AU2013234402A2 - Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline - Google Patents

Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline Download PDF

Info

Publication number
AU2013234402A2
AU2013234402A2 AU2013234402A AU2013234402A AU2013234402A2 AU 2013234402 A2 AU2013234402 A2 AU 2013234402A2 AU 2013234402 A AU2013234402 A AU 2013234402A AU 2013234402 A AU2013234402 A AU 2013234402A AU 2013234402 A2 AU2013234402 A2 AU 2013234402A2
Authority
AU
Australia
Prior art keywords
thermal energy
flow guiding
pipe member
energy body
guiding pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2013234402A
Other versions
AU2013234402A1 (en
AU2013234402B2 (en
Inventor
Tai-Her Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of AU2013234402A1 publication Critical patent/AU2013234402A1/en
Publication of AU2013234402A2 publication Critical patent/AU2013234402A2/en
Application granted granted Critical
Publication of AU2013234402B2 publication Critical patent/AU2013234402B2/en
Priority to AU2017268511A priority Critical patent/AU2017268511A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0083Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/003Multiple wall conduits, e.g. for leak detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely

Abstract

The present invention provides a tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline, which is configured by multiple 5 layers of pipelines sleeved with each other, the fluid in the outer layer pipeline covers the inner layer pipeline for exchanging heat with the fluid in the inner layer pipeline, and the fluid in the outer layer pipeline is further used for transferring heat to the solid or fluid state thermal energy body which is in contact with the outer periphery of the outer layer 10 pipeline, thereby forming a three-layer annular tri-piece thermal energy body heat exchanger.

Description

TITLE : TRI-PIECE THERMAL ENERGY BODY HEAT EXCHANGER HAVING MULTI-LAYER PIPELINE AND TRANSFERRING HEAT TO EXTERIOR THROUGH OUTER PERIPHERY OF PIPELINE 2013234402 27 Sep 2013 5
BACKGROUND OF THE INVENTION (a) Field of the Invention
The present invention provides a tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior 10 through outer periphery of pipeline, which is configured by multiple layers of pipelines sleeved with each other, the fluid in the outer layer pipeline covers the inner layer pipeline for exchanging heat with the fluid in the inner layer pipeline, and the fluid in the outer layer pipeline is further used for transferring heat to the solid or fluid state thermal energy 15 body which is in contact with the outer periphery of the outer layer pipeline, thereby forming a three-layer annular tri-piece thermal energy body heat exchanger. (b) Description of the Prior Art
In a conventional heat exchanger which utilizes the outer layer of a 20 pipeline for transferring heat to the exterior, the temperature equalization is often performed through the fluid passing the pipeline and the fluid passing the outer layer of the pipeline, or with the solid member or fluid which is in contact with the outer layer of pipeline, therefore only a two-piece thermal energy body heat exchanger can be formed. 25
SUMMARY OF THE INVENTION
The configuration of the present invention is that an inner layer pipeline having a relatively smaller outer diameter is adopted as a first flow guiding pipe member (101), the first flow guiding pipe member (101) 30 is made of a heat conductive member, and the pipe hole of the first flow 1 guiding pipe member (101) is formed as a first flow path (102), two ends of the first flow path (102) are respectively leaded to a first flow gathering chamber (103) and a first fluid inlet/outlet port (104), thereby allowing a first thermal energy body (105) formed in a fluid state to flow in or flow 5 out; and an outer layer pipeline having an inner diameter larger than the outer diameter of the first flow path (102) is adopted as a second flow guiding pipe member (201) thereby forming a structure having two layers of pipelines, the second flow guiding pipe member (201) is made of a heat conductive member, and the diameter difference defined between the 10 larger inner diameter of the second flow guiding pipe member (201) and the outer diameter of the first flow guiding pipe member (101) forms a second flow path (202) having an annular cross section, two ends of the second flow path (202) are respectively through a second flow gathering chamber (203) and a second fluid inlet/outlet port (204), thereby allowing 15 a second thermal energy body (205) formed in a fluid state to flow in and flow out, wherein the outer periphery of the outer layer pipeline of the second flow path (202) is in contact with a natural thermal energy body formed by stratum, earth soil, ocean, river, lake, pond, flowing fluid, atmosphere, or flowing air, or the thermal energy body formed by the 20 fluid artificially installed in the sink, pool or container, said thermal energy body including formed in gaseous, liquid or solid state thermal energy body is served as a third thermal energy body (305), thereby forming the function of three-layer annular tri-piece thermal energy body heat exchange, so the heat exchanging and transferring can be performed 25 among the second thermal energy body (205) and the first thermal energy body (105) and the third thermal energy body (305). 2013234402 27 Sep 2013
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view showing the main structure according to one 30 embodiment of the present invention. 2 FIG. 2 is a lateral cross sectional view showing the main structure disclosed in FIG. 1. 2013234402 27 Sep 2013 FIG. 3 is a front view illustrating the third thermal energy body disclosed in the embodiment shown FIG.1 being formed in a fluid state 5 and a fluid pump being installed. FIG. 4 is a lateral cross sectional view showing the main structure disclosed in FIG. 3. FIG. 5 is a frontal cross sectional view showing the embodiments shown in FIG. 1 and FIG. 2 being additionally installed with a heat 10 conduction fin (1000). FIG. 6 is a lateral cross sectional view showing the main structure disclosed in FIG. 5. FIG. 7 is a front view illustrating each section of the first flow guiding pipe member (101) disclosed in the embodiments shown FIG.1 15 and FIG. 2 being connected in series, and each section the first flow path (102) disclosed in the embodiments shown FIG.1 and FIG. 2 being connected in series also; FIG. 8 is a lateral cross sectional view showing the main structure disclosed in FIG. 7. 20 FIG. 9 is a front view illustrating each section of the first flow guiding pipe member (101) disclosed in the embodiments shown FIG. 5 and FIG. 6 being connected in series, and each section the first flow path (102) disclosed in the embodiments shown FIG.5 and FIG. 6 being connected in series also; 25 FIG. 10 is a lateral cross sectional view showing the main structure disclosed in FIG. 10. FIG. 11 is a front view of the embodiment illustrating the first flow guiding pipe member (101) and/or the first flow path (102) is installed within a spiral flow guiding sheet in the same spiral flowing direction. 30 FIG. 12 is a lateral cross sectional view showing the main structure 3 disclosed in FIG. 11. 2013234402 27 Sep 2013 FIG. 13 is a front view of the embodiment illustrating the first flow guiding pipe member (101) and/or the first flow path (102) is installed within a spiral flow guiding sheet in different spiral flowing direction. 5 FIG. 14 is a lateral cross sectional view showing the main structure disclosed in FIG. 13.
DESCRIPTION OF MAIN COMPONENT SYMBOLS 101: first flow guiding pipe member 10 102: first flow path 103: first flow gathering chamber 104: first fluid inlet/outlet port 105: first thermal energy body 111, 222: spiral flow guiding sheet 15 201: second flow guiding pipe member 202: second flow path 203: second flow gathering chamber 204: second fluid inlet/outlet port 205: second thermal energy body 20 305: third thermal energy body 400: fluid pump 1000: heat conduction fin
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS 25 In a conventional heat exchanger which utilizes the outer layer of a pipeline for transferring heat to the exterior, the temperature equalization is often performed through the fluid passing the pipeline and the fluid passing the outer layer of the pipeline, or with the solid member or fluid which is in contact with the outer layer of pipeline, therefore only a 30 two-piece thermal energy body heat exchanger can be formed. 4
The present invention provides a tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline, which is configured by multiple layers of pipelines sleeved with each other, the fluid in the outer layer 5 pipeline covers the inner layer pipeline for exchanging heat with the fluid in the inner layer pipeline, and the fluid in the outer layer pipeline is further used for transferring heat to the solid or fluid state thermal energy body which is in contact with the outer periphery of the outer layer pipeline, thereby forming a three-layer annular tri-piece thermal energy 10 body heat exchanger. 2013234402 27 Sep 2013
The configuration of the present invention is that an inner layer pipeline having a relatively smaller outer diameter is adopted as a first flow guiding pipe member (101), the first flow guiding pipe member (101) is made of a heat conductive member, and the pipe hole of the first flow 15 guiding pipe member (101) is formed as a first flow path (102), two ends of the first flow path (102) are respectively leaded to a first flow gathering chamber (103) and a first fluid inlet/outlet port (104), thereby allowing a first thermal energy body (105) formed in a fluid state to flow in or flow out; and an outer layer pipeline having an inner diameter larger than the 20 outer diameter of the first flow path (102) is adopted as a second flow guiding pipe member (201) thereby forming a structure having two layers of pipelines, the second flow guiding pipe member (201) is made of a heat conductive member, and the diameter difference defined between the larger inner diameter of the second flow guiding pipe member (201) and 25 the outer diameter of the first flow guiding pipe member (101) forms a second flow path (202) having an annular cross section, two ends of the second flow path (202) are respectively leaded to a second flow gathering chamber (203) and a second fluid inlet/outlet port (204), thereby allowing a second thermal energy body (205) formed in a fluid state to flow in and 30 flow out, wherein the outer periphery of the outer layer pipeline of the 5 second flow path (202) is in contact with a natural thermal energy body formed by stratum, earth soil, ocean, river, lake, pond, flowing fluid, atmosphere, or flowing air, or the thermal energy body formed by the fluid artificially installed in the sink, pool or container, said thermal 5 energy body including formed in gaseous, liquid or solid state thermal energy body is served as a third thermal energy body (305), thereby forming the function of three-layer annular tri-piece thermal energy body heat exchange, so the heat exchanging and transferring can be performed among the second thermal energy body (205) and the first thermal energy 10 body (105) and the third thermal energy body (305). 2013234402 27 Sep 2013
The main configuration is illustrated as followings: FIG. 1 is a front view showing the main structure according to one embodiment of the present invention; FIG. 2 is a lateral cross sectional view showing the main structure 15 disclosed in FIG. 1;
According to the tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline shown in FIG. 1 and FIG. 2, the main configuration is provided with a first flow guiding pipe member (101) of one or more 20 than one route, the first flow guiding pipe member (101) is made of a heat conductive member, and the pipe hole of the first flow guiding pipe member (101) is formed as a first flow path (102), two ends of the first flow path (102) are respectively through a first flow gathering chamber (103) and a first fluid inlet/outlet port (104), thereby allowing a first 25 thermal energy body (105) formed in a fluid state to flow in or flow out; and the exterior of the first flow guiding pipe member (101) is sleeved and installed with the second flow guiding pipe member (201) of one or more than one route having an inner diameter larger than the outer diameter of the first flow guiding pipe member (101), thereby forming a structure 30 having two layers of pipelines, the second flow guiding pipe member (201) 6 is made of a heat conductive member, and the diameter difference defined between the larger inner diameter of the second flow guiding pipe member (201) and the outer diameter of the first flow guiding pipe member (101) forms a second flow path (202) having an annular cross 5 section, two ends of the second flow path (202) are respectively through a second flow gathering chamber (203) and a second fluid inlet/outlet port (204), thereby allowing a second thermal energy body (205) formed in a fluid state to flow in and flow out, wherein the outer layer of the second flow guiding pipe member (201) is in contact with a third thermal energy 10 body (305) formed in a gaseous or liquid state or a solid thermal energy body, thereby forming a three-layer annular tri-piece thermal energy body heat exchanger, so the heat exchanging and transferring can be performed among the second thermal energy body (205) and the first thermal energy body (105) and the third thermal energy body (305); 2013234402 27 Sep 2013 15 — the mentioned first flow guiding pipe member (101) and the second flow guiding pipe member (201) can be formed in one or more than one route; — the mentioned first flow guiding pipe member (101) and the second flow guiding pipe member (201) can be configured by pipe members 20 formed in circular or rectangular or oval or other geometric shapes; — the mentioned first flow guiding pipe member (101) and the second flow guiding pipe member (201) can be configured by pipe members having the same or different shapes; — the mentioned first thermal energy body (105) and the second thermal 25 energy body (205) can be formed by the same or different fluids, including formed by the gaseous or liquid fluid or the fluid capable of converting into a gaseous state from a liquid state or converting into a liquid state from a gaseous state; — the flow direction of the first thermal energy body (105) flowing in the 30 first flow guiding pipe member (101) and the flow direction of the second 7 thermal energy body (205) flowing in the second flow guiding pipe member (201) can be the same or different. 2013234402 27 Sep 2013
According to tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer 5 periphery of pipeline, when the third thermal energy body (305) is formed by gaseous or liquid fluid, a fluid pump (400) can be additionally installed for pumping the third thermal energy body (305) thereby enhancing the heat exchange effect; FIG. 3 is a front view illustrating the third thermal energy body 10 disclosed in the embodiment shown FIG.1 being formed in a fluid state and a fluid pump being installed; FIG. 4 is a lateral cross sectional view showing the main structure disclosed in FIG. 3;
As shown in FIG. 3 and FIG. 4, the fluid pump (400) is additionally 15 installed for pumping the fluid (305) thereby enhancing the heat exchange effect. FIG. 5 is a frontal cross sectional view showing the embodiments shown in FIG. 1 and FIG. 2 being additionally installed with a heat conduction fin (1000). 20 FIG. 6 is a lateral cross sectional view showing the main structure disclosed in FIG. 5.
As shown in FIG. 5 and FIG. 6, the second flow guiding pipe member (201) in the embodiments of FIG. 1 and FIG. 2 is further installed with a heat conduction fin (1000) for transferring the thermal energy between the 25 second flow guiding pipe member (201) and the third thermal energy body (305).
According to the tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline of the present invention, each section of the first 30 flow guiding pipe member (101) and/or the second flow guiding pipe 8 member (201) shown in FIG. 1 and FIG. 2 except for being connected in parallel, the first flow guiding pipe member (101) and the second flow guiding pipe member (201) can also be connected in serial; the detail description is as follows: 2013234402 27 Sep 2013 5 FIG. 7 is a front view illustrating each section of the first flow guiding pipe member (101) disclosed in the embodiments shown in F1G.1 and FIG. 2 being connected in series, and each section of the second flow guiding pipe member (201) which is sleeved and installed at the exterior of the first flow guiding pipe member (101) disclosed in the embodiments 10 shown in FIG.1 and FIG. 2 being connected in series also; FIG. 8 is a lateral cross sectional view showing the main structure disclosed in FIG. 7.
As shown in FIG. 7 and FIG. 8, each section of the first flow guiding pipe member (101) disclosed in the embodiments shown FIG.1 and FIG. 2 15 is made to connect in serial, and each section of the second flow guiding pipe member (201) which is sleeved and installed at the exterior of the first flow guiding pipe member (101) disclosed in the embodiments shown in FIG.1 and FIG. 2 is made to connect in series also, the first flow guiding pipe member (101) is made of a heat conductive member, the first 20 flow path (102) is connected in series with the first flow path (102) of at least one first flow guiding pipe member (101) through the first flow gathering chamber (103), two ends of the series-connected first flow path (102) are respectively leaded to a first fluid inlet/outlet port (104), thereby allowing a first thermal energy body (105) formed in a fluid state to flow 25 in or flow out; and the second flow guiding pipe member (201) having an inner diameter larger than the outer diameter of the first flow guiding pipe member (101) is sleeved and installed at the exterior of the first flow guiding pipe member (101), thereby forming a structure having two layers of pipelines, the second flow guiding pipe member (201) is made of a heat 30 conductive member, and the diameter difference defined between the 9 larger inner diameter of the second flow guiding pipe member (201) and the outer diameter of the first flow guiding pipe member (101) forms a second flow path (202) having an annular cross section, the second flow path (202) is connected in series with the second flow path (202) of at 5 least one second flow guiding pipe member (201) through the second flow gathering chamber (203), then two ends of the series-connected second flow path (202) are respectively leaded to a second fluid inlet/outlet port (204), thereby allowing a second thermal energy body (205) formed in a fluid state to flow in and flow out, wherein the outer layer of the second 10 flow guiding pipe member (201) is in contact with a third thermal energy body (305) formed in a gaseous or liquid state or a solid thermal energy body, thereby forming a three-layer annular tri-piece thermal energy body heat exchanger, so the heat exchanging and transferring can be performed among the second thermal energy body (205) and the first thermal energy 15 body (105) and the third thermal energy body (305). 2013234402 27 Sep 2013 FIG. 9 is a front view illustrating each section of the first flow guiding pipe member (101) disclosed in the embodiments shown in FIG.5 and FIG. 6 being connected in series, and each section of the second flow guiding pipe member (201) which is sleeved and installed at the exterior 20 of the first flow guiding pipe member (101) disclosed in the embodiments shown in FIG.5 and FIG. 6 being connected in series also; FIG. 10 is a lateral cross sectional view showing the main structure disclosed in FIG. 10.
As shown in FIG. 9 and FIG. 10, each section of the first flow guiding 25 pipe member (101) disclosed in the embodiments shown FIG.5 and FIG. 6 is made to connect in serial, and each section of the second flow guiding pipe member (201) which is sleeved and installed at the exterior of the first flow guiding pipe member (101) disclosed in the embodiments shown in FIG.5 and FIG. 6 is made to connect in series also. 30 According to the tri-piece thermal energy body heat exchanger 10 having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline of the present invention, a spiral flow guiding sheet (222) is further formed between the exterior of the first flow guiding pipe member (101) and the interior of the second flow guiding pipe member 5 (201) and/or a spiral flow guiding sheet (111) is further formed at the 2013234402 27 Sep 2013 interior of the first flow guiding pipe member (101), so as to enhance the heat transfer effect; the detailed description is as follows: FIG. 11 is a front view of the embodiment illustrating a spiral flow guiding sheet structure (222) in the same spiral flowing direction is 10 installed between the exterior of the first flow guiding pipe member (101) and the interior of the second flow guiding pipe member (201) and/or a spiral flow guiding sheet structure (111) in the same spiral flowing direction is installed at the interior of the first flow guiding pipe member (101). 15 FIG. 12 is a lateral cross sectional view showing the main structure disclosed in FIG. 11.
As shown in FIG. 11 and FIG. 12, a spiral flow guiding sheet structure (222) in the same spiral flowing direction is installed between the exterior of the first flow guiding pipe member (101) and the interior of 20 the second flow guiding pipe member (201) and/or a spiral flow guiding sheet structure (111) in the same spiral flowing direction is installed at the interior of the first flow guiding pipe member (101). FIG. 13 is a front view of the embodiment illustrating a spiral flow guiding sheet structure (222) in different spiral flowing direction is 25 installed between the exterior of the first flow guiding pipe member (101) and the interior of the second flow guiding pipe member (201) and/or a spiral flow guiding sheet structure (222) in different spiral flowing direction is installed at the interior of the first flow guiding pipe member (101). 30 FIG. 14 is a lateral cross sectional view showing the main structure 11 disclosed in FIG. 13. 2013234402 27 Sep 2013
As shown in FIG. 13 and FIG. 14, a spiral flow guiding sheet structure (222) in different spiral flowing direction is installed between the exterior of the first flow guiding pipe member (101) and the interior of the 5 second flow guiding pipe member (201) and/or a spiral flow guiding sheet structure (222) in different spiral flowing direction is installed at the interior of the first flow guiding pipe member (101).
Throughout this specification and the claims which follow, unless the 10 context requires otherwise, the word "comprise", and variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
The reference in this specification to any prior publication (or 15 information derived from it), or to any matter which is known, is not, and should not be taken as, an acknowledgement or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates. 20 The reference numerals in the following claims do not in any way limit the scope of the respective claims 12

Claims (14)

  1. The claims defining the invention are as follows:
    1. A tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline, which is provided with a first flow guiding pipe member (101) of one or more than one route, the first flow guiding pipe member (101) is made of a heat conductive member, and the pipe hole of the first flow guiding pipe member (101) is formed as a first flow path (102), two ends of the first flow path (102) are respectively through a first flow gathering chamber (103) and a first fluid inlet/outlet port (104), thereby allowing a first thermal energy body (105) formed in a fluid state to flow in or flow out; and the exterior of the first flow guiding pipe member (101) is sleeved and installed with the second flow guiding pipe member (201) of one or more than one route having an inner diameter larger than the outer diameter of the first flow guiding pipe member (101), thereby forming a structure having two layers of pipelines, the second flow guiding pipe member (201) is made of a heat conductive member, and the diameter difference defined between the larger inner diameter of the second flow guiding pipe member (201) and the outer diameter of the first flow guiding pipe member (101) forms a second flow path (202) having an annular cross section, two ends of the second flow path (202) are respectively through a second flow gathering chamber (203) and a second fluid inlet/outlet port (204), thereby allowing a second thermal energy body (205) formed in a fluid state to flow in and flow out, wherein the outer layer of the second flow guiding pipe member (201) is in contact with a third thermal energy body (305) formed in a gaseous or liquid state or a solid thermal energy body, thereby forming a three-layer annular tri-piece thermal energy body heat exchanger, so the heat exchanging and transferring can be performed among the second thermal energy body (205) and the first thermal energy body (105) and the third thermal energy body (305).
  2. 2. A tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline as claimed in claim in claim 1, wherein the first flow guiding pipe member (101) is made of a heat conductive member, the first flow path (102) is connected in series with the first flow path (102) of at least one first flow guiding pipe member (101) through the first flow gathering chamber (103), two ends of the series-connected first flow path (102) are respectively leaded to a first fluid inlet/outlet port (104), thereby allowing a first thermal energy body (105) formed in a fluid state to flow in or flow out; and the second flow guiding pipe member (201) having an inner diameter larger than the outer diameter of the first flow guiding pipe member (101) is sleeved and installed at the exterior of the first flow guiding pipe member (101), thereby forming a structure having two layers of pipelines, the second flow guiding pipe member (201) is made of a heat conductive member, and the diameter difference defined between the larger inner diameter of the second flow guiding pipe member (201) and the outer diameter of the first flow guiding pipe member (101) forms a second flow path (202) having an annular cross section, the second flow path (202) is connected in series with the second flow path (202) of at least one second flow guiding pipe member (201) through the second flow gathering chamber (203), then two ends of the series-connected second flow path (202) are respectively leaded to a second fluid inlet/outlet port (204), thereby allowing a second thermal energy body (205) formed in a fluid state to flow in and flow out, wherein the outer layer of the second flow guiding pipe member (201) is in contact with a third thermal energy body (305) formed in a gaseous or liquid state or a solid thermal energy body, thereby forming a three-layer annular tri-piece thermal energy body heat exchanger, so the heat exchanging and transferring can be performed among the second thermal energy body (205) and the first thermal energy body (105) and the third thermal energy body (305).
  3. 3. A tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline as claimed in claim 1 or 2, wherein the mentioned first flow guiding pipe member (101) and the second flow guiding pipe member (201) can be configured by pipe members formed in circular or rectangular or oval or other geometric shapes.
  4. 4. A tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline as claimed in claim 1 or 2, wherein the mentioned first flow guiding pipe member (101) and the second flow guiding pipe member (201) can be configured by pipe members having the same or different shapes.
  5. 5. A tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline as claimed in claim 1 or 2, wherein the mentioned first thermal energy body (105) and the second thermal energy body (205) can be formed by the same or different fluids.
  6. 6. A tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline as claimed in claim 1 or 2, wherein the mentioned fluid can be formed by the gaseous or liquid fluid or the fluid capable of converting into a gaseous state from a liquid state or converting into a liquid state from a gaseous state.
  7. 7. A tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline as claimed in claim 1 or 2, wherein the mentioned third thermal energy body (305) can be formed by fluid or solid member.
  8. 8. A tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline as claimed in claim 1 or 2, wherein when the third thermal energy body (305) is formed by fluid, a fluid pump (400) can be additionally installed for pumping the third thermal energy body (305) thereby enhancing the heat exchange effect.
  9. 9. A tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline as claimed in claim 1 or 2, wherein the flow direction of the first thermal energy body (105) flowing in the first flow guiding pipe member (101) and the flow direction of the second thermal energy body (205) flowing in the second flow guiding pipe member (201) can be the same or different.
  10. 10. A tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline as claimed in claim 1 or 2, wherein the sleeved multi-layer pipe members includes being configured by two or more layers of heat conductive members, and the flow guiding pipe members having the corresponding quantity are therefore formed, so the same or different fluids can be adopted to flow in each pipe member, and the flow direction in which the fluid flowing in different flow guiding pipelines arranged in adjacent layers can be the same or different.
  11. 11. A tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline as claimed in claim 1 or 2, wherein the second flow guiding pipe member (201) can be further installed with a heat conduction fin (1000).
  12. 12. A tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline as claimed in claim 1 or 2, wherein a spiral flow guiding sheet (222) is further formed between the exterior of the first flow guiding pipe member (101) and the interior of the second flow guiding pipe member (201) and/or a spiral flow guiding sheet (111) is further formed at the interior of the first flow guiding pipe member (101), so as to enhance the heat transfer effect.
  13. 13. A tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline as claimed in claim 1 or 2, wherein a spiral flow guiding sheet structure (222) in the same spiral flowing direction is installed between the exterior of the first flow guiding pipe member (101) and the interior of the second flow guiding pipe member (201) and/or a spiral flow guiding sheet structure (111) in the same spiral flowing direction is installed at the interior of the first flow guiding pipe member (101).
  14. 14. A tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline as claimed in claim 1 or 2, wherein a spiral flow guiding sheet structure (222) in different spiral flowing direction is installed between the exterior of the first flow guiding pipe member (101) and the interior of the second flow guiding pipe member (201) and/or a spiral flow guiding sheet structure (222) in different spiral flowing direction is installed at the interior of the first flow guiding pipe member (101).
AU2013234402A 2012-09-27 2013-09-27 Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline Active AU2013234402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2017268511A AU2017268511A1 (en) 2012-09-27 2017-11-28 Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/628,116 2012-09-27
US13/628,116 US20140083666A1 (en) 2012-09-27 2012-09-27 Tri-Piece Thermal Energy Body Heat Exchanger Having Multi-Layer Pipeline and Transferring Heat to Exterior Through Outer Periphery of Pipeline

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2017268511A Division AU2017268511A1 (en) 2012-09-27 2017-11-28 Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline

Publications (3)

Publication Number Publication Date
AU2013234402A1 AU2013234402A1 (en) 2014-04-10
AU2013234402A2 true AU2013234402A2 (en) 2017-03-02
AU2013234402B2 AU2013234402B2 (en) 2017-09-21

Family

ID=49328337

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2013234402A Active AU2013234402B2 (en) 2012-09-27 2013-09-27 Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline
AU2017268511A Abandoned AU2017268511A1 (en) 2012-09-27 2017-11-28 Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU2017268511A Abandoned AU2017268511A1 (en) 2012-09-27 2017-11-28 Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline

Country Status (8)

Country Link
US (1) US20140083666A1 (en)
EP (1) EP2713131B1 (en)
JP (2) JP6401439B2 (en)
CN (3) CN203501858U (en)
AU (2) AU2013234402B2 (en)
CA (1) CA2828311C (en)
SG (1) SG2013073028A (en)
TW (3) TWI619922B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140083666A1 (en) * 2012-09-27 2014-03-27 Tai-Her Yang Tri-Piece Thermal Energy Body Heat Exchanger Having Multi-Layer Pipeline and Transferring Heat to Exterior Through Outer Periphery of Pipeline
CN105972869B (en) * 2016-06-14 2019-02-12 杨胜东 A kind of big channel evaporative condenser dual-purpose heat exchanger and its system
CN106197088A (en) * 2016-08-19 2016-12-07 张家港市德胜染整有限责任公司 A kind of waste-heat recovery device of dyeing waste-water
EP3808444A4 (en) 2018-06-12 2022-02-23 IHI Corporation Reaction device
CN109210967B (en) * 2018-09-17 2020-01-14 中国核动力研究设计院 Multi-stage sleeve heat exchanger for reactor fuel testing loop
CZ308768B6 (en) * 2020-03-17 2021-05-05 Vysoká Škola Báňská - Technická Univerzita Ostrava Recuperative screw heat exchanger, especially for bulk materials
CN113464216B (en) * 2021-07-28 2023-07-28 湖南湘化机汽轮机有限公司 Steam turbine for waste heat recovery of steam boiler

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1798330A (en) * 1925-09-18 1931-03-31 Leek Albert Edward Heat-exchange apparatus
US1738914A (en) * 1926-08-04 1929-12-10 George T Mott Apparatus for heat exchanging
US1701341A (en) * 1928-02-24 1929-02-05 Frick Co Cooling coil
US2658728A (en) * 1948-06-25 1953-11-10 Lummus Co Method of detecting leakage between heat transfer fluids
US2858677A (en) * 1955-04-11 1958-11-04 Marley Co Water cooling apparatus
JPS5756071Y2 (en) * 1977-04-16 1982-12-03
US4210199A (en) * 1978-06-14 1980-07-01 Doucette Industries, Inc. Heat exchange system
JPS58136985A (en) * 1982-02-08 1983-08-15 Mitsubishi Electric Corp Heat exchanger
FR2552216B1 (en) * 1983-09-21 1988-08-12 Onera (Off Nat Aerospatiale) IMPROVEMENTS TO HEAT EXCHANGER TUBES AND TO EXCHANGERS MADE WITH SUCH TUBES
DE3411675A1 (en) * 1984-03-27 1985-10-10 Josef Hubert 5203 Much Schick DEVICE FOR EXCHANGING HEAT AND FUEL BETWEEN TWO OR MORE FLOWABLE MEDIA
JPS6159188A (en) * 1984-08-30 1986-03-26 Toyo Radiator Kk Charge air cooler
JPS63154967U (en) * 1987-03-30 1988-10-12
JPH03279789A (en) * 1990-03-28 1991-12-10 Yanmar Diesel Engine Co Ltd Double piped heat exchanger
CN2094021U (en) * 1991-05-25 1992-01-22 程效民 Tube in tube tubular heat-exchanger
JPH09113168A (en) * 1995-10-13 1997-05-02 Tokyo Gas Co Ltd Double tube type vaporizer
JP2001280864A (en) * 2000-03-30 2001-10-10 Hitachi Ltd Heat exchanger and manufacturing method therefor
CN2449174Y (en) * 2000-10-25 2001-09-19 于奎明 Large volume sleeve pipe type heat-exchanger
JP2003050092A (en) * 2001-08-06 2003-02-21 Ee R C:Kk Heat exchanger
TW495013U (en) * 2001-12-04 2002-07-11 Taiwan Reduce Pollutant Techno Heat exchanger
CN2588308Y (en) * 2002-11-26 2003-11-26 郝德欣 Cold and hot water exchanger for central heating
JP2005127684A (en) * 2003-10-27 2005-05-19 Atago Seisakusho:Kk Double tube type heat exchanger
JP4033402B2 (en) * 2004-04-27 2008-01-16 本田技研工業株式会社 Heat exchanger
CN1719179A (en) * 2005-07-11 2006-01-11 刘庆久 Pipe heat exchanger
CN200947001Y (en) * 2006-04-30 2007-09-12 华南理工大学 Sleeve-type heat exchanger
WO2008078194A2 (en) * 2006-06-20 2008-07-03 Adir Segal, Ltd. Thermal load management system
CN101105373A (en) * 2007-08-01 2008-01-16 中原工学院 Fin-sleeve type three mediums composite heat-exchanger
DE102007054703B4 (en) * 2007-11-14 2012-04-19 GEA Luftkühler GmbH heat exchangers
JP2009162395A (en) * 2007-12-28 2009-07-23 Showa Denko Kk Double-wall-tube heat exchanger
CN101226033A (en) * 2008-02-18 2008-07-23 中原工学院 Shell-sleeve type three-medium composite heat exchanger
CN201407930Y (en) * 2009-06-01 2010-02-17 刘洪亮 Highly-effective sewage heat exchanger
CN102042774A (en) * 2009-10-16 2011-05-04 杨泰和 Heat absorption or release device with flow paths distributed alternatively and evenly according to temperature difference
JP5743051B2 (en) * 2010-09-15 2015-07-01 三浦工業株式会社 Heat exchanger and boiler water supply system
CN201945215U (en) * 2010-12-27 2011-08-24 青岛磐石容器制造有限公司 Fixed tube plate type double-tube heat exchanger
US20140083666A1 (en) * 2012-09-27 2014-03-27 Tai-Her Yang Tri-Piece Thermal Energy Body Heat Exchanger Having Multi-Layer Pipeline and Transferring Heat to Exterior Through Outer Periphery of Pipeline

Also Published As

Publication number Publication date
TW201730495A (en) 2017-09-01
AU2013234402A1 (en) 2014-04-10
CN103697725A (en) 2014-04-02
JP6746647B2 (en) 2020-08-26
TWM476252U (en) 2014-04-11
AU2017268511A1 (en) 2017-12-14
JP6401439B2 (en) 2018-10-10
JP2014074581A (en) 2014-04-24
US20140083666A1 (en) 2014-03-27
CN203501858U (en) 2014-03-26
CA2828311C (en) 2020-07-28
CN110274494A (en) 2019-09-24
TWI619922B (en) 2018-04-01
JP2019007729A (en) 2019-01-17
TWI586932B (en) 2017-06-11
EP2713131A1 (en) 2014-04-02
TW201416638A (en) 2014-05-01
CA2828311A1 (en) 2014-03-27
EP2713131B1 (en) 2016-06-08
AU2013234402B2 (en) 2017-09-21
SG2013073028A (en) 2014-04-28

Similar Documents

Publication Publication Date Title
US10119769B2 (en) Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline
AU2013234402B2 (en) Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline
RU2561785C2 (en) Heat-conducting cylinder installed with u-shaped rod-type pipeline and ring-shaped pipeline
MY160271A (en) Heat Exchanger
US20130105131A1 (en) Flattened heat pipe
JP3188901U (en) Heat exchanger
JP4414197B2 (en) Double tube heat exchanger
WO2009156641A3 (en) Double-flow heat exchanger device
CN202221265U (en) Shell-and-tube heat exchanger
JP2005147570A (en) Double pipe type heat exchanger
WO2010017853A8 (en) Pipe bundle heat exchanger with variably selected pipe spacing
JP2019078419A5 (en)
CN204329683U (en) A kind of pipe heat exchanger
CN203629401U (en) Inner spiral special-shaped outside fin heat exchange tube
CN202350610U (en) Corrugated-pipe buried pipe
JP2016114331A (en) Heat exchanger
JP4414198B2 (en) Double tube heat exchanger
CN204202249U (en) A kind of bleeder evaporimeter
CN103206883B (en) Finned helix tube
CN208588115U (en) Novel heat pump water source heat exchanger
CN103953940A (en) Waste heat recovery heat exchanger of oil burning boiler
CN105180701A (en) Arc-shaped radiating tube set arranged in corner
JP2005300062A (en) Heat exchanger and manufacturing method of the same
GB2508804A (en) Heat exchanger
AU2010236085A1 (en) Thermal conductive cylinder installed with u-type core piping and loop piping

Legal Events

Date Code Title Description
DA3 Amendments made section 104

Free format text: THE NATURE OF THE AMENDMENT IS AS SHOWN IN THE STATEMENT(S) FILED 06 FEB 2017

FGA Letters patent sealed or granted (standard patent)