AT526530A4 - Verfahren zur kontinuierlichen Erzeugung von Wärme und einer Kohlesuspension - Google Patents

Verfahren zur kontinuierlichen Erzeugung von Wärme und einer Kohlesuspension Download PDF

Info

Publication number
AT526530A4
AT526530A4 ATA50118/2023A AT501182023A AT526530A4 AT 526530 A4 AT526530 A4 AT 526530A4 AT 501182023 A AT501182023 A AT 501182023A AT 526530 A4 AT526530 A4 AT 526530A4
Authority
AT
Austria
Prior art keywords
coal
zone
suspension
heating
solid fuel
Prior art date
Application number
ATA50118/2023A
Other languages
English (en)
Other versions
AT526530B1 (de
Original Assignee
Guntamatic Heiztechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guntamatic Heiztechnik Gmbh filed Critical Guntamatic Heiztechnik Gmbh
Priority to ATA50118/2023A priority Critical patent/AT526530B1/de
Priority to DE102024104030.0A priority patent/DE102024104030A1/de
Application granted granted Critical
Publication of AT526530A4 publication Critical patent/AT526530A4/de
Publication of AT526530B1 publication Critical patent/AT526530B1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • C10B49/04Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated
    • C10B49/06Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated according to the moving bed type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • F23G7/105Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses of wood waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • F23J1/06Mechanically-operated devices, e.g. clinker pushers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

Es werden ein Verfahren zur kontinuierlichen Erzeugung von Wärme und einer Kohlesuspension in einem Festbrennstoff führenden Heizprozess, sowie eine diesbezügliche Heizungsanlage beschrieben. Um eine kontinuierliche und gefahrlose Erzeugung von sowohl Wärme als auch von Kohlesuspension bei gutem Wirkungsgrad und hoher Produktausbeute zu ermöglichen, wird vorgeschlagen, dass Festbrennstoff in einer Heizzone (2) unter Wärmegewinnung teilweise verbrannt wird und nachfolgend in einer Aufbereitungszone (3) der nicht verbrannte Teil des Festbrennstoffs pyrolytisch zu Kohle umgewandelt wird, wonach die Kohle einer Fördereinrichtung (9) aufgegeben, zu einer Mischzone (10) weitergefördert und dort gemeinsam mit einer Suspensionsflüssigkeit zu einer Kohlesuspension vermengt wird.

Description

Die Erfindung bezieht sich auf ein Verfahren zur kontinuierlichen Erzeugung von
Wärme und einer Kohlesuspension in einem Festbrennstoff führenden Heizprozess.
Pflanzenkohle, auch bekannt unter der Bezeichnung „Biochar“, wird in der Landwirtschaft insbesondere als Bodenverbesserer sowie als Düngerzusatz verwendet. Hierzu wurde bereits in der WO2017049202A1 eine Kohlesuspension vorgeschlagen, die durch Vermischen von bereits vorhandenen Pflanzenkohlestücken bzw. -partikeln mit einem Fluid, insbesondere Wasser, sowie mit einem Stabilisator erhalten wird. Die Kohlesuspension kann dann in weiterer Folge z.B. flüssiger Gülle beigemischt und auf landwirtschaftlich genutzten Feldern
ausgetragen werden.
Um zunächst Pflanzenkohle aus einem Festbrennstoff, insbesondere Hackschnitzeln, unter gleichzeitiger Wärmegewinnung im Zuge einer Pyrolyse zu erhalten, ist es bekannt, dass die bei der Pyrolyse freiwerdenden flüchtigen Stoffe zur Wärmegewinnung in einem Heizbrenner verbrannt werden (EP2952558A1). Da der Wärmegewinnung aus einem Festbrennstoff ein oxidativer Prozess zugrunde liegt, kann aufgrund des hierfür notwendigen Luftsauerstoffes der Festbrennstoff allerdings nicht vollständig pyrolytisch verbrannt werden. Dies führt in weiterer Folge nicht nur zu einer schlechteren Produktausbeute aufgrund des verminderten Kohlenstoffanteils der erzeugten Kohle, sondern darüber hinaus verhindert die Anwesenheit des Luftsauerstoffes ein vollständiges Ablöschen der Kohle. Letzteres begünstigt somit das Verweilen von Glutnestern sowie den Austritt von
Schwelgasen aus den erzeugten Kohlestücken, sodass diese aufgrund der Gefahr
Suspensionsflüssigkeit wie insbesondere Wasser zugeführt werden können.
Es besteht somit der Bedarf an einem Verfahren der eingangs geschilderten Art, das es trotz einfacher Mittel erlaubt, eine kontinuierliche und gefahrlose Erzeugung von sowohl Wärme als auch von Kohlesuspension bei gutem Wirkungsgrad und
hoher Produktausbeute zu ermöglichen.
Die Erfindung löst die gestellte Aufgabe dadurch, dass Festbrennstoff in einer Heizzone unter Wärmegewinnung teilweise verbrannt wird und nachfolgend in einer Aufbereitungszone der nicht verbrannte Teil des Festbrennstoffs pyrolytisch zu Kohle umgewandelt wird, wonach die Kohle einer Fördereinrichtung aufgegeben, zu einer Mischzone weitergefördert und dort gemeinsam mit einer
Suspensionsflüssigkeit zu einer Kohlesuspension vermengt wird.
Zufolge dieser Merkmale finden der oxidative Heizprozess sowie die nachfolgende Pyrolyse in unterschiedlichen Prozesszonen statt, sodass eine Beeinflussung der Pyrolyse durch den für die Oxidation erforderlichen Luftsauerstoff weitgehend vermieden wird. Dadurch kann sowohl ein hoher Wirkungsgrad bei der Wärmegewinnung, als auch ein möglichst vollständiges Verbrennen des Festbrennstoffes zu Kohle mit hohem Kohlenstoffanteil ermöglicht werden. Der Erfindung liegt außerdem die Erkenntnis zugrunde, dass zum Erreichen eines guten Wirkungsgrades bei der oxidativen Wärmegewinnung von pflanzlichen Festbrennstoffen, wie z.B. Hackschnitzel, relativ wenig Luftsauerstoff im Vergleich zu beispielsweise fossilen Brennstoffen benötigt wird, weil die in den Festbrennstoffen vorhandenen Holzinhaltsstoffe, insbesondere Lignin, bereits selbst über einen hohen Sauerstoffinhalt verfügen. Dies begünstigt den Oxidationsprozess trotz niedrigen Mengen an vorhandenem Luftsauerstoff. Umgekehrt beeinflussen die in diesem Fall niedrigen erforderlichen Mengen an zugeführtem Luftsauerstoff die Pyrolyse lediglich in vernachlässigbarem Ausmaß. Für besonders günstige Prozessbedingungen kann der Eintrag des Luftsauerstoffs in die Heizzone in
Abhängigkeit der in der Aufbereitungszone gemessenen Pyrolysetemperatur
bzw. einer Dampfexplosion ermöglicht wird.
Um Kohle bzw. Kohlesuspensionen als Düngemittelzusatz im Agrarbereich einsetzen zu können, wird gefordert, dass die Kohle eine möglichst niedrige Belastung an polyaromatischen Kohlenwasserstoffen (PAK) aufweist. Polyaromatische Kohlenwasserstoffe werden naturgemäß während der Pyrolyse durch die dabei entstehenden Pyrolysegase freigesetzt und reichern sich an der Oberfläche der Kohle an, da diese aufgrund ihrer Porosität ein hohes Adsorptionspotenzial ausbildet. Die Anreicherung wird dabei durch Kondensationsprozesse begünstigt, wie sie insbesondere bei einer Abkühlung der
Kohlenoberfläche stattfinden.
Um daher die Belastung der Kohle an polyaromatischen Kohlenwasserstoffen zu reduzieren, wird vorgeschlagen, dass der sich in der Aufbereitungszone pyrolytisch zu Kohle umwandelnde Festbrennstoff zur Vermeidung von Oberflächenkondensation polyaromatischer Kohlenwasserstoffe mit einem Spülmedium, insbesondere mit einem inerten Fluid wie z.B. Kohlenstoffdioxid, beaufschlagt wird. Dabei hat sich überraschenderweise gezeigt, dass durch die vorzugsweise permanente Beaufschlagung des sich im Übergang zur Kohle befindlichen Festbrennstoffes bzw. der letztlich vollständig gebildeten Kohle mit einem Spülmedium auch ein Abkühlen der Kohle erreicht wird, wobei aufgrund der
oberflächennahen Verdrängung der Pyrolysegase durch das Spülmedium eine
Luftsauerstoffeintrag in die Aufbereitungszone aus der Heizzone unterbindet.
Besonders günstige Prozessbedingungen ergeben sich in diesem Zusammenhang, wenn das im Heizprozess anfallende sauerstoffarme Abgas als Spülmedium in die Aufbereitungszone rückgeführt wird. Obwohl die sich durch die Spülung ergebende Einströmgeschwindigkeit des Abgases grundsätzlich ausreichend ist, um wirksam eine unerwünschte Anreicherung polyaromatischer Kohlenwasserstoffe an der Kohlenoberfläche zu vermeiden, empfiehlt es sich dennoch, das Abgas vor der Rückführung in die Aufbereitungszone einer Abgasfilterung zu unterwerfen. Um darüber hinaus das erfindungsgemäße Verfahren noch energie- und zeiteffizienter zu gestalten, kann das Abgas vor der Rückführung in die Aufbereitungszone einen Wärmetauscher durchlaufen. Der dadurch bewirkte Temperaturabfall des Abgases wirkt sich somit wiederum günstig auf die Abkühlung der mit dem Abgas in der Aufbereitungszone umspülten Kohle aus, sodass diese rascher weitergefördert
werden kann.
Um eine für die weitere Verwendung als Düngerzusatz bevorzugte, möglichst homogene Kohlesuspension zu erhalten, wird vorgeschlagen, dass die mechanische Zerkleinerung der Kohle in der Fördereinrichtung und / oder in der Mischzone erfolgt. In der Mischzone kann dies beispielsweise durch eine entsprechende Schereinwirkung erfolgen, wobei hierfür insbesondere Rührwerke zum Einsatz kommen können. Besonders vorteilhafte Bedingungen ergeben sich, wenn die Fördereinrichtung als Förderschnecke ausgebildet ist, die im Bereich des Schneckenauslasses mit einem Scher- bzw. Zerkleinerungsteil für die Kohlestücke ausgestattet ist. Die Förderschnecke kann zusätzlich oder alternativ dazu in kernprogressiver Bauweise gefertigt sein, sodass die Förderschnecke aufgrund der
sich in Schneckenlängsrichtung abnehmenden Ganghöhe als Reibmühle fungiert.
landwirtschaftlicher Nutzfahrzeuge abgefüllt werden kann.
Um eine Spülung der Kohle in der Aufbereitungszone auf einfache Weise zu ermöglichen, kann die Prozesskammer einen Abgasauslass aufweisen, der über eine Rückführleitung mit einem im Bereich der Aufbereitungszone in die Prozesskammer einmündenden Abgaseinlass strömungsverbunden ist. Um darüber hinaus in Abhängigkeit der Prozesskammergeometrie ein günstiges Strömungsprofil des Abgases beim Spülvorgang zu erreichen, kann auch eine Vielzahl an
Abgasauslässen und /oder Abgaseinlässen vorgesehen sein.
Ist es beispielsweise aufgrund eines erhöhten Heizwärmebedarfes erforderlich, dass hohe Mengen an Festbrennstoff verbrannt werden, muss dementsprechend auch die dabei anfallende Kohle kontinuierlich in den Suspensionsbehälter weiterbefördert werden, selbst wenn zu diesem Zeitpunkt der Bedarf an benötigter Kohlesuspension verhältnismäßig gering ausfallen sollte. Um daher eine bedarfssynchrone Zubereitung von Kohlesuspension zu ermöglichen, ohne den Heizprozess unterbrechen zu müssen, empfiehlt es sich, dass in Förderrichtung zwischen der Prozesskammer und dem Suspensionsbehälter ein luftdichter Auffangbereich für die pyrolytisch erzeugte Kohle vorgesehen ist, welcher über die
Fördereinrichtung mit dem Suspensionsbehälter verbunden ist. Zufolge dieser
Effekt einer zusätzlichen Sicherheitszone.
Um den Wirkungsgrad des Heizprozesses sowie die Produktausbeute der Pyrolyse weiter zu verbessern, wird vorgeschlagen, dass die Prozesskammer durch einen Brennkammerstein in eine Heizzone und eine Aufbereitungszone geteilt wird, wobei die Heizzone ein größeres Prozessvolumen als die Aufbereitungszone aufweist. Als das jeweilige Prozessvolumen wird dabei dasjenige Teilvolumen der Prozesskammer verstanden, welches im Wesentlichen dem entsprechenden Prozessschritt, d.h. dem oxidativen Heizprozess bzw. der Pyrolyse, zuzuordnen ist. Aufgrund dessen, dass die Heizzone im Vergleich zur Aufbereitungszone ein größeres Prozessvolumen aufweist, wird ein Kamineffekt in der Heizzone begünstigt, wodurch unerwünschter Sauerstoffeintrag in die Aufbereitungszone weiter reduziert werden kann. Umgekehrt dient eine Aufbereitungszone mit verhältnismäßig kleinem Prozessvolumen von Vornherein als Luftmassenbegrenzer, sodass hierdurch die Menge des Sauerstoffes bei der Pyrolyse geringgehalten werden kann. Um darüber hinaus ein günstiges Strömungsprofil bei der Spülung des Aufbereitungsbereiches zu schaffen, kann der Brennkammerstein selbst einen
Abgasauslass bzw. mehrere Abgasauslässe für das Spülmedium bilden.
In der Zeichnung ist der Erfindungsgegenstand beispielsweise dargestellt, und zwar in einer schematischen Darstellung einer erfindungsgemäßen Heizungsanlage zur
Durchführung eines erfindungsgemäßen Verfahrens.
vorzugsweise in Form von Hackschnitzeln, in die Prozesskammer 1 eingebracht.
In der Heizzone 2 wird der auf einem beweglichen Rost 5 aufliegende Festbrennstoff einem Oxidationsprozess zur Wärmegewinnung unterworfen, wobei hierzu Luft am Anfang der Heizzone 2 eingeblasen wird. Der Festbrennstoff wird mithilfe des Rostes 5 mit vorgegebener Vorschubgeschwindigkeit kontinuierlich von der Heizzone 2 zur Aufbereitungszone 3 bewegt und dort pyrolytisch zu Kohle umgewandelt. Da die in pflanzlichen Festbrennstoffen vorhandenen Holzinhaltsstoffe bereits selbst über einen hohen Sauerstoffinhalt verfügen, werden für den Oxidationsprozess in der Heizzone 2 nur verhältnismäßig geringe Mengen an eingeblasenem Luftsauerstoff benötigt. Die lediglich geringen Mengen an vorhandenem Luftsauerstoff in der Prozesskammer 1 begünstigen somit die in der Aufbereitungszone 3 erfolgende pyrolytische Umwandlung des Festbrennstoffs in Kohle. Um darüber hinaus die Prozessbedingungen weiter zu verbessern, kann der Eintrag der in die Heizzone 2 eingeblasenen Luft in Abhängigkeit der in der
Aufbereitungszone 3 gemessenen Temperatur erfolgen.
Die Prozesskammer 1 wird durch einen Brennkammerstein 6 in die Heizzone 2 und die Aufbereitungszone 3 geteilt, sodass die Heizzone 2 ein größeres
Prozessvolumen als die Aufbereitungszone 3 aufweist.
Zur Vermeidung von Oberflächenkondensation polyaromatischer Kohlenwasserstoffe während der Pyrolyse wird der sich in der Aufbereitungszone 3 zu Kohle umwandelnde Festbrennstoff bzw. die fertige verbrannte Kohle permanent mit dem im Heizprozess anfallenden, sauerstoffarmen Abgas als Spülmedium beaufschlagt und dabei gekühlt. Hierzu weist die Prozesskammer 1 bzw. der Brennkammerstein 6 einen aus Übersichtsgründen nicht näher dargestellten
Abgasauslass auf, der über eine Rückführleitung 7 mit einem im Bereich der
den Abgasauslass wieder aus der Prozesskammer 1 aus.
Am Ende der Aufbereitungszone 3 fällt die Kohle vom Rost 5 in einen Auffangbereich 8 und wird von dort über eine als Förderschnecke ausgebildete Fördereinrichtung 9 einem eine Mischzone 10 bildenden Suspensionsbehälter 11 zugeführt, der der Prozesskammer 1 in Förderrichtung F nachgelagert ist. Über einen lediglich schematisch angedeuteten Flüssigkeitsdosierer 12, beispielsweise ein elektronisch steuerbares Magnetventil, kann dem Suspensionsbehälter 11 Wasser als Suspensionsflüssigkeit zugegeben und gemeinsam mit der über die Fördereinrichtung 9 eingebrachte Kohle mithilfe eines Rührwerks 13 zu einer Kohlesuspension vermengt werden. Die für die Ausbildung einer möglichst homogenen Kohlesuspension notwendige mechanische Zerkleinerung der Kohle kann in der Fördereinrichtung 9, z.B. über ein entsprechendes Zerkleinerungsteil an der Förderschneckenspitze, und /oder im Suspensionsbehälter 11 über das
Rührwerk 13 erfolgen.
Um dem Suspensionsbehälter 11 jeweils aufeinander abgestimmte Mengen an Kohle und Suspensionsflüssigkeit aufzugeben, kann die Zudosierung bzw. der Eintrag an Suspensionsflüssigkeit und Kohle füllstands- sowie temperaturabhängig erfolgen. Hierzu können beispielsweise die Fördereinrichtung 9, der Flüssigkeitsdosierer 12, sowie nicht näher eingezeichnete Füllstands- und Temperatursensoren im Suspensionsbehälter 11 unter Ausbildung eines
gemeinsamen Regelkreises mit einer Steuereinrichtung verbunden sein.
Über einen mit einer Flüssigkeitsfördereinrichtung 14, z.B. einer Tauchpumpe,
strömungsverbundenen Suspensionsauslass 15 kann die Kohlesuspension zu
in Gülletanks landwirtschaftlicher Nutzfahrzeuge abgefüllt werden.
10713

Claims (8)

(345087.3) KA Patentansprüche
1. Verfahren zur kontinuierlichen Erzeugung von Wärme und einer Kohlesuspension in einem Festbrennstoff führenden Heizprozess, dadurch gekennzeichnet, dass Festbrennstoff in einer Heizzone (2) unter Wärmegewinnung teilweise verbrannt wird und nachfolgend in einer Aufbereitungszone (3) der nicht verbrannte Teil des Festbrennstoffs pyrolytisch zu Kohle umgewandelt wird, wonach die Kohle einer Fördereinrichtung (9) aufgegeben, zu einer Mischzone (10) weitergefördert und dort gemeinsam mit einer Suspensionsflüssigkeit zu einer
Kohlesuspension vermengt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der sich in der Aufbereitungszone (3) pyrolytisch zu Kohle umwandelnde Festbrennstoff zur Vermeidung von Oberflächenkondensation polyaromatischer Kohlenwasserstoffe
mit einem Spülmedium beaufschlagt und dabei gekühlt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das im Heizprozess anfallende sauerstoffarme Abgas als Spülmedium in die
Aufbereitungszone (3) rückgeführt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die mechanische Zerkleinerung der Kohle in der Fördereinrichtung (9) und / oder in
der Mischzone (10) erfolgt.
5. Heizungsanlage für ein Verfahren nach einem der vorangegangenen Ansprüche, gekennzeichnet durch eine die Heizzone (2) sowie die Aufbereitungszone (3) bildende Prozesskammer(1), sowie einen der
Prozesskammer (1) in einer Förderrichtung (F) nachgelagerten, die Mischzone (10)
11713
erzeugte Kohlesuspension aufweist.
6. Heizungsanlage nach Anspruch 5, dadurch gekennzeichnet, dass die Prozesskammer (1) einen Abgasauslass aufweist, der über eine Rückführleitung (7) mit einem im Bereich der Aufbereitungszone (3) in die Prozesskammer (1)
einmündenden Abgaseinlass strömungsverbunden ist.
7. Heizungsanlage nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass in Förderrichtung (F) zwischen der Prozesskammer (1) und dem Suspensionsbehälter (11) ein luftdichter Auffangbereich (8) für die pyrolytisch erzeugte Kohle vorgesehen ist, welcher über die Fördereinrichtung (9) mit dem Suspensionsbehälter (11)
verbunden ist.
8. Heizungsanlage nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Prozesskammer (11) durch einen Brennkammerstein (6) in eine Heizzone (2) und eine Aufbereitungszone (3) geteilt wird, wobei die Heizzone (2) ein größeres
Prozessvolumen als die Aufbereitungszone (3) aufweist.
ATA50118/2023A 2023-02-21 2023-02-21 Verfahren zur kontinuierlichen Erzeugung von Wärme und einer Kohlesuspension AT526530B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ATA50118/2023A AT526530B1 (de) 2023-02-21 2023-02-21 Verfahren zur kontinuierlichen Erzeugung von Wärme und einer Kohlesuspension
DE102024104030.0A DE102024104030A1 (de) 2023-02-21 2024-02-14 Verfahren zur kontinuierlichen Erzeugung von Wärme und einer Kohlesuspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50118/2023A AT526530B1 (de) 2023-02-21 2023-02-21 Verfahren zur kontinuierlichen Erzeugung von Wärme und einer Kohlesuspension

Publications (2)

Publication Number Publication Date
AT526530A4 true AT526530A4 (de) 2024-04-15
AT526530B1 AT526530B1 (de) 2024-04-15

Family

ID=90624764

Family Applications (1)

Application Number Title Priority Date Filing Date
ATA50118/2023A AT526530B1 (de) 2023-02-21 2023-02-21 Verfahren zur kontinuierlichen Erzeugung von Wärme und einer Kohlesuspension

Country Status (2)

Country Link
AT (1) AT526530B1 (de)
DE (1) DE102024104030A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2130893A2 (de) * 2008-06-05 2009-12-09 TerraNova Energy GmbH & Co. KG Verfahren zum Herstellen von Kohle insbesondere von Kohleschlamm
CN102032553A (zh) * 2010-11-26 2011-04-27 福建省光泽县旺众竹业有限公司 连续回转式生物质热解炭化和锅炉供热一体化的设备
EP3358253A1 (de) * 2017-02-06 2018-08-08 HERZ Energietechnik GmbH Verkohlungsanlage

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952558A1 (de) 2014-06-02 2015-12-09 Josef Peter Aigner Verfahren und Vorrichtung zur Pflanzenkohleherstellung
WO2017049202A1 (en) 2015-09-16 2017-03-23 Cool Planet Energy Systems, Inc. Biochar suspended solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2130893A2 (de) * 2008-06-05 2009-12-09 TerraNova Energy GmbH & Co. KG Verfahren zum Herstellen von Kohle insbesondere von Kohleschlamm
CN102032553A (zh) * 2010-11-26 2011-04-27 福建省光泽县旺众竹业有限公司 连续回转式生物质热解炭化和锅炉供热一体化的设备
EP3358253A1 (de) * 2017-02-06 2018-08-08 HERZ Energietechnik GmbH Verkohlungsanlage

Also Published As

Publication number Publication date
DE102024104030A1 (de) 2024-08-22
AT526530B1 (de) 2024-04-15

Similar Documents

Publication Publication Date Title
DE3049706C2 (de) Vorrichtung zur Behandlung von organischen Materialstücken in einer gasdicht verschließbaren Behandlungskammer
DE2651302B2 (de) Vorrichtung zur Destillationsgaserzeugung aus Abfall
DE60001669T2 (de) Verfahren und vorrichtung zur abfallpyrolyse und vergasung
DD202176A5 (de) Verfahren und einrichtung zur kontinuierlichen erzeugung von brenngas aus organischen abfallstoffen
AT526530B1 (de) Verfahren zur kontinuierlichen Erzeugung von Wärme und einer Kohlesuspension
WO2009095015A1 (de) Verfahren zur karbonisierung organischer substanzen
DE69629728T2 (de) Verfahren zur aufbereitung von ölhaltigem abfall
DE2442122A1 (de) Pyrolyse-behaelter
DE2242411A1 (de) Herstellungsverfahren fuer grobe aktivkohle-partikel
DE102013112995B4 (de) Verfahren zum Aufheizen eines Brennstoffbettes in einem Festbettdruckvergasungsreaktor
DE2304649C3 (de) Verfahren und Vorrichtung zur gleichzeitigen Veraschung von brennbaren Abfällen und Schlamm
DE82409C (de)
DE2637564A1 (de) Verfahren und vorrichtung zum behandeln von fliessfaehigem gut
DE2354513C3 (de) Verfahren zur thermischen Behandlung von verunreinigten Salzlösungen
DE3727464C2 (de)
DE479793C (de) Anlage zum Vergasen und Entgasen von Kohlenstaub im Gasstrom
DE849837C (de) Verfahren zum Einleiten brennbarer Spuelgase in Gas- oder Koksoefen
DE102014001785B4 (de) Kleinstfeuerungsanlage für biogene Festbrennstoffe
DE535831C (de) Verfahren zur Erzeugung von Koks in geformter oder brikettaehnlicher Gestalt
DE1938541A1 (de) Verfahren und Ofen zum Brennen,insbesondere zum Sintern von Dolomit oder Magnesia,bei hoher Temperatur
DE1805333A1 (de) Verfahren zur Herstellung von Koks aus Kohle
DE524555C (de) Verfahren und Vorrichtung zur Verkokung von Holz oder Steinkohle
DE840571C (de) Verfahren und Vorrichtung zum Spuelgasschwelen und Vergasen aschereicher Brennstoffe in stetig betriebenen Querstromoefen
AT92567B (de) Feuerung für Dampfbacköfen.
WO2023118213A1 (de) Pyrolyseverfahren und pyrolysevorrichtung zur herstellung von pyrolysegas und pyrolysekoks