US3004133A - Process for starting and performing technical processes using electrical glow discharges - Google Patents

Process for starting and performing technical processes using electrical glow discharges Download PDF

Info

Publication number
US3004133A
US3004133A US766116A US76611658A US3004133A US 3004133 A US3004133 A US 3004133A US 766116 A US766116 A US 766116A US 76611658 A US76611658 A US 76611658A US 3004133 A US3004133 A US 3004133A
Authority
US
United States
Prior art keywords
discharge
current
voltage
glow
processes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US766116A
Inventor
Berghaus Bernhard
Bucek Hans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elektrophysikalische Anstalt Bernhard Berghaus
Original Assignee
Elektrophysikalische Anstalt Bernhard Berghaus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BE543129D priority Critical patent/BE543129A/xx
Priority to NL193023D priority patent/NL193023A/xx
Priority to NL232778D priority patent/NL232778A/xx
Priority to NL86851D priority patent/NL86851C/xx
Priority to NL232698D priority patent/NL232698A/xx
Priority to NL112276D priority patent/NL112276C/xx
Priority to BE569243D priority patent/BE569243A/xx
Priority to BE569244D priority patent/BE569244A/xx
Priority to BE569245D priority patent/BE569245A/xx
Priority to US310326A priority patent/US2831801A/en
Priority to CH355233D priority patent/CH355233A/en
Priority to CH6895859A priority patent/CH364850A/en
Priority to CH847062A priority patent/CH386584A/en
Priority to CH1218754A priority patent/CH373484A/en
Priority to DEE14222A priority patent/DE1035446B/en
Priority to DEE14221A priority patent/DE1058806B/en
Priority to DEE9938A priority patent/DE1156624B/en
Priority to GB38545/57A priority patent/GB805164A/en
Priority to GB38546/57A priority patent/GB805165A/en
Priority to GB35643/54A priority patent/GB805163A/en
Priority to CH343553D priority patent/CH343553A/en
Priority to CH349283D priority patent/CH349283A/en
Priority to AT624958A priority patent/AT212954B/en
Priority to FR1147934D priority patent/FR1147934A/en
Priority to DEB37919A priority patent/DE1146338B/en
Priority to US547718A priority patent/US2874801A/en
Priority to CH343761D priority patent/CH343761A/en
Priority to GB34141/55A priority patent/GB776918A/en
Priority to FR1147954D priority patent/FR1147954A/en
Priority to DEE12437A priority patent/DE1029641B/en
Priority to US587624A priority patent/US2884511A/en
Priority to GB16471/56A priority patent/GB824947A/en
Priority to FR1153552D priority patent/FR1153552A/en
Priority to US626934A priority patent/US3018409A/en
Application filed by Elektrophysikalische Anstalt Bernhard Berghaus filed Critical Elektrophysikalische Anstalt Bernhard Berghaus
Priority to US766116A priority patent/US3004133A/en
Application granted granted Critical
Publication of US3004133A publication Critical patent/US3004133A/en
Priority to US225714A priority patent/US3228809A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/24Multiple arrangement thereof
    • B04C5/28Multiple arrangement thereof for parallel flow
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • C07C29/82Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation by azeotropic distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/86Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S422/00Chemical apparatus and process disinfecting, deodorizing, preserving, or sterilizing
    • Y10S422/907Corona or glow discharge means

Definitions

  • the present invention has for its object the provision of a uniform technical rule to which all determinant factors for the starting and performance of such technical glow discharge processes are clearly subordinated.
  • the process according to the present invention is characterized by the fact that a gas discharge condition is obtained and maintained at least in the immediate proximity of the surfaces participating in the process and at least after the final discharge stage has been reached, in which condition the thermal electron current emitted by the surfaces, which disturbs the balance of discharge in the cathode fall space, is over-compensated by the ionic current to the said surfaces.
  • a cathode fall is thereby maintained in this space and transition into unstable ranges of the discharge characteristic and concentration of discharge to a focal area avoided.
  • the total discharge potential is larger than double the are voltage of the discharge space.
  • FIG. 1 is a typical current/voltage characteristic of glow discharges compared with a characteristic obtainable by the process according to the invention
  • FIG. 2 is a diagrammatic view of thermal space currents I dependent on absolute temperature
  • FIG. 3 is a diagrammatic view of the region of the process according to this invention in a special system of co-ordinates.
  • the current/ voltage diagram shown in FIGURE 1 and its characteristic 65 show the typical course of glow discharges in the case of direct current voltage according to the present state of the art and science (see, for instance, Dosse, Nierdel The Electric Current in High Vacuum and in Gases, Hirzel, 1945, p. 317, and Loeb, Fundamental Process of Electrical Discharges in Gases, published by Wiley, 1947 pp. 606 and 608).
  • the normal region X of the discharge terminates at that current at which the voltage carrying parts of the electrodes are completely covered by the glow discharge.
  • the voltage and the discharge current increase, whereby the increasing voltage which, as is well known, has a substantial effect concentration on the so-called cathode drop, immediately before the negative electrode, so that the positive gas ions impinge upon the electrode surface which increased kinetic energy.
  • this effect takes place continuously at the cathode, whilst in operation with alternating current each electrode becomes a cathode during each half period.
  • This transition into the arc discharge corresponds to the point 67 of the characteristic 65, which always lies at that point where the glow discharge cathode drop is caused to disappear to a large extent by the emission of electrons from the metal of the electrode.
  • the total discharge voltage of the are discharge is always less than half the glow discharge voltage in the case of operation in the normal region X of the characteristic. It is to be pointed out that the physical conditions in the case of powerful glow discharges are not yet completely elucidated. For instance, it is possible that another emission takes place before the thermal one, for instance a secondary emission of electrons, a field emission, and so on.
  • the present process thereby enables to obtain any desired increase in the energy transformation of the glow discharge into heat up to any desired temperature of the electrode surfaces participating in the process whilst ensuring of a continuous and continuously rising characteristic, as is indicated for instance by 66 in FIGURE 1, being obtained.
  • This is rendered possible by the fact that the electron emission of all metals and their compounds has for any temperature a definite value which cannot be exceeded.
  • the emission per unit of surface is known exactly for most chemically pure substances in dependence upon the temperature.
  • the ionic current has the required value at all the points of the surfaces participating in the process, so that also in the case of sudden occurrence of strongly emitting points, of gas outbursts, and local overheating resulting therefrom, up to white heat, it will at these points be higher than the emission current. Only when this is the case, it is impossible for such disturbing places on the electrode surfaces to have a marked influence on the cathode drop space.
  • the expected thermal electron emission of the surfaces participating in the process has, therefore, to be approximately estimated in advance for the processes that come into question in practice, based on the particular material and the desired temperature.
  • the total current of the gas discharge has then to be adjusted to at least double the value, but preferably a substantially higher value than that, of this estimated emission current, in order to compensate by the ionic current the undesirable influence of the electronic current upon the cathode drop space.
  • the thermal emission Ie can be calculated for chemically pure metals and metal compounds by means of the so-called Richardson formula, and be entered, for instance of platinum (Pt), tungsten (W), tantalum (Ta), tungsten with thorium (Wo+Th), and barium oxide (BaO), in the diagram shown in FIGURE 2, as a function of the absolute temperature T.
  • Richardson formula platinum
  • W tungsten
  • Ta tantalum
  • Wo+Th tungsten with thorium
  • BaO barium oxide
  • the diagram of FIGURE 2 shows three straight lines 68a, 68b, 680 which are used for estimating the maximum possible emission current Ie for processes according to the present invention.
  • the line 68a represents the minimum current density Ie which is to be entered as a possible emission current also in the case of any low temperature of the surfaces participating in the process, in order to render ineffective any possible local surface defects connected with a strong emission.
  • Ie is estimated by the line 68b. If thereby the total current is made equal or greater than this value Ie, a stable glow discharge can be ensured for any desired temperature.
  • the adjustment of the required total current is effected mainly by an increase in the gas pressure in the discharge vessel, which has always to be so high that the total current is equal to or greater than the estimated value Ie.
  • This region of the glow discharge thus difiers fundamentally from the glow discharge processes hitherto proposed with a few thousand volts, which were always carried out with smaller ion densities.
  • one electrode consisted of a molybdenum pipe having a diameter of about 8 mms. and a length of 50 mms. viz. a surface of 14 cm. and the other electrode was a metal bolt, about 14 mms. away therefrom.
  • the 50 Hz. alternating current voltage at the electrodes was about 700 volts and the receptacle contained hydrogen, at a pressure of 9 mm. Hg.
  • the molybdenum pipe showed, in the discharge state, a temperature of about 2000 C.
  • the thermal emission current for molybdenum was, according to FIGURE 2, about 4 Ina/cm. (2,273 K.), altogether about 56 ma.
  • the total current heating the molybdenum pipe is about 500 ma., viz. about 10 times greater than the emission current.
  • FIGURE 4 relates to examples of the working characteristics of the processes mentioned in the following table, wherein the first three processes were found to be of very little advantage as regards stability and from an economic point of view.
  • the working range used for the present process is characterized by P equal or smaller than 250 g-p equal to or smaller than 5000 Within this range, indicated in the diagram by the lines 80 and 811, lie all the working characteristics or data of the glow discharge processes according to the above described rules.
  • the range given in the examples 73 to 79 encompasses an output of the discharge of 300 watts to 33,000 watts and a current density i of 0.5 to 120 ma./cm. All the indicated characteristics '70 to 76 were found experimentally, the processes according to the examples 77, '78, 79 representing smelting processes carried out with high power transformation.
  • Such spontaneous electronic emissions arising simultaneously at different points may have such current densities that, in spite of a total current of, for instance, 0.1 ma./cm. at the corresponding point, the field distribution in the cathode drop space may be disturbed to a large extent, which may easily lead to locally limited are discharges, if the above mentioned special measures were not taken into consideration (series impedance in the supply circuit, control free of inertia for limiting the current). It is a feature of the above described process, that the discharge is supplied by a supply circuit having a variable series impedance. The value of such series impedance is to be made smaller than the impedance of the glow discharge path, i.e. the ratio between the voltage U and the supplied current. This is important specially for a process carried out with an energy density of 1 watt per square centimeter on the surface.

Description

Oct. 10, 1961 B. BERGHAUS ET AL 3,004,133v
PROCESS F OR STARTING AND PERFORMING TECHNICAL PROCESSES USING ELECTRICAL GLOW DISCHARGES Original Filed Dec. 8, 1954 2 Sheets-Sheet 1 C ur-ren-f Fig.2
Oct. 10, 1961 B. BERGHAUS ET AL 3,004,133
PROCESS FOR STARTING AND PERFORMING TECHNICAL PROCESSES USING ELECTRICAL GLOW DISCHARGES Original Filed Dec. 8, 1954 2 Sheets-Sheet} United States Patent 3,004,133 PROCESS FOR STARTING AND PERFORMING TECHNICAL PROCESSES USING ELECTRICAL GLOW DISCHARGES Bernhard Berghaus and Hans Bucek, Zurich, Switzerland, assignors to Elektrophysikalische Anstalt Bernhard Berghaus, Vaduz, Liechtenstein Original application Dec. 8, 1954, Ser. No. 473,895. Divided and this application Oct. 8, 1958, Ser. No.
8 Claims. (Cl. 21950) The present invention is a division of copending application Serial No. 473,895, filed December 8, 1954, and a continuation-in-part of copending application Serial No. 579,934, filed April 23, 1956, both now abandoned, and relates to a process of performing technical processes using electrical glow discharges.
In the industrial performance of such technical glow discharge processes difficulties have frequently arisen and undesirable instabilities of discharge have been observed.
The present invention has for its object the provision of a uniform technical rule to which all determinant factors for the starting and performance of such technical glow discharge processes are clearly subordinated. The process according to the present invention is characterized by the fact that a gas discharge condition is obtained and maintained at least in the immediate proximity of the surfaces participating in the process and at least after the final discharge stage has been reached, in which condition the thermal electron current emitted by the surfaces, which disturbs the balance of discharge in the cathode fall space, is over-compensated by the ionic current to the said surfaces. A cathode fall is thereby maintained in this space and transition into unstable ranges of the discharge characteristic and concentration of discharge to a focal area avoided. The total discharge potential is larger than double the are voltage of the discharge space.
A number of embodiments of the process according to this invention are shown in the attached drawings in which:
FIG. 1 is a typical current/voltage characteristic of glow discharges compared with a characteristic obtainable by the process according to the invention;
FIG. 2 is a diagrammatic view of thermal space currents I dependent on absolute temperature;
FIG. 3 is a diagrammatic view of the region of the process according to this invention in a special system of co-ordinates.
As is well known, the current/voltage characteristic 65 of, for instance, an electrical gas discharge as hitherto known according to FIGURE 1, operated by a direct current voltage, shows a so-called norma region X and a following abnormal region Y of higher voltages, whereby the abnormal region Y is followed, with a further voltage and current increase, by a falling characteristic leading to the point 67, where the glow discharge passes into an arc discharge.
The current/ voltage diagram shown in FIGURE 1 and its characteristic 65 show the typical course of glow discharges in the case of direct current voltage according to the present state of the art and science (see, for instance, Dosse, Nierdel The Electric Current in High Vacuum and in Gases, Hirzel, 1945, p. 317, and Loeb, Fundamental Process of Electrical Discharges in Gases, published by Wiley, 1947 pp. 606 and 608).
The normal region X of the discharge terminates at that current at which the voltage carrying parts of the electrodes are completely covered by the glow discharge. With further voltage increase, the voltage and the discharge current increase, whereby the increasing voltage which, as is well known, has a substantial effect concentration on the so-called cathode drop, immediately before the negative electrode, so that the positive gas ions impinge upon the electrode surface which increased kinetic energy. In operation with direct current voltage, this effect takes place continuously at the cathode, whilst in operation with alternating current each electrode becomes a cathode during each half period.
In the space of the cathode drop, when the glow discharge is not disturbed, equilibrium takes place between the current of ions to the electrode surface and the electrons which are there released. The increase in energy of the impacting ions which takes place with increase in voltage heats up the corresponding electrode, which leads to a thermal emission of electrons from the metal of the electrode. This thermal emission current of negative electrons, and other but little explained emission processes taking place at the electrode in mutual reaction with the surrounding layer of gas, may lead to a contraction of the discharge to a burning spot and to ignition of an are between the electrode and the adjacent counterelectrode. This transition into the arc discharge corresponds to the point 67 of the characteristic 65, which always lies at that point where the glow discharge cathode drop is caused to disappear to a large extent by the emission of electrons from the metal of the electrode. The total discharge voltage of the are discharge is always less than half the glow discharge voltage in the case of operation in the normal region X of the characteristic. It is to be pointed out that the physical conditions in the case of powerful glow discharges are not yet completely elucidated. For instance, it is possible that another emission takes place before the thermal one, for instance a secondary emission of electrons, a field emission, and so on. Discharges without a well defined burning spot, have also been made known by publications, for which, however, as compared with the glow discharge voltage, much lower working voltages are just characteristic as for the arc discharge contracted in a burning spot. The above explained transition from a glow to an arc discharge represents a possible explanation according to the present state of the art, but, as regards the process according to the invention, which has been developed by experimental investigations, serves only as a working hypothesis.
As regards industrial processes by means of glow discharge, transition into an arc discharge must be avoided in all circumstances, since the same always causes local overheating at individual points of the electrode surfaces and does not allow of any uniform and repeatable process of the known kind to be carried out. The increase in the density of the energy of the glow discharges was hitherto limited by the heating of the electrodes thereby arising and by their thermal emission of electrons, which necessarily led to a transition into an arc discharge with more or less concentrated contraction of the discharge on limited electrode regions, with a simultaneous drop of the discharge voltage to values much below volts. Thus, it was not possible in the past, in the case of an increase in the energy transformation of a glow discharge, to avoid the unstable transition region of the discharge characteristic from the glow to the arc discharge.
The present process thereby enables to obtain any desired increase in the energy transformation of the glow discharge into heat up to any desired temperature of the electrode surfaces participating in the process whilst ensuring of a continuous and continuously rising characteristic, as is indicated for instance by 66 in FIGURE 1, being obtained. This is rendered possible by the fact that the electron emission of all metals and their compounds has for any temperature a definite value which cannot be exceeded. The emission per unit of surface is known exactly for most chemically pure substances in dependence upon the temperature. If in the case of a predetermined desired temperature of the surfaces participating in the process one can produce and maintain in their immediate proximity a state of gas discharge at which the current of positive ions flowing towards the cathode is higher than that required for the balance of the discharge, preferably even a multiple of the electronic current emitted by the corresponding surfaces, then the disturbance of the discharge balance in the cathode drop space by the electron current that is emitted cannot exert a dominating influence, that is to say, tend to effect transition to an arc discharge.
However, one must in this case be sure that the ionic current has the required value at all the points of the surfaces participating in the process, so that also in the case of sudden occurrence of strongly emitting points, of gas outbursts, and local overheating resulting therefrom, up to white heat, it will at these points be higher than the emission current. Only when this is the case, it is impossible for such disturbing places on the electrode surfaces to have a marked influence on the cathode drop space.
The expected thermal electron emission of the surfaces participating in the process has, therefore, to be approximately estimated in advance for the processes that come into question in practice, based on the particular material and the desired temperature. The total current of the gas discharge has then to be adjusted to at least double the value, but preferably a substantially higher value than that, of this estimated emission current, in order to compensate by the ionic current the undesirable influence of the electronic current upon the cathode drop space.
The thermal emission Ie can be calculated for chemically pure metals and metal compounds by means of the so-called Richardson formula, and be entered, for instance of platinum (Pt), tungsten (W), tantalum (Ta), tungsten with thorium (Wo+Th), and barium oxide (BaO), in the diagram shown in FIGURE 2, as a function of the absolute temperature T. As is well known,
in the case of chemically pure metals, an appreciable emission current is obtained only at relatively high temperatures, over about l000 K., whilst, in the case of metal oxides and certain alloys a thermal emission takes place which is greater by one or several orders of values. However, it has to be taken into consideration that in practice the industrial glow discharge processes have to be carried out almost exclusively in connection with alloys or workpieces which are not chemically pure, at least on the surface, and that in the case of reduction and melting processes even metal oxides have to be treated. Therefore, when estimating the maximum pos sible thermal emission current one cannot start with the values applicable to chemically pure metals.
The diagram of FIGURE 2 shows three straight lines 68a, 68b, 680 which are used for estimating the maximum possible emission current Ie for processes according to the present invention. The line 68a represents the minimum current density Ie which is to be entered as a possible emission current also in the case of any low temperature of the surfaces participating in the process, in order to render ineffective any possible local surface defects connected with a strong emission. In the case of processes in which metals and metal alloys are treated at approximately 1500" K., Ie is estimated by the line 68b. If thereby the total current is made equal or greater than this value Ie, a stable glow discharge can be ensured for any desired temperature. If, on the contrary, metal oxides are present in the surfaces participating in the process, it is advisable to provide an emission current Ie corresponding to the course of the straight line 68c. However, it is to be pointed out, that it is only a question of purely empirical calculations for Ie, and that in no circumstances can it be asserted that these Values would justify an interpretation of the actual processes. On the other hand, they represent values as certained by experience in order to keep glow discharges stable in region of characteristic lines and under working conditions in which, hitherto, such discharge phenomena were unknown. The novelty of this discharge region follows also from the assertion that thereby the proportion of atomic gases in the glow discharge zone is larger than was to be expected.
The adjustment of the required total current is effected mainly by an increase in the gas pressure in the discharge vessel, which has always to be so high that the total current is equal to or greater than the estimated value Ie. The required working voltage is thereby always within the limit values indicated in FIGURE 1, viz. Ul=l00 v. and U2=l,800 v., generally even in the range from U3=200 v. to U4=900 v., so that the present discharge technique can be designated as a domain of heavy current and low voltage glow discharges. This region of the glow discharge thus difiers fundamentally from the glow discharge processes hitherto proposed with a few thousand volts, which were always carried out with smaller ion densities.
The fact that the given rules enable glow processes to be carried out under very extreme conditions is illustrated by an arrangement whose behavior was viewed through an observation window in the wall of a metal receptacle during the operation. In this case one electrode consisted of a molybdenum pipe having a diameter of about 8 mms. and a length of 50 mms. viz. a surface of 14 cm. and the other electrode was a metal bolt, about 14 mms. away therefrom. The 50 Hz. alternating current voltage at the electrodes was about 700 volts and the receptacle contained hydrogen, at a pressure of 9 mm. Hg. The molybdenum pipe showed, in the discharge state, a temperature of about 2000 C. also in the case of an energy density corresponding to a radiation of about 50 watt/cm. on the outer surface of 7 cm. thus a total output of about 350 watts. At the mentioned temperature, the thermal emission current for molybdenum was, according to FIGURE 2, about 4 Ina/cm. (2,273 K.), altogether about 56 ma. On the other hand, the total current heating the molybdenum pipe is about 500 ma., viz. about 10 times greater than the emission current.
In this gas discharge condition in the immediate proximity of the surface of the molybdenum pipe, there was an almost undisturbed cathode drop space, and accordingly a stable glow discharge, which resulted in a very high energy density of about 50 watts/cm. In spite of the very strong thermal emission, there was no tendency to pass into an arc discharge. No difliculty was encountered in increasing the energy transformation on the surface of the molybdenum pipe with a further increase in pressure and a smaller voltage increase so that the molybdenum pipe melted (about 2700 C.) without the glow discharge becoming unstable.
Thus, in the present process, the pressure p, and also the voltage U of the discharge gap cannot be chosen arbitrarily, but corresponding values have to be chosen, in order to be able to ensure a stable condition of discharge. This can be seen in the diagram shown in FIG- URE 4, in which (U) is represented as abscisse and (U.p) as an ordanate. These two coordinates first appear to be arbitrary values, but taken together with the known valid laws of similarity concerning gas discharges, they have a physical meaning. The diagram shown in FIGURE 4 serves only to indicate the exact limitation of the admissible range of operation of the process to be carried out according to the present invention. The voltage U is given in volt/cm. actually as a field intensity, but, for the sake of simplicity, the numerical value of the total voltage of the discharge gap is inserted, since in this case only the space in the immediate proximity of the surfaces participating in the process, on which almost the total voltage U is concentrated is essential. i
is the current density amp./cm. and the pressure p is indicated in mm. Hg.
The diagram shown in FIGURE 4 relates to examples of the working characteristics of the processes mentioned in the following table, wherein the first three processes were found to be of very little advantage as regards stability and from an economic point of view.
Gas Pressure, mm. Hg
Process, Voltage U Surface,
Number Value Volt Kind The working range used for the present process is characterized by P equal or smaller than 250 g-p equal to or smaller than 5000 Within this range, indicated in the diagram by the lines 80 and 811, lie all the working characteristics or data of the glow discharge processes according to the above described rules. The range given in the examples 73 to 79 encompasses an output of the discharge of 300 watts to 33,000 watts and a current density i of 0.5 to 120 ma./cm. All the indicated characteristics '70 to 76 were found experimentally, the processes according to the examples 77, '78, 79 representing smelting processes carried out with high power transformation.
It is also to be pointed out, that also within the limits holding good for the present process and above indicated, there are more favourable and more unfavourable values for the gas pressure p, not with respect to stability but as regards the efficiency of the process, that is to say economically. The most favourable value of the pressure can be ascertained for each process by ascertaining the voltage U in dependence upon the pressure p for a given constant temperature T. This fact, experimentally ascertained in many processes, seems to indicate that the dimensions of the cathode drop space immediately in front of the surfaces participating in the process have an influence on the efiiciency of the transformation of electrical into thermal energy on the surfaces participating in the process.
The above mentioned rule-ionic current always greater than thermal emission current-in order to avoid unstable ranges of the discharge characteristic, naturally holds good not only for the end state of the discharge but must be considered also as regards the starting process above explained. Of course, at the beginning of the starting operation, the regular thermal electronic emission is small owing to the generally low temperature of the surfaces participating in the processes, so that the mentioned rule can be normally maintained. It is however to be pointed out that, in addition to the regular thermal electronic emission, frequently a strong electronic current of individual oxidized surfaces or of surfaces otherwise rendered impure, can be emitted.
Such spontaneous electronic emissions arising simultaneously at different points may have such current densities that, in spite of a total current of, for instance, 0.1 ma./cm. at the corresponding point, the field distribution in the cathode drop space may be disturbed to a large extent, which may easily lead to locally limited are discharges, if the above mentioned special measures were not taken into consideration (series impedance in the supply circuit, control free of inertia for limiting the current). It is a feature of the above described process, that the discharge is supplied by a supply circuit having a variable series impedance. The value of such series impedance is to be made smaller than the impedance of the glow discharge path, i.e. the ratio between the voltage U and the supplied current. This is important specially for a process carried out with an energy density of 1 watt per square centimeter on the surface.
We claim:
1. Process for regulating the electrical supply circuit for the treatment of an object in a gas atmosphere in a discharge chamber by an electric glow discharge initiated and maintained by said supply circuit, said circuit having a series impedance and the object to be treated being connected in said circuit so as to operate at least part of the time as a cathode during the discharge and being heated by impinging ions while conversion of the glow discharge into an arc discharge is prevented, said process comprising reducing the said impedance to a value smaller than the impedance of the glow discharge path in the chamber and increasing the supplied electric energy to increase the ionic current impinging the cathode surfaces to such degree that at every point of the cathode surfaces such current is equal to or greater than the electronic current emitted at such point, regulating the voltage to a value over volts, and maintaining the ionic current density greater than one-tenth milliampere per square centimeter of surface.
2. A process according to claim 1, characterised by the use of a gas pressure p in mm. Hg, a total voltage U of the discharge gap, and a total current density i in amp/cm. of the surfaces participating in the process such that, at least in the end state of the discharge, in a diagram of the function (t EG the working characteristic of the glow discharge process lies within the region comprising all the values smaller and all the values smaller than 3. A process according to claim 2, wherein within the said limits the gas pressure p and the voltage U are varied in dependence on each other to obtain; the predetermined temperatures of the process, whereby the economically favourable values of U and p pursuant to the diagram U =f(p) are used for the operation.
4. A process according to claim 1, characterised by that use is made of an electrode output of at least 1 to 10 kilowatts total output.
5. Process according to claim 1, wherein the ionic stream density is made greater than the value defined by the straight line 68b in the diagram of FIG. 2.
6. Process according to claim 1, wherein the ionic stream density is made greater than the value defined by the straight line 680 in the diagram of FIG. 2.
7. Process according to claim 1, wherein the voltage is between 100 and 1000 volts.
8. Process according to claim 1, wherein the voltage is between 200 and 900 volts.
References Cited in the file of this patent UNITED STATES PATENTS
US766116A 1952-09-18 1958-10-08 Process for starting and performing technical processes using electrical glow discharges Expired - Lifetime US3004133A (en)

Priority Applications (36)

Application Number Priority Date Filing Date Title
BE569245D BE569245A (en) 1953-12-09
NL86851D NL86851C (en) 1953-12-09
NL193023D NL193023A (en) 1953-12-09
NL112276D NL112276C (en) 1953-12-09
BE569243D BE569243A (en) 1953-12-09
NL232778D NL232778A (en) 1953-12-09
BE543129D BE543129A (en) 1953-12-09
NL232698D NL232698A (en) 1953-12-09
BE569244D BE569244A (en) 1953-12-09
US310326A US2831801A (en) 1952-09-18 1952-09-18 Process for the recovery of isobutanol from alcoholic mixtures
CH355233D CH355233A (en) 1953-12-09 1953-12-09 Process for carrying out processes by means of electrical glow discharges
CH6895859A CH364850A (en) 1953-12-09 1953-12-09 Process for creating an electric glow discharge of high amperage in a discharge vessel
CH847062A CH386584A (en) 1953-12-09 1953-12-09 Process for creating an electric glow discharge of great intensity
CH1218754A CH373484A (en) 1953-12-09 1954-11-06 Process for carrying out processes by means of electrical glow discharges
DEE9938A DE1156624B (en) 1953-12-09 1954-12-04 Arrangement for carrying out technical processes by means of electrical glow discharges
DEE14221A DE1058806B (en) 1953-12-09 1954-12-04 Process for achieving an electrical glow discharge of high current strength in a discharge vessel for the purpose of carrying out technical processes
DEE14222A DE1035446B (en) 1953-12-09 1954-12-04 Procedure for initiating and carrying out technical processes, such as metallurgical and chemical processes, by means of electrical glow discharges
GB38546/57A GB805165A (en) 1953-12-09 1954-12-09 Improvements in and connected with processes using electrical glow discharges
GB38545/57A GB805164A (en) 1953-12-09 1954-12-09 Improvements in and connected with the starting and carrying out of processes using electrical glow discharges
GB35643/54A GB805163A (en) 1953-12-09 1954-12-09 Improvements in and connected with the carrying out of processes using electrical glow discharges
CH343553D CH343553A (en) 1953-12-09 1955-04-16 Method and device for the automatic control and monitoring of glow discharge processes
CH349283D CH349283A (en) 1953-12-09 1955-05-28 Method and device for the automatic control and monitoring of the start-up period and the operation of electrical glow discharge processes
AT624958A AT212954B (en) 1953-12-09 1955-07-04 Process for creating an electric glow discharge of high amperage in a discharge vessel
FR1147934D FR1147934A (en) 1953-12-09 1955-08-22 Method and apparatus for initiating and carrying out processes by means of electric cores
DEB37919A DE1146338B (en) 1953-12-09 1955-11-15 Multi-cyclone for dust separation from gases
US547718A US2874801A (en) 1953-12-09 1955-11-18 Dust-separators consisting of a set of cyclones connected in parallel and having each at least one tangential inlet opening
CH343761D CH343761A (en) 1953-12-09 1955-11-22 Multi-cyclone designed for separating dust from gas
GB34141/55A GB776918A (en) 1953-12-09 1955-11-29 Improvements in or relating to multicyclone separators
FR1147954D FR1147954A (en) 1953-12-09 1955-12-02 Dust separator consisting of a series of cyclones coupled in parallel and assembled in aggregate form, each having at least one tangential inlet opening
DEE12437A DE1029641B (en) 1953-12-09 1956-05-25 Method and device for the automatic control and monitoring of the start-up period and the operation of electrical glow discharge processes used, for example, for surface finishing of workpieces
GB16471/56A GB824947A (en) 1953-12-09 1956-05-28 Method and device for the automatic control and supervision of the initial period and the performance of electric glow discharge processes
US587624A US2884511A (en) 1953-12-09 1956-05-28 Method and device for the automatic control and supervision of the initial period and the performance of electric glow discharge processes
FR1153552D FR1153552A (en) 1953-12-09 1956-05-28 Method and device for the automatic control and monitoring of the start-up and operation of electric corona processes
US626934A US3018409A (en) 1953-12-09 1956-12-07 Control of glow discharge processes
US766116A US3004133A (en) 1953-12-09 1958-10-08 Process for starting and performing technical processes using electrical glow discharges
US225714A US3228809A (en) 1953-12-09 1962-09-24 Method of regulating an electric glow discharge and discharge vessel therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH847062T 1953-12-09
US47389554A 1954-12-08 1954-12-08
CH349283T 1955-05-28
US766116A US3004133A (en) 1953-12-09 1958-10-08 Process for starting and performing technical processes using electrical glow discharges

Publications (1)

Publication Number Publication Date
US3004133A true US3004133A (en) 1961-10-10

Family

ID=32398014

Family Applications (4)

Application Number Title Priority Date Filing Date
US547718A Expired - Lifetime US2874801A (en) 1953-12-09 1955-11-18 Dust-separators consisting of a set of cyclones connected in parallel and having each at least one tangential inlet opening
US587624A Expired - Lifetime US2884511A (en) 1953-12-09 1956-05-28 Method and device for the automatic control and supervision of the initial period and the performance of electric glow discharge processes
US626934A Expired - Lifetime US3018409A (en) 1953-12-09 1956-12-07 Control of glow discharge processes
US766116A Expired - Lifetime US3004133A (en) 1952-09-18 1958-10-08 Process for starting and performing technical processes using electrical glow discharges

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US547718A Expired - Lifetime US2874801A (en) 1953-12-09 1955-11-18 Dust-separators consisting of a set of cyclones connected in parallel and having each at least one tangential inlet opening
US587624A Expired - Lifetime US2884511A (en) 1953-12-09 1956-05-28 Method and device for the automatic control and supervision of the initial period and the performance of electric glow discharge processes
US626934A Expired - Lifetime US3018409A (en) 1953-12-09 1956-12-07 Control of glow discharge processes

Country Status (8)

Country Link
US (4) US2874801A (en)
AT (1) AT212954B (en)
BE (4) BE569244A (en)
CH (5) CH386584A (en)
DE (5) DE1156624B (en)
FR (3) FR1147934A (en)
GB (5) GB805164A (en)
NL (5) NL193023A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3321263A (en) * 1964-12-04 1967-05-23 Motorola Inc Cathode ray tube manufacture
US3345280A (en) * 1960-11-28 1967-10-03 Ionon G M B H Method and apparatus for controlling glow discharge processes
US3437784A (en) * 1966-02-16 1969-04-08 Gen Electric Power supply for reducing arcing damage in glow discharge apparatus

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385437A (en) * 1965-04-02 1968-05-28 Bauer Bros Co Eccentric head hydrocyclone
US3358833A (en) * 1965-04-23 1967-12-19 Bauer Bros Co Centrifugal separator
DE1275228B (en) * 1966-11-08 1968-08-14 Berghaus Elektrophysik Anst Process for monitoring the electrical behavior of a high-current glow discharge for metallurgical processes and equipment for them
BE284991A (en) * 1966-11-09
US3846574A (en) * 1970-06-17 1974-11-05 H Rordorf Method of heating objects and device for the performance of the method
FR2297927A1 (en) * 1975-01-17 1976-08-13 Anvar Thermochemical treatment of metal with ion bombardment - using a sealed discharge chamber, an electrode support and an arc detecting generator
US4142957A (en) * 1976-02-18 1979-03-06 Klockner Ionon Gmbh Method and arrangement for heating workpieces to desired temperatures
DE2606454C2 (en) * 1976-02-18 1978-01-12 lonit Anstalt Bernhard Berghaus, Vaduz Thermocouple insert
DE2606396C3 (en) * 1976-02-18 1979-01-04 Ionit Anstalt Bernhard Berghaus, Vaduz Device for heating up and setting a specified treatment temperature of workpieces by means of a high-current glow discharge
DE2620164C2 (en) * 1976-05-07 1978-07-06 Ionit Anstalt Bernhard Berghaus, Vaduz Method and device for monitoring high-current glow discharges
FR2403645A2 (en) * 1977-09-14 1979-04-13 Vide & Traitement Sa Furnace for thermochemical metal treatment - ensures ion bombardment by anodes and cathodes without arc discharge
DE2816101C2 (en) * 1978-04-13 1983-03-24 Vladimir Stepanovič Sverdlovsk Šlentov Device for the power supply of systems for workpiece processing with the aid of a glow discharge
DE2842407C2 (en) * 1978-09-29 1984-01-12 Norbert 7122 Besigheim Stauder Device for the surface treatment of workpieces by discharging ionized gases and method for operating the device
US4476373A (en) * 1978-10-06 1984-10-09 Wellman Thermal Systems Corporation Control system and method of controlling ion nitriding apparatus
US4331856A (en) * 1978-10-06 1982-05-25 Wellman Thermal Systems Corporation Control system and method of controlling ion nitriding apparatus
BG41744A1 (en) * 1984-11-26 1987-08-14 Savov Method for control of chimico= thermic processing of work- pieces with glowing dicharge in medium of processing gas and device for implementing this method
DE3614398A1 (en) * 1985-07-01 1987-01-08 Balzers Hochvakuum Arrangement for the treatment of workpieces using an evacuatable chamber
US4915917A (en) * 1987-02-19 1990-04-10 The Johns Hopkins University Glow discharge unit
US5405514A (en) * 1993-07-28 1995-04-11 Gas Research Institute Atmospheric pressure gas glow discharge
US5560890A (en) * 1993-07-28 1996-10-01 Gas Research Institute Apparatus for gas glow discharge
WO1995005263A1 (en) * 1993-08-19 1995-02-23 Refranco Corp. Treatment of particulate matter by electrical discharge
US5403991A (en) * 1993-08-19 1995-04-04 Refranco Corp. Reactor and method for the treatment of particulate matter by electrical discharge
US5702621A (en) * 1993-08-19 1997-12-30 Refranco Corp. Method for the treatment of comminuted matter by electrical discharge
WO1996006706A1 (en) * 1994-09-01 1996-03-07 Refranco Corp. Treatment of particulate matter by electrical discharge
US5630990A (en) * 1994-11-07 1997-05-20 T I Properties, Inc. Ozone generator with releasable connector and grounded current collector
US6309514B1 (en) * 1994-11-07 2001-10-30 Ti Properties, Inc. Process for breaking chemical bonds
DE29520685U1 (en) * 1995-12-29 1997-04-24 Straemke Siegfried Dr Ing Circuit arrangement for operating a glow discharge path
SE509696C2 (en) * 1996-09-04 1999-02-22 Electrolux Ab Separation device for a vacuum cleaner
FI111229B (en) 2000-02-08 2003-06-30 Fortum Oyj Method and apparatus for separating solids from gases
US20030047146A1 (en) * 2001-09-10 2003-03-13 Daniel Michael J. Plasmatron-internal combustion engine system having an independent electrical power source
US7014930B2 (en) * 2002-01-25 2006-03-21 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer to generate multiple reformate gases
US6959542B2 (en) * 2002-01-25 2005-11-01 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer to regenerate a DPNR device
US7021048B2 (en) * 2002-01-25 2006-04-04 Arvin Technologies, Inc. Combination emission abatement assembly and method of operating the same
US6976353B2 (en) * 2002-01-25 2005-12-20 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer to provide reformate gas to both a fuel cell and an emission abatement device
US6651597B2 (en) * 2002-04-23 2003-11-25 Arvin Technologies, Inc. Plasmatron having an air jacket and method for operating the same
WO2003091551A1 (en) * 2002-04-24 2003-11-06 Arvin Technologies, Inc. Apparatus and method for regenerating a particulate filter of an exhaust system of an internal combustion engine
US6881386B2 (en) * 2002-05-30 2005-04-19 Massachusetts Institute Of Technology Low current plasmatron fuel converter having enlarged volume discharges
US20040020188A1 (en) * 2002-08-05 2004-02-05 Kramer Dennis A. Method and apparatus for generating pressurized air by use of reformate gas from a fuel reformer
US20040020447A1 (en) * 2002-08-05 2004-02-05 William Taylor Method and apparatus for advancing air into a fuel reformer by use of an engine vacuum
US20040020191A1 (en) * 2002-08-05 2004-02-05 Kramer Dennis A. Method and apparatus for advancing air into a fuel reformer by use of a turbocharger
DE10393043T5 (en) * 2002-08-12 2005-08-04 Arvin Technologies, Inc., Troy Method and apparatus for controlling the oxygen / carbon ratio of a fuel reformer
US20040050345A1 (en) * 2002-09-17 2004-03-18 Bauer Shawn D. Fuel reformer control system and method
US20040052693A1 (en) * 2002-09-18 2004-03-18 Crane Samuel N. Apparatus and method for removing NOx from the exhaust gas of an internal combustion engine
US6758035B2 (en) * 2002-09-18 2004-07-06 Arvin Technologies, Inc. Method and apparatus for purging SOX from a NOX trap
US6702991B1 (en) 2002-11-12 2004-03-09 Arvin Technologies, Inc. Apparatus and method for reducing power consumption of a plasma fuel reformer
US6715452B1 (en) 2002-11-13 2004-04-06 Arvin Technologies, Inc. Method and apparatus for shutting down a fuel reformer
US6903259B2 (en) * 2002-12-06 2005-06-07 Arvin Technologies, Inc. Thermoelectric device for use with fuel reformer and associated method
US6843054B2 (en) * 2003-01-16 2005-01-18 Arvin Technologies, Inc. Method and apparatus for removing NOx and soot from engine exhaust gas
US20040139730A1 (en) * 2003-01-16 2004-07-22 William Taylor Method and apparatus for directing exhaust gas and reductant fluid in an emission abatement system
US20040144030A1 (en) * 2003-01-23 2004-07-29 Smaling Rudolf M. Torch ignited partial oxidation fuel reformer and method of operating the same
US6851398B2 (en) * 2003-02-13 2005-02-08 Arvin Technologies, Inc. Method and apparatus for controlling a fuel reformer by use of existing vehicle control signals
US7407634B2 (en) * 2003-04-11 2008-08-05 Massachusetts Institute Of Technology Plasmatron fuel converter having decoupled air flow control
US20040216378A1 (en) * 2003-04-29 2004-11-04 Smaling Rudolf M Plasma fuel reformer having a shaped catalytic substrate positioned in the reaction chamber thereof and method for operating the same
US7285247B2 (en) * 2003-10-24 2007-10-23 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer so as to purge soot therefrom
US7244281B2 (en) * 2003-10-24 2007-07-17 Arvin Technologies, Inc. Method and apparatus for trapping and purging soot from a fuel reformer
US7381382B2 (en) * 2004-03-29 2008-06-03 Massachusetts Institute Of Technology Wide dynamic range multistage plasmatron reformer system
US7776280B2 (en) * 2005-05-10 2010-08-17 Emcon Technologies Llc Method and apparatus for selective catalytic reduction of NOx
US7698887B2 (en) * 2005-06-17 2010-04-20 Emcon Technologies Llc Method and apparatus for determining local emissions loading of emissions trap
US20060283176A1 (en) * 2005-06-17 2006-12-21 Arvinmeritor Emissions Technologies Gmbh Method and apparatus for regenerating a NOx trap and a particulate trap
US20070033929A1 (en) * 2005-08-11 2007-02-15 Arvinmeritor Emissions Technologies Gmbh Apparatus with in situ fuel reformer and associated method
US20070095053A1 (en) * 2005-10-31 2007-05-03 Arvin Technologies, Inc. Method and apparatus for emissions trap regeneration
US20080168899A1 (en) * 2007-01-12 2008-07-17 American Farm Implement & Specialty, Inc. Separation and collection of particulates from an air stream
US8512451B1 (en) * 2011-10-07 2013-08-20 William L. Heumann Cyclone separator arrangement
WO2017019628A1 (en) * 2015-07-24 2017-02-02 Enverid Systems, Inc. Apparatus, methods and systems for separating particles from air and fluids
US20220008851A1 (en) * 2017-01-23 2022-01-13 Enverid Systems, Inc. Long life air filter
US11135537B2 (en) * 2017-01-23 2021-10-05 Enverid Systems, Inc. Long life air filter
CN115228632A (en) 2017-07-20 2022-10-25 恩弗里德系统公司 Flow and pressure control in cyclonic filter arrays
US10758843B2 (en) * 2017-12-11 2020-09-01 Ford Global Technologies, Llc Centrifugal fluid separator
DE202019000538U1 (en) 2019-02-05 2019-05-09 Vesch Technologies GmbH dedusting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1966496A (en) * 1930-12-10 1934-07-17 Western Electric Co Method of treating metals
US2824210A (en) * 1953-05-28 1958-02-18 Berghaus Elektrophysik Anst Process and apparatus for carrying out technical processes by glow discharges

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2468176A (en) * 1949-04-26 Apparatus fob subjecting material
US752358A (en) * 1904-02-16 Process of heating articles by electricity
US1047502A (en) * 1907-08-24 1912-12-17 Gen Electric Art of manufacturing lamp-filaments.
US2132708A (en) * 1934-10-08 1938-10-11 Franklin S Smith Method for treating materials and electrical treating apparatus, especially for sterilization
FR835664A (en) * 1937-03-25 1938-12-28 Electrical feedthrough for cathode sputtering devices
GB505135A (en) * 1937-03-25 1939-05-05 Bernhard Berghaus Improvements in and relating to the coating of articles by cathode disintegration
IT364899A (en) * 1937-08-27
US2257411A (en) * 1937-11-30 1941-09-30 Berghaus Method of cathode disintegration
US2358620A (en) * 1938-01-18 1944-09-19 Gen Electric Electric arc apparatus
DE967138C (en) * 1938-03-25 1957-10-10 Bernhard Berghaus Current feedthrough for vacuum annealing and melting furnaces
US2281610A (en) * 1939-12-21 1942-05-05 Prat Daniel Corp Dust collector
US2360355A (en) * 1941-07-10 1944-10-17 Pratdaniel Corp Apparatus for separating suspended particles from gaseous media
DE756646C (en) * 1941-09-05 1953-06-15 Willy Neumann Centrifugal dust separator for internal combustion engines
US2454757A (en) * 1943-10-01 1948-11-23 Lester H Smith Electric space-charge device
GB580936A (en) * 1944-07-28 1946-09-25 Buell Comb Company Ltd Improvements relating to centrifugal dust separating and collecting apparatus
US2498832A (en) * 1946-05-13 1950-02-28 Aerotec Corp Apparatus for classifying and separating suspended particles from gases
US2577411A (en) * 1950-01-31 1951-12-04 Raytheon Mfg Co Sequence and welding timer
BE505312A (en) * 1950-08-18
US2762945A (en) * 1951-01-18 1956-09-11 Berghaus Passing an electric conductor through the bounding walls of discharge vessels
GB701593A (en) * 1951-02-28 1953-12-30 Howden James & Co Ltd Improvements in or relating to centrifugal dust collectors
US2715698A (en) * 1951-08-15 1955-08-16 Taylor Wintield Corp Power control circuit particularly for electric resistance welders
DE914701C (en) * 1952-05-04 1954-07-08 Metallgesellschaft Ag Centrifugal dust collector
US2696895A (en) * 1952-08-25 1954-12-14 Research Corp Apparatus for separating suspended materials from gas
US2717054A (en) * 1953-05-19 1955-09-06 Prat Daniel Corp Apparatus for separating suspended particles from gases

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1966496A (en) * 1930-12-10 1934-07-17 Western Electric Co Method of treating metals
US2824210A (en) * 1953-05-28 1958-02-18 Berghaus Elektrophysik Anst Process and apparatus for carrying out technical processes by glow discharges

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345280A (en) * 1960-11-28 1967-10-03 Ionon G M B H Method and apparatus for controlling glow discharge processes
US3321263A (en) * 1964-12-04 1967-05-23 Motorola Inc Cathode ray tube manufacture
US3437784A (en) * 1966-02-16 1969-04-08 Gen Electric Power supply for reducing arcing damage in glow discharge apparatus

Also Published As

Publication number Publication date
FR1147934A (en) 1957-12-02
CH386584A (en) 1965-01-15
US3018409A (en) 1962-01-23
AT212954B (en) 1961-01-10
CH355233A (en) 1961-06-30
GB805165A (en) 1958-12-03
BE543129A (en)
CH343761A (en) 1959-12-31
GB824947A (en) 1959-12-09
BE569244A (en)
DE1058806B (en) 1959-06-04
DE1156624B (en) 1963-10-31
BE569243A (en)
DE1035446B (en) 1958-07-31
NL112276C (en)
DE1029641B (en) 1958-05-08
CH349283A (en) 1960-10-15
NL86851C (en)
US2874801A (en) 1959-02-24
FR1153552A (en) 1958-03-12
GB776918A (en) 1957-06-12
GB805163A (en) 1958-12-03
CH343553A (en) 1959-12-31
NL193023A (en)
DE1146338B (en) 1963-03-28
BE569245A (en)
GB805164A (en) 1958-12-03
NL232778A (en)
FR1147954A (en) 1957-12-02
US2884511A (en) 1959-04-28
NL232698A (en)

Similar Documents

Publication Publication Date Title
US3004133A (en) Process for starting and performing technical processes using electrical glow discharges
US3373306A (en) Method and apparatus for the control of ionization in a distributed electrical discharge
Stark et al. Electron heating in atmospheric pressure glow discharges
US3324334A (en) Induction plasma torch with means for recirculating the plasma
Timko et al. A One‐Dimensional Particle‐in‐Cell Model of Plasma Build‐Up in Vacuum Arcs
US8259771B1 (en) Initiating laser-sustained plasma
US3320475A (en) Nonthermionic hollow cathode electron beam apparatus
JP2023060181A (en) Energy-efficient high power plasma torch
Safronov et al. AC plasma torches. arc initiation systems. design features and applications
US3689798A (en) Device for automatically controlling electrical conditions of an electron beam unit
US6639223B2 (en) Gaseous ion source feed for oxygen ion implantation
US4095083A (en) Electron-beam apparatus for thermal treatment by electron bombardment
Seznec et al. Controlled electron emission and vacuum breakdown with nanosecond pulses
Llewellyn-Jones The mechanism of electrode erosion in electrical discharges
US3078388A (en) Method and apparatus for controlling electrical discharges
US3308049A (en) Glow discharge apparatus for treating workpieces
Anshakov et al. Erosion of thermionic cathodes in a plasma torch
Germain et al. High voltage breakdown in vacuum
US2902653A (en) Pulse generating circuits embodying magnetrons
Гущин et al. GAS DISCHARGE BREAKDOWN: WHAT IS IT AND METHODS OF DETERMINATION
US2970207A (en) Method and device for arc welding
Burachevskii et al. Limiting operating pressure in a plasma source of electrons with hollow-cathode discharge
RU2144716C1 (en) Method and device for turning-on plasma- coupled thyristor
RU171371U1 (en) VACUUM DISCHARGE
SU409654A1 (en) Electron beam installation