AT390326B - Verfahren zur temperaturmessung eines objektes mittels strahlungspyrometrie - Google Patents

Verfahren zur temperaturmessung eines objektes mittels strahlungspyrometrie Download PDF

Info

Publication number
AT390326B
AT390326B AT0099987A AT99987A AT390326B AT 390326 B AT390326 B AT 390326B AT 0099987 A AT0099987 A AT 0099987A AT 99987 A AT99987 A AT 99987A AT 390326 B AT390326 B AT 390326B
Authority
AT
Austria
Prior art keywords
radiation
temperature
measurement
measured
measuring
Prior art date
Application number
AT0099987A
Other languages
English (en)
Other versions
ATA99987A (de
Inventor
Bernhard Dipl Ing Oehry
Original Assignee
Plansee Metallwerk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee Metallwerk filed Critical Plansee Metallwerk
Priority to AT0099987A priority Critical patent/AT390326B/de
Publication of ATA99987A publication Critical patent/ATA99987A/de
Application granted granted Critical
Publication of AT390326B publication Critical patent/AT390326B/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/602Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using selective, monochromatic or bandpass filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0804Shutters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0896Optical arrangements using a light source, e.g. for illuminating a surface

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description


   <Desc/Clms Page number 1> 
 



   Die Erfindung betrifft ein Verfahren zur Temperaturmessung eines Objektes mittels Strahlungspyrometrie in Anwesenheit wesentlicher Anteile an Störstrahlung unter Verwendung eines gepulsten Hilfsstrahlers, wobei jedoch im Unterschied zu bisherigen Verfahren der Hilfsstrahler zur gezielten periodischen Beeinflussung der zu messenden Temperatur dient
Die Bestimmung der Temperatur eines Objektes über die Messung seiner Wärmestrahlung ist heute in allen jenen Fällen eine unverzichtbare Methode, in denen eine Berührung des zu messenden Objektes ausscheidet-aus   Entfemungsgründen,   zur Vermeidung der Temperatur-Beeinflussung durch die Messung oder auch zur Vermeidung grossen technischen Aufwandes, z. B. bei der Messung sehr hoher Temperaturen.

   Gleichwohl beinhalten alle bis heute bekannt gewordenen Verfahren der Strahlungspyrometrie unterschiedliche, teilweise systematische Fehler, welche eine exakte Temperaturbestimmung nur in idealisierten Ausnahmefällen   ermöglicht.   



   Grundlage für die Strahlungspyrometrie ist bekanntlich das Planck'sche Strahlungsgesetz, welches eine Beziehung zwischen Temperatur und Strahlungsintensität eines Objektes angibt. Die Schwierigkeiten in der praktischen Umsetzung dieser Beziehung liegen zum einen in der nicht hinreichenden Kenntnis der Stoffparameter, wie   Emissions- bzw. Reflexionsvermögen   des Objektes. Eine Vielzahl von Messverfahren versucht den Einfluss dieser physikalischen Faktoren auf das Messergebnis zu eliminieren oder zu kompensieren, z. B. Versuche, Bedingungen eines schwarzen Strahlers durch Messung in Löchern an der Objektoberfläche anzunähern. Ein zweiter bis heute nicht zufriedenstellend gelöster Problemkreis bei der praktischen Durchführung des Verfahrens betrifft Massnahmen, um die Verfälschung der Messwerte durch Störstrahlung auszuschalten.

   Diese Störstrahlung geht von der Umgebung des Messobjektes aus, trifft auf das Messobjekt auf und wird von diesem teilweise reflektiert. Wird das Messobjekt von aussen durch Wärmestrahlung aufgeheizt, so dominiert dieser systematische Fehler den wahren Messwert für die Temperatur. 



   Des weiteren sind Massnahmen gegen die Verfälschung der Messwerte durch Absorption und Streuung der Strahlung in den Medien des Strahlenganges (Transmissionsgrad) erforderlich. 



   Ein bewährtes Verfahren, die Temperatur eines Objektes ohne Kenntnis dessen Emissionsfaktor aus der Strahlungsintensität zu ermitteln, ist das Verfahren der Ratiopyrometrie. Nach diesem Messprinzip wird die Temperaturstrahlung des Objektes in zwei Wellenlängenbereichen erfasst und lediglich das Verhältnis der beiden Strahlungsintensitäten als wenig emmissionsabhängiges Mass für die Objekttemperatur ermittelt. Dieses Verfahren liefert jedoch zuverlässige Temperaturwerte nur in den Fällen, in denen die umgebende Störstrahlung im Verhältnis zur Objektstrahlung   vernachlässigbar   klein ist. 



   Mit dem Einzug von Mikroprozessoren in die Messtechnik wurden Verfahren bekannt, bei denen aufbauend auf dem Planck'schen Strahlungssatz aus einer Vielzahl von Strahlungs-Messwerten bei unterschiedlichen Messzuständen ein Gleichungssystem mit einer endlichen Anzahl von Unbekannten lösbar wird. Entsprechende Verfahren und die verwendeten Einrichtungen sind beispielsweise in den DE-PS   31 15   887, DE-OS   33 43 043,   DE-OS 34   17 984   und DE-OS 31 49 138 in allen Einzelheiten beschrieben. Doch selbst diese aufwendigen Verfahren zur Temperatur-Ermittlung werden bei grösseren Störstrahlungs-Einflüssen ungenau, sobald die   Störstrahlung   in die Grössenordnung der Objekt-Eigenstrahlung kommt, sogar unbrauchbar. 



   Beispielsweise in der oben genannten DE-OS 34 17 984 sowie in der DE-OS 31 49 138 sind für die Ermittlung der wahren Objekttemperatur die Verwendung von Hilfsstrahlem genannt Die Strahlungsintensität und Wellenlänge bzw. das Intensitätsspektrum dieser Hilfsstrahler in Abhängigkeit von der Wellenlänge sind genauestens bekannt. Die Objektstrahlung wird einmal ohne, einmal mit Zuschaltung des auf das Objekt gerichteten Hilfsstrahlers gemessen und daraus zusätzlich der Reflexionsgrad der Objektoberfläche bestimmt. In anderen bekannten Fällen wird das Objekt durch verschieden stark strahlende Hilfsquellen nacheinander auf verschiedene Temperaturen gebracht, um dadurch - wie oben   erwähnt - ein   lösbares Gleichungssystem bei Erfassung vieler unbekannter Parameter zu erhalten.

   Ein Nachteil der letztgenannten Verfahren ist ihr grosser technischer Aufwand, vor allem durch die Messung auf vier oder mehr Wellenlängenbereichen. Dies schliesst vielfach eine praktische Anwendung ausserhalb von Speziallabors aus. Doch auch diese Verfahrensvariante erlaubt nur dann eine brauchbare Temperaturmessung, wenn die Grösse der Störstrahlung aus der Umgebung deutlich unter derjenigen des Messobjektes liegt. 



   Die CH-PS   552 203   beschreibt ein Verfahren zur berührungslosen Messung der Oberflächentemperatur. Dort wir ein gepulster Hilfsstrahler eingesetzt, um den Emissions- und Reflexionsfaktor des Objektes exakt zu bestimmen bzw. den Einfluss von Schwankungen dieser Faktoren zu eliminieren. Sofern das Objekt durch die hilfsweise Bestrahlung eine zusätzliche Temperaturschwankung bzw. thermische Belastung erfährt, wird das dort als unabwendbar in Kauf genommen. Eventuelle Temperaturschwankungen durch die Hilfsbestrahlung werden dort weder besonders registriert noch als Mass der Oberflächentemperatur herangezogen. 



   Es sind weitere Verfahren bekannt, bei denen unter Verwendung von das Messobjekt beheizenden oder lediglich beleuchtenden Hilfsstrahlern die Emissivität des Messobjektes bestimmt wird ; ihnen allen ist gemeinsam, dass eine Strahlungsmessung im Wellenlängenbereich der Hilfsstrahler vorgenommen wird und dass der Einfluss von   Störstrahlung   auf den Wert der Temperatur durch diese Verfahren in keinem Fall unterdrückt wird. 



   Die Gewichtigkeit einer Ausschaltung von Störstrahlung bei der Strahlungspyrometrie soll nachfolgend anhand einer konkreten Problemstellung nochmals verdeutlicht werden. 



   Wird beispielsweise ein Werkstück in einem Ofen durch Temperaturstrahlung einer glühenden Heizwendel oder einer Flamme beheizt, so ist die Temperatur der Heizung notwendigerweise höher als die des Werkstückes. 

 <Desc/Clms Page number 2> 

 Aus der extrem starken Zunahme der Strahlung mit der Temperatur gemäss dem Planck'schen Gesetz folgt, dass die Temperaturstrahlung der Heizung (Störstrahlung) die des kühleren Werkstückes um ein Vielfaches   übertrifft.   Die Strahlung der Heizung fällt auf das Werkstück, wird von diesem teilweise absorbiert und erwärmt es. Ein Teil der Heizstrahlung wird jedoch reflektiert. Daraus ergibt sich, dass vom Werkstück nicht nur seine eigene Temperaturstrahlung ausgeht, sondern auch die reflektierte Strahlung der Heizung, welche in Fällen wie dem geschilderten regelmässig stark überwiegt.

   Ein auf das Werkstück gerichtetes Pyrometer misst daher nicht die Werkstücktemperatur, sondern beinahe exakt die Temperatur der Heizung, was einen Fehler in unkontrollierbarer Höhe verursacht. 



   Häufig lässt sich die zur Beheizung notwendige, aber die Messung störende Heizstrahlung nicht vom Messpunkt fernhalten, sei es, weil zu wenig Platz für Abschirmvorrichtungen vorhanden ist oder diese die Objektbeheizung unzulässig verfälschen würden, sei es, weil bei entsprechenden Temperaturen gekühlte Optiken, die so nahe an das Werkstück herangeführt werden, dass sie nur die Strahlung des Werkstückes selbst aufnehmen, nicht anzuwenden sind. Doch eine Kompensation des Störstrahlungsanteils an der Objektstrahlung ist in den geschilderten Fällen nur selten möglich, denn bei allen Kompensationsmethoden, z. B.

   US-PS 4 144 758, wird die Störstrahlung, die von der Heizung bzw. als Reflexionsstrahlung von dem Werkstück ausgeht, entweder getrennt gemessen oder aus einem Gleichungssystem bestimmt und dann in Rechnung gestellt, d. h. von der gesamten vom Messobjekt ausgehenden Störstrahlung subtrahiert. Dominiert jedoch die Störstrahlung in der Strahlung des Werkstückes, so ist an eine hinreichende Kompensation nicht mehr zu denken, weil die Eigenstrahlung des Messobjektes aus der Differenz zweier nahezu gleicher Messgrössen errechnet und damit extrem fehleranfällig wird. 



   Aufgabe vorliegender Erfindung ist danach ein Verfahren zur berührungslosen, wenig emissionsabhängigen Temperaturmessung eines Objektes mittels Strahlungs-Pyrometrie, welches die vorgenannten Nachteile bezüglich Messgenauigkeit und Anwendbarkeit beim Vorliegen grosser Störstrahlungsanteile aus der Umgebung nicht aufweist. Das Messverfahren und die Einrichtungen zu seiner praktischen Ausführung soll eine Verwertung nicht nur in speziellen Messlabors, sondern auch im betrieblichen Alltag ermöglichen. 



   Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass die zu messende Objekttemperatur mittels des gepulsten Hilfsstrahlers im Messpunkt periodisch verändert wird, dass die als Ratiopyrometrie bekannte Verhältnismessung der Strahlungsintensitäten zweier Wellenlängenbereiche auf den Wechsellichtanteil der vom Messpunkt emittierten Eigen- und Störstrahlung angewandt wird und dass allein das Verhältnis der periodischen Wechselanteile der Strahlungsintensitäten als Mass für die zu messende Objekttemperatur erfasst wird. 



   Vorteilhafte Ausgestaltungen des erfindungsgemässen Verfahrens sind in den Unteransprüchen 2 bis 6 angegeben. 



   Der der Erfindung zugrundeliegende Gedanke besteht darin, die Temperaturstrahlung des Messobjektes von der der Störstrahlung unterscheidbar zu machen. Dazu wird die Temperatur des Messpunkts moduliert, d. h. periodisch erhöht und wieder abgesenkt. Hierzu bietet sich insbesondere die Bestrahlung des Messobjektes mittels eines weitgehend monochromatischen Lichtes von einem Laser oder einer Bogenentladungslampe an. Gründe hierfür sind : - grosse Leistung kann im Messpunkt konzentriert werden - die Leistung kann sehr leicht durch periodisches Unterbrechen des Lichtstrahles moduliert werden - die Lichtquelle kann ausserhalb der erwärmten Zone (Ofenraum) angebracht werden und den Messpunkt zum
Beispiel durch ein Fenster beleuchten - das monochromatische Licht kann durch ein einfaches Sperrfilter vom Pyrometer ferngehalten werden. 



   Die periodisch unterbrochene Hilfsstrahlung fällt auf den Messpunkt des Objektes und moduliert dort die Temperatur, wobei die Abkühlung zwischen den Heizpulsen durch Abstrahlung nach aussen und Wärmeleitung in das Messobjekt erfolgt. Diese Modulation der Temperatur des Messpunktes bedingt eine Modulation der abgegebenen, vom Pyrometer gemessenen Temperaturstrahlung. Die modulierte Strahlung des Objektes - und nur diese ist moduliert, nicht etwa auch die reflektierte   Störstrahlung - ist   im Pyrometer eindeutig von der unmodulierten Störstrahlung zu unterscheiden. Das Pyrometer soll also nur auf den Wechselanteil der Strahlung (Wechsellicht) reagieren, was durch einfache Änderung in der Elektronik eines normalen Pyrometers erreicht werden kann.

   Vorzugsweise wird das Wechsellicht durch Synchrondemodulation im Takt der Hilfsstrahlung, d. h. frequenz-und phasensensitiv und somit sehr empfindlich, erfasst. 



   Das Überraschende und keineswegs Naheliegende ist nun, dass aus dem Wechsellicht die Temperatur des Messobjektes bestimmt werden kann. Aus dem Planck'schen Strahlungsgesetz 
 EMI2.1 
 

 <Desc/Clms Page number 3> 

 
M die Strahlungsintensität bzw. Strahlungsdichte pro Emitter-Flächeneinheit, ausgesandt pro
Raumwinkeleinheit in Normalenrichtung zur Emitterfläche
Epsilon die Emissivität   Cl'C2   physikalische Konstanten
Lambda die Wellenlänge der Temperaturstrahlung
T die Temperatur des Messobjektes ergibt sich für das Wechsellicht   M   (in linearer Näherung) : 
 EMI3.1 
 
 EMI3.2 
 
 EMI3.3 
 
 EMI3.4 
 
 EMI3.5 
 
 EMI3.6 
 
 EMI3.7 
 
 EMI3.8 
 



   Zur weiteren Steigerung der Messgenauigkeit und weiteren Verringerung der Emissivitätsabhängigkeit kann die   Strahlungsintensität   auch in mehr als zwei Wellenlängenbereichen (Anzahl n >   2),   vorzugsweise im sichtbaren oder infraroten Spektralbereich, gemessen werden. Wird aus jeweils zwei, bei unterschiedlichen 
 EMI3.9 
 
 EMI3.10 
 "nemissionsabhängiger Wert   für   die wahre Temperatur des Messobjektes bestimmt werden. 



   Es stellt sich in diesem Zusammenhang die Frage, wie gross die Leistung eines Hilfsstrahlers sein muss, um eine genügend grosse und für die Messung genügend rasche Modulation der Temperatur zu erzeugen. Tatsächlich reicht bei metallischen Messobjekten eine Leistung von einigen wenigen Watt, um die für das erfinderische Verfahren benötigte Wechselamplitude der Temperatur von   0, 1  C   bis 1    C   bei für die Detektion genügend hoher Frequenz im Bereich von   1 - 100   Hertz zu erzeugen. Dieses neue Verfahren lässt sich also mit einem relativ kleinen, leicht erhältlichen Laser oder einer handelsüblichen Bogenentladungslampe durchführen. 



   Infolge des starken Anstiegs der Strahlung mit der Temperatur erbringt bereits ein Temperaturwechsel von nur einem Grad (T =   1 oc)   für die Messung des Wechsellichtes mit einem erfindungsgemäss modifizierten Pyrometer zufriedenstellende Ergebnisse, d. h. eine Modulationstiefe von rund 1 %. 



   Es kann nach diesem Verfahren die wahre Temperatur des Objektes trotz der Störstrahlung bestimmt werden 

 <Desc/Clms Page number 4> 

 und zwar ebensogut, wie mit einem normalen Ratiopyrometer unter idealisierten Bedingungen, d. h. ohne Störstrahlung. Weitere Vorteile des erfinderischen Verfahrens und seiner praktischen Anwendung gegenüber dem Stand der Technik sind - grosse Genauigkeit - hohe Empfindlichkeit dank synchroner Detektion - echte berührungslose Femmessung, sogar durch ein Ofenfenster - Messung in einem wohldefinierten Punkt des Messobjektes - das Gesichtsfeld des Pyrometers ist unerheblich, solange sich der vom Hilfsstrahler erwärmte Messpunkt innerhalb des Gesichtfeldes befindet - alle Vorteile einer Relativmessung, wie geringe Fehler durch Staub,

   Rauch und verschmutzte Optik sowie geringe Drift infolge Alterung des Gerätes - elektrisches Ausgangssignal zur Prozesssteuerung aufgrund der aktuellen Objekttemperatur - relativ preiswerte Messeinrichtung ; neben einem speziellen Pyrometer wird nur noch eine preiswerte
Lichtquelle geringer Leistung benötigt. 



   

Claims (6)

  1. PATENTANSPRÜCHE 1. Verfahren zur Temperaturmessung eines Objektes mittels Strahlungspyrometrie unter Verwendung eines auf das Objekt gerichteten, gepulsten Hilfsstrahlers, unbeschadet wesentlicher Anteile an Störstrahlung, dadurch gekennzeichnet, dass die zu messende Objekttemperatur mittels des gepulsten Hilfsstrahlers im Messpunkt periodisch verändert wird, dass die als Ratiopyrometrie bekannte Verhältnismessung der Strahlungsintensitäten zweier Wellenlängenbereiche auf den Wechsellichtanteil der vom Messpunkt emittierten Eigen-und Störstrahlung angewandt wird und dass allein das Verhältnis der periodischen Wechselanteüe der Strahlungsintensitäten als Mass für die zu messende Objekttemperatur erfasst wird.
  2. 2. Verfahren zur Temperaturmessung nach Anspruch 1, dadurch gekennzeichnet, dass die Objekttemperatur mittels Laserstrahlung periodisch verändert wird.
  3. 3. Verfahren zur Temperaturmessung nach Anspruch 1, dadurch gekennzeichnet, dass die Objekttemperatur mittels Strahlung einer Bogenentladungslampe periodisch verändert wird.
  4. 4. Verfahren zur Temperaturmessung nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass die Objekttemperatur im Messpunkt um 0, 1 bis l C periodisch verändert wird.
  5. 5. Verfahren zur Temperaturmessung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Modulations-Frequenz der periodischen Hilfsstrahlung bei 1 bis 100 Hertz liegt.
  6. 6. Verfahren zur Temperaturmessung nach Anspruch 5, dadurch gekennzeichnet, dass die periodische Intensitätsänderung der Messstrahlung mittels Synchrondemodulation im Takt der Hüfsstrahlung gemessen wird.
AT0099987A 1987-04-23 1987-04-23 Verfahren zur temperaturmessung eines objektes mittels strahlungspyrometrie AT390326B (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT0099987A AT390326B (de) 1987-04-23 1987-04-23 Verfahren zur temperaturmessung eines objektes mittels strahlungspyrometrie

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0099987A AT390326B (de) 1987-04-23 1987-04-23 Verfahren zur temperaturmessung eines objektes mittels strahlungspyrometrie

Publications (2)

Publication Number Publication Date
ATA99987A ATA99987A (de) 1989-09-15
AT390326B true AT390326B (de) 1990-04-25

Family

ID=3504614

Family Applications (1)

Application Number Title Priority Date Filing Date
AT0099987A AT390326B (de) 1987-04-23 1987-04-23 Verfahren zur temperaturmessung eines objektes mittels strahlungspyrometrie

Country Status (1)

Country Link
AT (1) AT390326B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010426A1 (en) * 1991-11-22 1993-05-27 Secretary Of State For Trade And Industry Temperature measuring apparatus
DE102006026920B4 (de) * 2006-06-09 2008-05-21 ArcelorMittal Eisenhüttenstadt GmbH Vorrichtung zur Unterdrückung von Messwert verfälschenden Strahlungsanteilen bei berührungslos arbeitenden IR-Messeinrichtungen in Hochtemperaturöfen
EP2100554A1 (de) * 2008-03-15 2009-09-16 Horst-Wolfgang Spechtmeyer Verfahren und Vorrichtung zur Messung und Erzeugung von Kommunikation mittels Impulsen von wärmestrahlenden Körpern
DE102012010461A1 (de) * 2012-05-26 2013-11-28 Testo Ag Verfahren zur Korrektur eines reflektierten Strahlungsanteils in einem ortsauflösenden Messergebnis und Messvorrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808439A (en) * 1972-04-24 1974-04-30 Us Army Laser illumination thermal imaging device for nondestructive testing
CH552203A (de) * 1972-11-07 1974-07-31 Bbc Brown Boveri & Cie Verfahren zur beruehrungslosen messung der oberflaechentemperatur.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808439A (en) * 1972-04-24 1974-04-30 Us Army Laser illumination thermal imaging device for nondestructive testing
CH552203A (de) * 1972-11-07 1974-07-31 Bbc Brown Boveri & Cie Verfahren zur beruehrungslosen messung der oberflaechentemperatur.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010426A1 (en) * 1991-11-22 1993-05-27 Secretary Of State For Trade And Industry Temperature measuring apparatus
DE102006026920B4 (de) * 2006-06-09 2008-05-21 ArcelorMittal Eisenhüttenstadt GmbH Vorrichtung zur Unterdrückung von Messwert verfälschenden Strahlungsanteilen bei berührungslos arbeitenden IR-Messeinrichtungen in Hochtemperaturöfen
EP2100554A1 (de) * 2008-03-15 2009-09-16 Horst-Wolfgang Spechtmeyer Verfahren und Vorrichtung zur Messung und Erzeugung von Kommunikation mittels Impulsen von wärmestrahlenden Körpern
DE102012010461A1 (de) * 2012-05-26 2013-11-28 Testo Ag Verfahren zur Korrektur eines reflektierten Strahlungsanteils in einem ortsauflösenden Messergebnis und Messvorrichtung
DE102012010461B4 (de) * 2012-05-26 2014-03-06 Testo Ag Verfahren zur Korrektur eines reflektierten Strahlungsanteils in einem ortsauflösenden Messergebnis und Messvorrichtung

Also Published As

Publication number Publication date
ATA99987A (de) 1989-09-15

Similar Documents

Publication Publication Date Title
DE69312894T2 (de) Pyrometer mit Emissionsmesser
DE1573401C3 (de) Anordnung zur zerstörungsfreien Werkstoffprüfung auf verborgene Defekte
DE2627254C3 (de) Verfahren zur Messung oder Regelung der Temperatur eines Graphitrohres
DE3246290C2 (de)
EP0682243B1 (de) Vorrichtung und Verfahren zur Messung des Bräunungsgrades eines Gargutes
DE2551965B2 (de) Meßanordnung
DE102006026907A1 (de) Induktionskochmulde und Verfahren zur Ermittlung einer Temperatur eines Bodens eines Zubereitungsbehälters
AT390326B (de) Verfahren zur temperaturmessung eines objektes mittels strahlungspyrometrie
DE19654773C1 (de) Verfahren und Vorrichtung zur betrieblichen Messung der Temperatur in mindestens einer Kochzone eines Kochfeldes mit einer Glaskeramikplatte
CH421557A (de) Kalorimeteranordnung zur Messung der Strahlungsenergie eines Bündels kohärenter, elektromagnetischer Strahlung
WO2002086432A1 (de) Verfahren zur bestimmung von temperaturen an halbleiterbauelementen
WO2015018891A1 (de) Kocheinrichtung und verfahren zum betreiben der kocheinrichtung
EP0419525B1 (de) Vorrichtung zur messung der strahlungsleistung von lasern
EP1910787A1 (de) Anordnung zur bestimmung der gastemperatur
DE1648318A1 (de) Verfahren und Geraet zur Temperaturmessung
EP0123672A2 (de) Verfahren zur Bestimmung der Massen von absorbierenden Anteilen einer Probe und Vorrichtung zur Durchführung des Verfahrens
DE3408792C2 (de) Vorrichtung zur pyrometrischen Temperaturmessung
DE2903328C2 (de) Verfahren und Vorrichtung zur pyrometrischen Messung der Graphitrohrtemperatur in einer GraphitrohrkUvette
DE102013102119A1 (de) Kocheinrichtung
WO2015018890A1 (de) Kocheinrichtung und verfahren zum betreiben der kocheinrichtung
CH567262A5 (en) Extinction detector with electromagnetic radiation source - has radiation penetrating medium under analysis
EP2775786B1 (de) Kocheinrichtung
DE102013102110A1 (de) Kocheinrichtung
DD146340A1 (de) Pyrometer
CH278323A (de) Strahlungstemperaturmessgerät.

Legal Events

Date Code Title Description
ELJ Ceased due to non-payment of the annual fee
RER Ceased as to paragraph 5 lit. 3 law introducing patent treaties