un réseau de surfaces déflectrices, qui est couplé à au moins une ouverture dans une paroi de la cheminée.
[0044] En pratique, pour les N-1 premières sections angulaires du plateau, le gaz ainsi refroidi et humidifié est donc soit évacué à l'extérieur de l’enceinte dans l’atmosphère ou pour une autre utilisation tel qu’un échangeur de chaleur (7) ou un humidificateur (cf. flèches pointillées à la
Figure 3 évacuant les gaz hors du sécheur vers le haut par une cheminée (6) du sécheur), soit recirculé après séchage et réchauffement. Le système de soufflage peut comprendre un ou, de préférence, plusieurs ventilateurs. Le ou les ventilateurs peuvent être configurés pour aspirer les gaz chauds en créant une dépression par exemple en-dessous des plateaux, lorsque le gaz circule de haut en bas. Dans cette variante, le ou les ventilateurs sont positionnés en dessous du plateau (1). En effet, pour limiter les pertes de charges dans la couche de produit, il peut être préférable d’aspirer sous le plateau, plutôt que de souffler sur le plateau. Un tel mode de réalisation est illustré à la Figure 3.
SOUFFLAGE - ASPIRATION
[0045] Le système de soufflage (5) de gaz chaud peut donc être fourni soit, e par un ventilateur, dit souffleur, configuré pour souffler le gaz chaud, de préférence de l’air chaud, positionné en amont du plateau (1), comme illustré à la Figure 2, soit e par un ventilateur, dit aspirateur, configuré pour aspirer le gaz chaud, de préférence de l’air chaud, situé en aval du plateau, comme illustré aux Figures 3 et 5.
[0046] Dans les deux cas, le gaz est réchauffé en amont du plateau (1) par un dispositif de chauffage (7) du gaz situé en amont du plateau. Le dispositif de chauffage (7) du gaz peut être fourni par un échangeur de chaleur ou un bruleur à gaz, ou une résistance électrique. Les termes amont et aval sont définis ici par rapport à la direction du flux de gaz chaud.
[0047] Le dispositif de chauffage (7) du gaz (e.g., de l’air) peut être intégré dans un étage supérieur du sécheur situé au-dessus du disque. Le gaz frais, par exemple de l'air frais est ainsi aspiré de l’extérieur au-dessus de cet étage. Dans le cas d’un ventilateur « souffleur », le gaz (ou air) aspiré par le ventilateur souffleur, et est soufflé vers le plateau. Le dispositif de chauffage peut être situé n’importe où en amont du plateau, par exemple en amont ou en aval du ventilateur souffleur mais il est de préférence intégré dans le ventilateur souffleur. Dans le cas d’un ventilateur — « aspirateur », situé en aval du plateau, le dispositif de chauffage ne peut être ni intégré dans le ventilateur aspirateur et ni situé en aval du ventilateur aspirateur. Le dispositif de chauffage de gaz est donc situé en amont du plateau. Le gaz ou l'air est aspiré de l’extérieur, traverse donc le dispositif de chauffage (7) de gaz jusqu’à atteindre des températures situées par exemple entre 60 et 95° et ensuite traverse le plateau pour finalement entrer dans le ventilateur aspirateur pour être ressoufflé vers l’extérieur du sécheur pour les 1° au (N-1)°"° ventilateurs aspirateurs et vers la première colonne de gaz pour le N°"e ventilateur aspirateur. Le gaz ressoufflé par les 1% au
12 BE2022/5095 (N-1)°M° ventilateurs aspirateurs est refroidi et pratiquement saturé en humidité et est évacué par exemple en remontant dans la cheminée et est soufflé dehors.
EVACUATION — RECIRCULATION DU GAZ CHAUD
[0048] Le sécheur comprend des systèmes d’évacuation du gaz chaud des (N-1) premières colonnes de gaz, ayant traversé le plateau. Lorsqu'il est évacué, le gaz est refroidi et humide. Les systèmes d’évacuation du gaz sont configurés pour évacuer le gaz refroidi et humide hors de l'enceinte. Pour des raisons de confort autour du sécheur, le gaz chaud est de préférence évacué vers le haut, suivant une colonne verticale s’étendant au-delà de l’ouverture circulaire. Le système d'évacuation peut-être la cheminée mais également peut être situé à l’extérieur de l'enceinte, par exemple autour de la circonférence extérieure de l’enceinte, comme illustré à la Figure 4.
[0049] Sur la Figure 3, le gaz, après avoir traversé les (N-1) = 4 premières sections angulaires (1.1-1.4) du plateau, est évacué par la cheminée, à l'exception du gaz chaud ayant traversé la
Nème = 5ème section angulaire, qui lui est redirigé vers la première section angulaire (1.1). Sur la
Figure 4, le gaz, après avoir traversé les (N-1) = 3 premières sections angulaires, est évacué vers l’extérieur de l’enceinte.
[0050] La Figure 5 constitue un agrandissement d’un sécheur du type représenté à la Figure 3 qui permet d'illustrer que le gaz ayant traversé le Nê"° secteur angulaire (1.N) du plateau (1) est aspiré par le N°" ventilateur (5N) (de type « aspirateur ») et redirigé pour former la première colonne de gaz traversant le premier secteur angulaire (1.1) avant d’être aspiré par le premier ventilateur (51). Les premiers et Nê"° ventilateurs, qui dans cet exemple fonctionnent en aspiration, sont situés en dessous du plateau et en amont du système de récupération (3) relatif au sens de rotation du plateau. Aspire par le N°"° ventilateur (5N), la N°"° colonne de gaz traverse le N°" secteur angulaire (1.N) du plateau et est redirigée suivant la trajectoire (5R1) à travers une fenêtre (Gw) dans la cheminée où se trouve le N°"° ventilateur (5N) qui resouffle le gaz encore chaud et pratiquement sec par un système de déflexion du gaz suivant une trajectoire (5R2, 5R3) pour former la première colonne de gaz, aspirée par le premier ventilateur (51). L’air ainsi défléchi est aspiré par le premier ventilateur (51) afin de traverser la première section angulaire (1.1) du plateau pour être ensuite évacué, hors de l’enceinte, par exemple dans tube situé dans la cheminée (6).
[0051] Le système de déflection est donc configuré pour recirculer le gaz de la Nê"° colonne de gaz vers la première colonne de gaz en le guidant, par exemple par l’intérieur de la cheminée (6) après avoir traversé le plateau. Le gaz va donc circuler vers l’intérieur de la cheminée en suivant la trajectoire (5R1), pour remonter dans la cheminée en suivant la trajectoire 5R2, pour ensuite être redirigé vers la première section du plateau selon la trajectoire (5R3), et former ainsi la première colonne de gaz chaud, aspirée par le premier ventilateur (51). Le système de déflection de recirculation peut être fourni par exemple par un tube, une surface déflectrice ou un réseau de surfaces déflectrices, un ventilateur, qui est couplé à au moins une ouverture dans une paroi de la cheminée. La Figure 5 illustre la trajectoire de recirculation de la Nê"° colonne vers la première colonne de gaz en utilisant des ventilateurs de type « aspirateurs ». II est clair que la même trajectoire (5R1, 5R2, 5R3) peut être réalisée avec des ventilateurs de type « souffleurs ».
[0052] Comme illustré à la Figure 2, le volume compris sous la N°"° section angulaire (1.N) du plateau (1) peut être munie de parois (10d) le séparant des volumes compris sous la (N-1)ê"e section angulaire (1.(N-1)) et / ou, surtout sous la première section angulaire (1.1) pour éviter de recirculer du gaz chaud d’autres colonnes de gaz.
[0053] Le système peut comprendre un contrôleur (8) configuré pour contrôler un ou plusieurs des paramètres suivants, e un débit de gaz d’un ou plusieurs des N ventilateurs, e une proportion dans la première colonne de gaz constituée de gaz provenant de la
Nême colonne recyclé vers le premier ventilateur (51), e une géométrie du système de déflection vertical de sorte à modifier une étendue de chaque secteur angulaire (1.1-1.N) et un degré de chevauchement entre deux secteurs angulaires adjacents.
[0054] Le système peut comprendre en outre un capteur de température et un capteur d'humidité configurés pour mesurer la température et la teneur en humidité du gaz chaud sortant de la Nèòme section angulaire (5N) avant d’être recirculé vers la première colonne de gaz. Le contrôleur est configuré pour déterminer la proportion dans la première colonne de gaz constituée de gaz provenant de la N°"° colonne recyclé vers le premier ventilateur (51) sur base des valeurs de la temperature et de la teneur en humidité mesurées par les capteurs de température et d'humidité.
Si le gaz provenant de la Nê"° colonne de gaz a une température trop basse ou un taux d'humidité trop élevé pour chauffer et sécher suffisamment les particules déposées dans la première section angulaire (1.1) du plateau, il convient de le mélanger avec du gaz chaud et sec. Cependant, si la température du gaz chaud est trop basse ou sa teneur en humidité trop élevée, il est probable que les particules se trouvant dans la Nê"° section angulaire du plateau traversé par la N°"° colonne de gaz ont une température trop basse et / ou une teneur en humidité trop élevée. Les paramètres de séchage doivent alors peut-être être modifiés en conséquence.
[0055] Le gaz chaud (par exemple de lair chaud) peut circuler du bas vers le haut. Comme le flux de gaz chaud circule du bas vers le haut les particules peuvent s'envoler et créer un nuage de poussières. Une légère fluidisation de la couche de particules peut être avantageuse pour le séchage de celles-ci, mais il faut éviter la formation d’un nuage de poussières fines en suspension dans l’air. Cette configuration convient donc mieux au séchage de particules plus lourdes qui ne forment pas facilement un nuage de poussières.
[0056] Pour les particules plus légères ou plus fines, le gaz chaud peut circuler préférentiellement du haut vers le bas, comme représenté aux Figures 1 à 6. Dans cette configuration, les particules sont plaquées contre le plateau sur lequel elles se trouvent ce qui diminue considérablement la mise en suspension de poussières. Un flux de gaz chaud du haut vers le bas risque de former des amas compacts de particules agglomérées entre elles et difficiles à sécher. Ces amas compacts sont cependant disloqués lors de la récupération des particules du plateau (1) par le système de récupération.
STRUCTURE DU SECHEUR - UNITÉ D’ALIMENTATION (9)
[0057] L'unité d'alimentation (9) est couplée en amont à une source de particules (205), par exemple stockée dans un silo, un container, une benne, etc. L'unité d'alimentation (9) est couplée en aval, au système de répartition (2). L'unité d’alimentation (9) permet de préférence de contrôler précisément et de varier le débit d'alimentation en particules vers le système de répartition (2) afin de pouvoir contrôler l’épaisseur (da) de la couche de particules déposée sur le plateau par le système de répartition (2).
[0058] Toute unité d’alimentation permettant un tel contrôle connu de l’homme du métier peut être utilisé et la présente invention n’est pas limitée à un type ou modèle particulier d’unité d'alimentation. Par exemple, l’unité d’alimentation (9) peut comprendre une ou plusieurs vis d’Archimède dont la vitesse de rotation contrôle le débit d’alimentation des particules grossières alimentant le système de répartition (2). De manière alternative, Vunité d’alimentation peut comprendre un tapis roulant dont la vitesse de déplacement peut être contrôlée afin de contrôler le débit d'alimentation.
STRUCTURE DU SECHEUR - SYSTEME DE RÉPARTITION (2) [00597 L'unité d’alimentation (9) est couplée en aval au système de répartition (2) et est configurée pour alimenter le système de répartition (2) à un débit d’alimentation contrôlé. Le système de répartition (2) des particules à sécher sur le plateau (1) a pour but de répartir les particules à sécher de manière homogène le long d’un rayon du plateau (1). De manière générale, le système de répartition (2) comprend, e une structure s’étendant de la périphérie extérieure à la périphérie intérieure d’un plateau, suivant de préférence un rayon de celui-ci, e des moyens de transport des particules de la périphérie extérieure à la périphérie intérieure des plateaux, et enfin e des moyens de déposition desdites particules depuis les moyens de transport vers les plateaux.
[0060] Plusieurs solutions sont possibles. Par exemple, le transport des particules de la périphérie extérieure vers la périphérie intérieure des plateaux peut être assurée par une bande transporteuse, soit perforée, soit inclinée transversalement de sorte à permettre aux particules de saupoudrer le plateau situé en-dessous. Pour assister au saupoudrage, la bande peut être vibrée.
Dans une variante alternative et préférée, le système de répartition (2) comprend au moins une vis d’Archimède s'étendant le long d’un rayon du plateau (1), afin de transporter les particules de
15 BE2022/5095 la périphérie extérieure vers la périphérie intérieure du plateau (1). Ladite au moins une vis d’Archimède est enfermée dans une enceinte munie d’une ou plusieurs ouvertures s'étendant vers le bas et le long dudit rayon du plateau (1) afin de permettre le saupoudrage des particules de manière homogène le long du rayon du plateau (1).
[0061] Dans le cas d’une vis d’Archimède, si les particules à sécher sont déversées par l’unité d'alimentation (9) à une première extrémité de la vis d'Archimède du système de répartition (2), par exemple adjacent à l’enceinte (10), le risque est grand que l’épaisseur de la couche de particules diminue le long du rayon du plateau (1) au fur et à mesure qu’on s'approche du centre du plateau. Un tel gradient d’épaisseur n’est pas conseillé car cela entraîne un gradient le long du rayon du plateau (1) en teneurs intermédiaires en humidité (H1a) des particules après un tour sur le plateau (1). Pire encore, si la couche devient si fine que des trous apparaissent dans la couche de particules, cela crée des zones de faible résistance au flux de gaz chaud qui passera préférentiellement par ces zones au détriment des particules à sécher.
[0062] Pour pallier ce problème, le système de répartition (2) s’étendant le long d’un rayon du plateau (1) peut comprendre, tel qu’illustrée dans les Figures 6(a) et 6(b), une vis de répartition (22v) et une vis de recirculation (23v), placées côte à côte et enfermées dans un caisson (2h). Le caisson (2h) comprend une ouverture d'alimentation couplée à une sortie (90) de l’unité d’alimentation (9). L'ouverture d’alimentation est configurée pour délivrer des particules provenant de l’unité d'alimentation (9) vers une extrémité de la vis de répartition (22v). Par exemple, — l’ouverture d'alimentation peut se trouver au-dessus de la vis de répartition (22v) afin de permettre aux particules de tomber par gravité dans le caisson (2h) et d’être emportées par la rotation dans un premier sens de la vis de répartition (22v) le long du rayon du plateau (1).
[0063] Une ouverture de répartition (20) s’étend le long de la longueur d’une face inférieure du caisson (2h), en-dessous de la vis de répartition (22v) afin que les particules puissent sortir du — caisson (2h) par gravité et tomber sur le plateau (1) le long de son rayon. Afin d’éviter que les particules tombent majoritairement dans une section adjacente à l’ouverture d’alimentation (90), la vis de répartition (22v) n’est que partiellement séparée de la vis de recirculation (23v), permettant à un surplus de particules de passer de la vis de répartition (22v) vers la vis de recirculation (23v), qui tourne dans un second sens, opposé au premier sens de rotation de la vis de répartition (22v) de sorte à transporter les particules ainsi transvasées dans la direction de l'enceinte (10) (i.e., vers les extrémités extérieures des vis de répartition et recirculation (22v, 23v)). A l'extrémité extérieure de la vis de recirculation (23v) adjacente à l'enceinte, la vis de recirculation (23v) est munie d’une palette (23s) qui, par rotation de la vis de recirculation (23v) renvoie les particules vers la vis de répartition (22v). Une palette (22s) semblable est agencée à — l’extrémité de la vis de répartition (22v) à l'extrémité intérieure de la vis de répartition (22v) proche du centre du sécheur afin de transvaser vers la vis de recirculation (23v) les particules se trouvant à cette extrémité sans être tombées sur le plateau (1) à travers l’ouverture de répartition (20). Un système de répartition (2) de ce type permet une répartition homogène des particules le long du
18 BE2022/5095 rayon du plateau (1), assurant ainsi que l’épaisseur de la couche de particules déposées sur le plateau (1) soit radialement sensiblement constante.
[0064] Le système de répartition (2) des particules à sécher sur le plateau (1) est relié en amont de préférence par l'intermédiaire d’une unité d'alimentation (9), à une source (20s) des particules à sécher, de préférence un silo. Les particules comprennent de manière préférée des déchets de bois de scieries, des déchets de bois de matériaux de construction, des déchets papier ou cartons, des produits agroalimentaires telles des céréales, et sont sous forme de poudre, de granulés, de copeaux, de pellets, de tourteaux, ou de morceaux généralement ne dépassant pas 10 cm de longueur.
STRUCTURE DU SECHEUR — SYSTÈME DE RÉCUPÉRATION (3)
[0065] Le système de récupération (3) du plateau (1) permet de récupérer les particules déposées sur le plateau (1) après un tour de rotation de celui-ci. Le système de récupération (3) est donc positionné en amont du système de répartition (relatif au sens de rotation du plateau), adjacent à celui-ci de sorte que les particules ayant une teneur initiale en humidité (H1) déposées sur la première section (1.1) du plateau par le système de répartition puissent faire une rotation, de préférence comprise entre 340 et 360°, ou de préférence entre 345 et 355° avant d’être recueillies de la Né"° section angulaire (1.N) et évacuées du plateau (1) avec une teneur finale en humidité (HN) par le système de récupération (3). Pour maximiser langle de rotation des particules sur le plateau (1) entre le système de répartition (2) et le système de récupération (3), ils sont de préférence agencés un à côté de l’autre, ou même le système de répartition (2) peut être agencée au-dessus du système de récupération (3).
[0066] Comme illustré dans les Figures 7(a) et 7(c), le système de récupération (3) comprend de préférence au moins une vis d’Archimède (32v) s'étendant le long d’un rayon du plateau qui est enfermée dans un caisson (3h) muni d’une ou plusieurs ouvertures de récupération (3i) s'étendant le long dudit rayon du plateau. Les ouvertures sont reliées à un racleur (3r) ou brosse apte à récolter et diriger les particules amenées par la rotation du plateau (1) à travers l’ouverture de récupération (31) dans le caisson (3h) de la vis d’Archimède (32v). En tournant, la vis d’Archimède transporte les particules ainsi recueillies vers une ouverture d'évacuation (30) qui est reliée à une unité d’évacuation (40) qui est configurée pour sortir les particules séchées hors de l’enceinte (10) vers un endroit de stockage ou de traitements ultérieurs. Dans le cas où, pour une application donnée, les particules auraient une teneur en humidité (HN) trop élevée après un tour de rotation du plateau, on peut, e diminuer l’épaisseur de la couche de particules déposée sur le plateau, et / ou e diminuer la vitesse de rotation du plateau, et / ou e connecter l’unité d’évacuation (40) à l’unité d’alimentation (9) pour réintroduire les particules sur le plateau par le système de répartition (2) pour un second tour de rotation.
17 BE2022/5095
[0067] Les Figures 7(b) et 7(d) illustrent une autre variante du système de récupération (3), particulièrement adaptée, mais pas uniquement, aux cas où le plateau (1) comprend un rebord circonférentiel surélevé imposant de surélever la vis d’Archimède (32v) au-dessus de ce rebord.
Comme dans la variante des Figures 7(a) et 7(c), dans la présente variante, le système de récupération (3) comprend une vis d’Archimède (32v) dont la rotation permet de transporter radialement les particules recueillies le long d’un rayon du plateau (1) vers l'extérieur de celui-ci et de les décharger vers l’ouverture d’évacuation (30) reliée à l’unité d’évacuation (40). Dans la présente variante, le système de récupération (3) comprend de plus un moulin multipale (3s) disposé en amont de et parallèle à la vis d’Archimède (32v). La rotation du moulin multipale (3s) permet d'alimenter la vis d’Archimède (32v) même si elle est surélevée par rapport à la surface du plateau. Dans tous les cas, le moulin multipale (3s) assure une alimentation en particules reproductible et fiable de la vis d’Archimède (32v).
PLATEAU (1)
[0068] Le sécheur selon la présente invention est particulièrement avantageux car il peut être utilisé pour sécher des particules de granulométries très différentes allant de particules fines telles que des sciures, des grains fins, des poudres céramiques, polymères ou métalliques, à des particules plus grossières, telles des déchets de bois, copeaux, pellets, des déchets agricoles, des écorces de maïs, etc. Dans une première variante illustrée à la Figure 8(a), le plateau est autoportant et comprend des ouvertures d’un diamètre donné. Pour faciliter le changement rapide et facile du diamètre des orifices des plateaux, dans une seconde variante illustrée à la
Figure 8(b), le plateau (1) peut ainsi comprendre une structure rigide autoportante (1c) à haute perméabilité de type caillebotis. Sur la Figure 8(b), une couche filtrante (1p) comprenant des ouvertures de taille et densité correspondant à la perméabilité désirée selon le type et la granulométrie des particules à sécher est posée sur la structure autoportante 1c à haute perméabilité. La couche filtrante (1p) peut être une tôle perforée, un tamis, une grille ou une toile qui peuvent être facilement changés en fonction du type de particules à sécher. Pour faciliter la mise en place d’une telle couche filtrante, elle peut être découpée en secteurs angulaires, qu’on peut poser et fixer côte à côte directement sur le caillebotis ou autre structure autoportante (1c) à haute perméabilité. Ceci serait impossible dans la pratique avec des sécheurs à bande ou à plateaux perforés qui sont dédiés à sécher des particules d’un type unique de granulométrie.
[0069] Le plateau (1) est enfermé dans une enceinte extérieure de diamètre correspondant au diamètre du plateau avec assez de marge pour éviter des frottements, mais aussi peu que possible pour permettre d’étanchéifier l'interface entre les plateaux et la paroi extérieure.
L’étanchéité peut être assurée par exemple par une jupe flexible fixée à la paroi extérieure et — reposant sur un rebord surélevé de la circonférence des plateaux. De cette manière, la couche de particules reposant sur un plateau en rotation n’est pas en contact avec la jupe statique, assurant ainsi une bonne étanchéité et une intégrité de la couche de particules sur le plateau. Ceci n’est pas possible à réaliser sur un sécheur à bande, dans lequel la jupe d’étanchéité est placée entre
18 BE2022/5095 la bande roulante et les particules se trouvant sur les bords de la bande. Il y a donc une frange de particules en contact avec la jupe statique à chaque bord de la bande qui ne se déplace pas à la même vitesse que les particules se trouvant au milieu de la bande.
[0070] Comme illustré à la Figure 3, la partie centrale du plateau est préférablement creuse et incluse dans une cheminée (6) qui est cylindrique, intérieure et centrée sur l’axe de rotation (Z).
Une telle cheminée (6) s’élevant sur pratiquement toute la hauteur du sécheur, comprend de nombreux avantages, qui compensent amplement la perte en surface disponible pour le séchage.
En effet, si le diamètre extérieur des plateaux est D1 et le diamètre de la cheminée cylindrique est
D6 = nxD1, où n< 1, la perte en surface (A) disponible sur le plateau pour le séchage entre un plateau plein et un plateau comprenant une cheminée est A6 / A1 = n°. Par exemple, si la cheminée a le tiers du diamètre de l'enceinte extérieure (i.e., n= 1/3), la perte en surface disponible pour le séchage n’est que de n° = 1/9 = 11%. Une cheminée (6) permet tout d’abord un accès aisé par un opérateur à tous les éléments mécaniques de la machine, tels que des paliers, motoréducteurs, vérins, etc. Elle facilite aussi le remplacement des couches poreuses flexibles (1p) à déposer et fixer sur les caillebotis (1c) donnant aux plateaux leur intégrité mécanique. La cheminée peut également servir à loger les moteurs entraînant la rotation des plateaux, ainsi que les ventilateurs servant à générer le flux de gaz chaud, avec l’avantage d’une réduction substantielle des nuisances sonores générées par le sécheur. Dans le cas d’un flux de gaz du haut vers le bas tel que représenté à la Figure 3, des fenêtres au bas de la cheminée (6), — situées en dessous du plateau inférieur permettent de récupérer le gaz chaud et l’évacuer par le haut à l’intérieur de l’enceinte. De manière alternative, les gaz chauds peuvent être évacués par un espace défini dans une double paroi de l’enceinte (10).
[0071] Par ailleurs, la cheminée (6) permet de fixer les systèmes de répartition (2) et de récupération (3) à leurs deux extrémités afin d’éviter de devoir les fixer en porte-à-faux sur — l’enceinte extérieure uniquement. De plus cela dégage de la place aux extrémités intérieures desdits moyens situés côte-à-côte pour accommoder leur largeur. Enfin, une telle structure permet de rigidifier la surface comprise entre la cheminée (6) et l'enceinte extérieure (10), permettant de garder une bonne planéité du plateau. Ceci est important pour le nettoyage et récupération des particules par un racleur ou une brosse, qui ne sont efficaces que si la surface des plateaux est — parfaitement plane.
[0072] Comme la distribution de la granulométrie des particules d’un même type peut être large, il est difficile d’éviter que la fraction la plus fine des particules ne passe au travers des perforations du plateau et ne tombe sur le ou les plateaux inférieurs, puis sur le plancher de l'enceinte enfermant le plateau
[0073] Des particules fines peuvent néanmoins tomber sur le plancher du sécheur. Afin d’éviter une accumulation de particules sur le plancher et aussi pour les récupérer, il est avantageux de munir le plancher d’une ouverture d’extraction des particules les plus fines qui se seraient déposées sur le plancher. De plus, un racleur ou brosse fixé de manière solidaire au plateau
19 BE2022/5095 inférieur et apte à suivre le mouvement de rotation de celui-ci sert à pousser les particules déposées sur le plancher vers ladite ouverture d’évacuation. Comme le racleur ou brosse est fixé au plateau inférieur, il n’est pas nécessaire de le motoriser individuellement.
Ree Geerse OO
EL ___—_ oee pres Vesa Geen eeen a eres

Claims (15)

REVENDICATIONS (COPIE PROPRE)
1. Sécheur pour sécher des particules comprenant, (a) une enceinte (10) comprenant une paroi essentiellement cylindrique s'étendant le long d’un axe vertical (Z) (b) un unique plateau (1) qui est circulaire et monté dans l’enceinte, sensiblement normal à l’axe vertical (Z) en rotation dans un sens de rotation autour de l’axe vertical (Z), la surface du plateau étant perforée et perméable aux gaz tels l’air et la vapeur d’eau et à l’eau, (C) un système de répartition (2) qui est configuré pour répartir les particules avant séchage le long d’un rayon du plateau (1), (d) un système de récupération (3) qui est configuré pour recueillir les particules déposées sur le plateau (1) après une rotation du plateau d’un angle formé entre le système de répartition (2) et le système de récupération (3), le système de récupération étant situé en aval du, préférablement adjacent au système de répartition (2), (e) un système de soufflage (5) de gaz chaud comprenant N ventilateurs (51-5N) configurés pour générer des flux de gaz chaud suivant N colonnes de gaz sensiblement parallèles à l’axe vertical (Z), chaque colonne de gaz traversant une section angulaire (1.1 -1.N) différente du plateau (1), avec N € Net N> 1, dans lequel e les N sections angulaires (1.1 -1.N) du plateau couvrent une entièreté d’une aire du plateau comprise entre le système de répartition (2) et le système de récupération (3), e un premier ventilateur (51) configuré pour générer un flux de gaz chaud suivant une première colonne de gaz est positionné en aval du système de répartition (2), la première colonne de gaz traversant une première section angulaire (1.1) du plateau adjacente à ou incluant le système de répartition (2), e un Ne ventilateur (5N) configuré pour générer un flux de gaz chaud suivant une N°" colonne de gaz est positionné en amont du système de récupération, la Né"° colonne de gaz traversant une NèT° section angulaire (1.N) du plateau adjacente à ou incluant le système de récupération (3), dans lequel les termes « amont » et « aval » sont définis par rapport au sens de rotation du plateau, et e des second à (N-1)°"° ventilateurs (52, 5(N-1)) sont répartis angulairement autour de l’axe vertical (Z) entre les premier et Né"° ventilateurs (51, 5N), configurés pour générer des flux de gaz chaud suivant des seconde à (N-1)°"° colonnes de gaz traversant des second à (N-1)ê"° secteurs angulaires (1.2-1.(N-1)) compris entre les premier et N°"° secteurs angulaires
(1.1,1.N), e après avoir traversé les première à la (N-1)°"° sections angulaires (1.1, 1.N-1) du plateau, les première à la (N-1)*"° colonnes de gaz sont soit extraites hors de l’enceinte ou le gaz de ces colonnes est séché et réchauffé avant d’être recirculé par les second au Nè"° ventilateurs (52-5N) pour traverser dans un nouveau cycle les seconde à la N°"° sections angulaires (1.2, N) du plateau caractérisé en ce qu’ après avoir traversé la N°" section angulaire (1.N) du plateau, le gaz chaud de la Nême colonne de gaz est recirculé pour former seul ou en complément d’un gaz chaud supplémentaire, la première colonne de gaz traversant le premier secteur angulaire (1.1) du plateau.
2. Sécheur selon la revendication 1, dans lequel le plateau (1) comprend une cheminée (6) centrée sur axe vertical (Z) et traversant le plateau à travers une ouverture circulaire, ayant un rayon interne inférieur à un rayon du plateau.
3. Sécheur selon la revendication 2, dans lequel les ventilateurs sont disposés à l’intérieur de la cheminée (6) et sont chacun associés à un système de déflection vertical configuré pour guider le gaz chaud généré par chaque ventilateur dans l'enceinte et hors de la cheminée (6) et l’orienter sensiblement parallèle à l’axe vertical (Z) vers les secteurs angulaires (1.1-1.N) correspondants et ainsi former les colonnes de gaz correspondantes, dans lequel le système de déflection vertical comprend de préférence au moins un parmi un tube, une surface déflectrice ou un réseau de surfaces déflectrices, qui est couplé à au moins une ouverture (6w) dans une paroi de la cheminée.
4. Sécheur selon la revendication 2 ou 3, comprenant un système de déflection de recirculation configuré pour recirculer le gaz de la Nê"° colonne vers le premier ventilateur (51) en le guidant vers l’intérieur de la cheminée (6), et dans lequel le système de déflection de recirculation comprend de préférence un ou plusieurs parmi un tube, une surface déflectrice ou un réseau de surfaces déflectrices, un ventilateur, qui est couplé à au moins une ouverture dans une paroi de la cheminée.
5. Sécheur selon l’une quelconque des revendications précédentes, comprenant en outre un contrôleur configuré pour contrôler un ou plusieurs des paramètres suivants, e un débit de gaz d’un ou plusieurs des N ventilateurs, e une proportion dans la première colonne de gaz constituée de gaz provenant de la Né"° colonne recyclé vers le premier ventilateur (51), e une géométrie du système de déflection verticale de sorte à modifier une étendue de chaque secteur angulaire (1.1-1.N) et un degré de chevauchement entre deux secteurs angulaires adjacents.
6. Sécheur (1) selon la revendication 5 précédente, comprenant un capteur de température et un capteur d'humidité configurés pour mesurer la température et la teneur en humidité du gaz chaud sortant de la Nème section angulaire (5N) avant d’être recirculé vers la première colonne de gaz, et dans lequel le contrôleur est configuré pour déterminer la proportion dans la première colonne de gaz constituée de gaz provenant de la Nème colonne recyclé vers le premier ventilateur (51) sur base des valeurs de la température et de la teneur en humidité mesurées par les capteurs de température et d’humidité.
7. Sécheur (1) selon l’une quelconque des revendications précédentes, dans lequel le système de soufflage (5) de gaz chaud comprend, e un ventilateur, de préférence N ventilateurs situés en amont du plateau (1) et configurés pour souffler le gaz chaud, de préférence de l'air chaud, et e undispositif de chauffage de gaz configuré pour chauffer le gaz chaud ainsi soufflé en amont du premier plateau (1), où le terme « amont » est défini par rapport à la direction du flux de gaz chaud.
8. Sécheur (1) selon l’une quelconque des revendications précédentes, dans lequel le système de soufflage
(5) de gaz chaud comprend, e un ventilateur, de préférence N ventilateurs, situés en aval du plateau (1) et configurés pour aspirer le gaz chaud, de préférence de l’air chaud et e un dispositif de chauffage de gaz configuré pour chauffer le gaz chaud ainsi aspiré, et situé en amont du premier plateau (1), dans lequel le dispositif de chauffage de gaz comprend au moins l’un parmi un échangeur de chaleur ou un bruleur à gaz. où les termes « amont » et « aval » sont définis par rapport à la direction du flux de gaz chaud.
9. Sécheur (1) selon l’une quelconque des revendications précédentes, dans lequel le gaz chaud circule du haut vers le bas et est préférablement de l’air chaud.
10.Sécheur (1) selon l’une quelconque des revendications 1 à 8, dans lequel le gaz chaud circule du bas vers le haut et est préférablement de l’air chaud.
11.Sécheur (1) selon l’une quelconque des revendications précédentes, dans lequel le plateau (1) comprend une structure rigide auto-portante à haute perméabilité de type caillebotis, sur laquelle est posée une couche fitrante comprenant des ouvertures de taille et densité correspondant à la perméabilité désirée selon le type et taille des particules à sécher.
12.Sécheur (1) selon l’une quelconque des revendications précédentes, dans lequel le système de répartition (2) des particules à sécher sur le plateau (1) comprend au moins une vis d’Archimède s'étendant le long d’un rayon du plateau (1), ladite au moins une vis d’Archimède étant enfermée dans une enceinte munie d’une ou plusieurs ouvertures s'étendant le long dudit rayon du plateau (1).
13. Sécheur (1) selon l’une quelconque des revendications précédentes, dans lequel le système de récupération (3) du plateau (1) comprend au moins une vis d’Archimède s'étendant le long d’un rayon dudit plateau qui est enfermée dans une enceinte munie d’une ou plusieurs ouvertures s’étendant le long dudit rayon du plateau (1), lesdites ouvertures étant reliées à un racleur ou brosse apte à récolter et diriger les particules amenées par la rotation du plateau vers la vis d’Archimède.
14.Sécheur (1) selon l’une quelconque des revendications précédentes, comprenant un plancher statique situé en dessous du plateau (1) selon l’axe vertical, Z, le plancher comprenant une ouverture d’évacuation des particules les plus fines qui se seraient déposées sur le plancher, ledit sécheur comprenant de plus un racleur fixé de manière solidaire au plateau et apte à suivre le mouvement de rotation de celui-ci pour pousser les particules déposées sur le plancher vers ladite ouverture d’évacuation.
15.Sécheur (1) selon l’une quelconque des revendications précédentes, dans lequel les particules à sécher comprennent des déchets de bois de scieries, des déchets de bois de matériaux de construction, des déchets papier ou cartons, des produits agroalimentaires et sont sous forme de poudre, de granulés, de copeaux, de pellets, de tourteaux, ou de morceaux généralement ne dépassant pas 10 cm de longueur.
BE20225095A 2022-02-14 2022-02-14 Appareil de séchage de particules avec recyclage d'une partie du gaz chaud BE1030270B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BE20225095A BE1030270B1 (fr) 2022-02-14 2022-02-14 Appareil de séchage de particules avec recyclage d'une partie du gaz chaud
PCT/EP2023/052348 WO2023151990A1 (fr) 2022-02-14 2023-01-31 Appareil de séchage de particules avec recyclage d'une partie du gaz chaud

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE20225095A BE1030270B1 (fr) 2022-02-14 2022-02-14 Appareil de séchage de particules avec recyclage d'une partie du gaz chaud

Publications (2)

Publication Number Publication Date
BE1030270A1 BE1030270A1 (fr) 2023-09-07
BE1030270B1 true BE1030270B1 (fr) 2023-09-11

Family

ID=80449005

Family Applications (1)

Application Number Title Priority Date Filing Date
BE20225095A BE1030270B1 (fr) 2022-02-14 2022-02-14 Appareil de séchage de particules avec recyclage d'une partie du gaz chaud

Country Status (2)

Country Link
BE (1) BE1030270B1 (fr)
WO (1) WO2023151990A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0197171B1 (fr) * 1985-04-09 1989-09-20 Braunschweigische Maschinenbauanstalt AG Séchoir à basse température pour une matière fibreuse pressurée
EP2504648A2 (fr) * 2009-11-23 2012-10-03 Consultex Systems, Inc. Sechoir a plateaux
US9347705B2 (en) * 2012-03-21 2016-05-24 Léon Crosset Continuous particle drying apparatus
EP3351885A1 (fr) * 2017-01-23 2018-07-25 Rupert Kaindl Procédé de fonctionnement d'un séchoir pour bois humide et installation de séchage
US20210105992A1 (en) * 2016-11-29 2021-04-15 Léon Crosset Oven for continuous elimination of phytosanitary pests present in organic particles of plant origin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0197171B1 (fr) * 1985-04-09 1989-09-20 Braunschweigische Maschinenbauanstalt AG Séchoir à basse température pour une matière fibreuse pressurée
EP2504648A2 (fr) * 2009-11-23 2012-10-03 Consultex Systems, Inc. Sechoir a plateaux
US8745890B2 (en) * 2009-11-23 2014-06-10 Consultex Systems, Inc. Tray dryer
US9347705B2 (en) * 2012-03-21 2016-05-24 Léon Crosset Continuous particle drying apparatus
US20210105992A1 (en) * 2016-11-29 2021-04-15 Léon Crosset Oven for continuous elimination of phytosanitary pests present in organic particles of plant origin
EP3351885A1 (fr) * 2017-01-23 2018-07-25 Rupert Kaindl Procédé de fonctionnement d'un séchoir pour bois humide et installation de séchage

Also Published As

Publication number Publication date
WO2023151990A1 (fr) 2023-08-17
BE1030270A1 (fr) 2023-09-07

Similar Documents

Publication Publication Date Title
EP2828595B1 (fr) Appareil de sechage en continu de particules
EP3548099B1 (fr) Etuve pour l&#39;elimination en continu de nuisances phytosanitaires presentes dans des particules organiques d&#39;origine vegetale
EP0277046B1 (fr) Procédé pour le séchage de produits sous forme divisée notamment de céréales et appareillages pour la mise en oeuvre de ce procédé
FR2533459A1 (fr) Machine de granulation et de revetement
EP2382056B1 (fr) Dispositif de séparation granulométrique sélective de matières pulvérulentes solides, à action centrifuge, et procédé d&#39;utilisation d&#39;un tel dispositif
BE1030270B1 (fr) Appareil de séchage de particules avec recyclage d&#39;une partie du gaz chaud
BE1030218B1 (fr) Appareil de séchage en continu de particules comprenant un système de séparation et recirculation des fractions plus fines de particules
BE1030217B1 (fr) Appareil de séchage en continu de particules comprenant une boucle de régulation
FR2905286A1 (fr) Procede et dispositif de traitement physique et/ou chimique de produits en vrac au moyen d&#39;un fluide gazeux.
EP2938200B1 (fr) Procédé de traitement de produits compactés, et dispositif de traitement associé
FR2955029A1 (fr) Procede de traitement de produits sous forme de solides divises en vue de leur debacterisation thermique, et installation de mise en oeuvre dudit procede
FR2563327A1 (fr) Installation de sechage de produits par echange de chaleur avec un fluide de sechage
AU2023218868A1 (en) Particle-drying apparatus with recycling of a portion of the hot gas
FR2630621A1 (fr) Sechoir a grain
JP2002160218A (ja) 合成樹脂粉粒体の乾燥装置
BE897825A (fr) Machine de granulation et d&#39;enrobage
WO2003104734A1 (fr) Procede de traitement thermique en continu de solides divises, et dispositif de mise en oeuvre dudit procede
FR3094467A1 (fr) Installation de séchage en continu de matériau à sécher
CN116213409A (zh) 一种固废处理的固体废料输料设备及输料方法
BE501224A (fr)
BE504725A (fr)
BE436832A (fr)
BE436574A (fr)

Legal Events

Date Code Title Description
FG Patent granted

Effective date: 20230911