<Desc/Clms Page number 1>
Gegenstand der Erfindung sind feuerfeste keramische Isoliersteine, bestehend aus geblähten Perlitkörnern und einem Bindemittelgerüst. Zur Herstellung der erfindungsgemässen Isoliersteine wird ein Gemenge aus Portlandzement, geblähtem Perlit, Sand eines magmatischen Feldspat und/oder Feldspatvertreter enthaltenden Gesteins und Wasser zu einem Rohling geformt und durch hydraulische Erhärtung verfestigt und gegebenenfalls gebrannt. Dabei ist von Vorteil, wenn ein Gemenge aus
EMI1.1
Die Formgebung erfolgt vorzugsweise mittels Vibration gegebenenfalls unter einem leichten Pressdruck bis maximal 9, 81 N/cm2. Nach einer besonderen Ausführungsform wird als Bindemittel eine CaO-und gegebenenfalls eine Si02 -Komponente verwendet und der geformte Rohling einer Dampfhärtung unterworfen.
Zur Kompensierung einer gegebenenfalls auftretenden Brennschwindung kann das trockene Gemenge Kyanit-Gehalte bis zu 20 Gew.-% enthalten.
Der keramische Brand erfolgt zweckmässigerweise in situ. Dabei ist wesentlich, dass die Schwindung möglichst geringer als 1% ist. Diese Bedingung konnte erreicht werden, obwohl eine niedrig schmelzende Komponente, nämlich Perlit, verwendet wird. Eine gegebenenfalls rohstoffbedingte Brennschwindung kann durch besonders fein gemahlenen Kyanit kompensiert werden.
Es ist bekannt, dass aus Portlandzementstein beim ersten Erhitzen auf Temperaturen über 10000C sowohl das freie als auch das chemisch gebundene Wasser ausgetrieben wird. Bei gleichmässiger Erhitzung verläuft dieser Vorgang jedoch nicht kontinuierlich, sondern der Zementstein verliert je nach Bindung des Wassers in bestimmten Temperaturbereichen mehr oder weniger Wasser. Die Übergänge sind fliessend, es ist jedoch anzunehmen, dass zwischen 100 und 2000C das freie und das physikalisch adsorbierte Wasser des Zementsteins, zwischen 400 und 600 C ein Teil des chemisch gebundenen Wassers und zwischen 800 und 900 C der Rest des chemisch gebundenen Wassers ausgetrieben wird.
Aus dem Calciumhydroxyd, das sich bei der Hydratation des Zementes gebildet hat, entsteht bei der Erhitzung freies Calciumoxyd, das beim Abkühlen in feuchter Atmosphäre mit erheblicher Volumenvergrösserung wieder in Calciumhydroxyd übergeht. Die Volumenvergrösserung verursacht Rissbildung und Zermürbung des Zementsteines.
Bei Feuerbetonen auf Portlandzement-Basis wird versucht, durch die Zugabe von Zusatzstoffen in Form mehlfeiner, feuerfester Stoffe, sogenannter keramischer Stabilisatoren, das freiwerdende
EMI1.2
B.900 C ein.
Das Austreiben des Wassers aus dem Zementstein ist mit einer Schwindung von etwa 2, 5% und einer erheblichen Festigkeitsminderung, insbesondere im Bereich zwischen 600 und 1100 C verbunden. Durch die Zugabe der Stabilisatoren kann das Schwinden in Feuerbetonen zwar herabgesetzt und die Festigkeit vor der keramischen Bindung gesteigert werden. Dennoch werden die günstigen relativen Festigkeitswerte und geringen Schwindwerte, die sich bei der Verwendung von Tonerde-Schmelzzement bei Feuerbetonen einstellen, nicht erreicht.
In feuerfesten und hochfeuerfesten Betonen können sich beim Erhitzen das Schwinden des Zementsteines und die Ausdehnung des Zuschlagstoffes überlagern. Insofern kann die Schwindung neben der Wirkung des Zusatzstoffes auch durch den Kornaufbau bestimmter Zuschlagstoffe beeinflusst werden. Dies ist bei nur hitzebeständigen Betonen, deren Anwendungsgrenze unterhalb von 1100 C liegt, nicht möglich, weil deren Zuschlagstoffe, die z. B. Basalt oder expandierter Perlit sein können, bei hohen Temperaturen bereits Schmelzphasen bilden, die ihrerseits das Schwinden begünstigen und die Anwendungsgrenze herabsetzen. Wegen der genannten Eigenschaften darf daher das erste Erhitzen bei Feuerbetonen trotz Stabilisatoren nur unter besonderen Vorkehrungen erfolgen, um Schäden der Zustellung zu vermeiden.
Die Erkenntnisse auf dem Gebiet des Feuerbetons lassen sich nicht ohne weiteres auf feuerfeste keramische Isoliersteine der eingangs erwähnten Art übertragen. Bei den geformten Isoliersteinen, die häufig in grünem Zustand in das Ofenmauerwerk eingebaut werden, kommt es nämlich darauf an, dass die erforderliche Festigkeit der Steine auch im Bereich zwischen 600 und 1100 C
<Desc/Clms Page number 2>
gewährleistet ist und keine Schwindung beim Erhitzen auftritt, da andernfalls die Statik und Masshaltigkeit des Mauerwerkes unkontrollierbar wird. Steine, die ein aus Portlandzement bestehendes Bindemittelgerüst besitzen, weisen das sehr hohe Schwindmass und den sehr hohen Festigkeitsschwund des reinen Portlandzementsteines nicht auf.
Offenbar wirkt in diesen Steinen der geblähte Perlitgrus in mehlfeiner Form oder aber das grobe Perlitkorn weitgehend stabilisierend, und der Rest des freien Calciumoxyds verändert beim Hydratisieren das Gefüge des Steines nicht derart, dass es zermürbt wird. Dennoch erreichen die Isoliersteine auf Portlandzement-Basis nicht die niedrigen Schwindmasse und hohen Festigkeiten beim Erhitzen wie Isoliersteine auf Tonerde-Schmelzzement-Basis.
Aufgabe der Erfindung ist daher, feuerfeste keramische Isoliersteine, bestehend aus geblähten Perlitkörnern und einem Bindemittelgerüst zu schaffen, in denen das Calciumoxyd beim Erhitzen vollständig chemisch gebunden wird, und deren Schwindwerte und Festigkeitsverhalten den Werten der Isoliersteine mit einem Bindemittelgerüst aus Tonerde-Schmelzzement entsprechen.
Gegenstand der Erfindung sind deshalb feuerfeste keramische Isoliersteine, bestehend aus geblähten Perlitkörnern und einem Bindemittelgerüst, die dadurch gekennzeichnet sind, dass das Bindemittelgerüst aus Portlandzement besteht und im Bindemittelgerüst Körner eines Feldspat und/oder Feldspatvertreter enthaltenden magmatischen Gesteins mit einem Korngrössenbereich von vorzugsweise 0, 1 bis 4 mm in einer Menge von vorzugsweise 30 bis 80 Gew.-% eingebettet sind.
Die erfindungsgemässen keramischen Isoliersteine sind weiters dadurch gekennzeichnet, dass im Bindemittelgerüst Körner eines basischen magmatischen Gesteins eingebettet sind. Besonders vorteilhaft ist es, wenn die Gesteinskörner aus Basalt und/oder Gabbro und/oder Phonolit bestehen und wenn der Feststoffanteil der Gesteinskörner insbesondere 40 bis 60 Gew.-%, bezogen auf die Gesamtfeststoffmenge im Bindemittelgerüst beträgt.
Nach einer besonderen Ausführungsform weist der Gesteinssand folgenden Korngrössenbereich
EMI2.1
<tb>
<tb> Kornbereich <SEP> (mm) <SEP> Anteil <SEP> (Gew.-%)
<tb> 2 <SEP> bis <SEP> 4 <SEP> 10 <SEP> bis <SEP> 30
<tb> 1 <SEP> bis <SEP> 2 <SEP> 10 <SEP> bis <SEP> 30
<tb> 0,5 <SEP> bis <SEP> 1 <SEP> 5 <SEP> bis <SEP> 20
<tb> 0,25 <SEP> bis <SEP> 0,5 <SEP> 5 <SEP> bis <SEP> 20
<tb> 0, <SEP> 125 <SEP> bis <SEP> 0, <SEP> 25 <SEP> 5 <SEP> bis <SEP> 20
<tb> 0 <SEP> bis <SEP> 0, <SEP> 125 <SEP> 0 <SEP> bis <SEP> 20
<tb>
insbesondere folgenden Korngrössenbereich
EMI2.2
<tb>
<tb> Kornbereich <SEP> (mm) <SEP> Anteil <SEP> (Gew.-%)
<tb> 2 <SEP> bis <SEP> 4 <SEP> 23
<tb> 1 <SEP> bis <SEP> 2 <SEP> 23
<tb> 0, <SEP> 5 <SEP> bis <SEP> 1 <SEP> 10
<tb> 0, <SEP> 25 <SEP> bis <SEP> 0, <SEP> 5 <SEP> 10
<tb> 0, <SEP> 125 <SEP> bis <SEP> 0, <SEP> 25 <SEP> 17
<tb> 0 <SEP> bis <SEP> 0,
<SEP> 125 <SEP> 17
<tb>
auf.
Es hat sich überraschenderweise gezeigt, dass in den erfindungsgemässen Steinen nach dem Erhitzen kein freies Calciumoxyd mehr vorhanden ist, die Schwindung nach dem Erhitzen maximal nur etwa 0, 8 bis 1, 0% beträgt und die Festigkeit beim Erhitzen kein ausgeprägtes Minimum durchläuft. Wahrscheinlich finden bereits Festkörperreaktionen zwischen den Gesteinskörnern und dem freien Calciumoxyd im Temperaturbereich zwischen 600 und 1100 C statt, wobei das freie Calciumoxyd gebunden und eine Schwindung verhindert wird, sowie eine Bindung erfolgt, die die Festigkeit stabilisiert. Insofern ist es auch möglich, die ungebrannten Steine zu Isolierzwecken im Tempera-
<Desc/Clms Page number 3>
turbereich unterhalb 1200 C zu verwenden.
Offenbar wird der synergistische Effekt, nämlich die
Stabilisierung der Festigkeit, Verhinderung der Schwindung und Bindung des freien Calciumoxyds durch die Wechselwirkung zwischen den Gesteinskörnern und den Perlitkörnern bewirkt. Dabei ist bemerkenswert, dass die Anwendungsgrenze der Feuerleichtsteine nicht beeinträchtigt wird.
Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung der Isoliersteine, das dadurch gekennzeichnet ist, dass ein Gemenge aus Portlandzement, geblähtem Perlit, Sand eines magmatischen Feldspat und/oder Feldspatvertreter enthaltenden Gesteins und Wasser zu einem Rohling geformt, durch hydraulische Erhärtung verfestigt und gegebenenfalls gebrannt wird.
Vergleichsversuche haben ergeben, dass das Festigkeitsverhalten der erfindungsgemässen Steine denen gleicht, die unter Verwendung von Tonerde-Schmelzzement hergestellt werden. Das freie Calciumoxyd wird beim Erhitzen vollständig chemisch gebunden. Eine beachtliche Schwindung tritt nicht auf. Die Festigkeit der Steine bleibt auch im kritischen Temperaturbereich zwischen 600 und 1100 C im wesentlichen erhalten.
Lag schon die Kombination des bei niedrigen Temperaturen schmelzenden Perlits mit einem Bindemittel nicht nahe und waren die hervorragenden Eigenschaften der Steine überraschend, so lag die Verwendung einer weiteren niedrig schmelzenden Komponente wie z. B. Basalt-oder Gabbrosand mit beachtlichen Anteilen im Grobkornbereich noch weniger nahe und die erzielten Erfolge sind insofern noch überraschender, als es sich gezeigt hat, dass das Zusetzen von nur feinmehligen Stabilisatoren nicht zum gewünschten Ergebnis führt. Die groben Fraktionen des Gesteinssandes binden offenbar erhebliche Freikalkmengen und stabilisieren darüber hinaus die Festigkeit.
An Hand des folgenden Beispieles wird die Erfindung näher erläutert :
Eine Mischung, bestehend aus 160 kg Basaltsand, 110 kg geblähtem Perlit (Kornbereich 0 bis 3 mm, Litergewicht 70 g/l) und 160 kg Portlandzement 450 F, wird in einem Freifallmischer zunächst trocken innig gemischt. Anschliessend werden 160 l Wasser hinzugegeben und 3 min weitergemischt. Die feuchte Masse wird dann in Formen einer Vibrationspresse gefüllt. Nach kurzem Rütteln unter mässigem Druck lassen sich die Rohlinge leicht entformen und transportieren.
Der keramische Brand erfolgt nach einer 24-stündigen Härtung der Rohlinge bei einer Temperatur unterhalb 1200 C. Die Prüfung der Steine ergab die folgenden Ergebnisse :
EMI3.1
<tb>
<tb> Raumgewicht <SEP> 0, <SEP> 8 <SEP> g/cm3 <SEP>
<tb> Porosität <SEP> 74%
<tb> Kaltdruckfestigkeit <SEP> 166, <SEP> 77 <SEP> N/cm2 <SEP>
<tb> Anwendungsgrenze <SEP> (ASTM) <SEP> 1100 C
<tb> Schwindung <SEP> bei
<tb> 1100 C <SEP> (DIN <SEP> 51066) <SEP> 0, <SEP> 9% <SEP>
<tb>
Die Menge an Zusatzstoff und der Kornaufbau des Gesteinssandes richten sich nach der Portlandzementsorte bzw. nach der Menge des beim Erhitzen auftretenden freien Calciumoxyds und der Neigung des Bindemittelgerüstes, beim Erhitzen zu schwinden. Insofern stellen die obigen Angaben Bereiche dar, die sich als günstig erwiesen haben.
PATENTANSPRÜCHE :
1. Feuerfeste keramische Isoliersteine, bestehend aus geblähten Perlitkörnern und einem Bindemittelgerüst, dadurch gekennzeichnet, dass das Bindemittelgerüst aus Portlandzement besteht und im Bindemittelgerüst Körner eines Feldspat und/oder Feldspatvertreter enthaltenden magmatischen Gesteins mit einem Korngrössenbereich von vorzugsweise 0, 1 bis 4 mm in einer Menge von vorzugsweise 30 bis 80 Gew.-% eingebettet sind.
EMI3.2