AU2002211190A1 - Integration of high voltage self-aligned mos components - Google Patents

Integration of high voltage self-aligned mos components

Info

Publication number
AU2002211190A1
AU2002211190A1 AU2002211190A AU1119002A AU2002211190A1 AU 2002211190 A1 AU2002211190 A1 AU 2002211190A1 AU 2002211190 A AU2002211190 A AU 2002211190A AU 1119002 A AU1119002 A AU 1119002A AU 2002211190 A1 AU2002211190 A1 AU 2002211190A1
Authority
AU
Australia
Prior art keywords
integration
high voltage
voltage self
mos components
aligned mos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2002211190A
Inventor
Andrej Litwin
Peter Olofsson
Anders Soderbarg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of AU2002211190A1 publication Critical patent/AU2002211190A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823857Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
AU2002211190A 2000-11-03 2001-11-01 Integration of high voltage self-aligned mos components Abandoned AU2002211190A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE0004027 2000-11-03
SE0004027A SE519382C2 (en) 2000-11-03 2000-11-03 Integration of self-oriented MOS high voltage components and semiconductor structure including such
PCT/SE2001/002405 WO2002037547A1 (en) 2000-11-03 2001-11-01 Integration of high voltage self-aligned mos components

Publications (1)

Publication Number Publication Date
AU2002211190A1 true AU2002211190A1 (en) 2002-05-15

Family

ID=20281691

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002211190A Abandoned AU2002211190A1 (en) 2000-11-03 2001-11-01 Integration of high voltage self-aligned mos components

Country Status (7)

Country Link
US (1) US6686233B2 (en)
EP (1) EP1330837A1 (en)
CN (1) CN1228816C (en)
AU (1) AU2002211190A1 (en)
SE (1) SE519382C2 (en)
TW (1) TW486751B (en)
WO (1) WO2002037547A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4139105B2 (en) * 2001-12-20 2008-08-27 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
US6861341B2 (en) * 2002-02-22 2005-03-01 Xerox Corporation Systems and methods for integration of heterogeneous circuit devices
US6855985B2 (en) * 2002-09-29 2005-02-15 Advanced Analogic Technologies, Inc. Modular bipolar-CMOS-DMOS analog integrated circuit & power transistor technology
SE527082C2 (en) * 2003-08-27 2005-12-20 Infineon Technologies Ag Monolithic integrated power amplifier device
SE0302594D0 (en) * 2003-09-30 2003-09-30 Infineon Technologies Ag Vertical DMOS transistor device, integrated circuit, and fabrication method thereof
SE0303106D0 (en) * 2003-11-21 2003-11-21 Infineon Technologies Ag Ldmos transistor device, integrated circuit, and fabrication method thereof
SE0303099D0 (en) * 2003-11-21 2003-11-21 Infineon Technologies Ag Method in the fabrication of a monolithically integrated high frequency circuit
KR100670401B1 (en) * 2003-12-27 2007-01-16 동부일렉트로닉스 주식회사 Method for fabricating the gate oxide layer in semiconductor device
DE102004009521B4 (en) * 2004-02-27 2020-06-10 Austriamicrosystems Ag High-voltage PMOS transistor, mask for manufacturing a tub and method for manufacturing a high-voltage PMOS transistor
KR100624912B1 (en) * 2005-03-22 2006-09-19 주식회사 하이닉스반도체 Method for fabricating flash memory device
US7329618B2 (en) * 2005-06-28 2008-02-12 Micron Technology, Inc. Ion implanting methods
EP1804285B1 (en) * 2005-12-27 2018-10-24 Semiconductor Components Industries, LLC Method for manufacturing a transistor with self-aligned channel
KR100741882B1 (en) * 2005-12-29 2007-07-23 동부일렉트로닉스 주식회사 Highvoltage device and Method for fabricating of the same
US7465623B2 (en) * 2006-08-28 2008-12-16 Advanced Micro Devices, Inc. Methods for fabricating a semiconductor device on an SOI substrate
KR100865548B1 (en) * 2006-12-28 2008-10-28 주식회사 하이닉스반도체 Method for fabricating semiconductor device
US7781843B1 (en) * 2007-01-11 2010-08-24 Hewlett-Packard Development Company, L.P. Integrating high-voltage CMOS devices with low-voltage CMOS
KR100836766B1 (en) * 2007-01-22 2008-06-10 삼성전자주식회사 Method of manufacturing high voltage semiconductor device and the high voltage semiconductor device using the same
KR100917813B1 (en) 2007-10-05 2009-09-18 주식회사 동부하이텍 Semiconductor device and manufacturing method thereof
KR100903483B1 (en) 2007-11-26 2009-06-18 주식회사 동부하이텍 Method for manufacturing semiconductor device
JP5283916B2 (en) * 2008-02-01 2013-09-04 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Manufacturing method of semiconductor device
US20100117153A1 (en) * 2008-11-07 2010-05-13 Honeywell International Inc. High voltage soi cmos device and method of manufacture
CN101752254B (en) * 2008-12-22 2012-12-19 中芯国际集成电路制造(上海)有限公司 Ion implantation zone forming method, MOS transistor and manufacture method thereof
SG164319A1 (en) * 2009-07-10 2010-09-29 Chartered Semiconductor Mfg High voltage device
CN101789432B (en) * 2010-01-27 2011-11-16 崇贸科技股份有限公司 High-voltage side semiconductor structure
US9209098B2 (en) 2011-05-19 2015-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. HVMOS reliability evaluation using bulk resistances as indices
CN102683186A (en) * 2012-05-09 2012-09-19 上海宏力半导体制造有限公司 Method for inhibiting hot carrier injection and manufacture method of BiCMOS (Bipolar Complementary Metal Oxide Semiconductor) device
US20140167142A1 (en) 2012-12-14 2014-06-19 Spansion Llc Use Disposable Gate Cap to Form Transistors, and Split Gate Charge Trapping Memory Cells
DE102015004235B4 (en) 2014-04-14 2019-01-03 Elmos Semiconductor Ag Method of protecting a CMOS circuit on an N-substrate from reverse polarity
DE102014017146A1 (en) 2014-04-14 2015-10-15 Elmos Semiconductor Aktiengesellschaft Rail-to-rail reverse polarity protection for the combined input / output of an integrated CMOS circuit on a P-substrate
US9412736B2 (en) 2014-06-05 2016-08-09 Globalfoundries Inc. Embedding semiconductor devices in silicon-on-insulator wafers connected using through silicon vias
US10038063B2 (en) 2014-06-10 2018-07-31 International Business Machines Corporation Tunable breakdown voltage RF FET devices
CN105789267B (en) * 2014-12-22 2019-04-26 旺宏电子股份有限公司 Semiconductor element
CN105810583B (en) * 2014-12-30 2019-03-15 无锡华润上华科技有限公司 The manufacturing method of landscape insulation bar double-pole-type transistor
US9780250B2 (en) * 2016-01-14 2017-10-03 Varian Semiconductor Equipment Associates, Inc. Self-aligned mask for ion implantation
KR101822016B1 (en) * 2016-09-13 2018-01-26 매그나칩반도체 유한회사 Method of Fabricating a DMOS Transistor and a CMOS Transistor
CN107785324A (en) * 2017-09-19 2018-03-09 上海华虹宏力半导体制造有限公司 High-pressure process integrated circuit method
CN109786328A (en) * 2017-11-10 2019-05-21 中芯国际集成电路制造(上海)有限公司 Semiconductor devices and its manufacturing method
CN109950151B (en) * 2017-12-20 2022-02-15 中芯国际集成电路制造(上海)有限公司 PMOS transistor and forming method thereof
US11228174B1 (en) 2019-05-30 2022-01-18 Silicet, LLC Source and drain enabled conduction triggers and immunity tolerance for integrated circuits
US10892362B1 (en) 2019-11-06 2021-01-12 Silicet, LLC Devices for LDMOS and other MOS transistors with hybrid contact
US11522053B2 (en) 2020-12-04 2022-12-06 Amplexia, Llc LDMOS with self-aligned body and hybrid source
TWI768654B (en) * 2021-01-14 2022-06-21 世界先進積體電路股份有限公司 Semiconductor structure and method for forming the same
US11742389B2 (en) 2021-05-18 2023-08-29 Vanguard International Semiconductor Corporation Semiconductor structure and method for forming the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061975A (en) * 1988-02-19 1991-10-29 Mitsubishi Denki Kabushiki Kaisha MOS type field effect transistor having LDD structure
US5047358A (en) * 1989-03-17 1991-09-10 Delco Electronics Corporation Process for forming high and low voltage CMOS transistors on a single integrated circuit chip
US5532176A (en) * 1992-04-17 1996-07-02 Nippondenso Co., Ltd. Process for fabricating a complementary MIS transistor
SE506433C2 (en) 1994-03-24 1997-12-15 Anders Soederbaerg Method of manufacturing integrated components
US5498554A (en) * 1994-04-08 1996-03-12 Texas Instruments Incorporated Method of making extended drain resurf lateral DMOS devices
FR2735904B1 (en) * 1995-06-21 1997-07-18 Commissariat Energie Atomique PROCESS FOR PRODUCING A SEMICONDUCTOR WITH A HIGHLY DOPED ZONE LOCATED BETWEEN LOW DOPED AREAS FOR THE MANUFACTURE OF TRANSISTORS
EP0789401A3 (en) * 1995-08-25 1998-09-16 Matsushita Electric Industrial Co., Ltd. LD MOSFET or MOSFET with an integrated circuit containing thereof and manufacturing method
JPH10189762A (en) * 1996-12-20 1998-07-21 Nec Corp Semiconductor device and its manufacturing method
US5891782A (en) * 1997-08-21 1999-04-06 Sharp Microelectronics Technology, Inc. Method for fabricating an asymmetric channel doped MOS structure
JP2000077532A (en) * 1998-09-03 2000-03-14 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
US6686233B2 (en) 2004-02-03
SE519382C2 (en) 2003-02-25
EP1330837A1 (en) 2003-07-30
SE0004027D0 (en) 2000-11-03
WO2002037547A1 (en) 2002-05-10
CN1228816C (en) 2005-11-23
SE0004027L (en) 2002-05-04
CN1471724A (en) 2004-01-28
US20020055220A1 (en) 2002-05-09
TW486751B (en) 2002-05-11

Similar Documents

Publication Publication Date Title
AU2002211190A1 (en) Integration of high voltage self-aligned mos components
AU2002356486A1 (en) High voltage mos transistor
AU2001283217A1 (en) Power mos device with asymmetrical channel structure
EP1058317B8 (en) Low voltage MOS device and corresponding manufacturing process
AU2002259157A1 (en) Integration of two memory types
AU2002346737A1 (en) Improved internal breaker
AU2001293146A1 (en) Fluorocarbon refrigerant compositions
AU2001282877A1 (en) Cosmetic compositions
AU2001234796A1 (en) Double recessed transistor
AU2001294814A1 (en) Pumpcn compositions and uses thereof
AU2002221142A1 (en) Semiconductor photocathode
AU2002324812A1 (en) High voltage integrated circuit amplifier
AU2001262608A1 (en) Semi-solid one- or two-part compositions
AU2001265919A1 (en) Cosmetic compositions
AU2002232558A1 (en) Compounds, compositions and methods for treatment of parasitic infections
AU2001290529A1 (en) Marital aid
AU2002252666A1 (en) Compact high voltage solid state switch
AU2002254232A1 (en) Photoresist composition
AU2002215217A1 (en) Semiconductor photocathode
AU2003260801A1 (en) Mos current reference compensation
AU2001233053A1 (en) Low power dissipation mos jam latch
AU2001237483A1 (en) Mos transistor for high density integration circuits
AU2001214419A1 (en) Fragrance compositions
AU2002220433A1 (en) Transformer providing low output voltage
AU2001293271A1 (en) Wide ratio autotransformer-type current ranging