JPH10125930A - Separation method - Google Patents

Separation method

Info

Publication number
JPH10125930A
JPH10125930A JP30037396A JP30037396A JPH10125930A JP H10125930 A JPH10125930 A JP H10125930A JP 30037396 A JP30037396 A JP 30037396A JP 30037396 A JP30037396 A JP 30037396A JP H10125930 A JPH10125930 A JP H10125930A
Authority
JP
Japan
Prior art keywords
layer
substrate
transfer
separation layer
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30037396A
Other languages
Japanese (ja)
Other versions
JP4619461B2 (en
Inventor
Tatsuya Shimoda
達也 下田
Satoshi Inoue
聡 井上
Wakao Miyazawa
和加雄 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP30037396A priority Critical patent/JP4619461B2/en
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to EP06075225A priority patent/EP1655633A3/en
Priority to PCT/JP1997/002972 priority patent/WO1998009333A1/en
Priority to CNA031579647A priority patent/CN1495523A/en
Priority to DE69737086T priority patent/DE69737086T2/en
Priority to KR10-2004-7015277A priority patent/KR100500520B1/en
Priority to TW086112252A priority patent/TW360901B/en
Priority to DE69739376T priority patent/DE69739376D1/en
Priority to EP97935891A priority patent/EP0858110B1/en
Priority to DE69739368T priority patent/DE69739368D1/en
Priority to EP06076860A priority patent/EP1758169A3/en
Priority to US09/051,966 priority patent/US6372608B1/en
Priority to CNB971911347A priority patent/CN1143394C/en
Priority to EP06076859A priority patent/EP1744365B1/en
Priority to EP03076869A priority patent/EP1351308B1/en
Priority to KR10-1998-0703007A priority patent/KR100481994B1/en
Publication of JPH10125930A publication Critical patent/JPH10125930A/en
Priority to US10/091,562 priority patent/US6645830B2/en
Priority to US10/420,840 priority patent/US6818530B2/en
Priority to US10/851,202 priority patent/US7094665B2/en
Priority to US11/242,017 priority patent/US7285476B2/en
Priority to US11/514,985 priority patent/US7468308B2/en
Application granted granted Critical
Publication of JP4619461B2 publication Critical patent/JP4619461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68359Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during manufacture of interconnect decals or build up layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68363Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separation method, wherein a material to be separated can be easily separated regardless of the characteristics, condition and the like of the material to be separated and specially, transfer of the material to be speared to various transfer materials is possible. SOLUTION: This separation method (transfer method) is a method, wherein an isolation layer 2, which is constituted of an amorphous silicon layer, for example, is formed on a light-transmitting substrate 1, a layer 4 to be transferred is directly formed on the layer 2 or is formed on the layer 2 via a prescribed intermediate layer 3 and moreover, a transfer material 6 is bonded to the side, which is opposite to the substrate 1, of the layer 4 via an adhesiveness layer 5, such irradiation light 7 as a laser beam is projected onto the layer 2 from the rear side of the substrate 1, separation is generated within the layer of the layer 2 and/or in the interface between the layer 2 and the substrate 1 by an ablation and the layer 4 is made to separate from the substrate 1 to transfer the layer 4 to the transfer material 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被剥離物の剥離方
法、特に、機能性薄膜のような薄膜よりなる被転写層を
剥離し、透明基板のような転写体へ転写する転写方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of peeling an object to be peeled, and more particularly to a method of peeling a layer to be transferred made of a thin film such as a functional thin film and transferring the transferred layer to a transfer body such as a transparent substrate. It is.

【0002】[0002]

【従来の技術】例えば薄膜トランジスタ(TFT)を用
いた液晶ディスプレイ(LCD)を製造するに際して
は、透明基板上に薄膜トランジスタをCVD等により形
成する工程を経る。
2. Description of the Related Art For example, when manufacturing a liquid crystal display (LCD) using a thin film transistor (TFT), a process of forming the thin film transistor on a transparent substrate by CVD or the like is performed.

【0003】この薄膜トランジスタには、非晶質シリコ
ン(a−Si)を用いたものと、ポリシリコン(p−S
i)を用いたものとがあり、さらに、ポリシリコンによ
るものは、高温プロセスを経て成膜されるものと、低温
プロセスを経て成膜されるものとに分類される。
The thin film transistors include those using amorphous silicon (a-Si) and those using polysilicon (p-S
i), and those formed of polysilicon are classified into those formed through a high-temperature process and those formed through a low-temperature process.

【0004】ところで、このような薄膜トランジスタの
透明基板上への形成は、高温下でなされるため、透明基
板としては、耐熱性に優れる材質のものを使用する必要
がある。そのため、現在では、軟化点および融点が高
く、高温プロセスにおいては、1000℃程度の温度に
も十分耐え得るものとして、石英ガラスよりなる透明基
板が用いられている。また、低温プロセスにおいては、
500℃前後の温度が最高プロセス温度になるので、耐
熱ガラスが用いられている。
Since such a thin film transistor is formed on a transparent substrate at a high temperature, it is necessary to use a transparent substrate made of a material having excellent heat resistance. Therefore, at present, a transparent substrate made of quartz glass is used because it has a high softening point and a high melting point and can sufficiently withstand a temperature of about 1000 ° C. in a high-temperature process. In the low-temperature process,
Since a temperature around 500 ° C. becomes the highest process temperature, heat-resistant glass is used.

【0005】しかしながら、このような耐熱性に優れる
石英ガラスは、通常のガラスに比べて、希少で非常に高
価な材料であり、かつ、透明基板として大型のものを製
造することが困難である。また、耐熱ガラスも石英ガラ
スより大型化が可能であるが、通常のガラスに比べて桁
違いに高価である。また、石英ガラスも耐熱ガラスも脆
く割れ易く、しかも重量が大きい。これは、LCDを構
成する上で重大な欠点となる。そのため、大型で安価な
液晶ディスプレイを製造する上での障害となっていた。
However, quartz glass having such excellent heat resistance is a rare and extremely expensive material as compared with ordinary glass, and it is difficult to produce a large transparent substrate. In addition, heat-resistant glass can be made larger than quartz glass, but it is significantly more expensive than ordinary glass. In addition, both quartz glass and heat-resistant glass are brittle and easily broken, and the weight is large. This is a serious drawback in configuring an LCD. Therefore, it has been an obstacle in producing a large and inexpensive liquid crystal display.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、被剥
離物の特性、条件等にかかわらず、容易に剥離すること
ができ、特に、種々の転写体への転写が可能な剥離方法
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a peeling method which can be easily peeled irrespective of the properties and conditions of an object to be peeled, and in particular, can be transferred to various transfer members. To provide.

【0007】[0007]

【課題を解決するための手段】このような目的は、下記
(1)〜(25)の本発明により達成される。
This and other objects are achieved by the present invention which is defined below as (1) to (25).

【0008】(1) 基板上に分離層を介して存在する
被剥離物を前記基板から剥離する剥離方法であって、前
記分離層に照射光を照射して、前記分離層の層内および
/または界面において剥離を生ぜしめ、前記被剥離物を
前記基板から離脱させることを特徴とする剥離方法。
(1) A peeling method for peeling an object to be peeled present on a substrate via a separation layer from the substrate, wherein the separation layer is irradiated with irradiation light, and the inside of the separation layer and / or Alternatively, peeling is caused at an interface, and the object to be peeled is separated from the substrate.

【0009】(2) 透光性の基板上に分離層を介して
存在する被剥離物を前記基板から剥離する剥離方法であ
って、前記基板側から前記分離層に照射光を照射して、
前記分離層の層内および/または界面において剥離を生
ぜしめ、前記被剥離物を前記基板から離脱させることを
特徴とする剥離方法。
(2) A separation method for separating an object to be separated, which is present on a light-transmitting substrate via a separation layer, from the substrate, and irradiating the separation layer with irradiation light from the substrate side.
A separation method, wherein separation is caused in the separation layer and / or at the interface, and the object to be separated is separated from the substrate.

【0010】(3) 基板上に分離層を介して形成され
た被転写層を前記基板から剥離し、他の転写体に転写す
る方法であって、前記被転写層の前記基板と反対側に前
記転写体を接合した後、前記分離層に照射光を照射し
て、前記分離層の層内および/または界面において剥離
を生ぜしめ、前記被転写層を前記基板から離脱させて前
記転写体へ転写することを特徴とする剥離方法。
(3) A method of peeling a transferred layer formed on a substrate via a separation layer from the substrate and transferring the transferred layer to another transfer member, wherein the transferred layer is opposite to the substrate. After bonding the transfer body, the separation layer is irradiated with irradiation light to cause peeling in the layer and / or interface of the separation layer, and the transfer target layer is separated from the substrate to form the transfer body. A peeling method characterized by transferring.

【0011】(4) 透光性の基板上に分離層を介して
形成された被転写層を前記基板から剥離し、他の転写体
に転写する方法であって、前記被転写層の前記基板と反
対側に前記転写体を接合した後、前記基板側から前記分
離層に照射光を照射して、前記分離層の層内および/ま
たは界面において剥離を生ぜしめ、前記被転写層を前記
基板から離脱させて前記転写体へ転写することを特徴と
する剥離方法。
(4) A method for separating a transfer layer formed on a light-transmitting substrate via a separation layer from the substrate and transferring the transfer layer to another transfer body, wherein the transfer layer is formed on the substrate. After the transfer body is bonded to the opposite side, the separation layer is irradiated with irradiation light from the substrate side to cause separation in the separation layer and / or at the interface. And transferring to the transfer member after detaching from the transfer member.

【0012】(5) 透光性の基板上に分離層を形成す
る工程と、前記分離層上に直接または所定の中間層を介
して被転写層を形成する工程と、前記被転写層の前記基
板と反対側に転写体を接合する工程と、前記基板側から
前記分離層に照射光を照射して、前記分離層の層内およ
び/または界面において剥離を生ぜしめ、前記被転写層
を前記基板から離脱させて前記転写体へ転写する工程と
を有することを特徴とする剥離方法。
(5) a step of forming a separation layer on a light-transmitting substrate; a step of forming a layer to be transferred directly or via a predetermined intermediate layer on the separation layer; Bonding the transfer body to the opposite side of the substrate, and irradiating the separation layer with irradiation light from the substrate side to cause peeling in the layer of the separation layer and / or at the interface; Separating from the substrate and transferring to the transfer body.

【0013】(6) 前記被転写層の前記転写体への転
写後、前記基板側および/または前記転写体側に付着し
ている前記分離層を除去する工程を有する上記(5)に
記載の剥離方法。
(6) The peeling method according to the above (5), further comprising a step of removing the separation layer adhering to the substrate side and / or the transfer body side after the transfer of the transfer-receiving layer to the transfer body. Method.

【0014】(7) 前記被転写層は、機能性薄膜また
は薄膜デバイスである上記(3)ないし(6)のいずれ
かに記載の剥離方法。
(7) The peeling method according to any one of the above (3) to (6), wherein the transferred layer is a functional thin film or a thin film device.

【0015】(8) 前記被転写層は、薄膜トランジス
タである上記(3)ないし(6)のいずれかに記載の剥
離方法。
(8) The peeling method according to any one of the above (3) to (6), wherein the transferred layer is a thin film transistor.

【0016】(9) 前記転写体は、透明基板である上
記(3)ないし(8)のいずれかに記載の剥離方法。
(9) The peeling method according to any one of the above (3) to (8), wherein the transfer body is a transparent substrate.

【0017】(10) 前記転写体は、被転写層の形成の
際の最高温度をTmax としたとき、ガラス転移点(T
g)または軟化点がTmax 以下の材料で構成されている
上記(3)ないし(9)のいずれかに記載の剥離方法。
(10) The transfer body has a glass transition point (T
g) or the peeling method according to any one of the above (3) to (9), which is made of a material having a softening point of Tmax or less.

【0018】(11) 前記転写体は、ガラス転移点(T
g)または軟化点が800℃以下の材料で構成されてい
る上記(3)ないし(10)のいずれかに記載の剥離方
法。
(11) The transfer body has a glass transition point (T
g) or the peeling method according to any one of the above (3) to (10), which is made of a material having a softening point of 800 ° C. or lower.

【0019】(12) 前記転写体は、合成樹脂またはガ
ラス材で構成されている上記(3)ないし(11)のいず
れかに記載の剥離方法。
(12) The peeling method according to any one of the above (3) to (11), wherein the transfer body is made of a synthetic resin or a glass material.

【0020】(13) 前記基板は、耐熱性を有するもの
である上記(1)ないし(12)のいずれかに記載の剥離
方法。
(13) The peeling method according to any one of the above (1) to (12), wherein the substrate has heat resistance.

【0021】(14) 前記基板は、被転写層の形成の際
の最高温度をTmax としたとき、歪点がTmax 以上の材
料で構成されている上記(3)ないし(12)のいずれか
に記載の剥離方法。
(14) The substrate according to any one of (3) to (12) above, wherein the strain point is made of a material having a maximum temperature of Tmax or more when the maximum temperature at the time of forming the layer to be transferred is Tmax. The stripping method as described.

【0022】(15) 前記分離層の剥離は、分離層を構
成する物質の原子間または分子間の結合力が消失または
減少することにより生じる上記(1)ないし(14)のい
ずれかに記載の剥離方法。
(15) The method according to any one of the above (1) to (14), wherein the peeling of the separation layer is caused by a loss or a decrease in a bonding force between atoms or molecules of a substance constituting the separation layer. Peeling method.

【0023】(16) 前記照射光は、レーザ光である上
記(1)ないし(15)のいずれかに記載の剥離方法。
(16) The peeling method according to any one of the above (1) to (15), wherein the irradiation light is a laser light.

【0024】(17) 前記レーザ光の波長が、100〜
350nmである上記(16)に記載の剥離方法。
(17) The wavelength of the laser beam is 100 to
The stripping method according to the above (16), wherein the thickness is 350 nm.

【0025】(18) 前記レーザ光の波長が、350〜
1200nmである上記(16)に記載の剥離方法。
(18) The wavelength of the laser beam is 350 to
The stripping method according to the above (16), which is 1200 nm.

【0026】(19) 前記分離層は、非晶質シリコンで
構成されている上記(1)ないし(18)のいずれかに記
載の剥離方法。
(19) The stripping method according to any one of (1) to (18), wherein the separation layer is made of amorphous silicon.

【0027】(20) 前記非晶質シリコンは、H(水
素)を2at%以上含有するものである上記(19)に記載
の剥離方法。
(20) The stripping method according to the above (19), wherein the amorphous silicon contains H (hydrogen) in an amount of 2 at% or more.

【0028】(21) 前記分離層は、セラミックスで構
成されている上記(1)ないし(18)のいずれかに記載
の剥離方法。
(21) The peeling method according to any one of the above (1) to (18), wherein the separation layer is made of a ceramic.

【0029】(22) 前記分離層は、金属で構成されて
いる上記(1)ないし(18)のいずれかに記載の剥離方
法。
(22) The peeling method according to any one of the above (1) to (18), wherein the separation layer is made of a metal.

【0030】(23) 前記分離層は、有機高分子材料で
構成されている上記(1)ないし(18)のいずれかに記
載の剥離方法。
(23) The peeling method according to any one of the above (1) to (18), wherein the separation layer is made of an organic polymer material.

【0031】(24) 前記有機高分子材料は、−CH2
−、−CO−、−CONH−、−NH−、−COO−、
−N=N−、−CH=N−のうちの少なくとも1種の結
合を有するものである上記(23)に記載の剥離方法。
(24) The organic polymer material is -CH2
-, -CO-, -CONH-, -NH-, -COO-,
The peeling method according to the above (23), wherein the method has at least one kind of bond of -N = N- and -CH = N-.

【0032】(25) 前記有機高分子材料は、構成式中
に芳香族炭化水素を有するものである上記(23)または
(24)に記載の剥離方法。
(25) The stripping method according to the above (23) or (24), wherein the organic polymer material has an aromatic hydrocarbon in a constitutional formula.

【0033】[0033]

【発明の実施の形態】以下、本発明の剥離方法を添付図
面に示す好適実施例に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a peeling method according to the present invention will be described in detail with reference to preferred embodiments shown in the accompanying drawings.

【0034】図1〜図8は、それぞれ、本発明の剥離方
法の実施例の工程を示す断面図である。以下、これらの
図に基づいて、本発明の剥離方法(転写方法)の工程を
順次説明する。
FIGS. 1 to 8 are sectional views showing the steps of an embodiment of the peeling method of the present invention. Hereinafter, the steps of the peeling method (transfer method) of the present invention will be sequentially described based on these drawings.

【0035】[1] 図1に示すように、基板1の片面
(分離層形成面11)に、分離層(光吸収層)2を形成
する。
[1] As shown in FIG. 1, a separation layer (light absorbing layer) 2 is formed on one surface (separation layer forming surface 11) of a substrate 1.

【0036】基板1は、基板1側から照射光7を照射す
る場合、その照射光7が透過し得る透光性を有するもの
であるのが好ましい。
When the substrate 1 is irradiated with the irradiation light 7 from the substrate 1 side, it is preferable that the substrate 1 has a light-transmitting property through which the irradiation light 7 can be transmitted.

【0037】この場合、照射光7の透過率は、10%以
上であるのが好ましく、50%以上であるのがより好ま
しい。この透過率が低過ぎると、照射光7の減衰(ロ
ス)が大きくなり、分離層2を剥離するのにより大きな
光量を必要とする。
In this case, the transmittance of the irradiation light 7 is preferably at least 10%, more preferably at least 50%. If the transmittance is too low, the attenuation (loss) of the irradiation light 7 increases, and a larger amount of light is required to peel off the separation layer 2.

【0038】また、基板1は、信頼性の高い材料で構成
されているのが好ましく、特に、耐熱性に優れた材料で
構成されているのが好ましい。その理由は、例えば後述
する被転写層4や中間層3を形成する際に、その種類や
形成方法によってはプロセス温度が高くなる(例えば3
50〜1000℃程度)ことがあるが、その場合でも、
基板1が耐熱性に優れていれば、基板1上への被転写層
4等の形成に際し、その温度条件等の成膜条件の設定の
幅が広がるからである。
The substrate 1 is preferably made of a highly reliable material, particularly preferably a material having excellent heat resistance. The reason for this is that, for example, when forming the transferred layer 4 and the intermediate layer 3 described later, the process temperature increases depending on the type and the forming method (for example, 3
(About 50 to 1000 ° C).
This is because if the substrate 1 is excellent in heat resistance, the range of setting of film forming conditions such as temperature conditions in forming the transferred layer 4 and the like on the substrate 1 is widened.

【0039】従って、基板1は、被転写層4の形成の際
の最高温度をTmax としたとき、歪点がTmax 以上の材
料で構成されているものが好ましい。具体的には、基板
1の構成材料は、歪点が350℃以上のものが好まし
く、500℃以上のものがより好ましい。このようなも
のとしては、例えば、石英ガラス、ソーダガラス、コー
ニング7059、日本電気ガラスOA−2等の耐熱性ガ
ラスが挙げられる。
Accordingly, the substrate 1 is preferably made of a material having a strain point equal to or higher than Tmax, where Tmax is the maximum temperature at the time of forming the layer 4 to be transferred. Specifically, the constituent material of the substrate 1 preferably has a strain point of 350 ° C. or higher, more preferably 500 ° C. or higher. Examples of such a material include heat-resistant glass such as quartz glass, soda glass, Corning 7059, and NEC Glass OA-2.

【0040】なお、後述する分離層2、中間層3および
被転写層4の形成の際のプロセス温度を低くするのであ
れば、基板1についても、融点の低い安価なガラス材や
合成樹脂を用いることができる。
If the process temperature for forming the later-described separation layer 2, intermediate layer 3, and transfer layer 4 is to be lowered, the substrate 1 is also made of an inexpensive glass material or synthetic resin having a low melting point. be able to.

【0041】また、基板1の厚さは、特に限定されない
が、通常は、0.1〜5.0mm程度であるのが好まし
く、0.5〜1.5mm程度であるのがより好ましい。基
板1の厚さが薄過ぎると強度の低下を招き、厚過ぎる
と、基板1の透過率が低い場合に、照射光7の減衰を生
じ易くなる。なお、基板1の照射光7の透過率が高い場
合には、その厚さは、前記上限値を超えるものであって
もよい。
The thickness of the substrate 1 is not particularly limited, but is usually preferably about 0.1 to 5.0 mm, and more preferably about 0.5 to 1.5 mm. If the thickness of the substrate 1 is too thin, the strength is reduced. If the thickness of the substrate 1 is too low, the irradiation light 7 tends to be attenuated when the transmittance of the substrate 1 is low. When the transmittance of the irradiation light 7 of the substrate 1 is high, the thickness may exceed the upper limit.

【0042】なお、照射光7を均一に照射できるよう
に、基板1の分離層形成部分の厚さは、均一であるのが
好ましい。
The thickness of the separation layer forming portion of the substrate 1 is preferably uniform so that the irradiation light 7 can be uniformly irradiated.

【0043】また、基板1の分離層形成面11や、照射
光入射面12は、図示のごとき平面に限らず、曲面であ
ってもよい。
Further, the separation layer forming surface 11 and the irradiation light incident surface 12 of the substrate 1 are not limited to the flat surface as shown, but may be a curved surface.

【0044】本発明では、基板1をエッチング等により
除去するのではなく、基板1と被転写層4との間にある
分離層2を剥離して基板1を離脱させるため、作業が容
易であるとともに、例えば比較的厚さの厚い基板を用い
る等、基板1に関する選択の幅も広い。
In the present invention, the substrate 1 is separated by separating the separation layer 2 between the substrate 1 and the transferred layer 4 instead of removing the substrate 1 by etching or the like. At the same time, there is a wide range of options for the substrate 1 such as using a relatively thick substrate.

【0045】次に、分離層2について説明する。Next, the separation layer 2 will be described.

【0046】分離層2は、後述する照射光7を吸収し、
その層内および/または界面2aまたは2bにおいて剥
離(以下、「層内剥離」、「界面剥離」と言う)を生じ
るような性質を有するものであり、好ましくは、照射光
7の照射により、分離層2を構成する物質の原子間また
は分子間の結合力が消失または減少すること、現実的に
は、アブレーション等を生ぜしめることにより層内剥離
および/または界面剥離に至るものである。
The separation layer 2 absorbs irradiation light 7 described later,
It has a property of causing peeling (hereinafter referred to as “intralayer peeling” or “interfacial peeling”) in the layer and / or at the interface 2 a or 2 b, and is preferably separated by irradiation with the irradiation light 7. The loss or reduction of the bonding force between the atoms or molecules of the substance constituting the layer 2, or in reality, abrasion or the like, may result in delamination and / or interfacial delamination.

【0047】さらに、照射光7の照射により、分離層2
から気体が放出され、分離効果が発現される場合もあ
る。すなわち、分離層2に含有されていた成分が気体と
なって放出される場合と、分離層2が光を吸収して一瞬
気体になり、その蒸気が放出され、分離に寄与する場合
とがある。
Further, the separation layer 2 is irradiated by the irradiation light 7.
In some cases, gas is released from the gas and the separation effect is exhibited. That is, there is a case where the component contained in the separation layer 2 is released as a gas, and a case where the separation layer 2 absorbs light and becomes a gas for a moment, and the vapor is released to contribute to separation. .

【0048】このような分離層2の組成としては、例え
ば次のようなものが挙げられる。
The composition of the separation layer 2 is, for example, as follows.

【0049】 非晶質シリコン(a−Si) この非晶質シリコン中には、H(水素)が含有されてい
てもよい。この場合、Hの含有量は、2at%以上程度で
あるのが好ましく、2〜20at%程度であるのがより好
ましい。このように、Hが所定量含有されていると、照
射光7の照射により、水素が放出され、分離層2に内圧
が発生し、それが上下の薄膜を剥離する力となる。
Amorphous Silicon (a-Si) This amorphous silicon may contain H (hydrogen). In this case, the content of H is preferably about 2 at% or more, and more preferably about 2 to 20 at%. As described above, when H is contained in a predetermined amount, irradiation of the irradiation light 7 releases hydrogen, and an internal pressure is generated in the separation layer 2, which serves as a force for peeling the upper and lower thin films.

【0050】非晶質シリコン中のHの含有量は、成膜条
件、例えばCVDにおけるガス組成、ガス圧、ガス雰囲
気、ガス流量、温度、基板温度、投入パワー等の条件を
適宜設定することにより調整することができる。
The content of H in the amorphous silicon can be determined by appropriately setting film forming conditions such as gas composition, gas pressure, gas atmosphere, gas flow rate, temperature, substrate temperature, and input power in CVD. Can be adjusted.

【0051】 酸化ケイ素またはケイ酸化合物、酸化
チタンまたはチタン酸化合物、酸化ジルコニウムまたは
ジルコン酸化合物、酸化ランタンまたはランタン酸化合
物等の各種酸化物セラミックス、誘電体(強誘電体)あ
るいは半導体 酸化ケイ素としては、SiO、SiO2 、Si3 O2 が
挙げられ、ケイ酸化合物としては、例えばK2 SiO3
、Li2 SiO3 、CaSiO3 、ZrSiO4 、N
a2 SiO3 が挙げられる。
Various oxide ceramics such as silicon oxide or silicate compound, titanium oxide or titanate compound, zirconium oxide or zirconate compound, lanthanum oxide or lanthanic acid compound, dielectric (ferroelectric) or semiconductor , SiO, SiO2, and Si3 O2. Examples of the silicate compound include K2 SiO3.
, Li2 SiO3, CaSiO3, ZrSiO4, N
a2 SiO3.

【0052】酸化チタンとしては、TiO、Ti2 O3
、TiO2 が挙げられ、チタン酸化合物としては、例
えば、BaTiO4 、BaTiO3 、Ba2 Ti9 O2
0、BaTi5 O11、CaTiO3 、SrTiO3 、P
bTiO3 、MgTiO3 、ZrTiO2 、SnTiO
4 、Al2 TiO5 、FeTiO3 が挙げられる。
As the titanium oxide, TiO, Ti2 O3
And TiO2. Examples of the titanate compound include BaTiO4, BaTiO3, Ba2Ti9O2.
0, BaTi5 O11, CaTiO3, SrTiO3, P
bTiO3, MgTiO3, ZrTiO2, SnTiO
4, Al2 TiO5 and FeTiO3.

【0053】酸化ジルコニウムとしては、ZrO2 が挙
げられ、ジルコン酸化合物としては、例えばBaZrO
3 、ZrSiO4 、PbZrO3 、MgZrO3 、K2
ZrO3 が挙げられる。
Examples of zirconium oxide include ZrO 2, and examples of zirconate compounds include BaZrO 2
3, ZrSiO4, PbZrO3, MgZrO3, K2
ZrO3.

【0054】 PZT、PLZT、PLLZT、PB
ZT等のセラミックスあるいは誘電体(強誘電体) 窒化珪素、窒化アルミ、窒化チタン等の窒化物セラ
ミックス 有機高分子材料 有機高分子材料としては、−CH2 −、−CO−(ケト
ン)、−CONH−(アミド)、−NH−(イミド)、
−COO−(エステル)、−N=N−(アゾ)、−CH
=N−(シフ)等の結合(照射光7の照射によりこれら
の結合が切断される)を有するもの、特にこれらの結合
を多く有するものであればいかなるものでもよい。ま
た、有機高分子材料は、構成式中に芳香族炭化水素(1
または2以上のベンゼン環またはその縮合環)を有する
ものであってもよい。
PZT, PLZT, PLLZT, PB
Ceramics such as ZT or dielectrics (ferroelectrics) Nitride ceramics such as silicon nitride, aluminum nitride, titanium nitride, etc. Organic polymer materials As organic polymer materials, -CH2-, -CO- (ketone), -CONH- (Amide), -NH- (imide),
-COO- (ester), -N = N- (azo), -CH
= N- (Schiff) or the like (these bonds are broken by irradiation with the irradiation light 7), particularly any material having many of these bonds. The organic polymer material has an aromatic hydrocarbon (1
Or two or more benzene rings or condensed rings thereof).

【0055】このような有機高分子材料の具体的例とし
ては、ポリエチレン、ポリプロピレンのようなポリオレ
フィン、ポリイミド、ポリアミド、ポリエステル、ポリ
メチルメタクリレート(PMMA)、ポリフェニレンサ
ルファイド(PPS)、ポリエーテルスルホン(PE
S)、エポキシ樹脂等が挙げられる。
Specific examples of such organic polymer materials include polyolefins such as polyethylene and polypropylene, polyimides, polyamides, polyesters, polymethyl methacrylate (PMMA), polyphenylene sulfide (PPS), and polyether sulfone (PE).
S), epoxy resin and the like.

【0056】 金属 金属としては、例えば、Al、Li、Ti、Mn、I
n、Sn、Y、La、Ce、Nd、Pr、Gd、Sm、
またはこれらのうちの少なくとも1種を含む合金が挙げ
られる。
Metal As the metal, for example, Al, Li, Ti, Mn, I
n, Sn, Y, La, Ce, Nd, Pr, Gd, Sm,
Alternatively, an alloy containing at least one of these may be used.

【0057】また、分離層2の厚さは、剥離目的や分離
層2の組成、層構成、形成方法等の諸条件により異なる
が、通常は、1nm〜20μm 程度であるのが好ましく、
10nm〜2μm 程度であるのがより好ましく、40nm〜
1μm 程度であるのがさらに好ましい。
The thickness of the separation layer 2 varies depending on conditions such as the purpose of peeling and the composition, layer structure, and forming method of the separation layer 2. However, it is usually preferably about 1 nm to 20 μm.
It is more preferably about 10 nm to 2 μm,
More preferably, it is about 1 μm.

【0058】分離層2の膜厚が小さすぎると、成膜の均
一性が損なわれ、剥離にムラが生じることがあり、ま
た、膜厚が厚すぎると、分離層2の良好な剥離性を確保
するために、照射光7のパワー(光量)を大きくする必
要があるとともに、後に分離層2を除去する際にその作
業に時間がかかる。なお、分離層2の膜厚は、できるだ
け均一であるのが好ましい。
If the thickness of the separation layer 2 is too small, the uniformity of the film may be impaired and the separation may be uneven. If the thickness is too large, good separation of the separation layer 2 may be obtained. In order to secure the power, it is necessary to increase the power (light amount) of the irradiation light 7, and it takes time to remove the separation layer 2 later. The thickness of the separation layer 2 is preferably as uniform as possible.

【0059】分離層2の形成方法は、特に限定されず、
膜組成や膜厚等の諸条件に応じて適宜選択される。例え
ば、CVD(MOCVD、低圧CVD、ECR−CVD
を含む)、蒸着、分子線蒸着(MB)、スパッタリン
グ、イオンプレーティング、PVD等の各種気相成膜
法、電気メッキ、浸漬メッキ(ディッピング)、無電解
メッキ等の各種メッキ法、ラングミュア・ブロジェット
(LB)法、スピンコート、スプレーコート、ロールコ
ート等の塗布法、各種印刷法、転写法、インクジェット
法、粉末ジェット法等が挙げられ、これらのうちの2以
上を組み合わせて形成することもできる。
The method for forming the separation layer 2 is not particularly limited.
It is appropriately selected according to various conditions such as a film composition and a film thickness. For example, CVD (MOCVD, low pressure CVD, ECR-CVD
), Vapor deposition, molecular beam deposition (MB), sputtering, ion plating, various vapor deposition methods such as PVD, various plating methods such as electroplating, immersion plating (dipping), and electroless plating, Langmuir Bloe Examples include a coating method such as a jet (LB) method, spin coating, spray coating, and roll coating, various printing methods, a transfer method, an inkjet method, a powder jet method, and the like. it can.

【0060】例えば、分離層2の組成が非晶質シリコン
(a−Si)の場合には、CVD、特に低圧CVDやプ
ラズマCVDにより成膜するのが好ましい。
For example, when the composition of the separation layer 2 is amorphous silicon (a-Si), it is preferable to form the film by CVD, especially low pressure CVD or plasma CVD.

【0061】また、分離層2をゾル−ゲル法によるセラ
ミックスで構成する場合や、有機高分子材料で構成する
場合には、塗布法、特にスピンコートにより成膜するの
が好ましい。
When the separation layer 2 is made of ceramics by a sol-gel method or when it is made of an organic polymer material, it is preferable to form a film by a coating method, particularly spin coating.

【0062】また、分離層2の形成は、2工程以上の工
程(例えば、層の形成工程と熱処理工程)で行われても
よい。
The formation of the separation layer 2 may be performed in two or more steps (for example, a layer forming step and a heat treatment step).

【0063】[2] 図2に示すように、分離層2の上
に中間層(下地層)3を形成する。
[2] As shown in FIG. 2, an intermediate layer (underlayer) 3 is formed on the separation layer 2.

【0064】この中間層3は、種々の形成目的で形成さ
れ、例えば、製造時または使用時において後述する被転
写層4を物理的または化学的に保護する保護層、絶縁
層、導電層、照射光7の遮光層、被転写層4へのまたは
被転写層4からの成分の移行(マイグレーション)を阻
止するバリア層、反射層としての機能の内の少なくとも
1つを発揮するものが挙げられる。
The intermediate layer 3 is formed for various formation purposes. For example, a protective layer, an insulating layer, a conductive layer, an irradiation layer, which physically or chemically protects a transferred layer 4 described later during manufacturing or use. Examples of the light-shielding layer include a layer that functions as a light-shielding layer, a barrier layer that prevents migration of components to or from the transferred layer 4, and a reflective layer.

【0065】この中間層3の組成としては、その形成目
的に応じて適宜設定され、例えば、非晶質シリコンによ
る分離層2と薄膜トランジスタによる被転写層4との間
に形成される中間層3の場合には、SiO2 等の酸化ケ
イ素が挙げられ、分離層2とPZTによる被転写層4と
の間に形成される中間層3の場合には、例えば、Pt、
Au、W、Ta、Mo、Al、Cr、Tiまたはこれら
を主とする合金のような金属が挙げられる。
The composition of the intermediate layer 3 is appropriately set according to the purpose of its formation. For example, the composition of the intermediate layer 3 formed between the separation layer 2 made of amorphous silicon and the transfer layer 4 made of a thin film transistor is formed. In this case, silicon oxide such as SiO2 is used. In the case of the intermediate layer 3 formed between the separation layer 2 and the layer 4 to be transferred by PZT, for example, Pt,
Metals such as Au, W, Ta, Mo, Al, Cr, Ti, or alloys containing these as the main components may be used.

【0066】このような中間層3の厚さは、その形成目
的や発揮し得る機能の程度に応じて適宜決定されるが、
通常は、10nm〜5μm 程度であるのが好ましく、40
nm〜〜1μm 程度であるのがより好ましい。
The thickness of the intermediate layer 3 is appropriately determined depending on the purpose of forming the intermediate layer 3 and the degree of the function that can be exhibited.
Usually, it is preferably about 10 nm to 5 μm,
More preferably, it is about nm to about 1 μm.

【0067】また、中間層3の形成方法も、前記分離層
2で挙げた形成方法と同様の方法が挙げられる。また、
中間層3の形成は、2工程以上の工程で行われてもよ
い。
The method for forming the intermediate layer 3 is the same as the method for forming the intermediate layer 3. Also,
The formation of the intermediate layer 3 may be performed in two or more steps.

【0068】なお、このような中間層3は、同一または
異なる組成のものを2層以上形成することもできる。ま
た、本発明では、中間層3を形成せず、分離層2上に直
接被転写層4を形成してもよい。
The intermediate layer 3 may be formed of two or more layers having the same or different composition. In the present invention, the transfer layer 4 may be formed directly on the separation layer 2 without forming the intermediate layer 3.

【0069】[3] 図3に示すように、中間層3の上
に被転写層(被剥離物)4を形成する。
[3] As shown in FIG. 3, a transferred layer (substrate) 4 is formed on the intermediate layer 3.

【0070】被転写層4は、後述する転写体6へ転写さ
れる層であって、前記分離層2で挙げた形成方法と同様
の方法により形成することができる。
The transfer layer 4 is a layer to be transferred to a transfer body 6 described later, and can be formed by the same method as the formation method described above for the separation layer 2.

【0071】被転写層4の形成目的、種類、形態、構
造、組成、物理的または化学的特性等は、特に限定され
ないが、転写の目的や有用性を考慮して、薄膜、特に機
能性薄膜または薄膜デバイスであるのが好ましい。
The purpose, type, form, structure, composition, physical or chemical properties, etc. of the layer 4 to be transferred are not particularly limited, but in consideration of the purpose and usefulness of the transfer, a thin film, especially a functional thin film Alternatively, it is preferably a thin film device.

【0072】機能性薄膜および薄膜デバイスとしては、
例えば、薄膜トランジスタ、薄膜ダイオード、その他の
薄膜半導体デバイス、電極(例:ITO、メサ膜のよう
な透明電極)、太陽電池やイメージセンサ等に用いられ
る光電変換素子、スイッチング素子、メモリー、圧電素
子等のアクチュエータ、マイクロミラー(ピエゾ薄膜セ
ラミックス)、磁気記録媒体、光磁気記録媒体、光記録
媒体等の記録媒体、磁気記録薄膜ヘッド、コイル、イン
ダクター、薄膜高透磁材料およびそれらを組み合わせた
マイクロ磁気デバイス、フィルター、反射膜、ダイクロ
イックミラー、偏光素子等の光学薄膜、半導体薄膜、超
伝導薄膜(例:YBCO薄膜)、磁性薄膜 、金属多層
薄膜、金属セラミック多層薄膜、金属半導体多層薄膜、
セラミック半導体多層薄膜、有機薄膜と他の物質の多層
薄膜等が挙げられる。
As the functional thin film and the thin film device,
For example, thin film transistors, thin film diodes, other thin film semiconductor devices, electrodes (eg, transparent electrodes such as ITO and mesa films), photoelectric conversion elements used for solar cells and image sensors, switching elements, memories, piezoelectric elements, etc. Actuators, micromirrors (piezoelectric thin film ceramics), magnetic recording media, magneto-optical recording media, recording media such as optical recording media, magnetic recording thin-film heads, coils, inductors, thin-film high-permeability materials and micro-magnetic devices combining them, Optical thin films such as filters, reflective films, dichroic mirrors, and polarizing elements, semiconductor thin films, superconducting thin films (eg, YBCO thin films), magnetic thin films, metal multilayer thin films, metal ceramic multilayer thin films, metal semiconductor multilayer thin films,
Examples include a ceramic semiconductor multilayer thin film, an organic thin film and a multilayer thin film of another substance.

【0073】このなかでも、特に、薄膜デバイス、マイ
クロ磁気デバイス、マイクロ三次元構造物の構成、アク
チュエータ、マイクロミラー等に適用することの有用性
が高く、好ましい。
Among them, the application to a thin film device, a micro magnetic device, a structure of a micro three-dimensional structure, an actuator, a micro mirror, and the like is particularly high and is preferable.

【0074】このような機能性薄膜または薄膜デバイス
は、その形成方法との関係で、通常、比較的高いプロセ
ス温度を経て形成される。従って、この場合、前述した
ように、基板1としては、そのプロセス温度に耐え得る
信頼性の高いものが必要となる。
Such a functional thin film or thin film device is usually formed at a relatively high process temperature in relation to the method of forming the functional thin film or the thin film device. Therefore, in this case, as described above, the substrate 1 needs to have a high reliability that can withstand the process temperature.

【0075】なお、被転写層4は、単層でも、複数の層
の積層体でもよい。さらには、前記薄膜トランジスタ等
のように、所定のパターンニングが施されたものであっ
てもよい。被転写層4の形成(積層)、パターンニング
は、それに応じた所定の方法により行われる。このよう
な被転写層4は、通常、複数の工程を経て形成される。
The transferred layer 4 may be a single layer or a laminate of a plurality of layers. Further, a predetermined patterning such as the thin film transistor may be applied. The formation (lamination) and patterning of the transfer-receiving layer 4 are performed by a predetermined method according to the method. Such a transferred layer 4 is usually formed through a plurality of steps.

【0076】薄膜トランジスタによる被転写層4の形成
は、例えば、特公平2−50630号公報や、文献:H.
Ohshima et al : International Symposium Digest of
Technical Papers SID 1983 ”B/W and Color LC Video
Display Addressed by PolySi TFTs”に記載された方
法に従って行うことができる。
The formation of the transfer-receiving layer 4 by the thin film transistor is described in, for example, Japanese Patent Publication No. 2-50630 or H.
Ohshima et al: International Symposium Digest of
Technical Papers SID 1983 ”B / W and Color LC Video
Display Addressed by PolySi TFTs ”.

【0077】また、被転写層4の厚さも特に限定され
ず、その形成目的、機能、組成、特性等の諸条件に応じ
て適宜設定される。被転写層4が薄膜トランジスタの場
合、その合計厚さは、好ましくは0.5〜200μm 程
度、より好ましくは1.0〜10μm 程度とされる。ま
た、その他の薄膜の場合、好適な合計厚さは、さらに広
い範囲でよく、例えば50nm〜1000μm 程度とする
ことができる。
The thickness of the layer 4 to be transferred is not particularly limited, either, and is appropriately set according to various conditions such as the purpose of formation, function, composition, and characteristics. When the layer 4 to be transferred is a thin film transistor, the total thickness is preferably about 0.5 to 200 μm, more preferably about 1.0 to 10 μm. In the case of other thin films, a suitable total thickness may be in a wider range, for example, about 50 nm to 1000 μm.

【0078】なお、被転写層4は、前述したような薄膜
に限定されず、例えば、塗布膜やシートのような厚膜で
あってもよく、さらには、例えば粉体のような膜(層)
を構成しない被転写物または被剥離物であってもよい。
The layer 4 to be transferred is not limited to a thin film as described above, but may be a thick film such as a coating film or a sheet. )
May be an object to be transferred or an object to be peeled.

【0079】[4] 図4に示すように、被転写層(被
剥離物)4上に接着層5を形成し、該接着層5を介して
転写体6を接着(接合)する。
[4] As shown in FIG. 4, an adhesive layer 5 is formed on a layer to be transferred (object to be peeled) 4, and a transfer body 6 is bonded (joined) through the adhesive layer 5.

【0080】接着層5を構成する接着剤の好適な例とし
ては、反応硬化型接着剤、熱硬化型接着剤、紫外線硬化
型接着剤等の光硬化型接着剤、嫌気硬化型接着剤等の各
種硬化型接着剤が挙げられる。接着剤の組成としては、
例えば、エポキシ系、アクリレート系、シリコーン系
等、いかなるものでもよい。このような接着層5の形成
は、例えば、塗布法によりなされる。
Preferable examples of the adhesive forming the adhesive layer 5 include a light-curable adhesive such as a reaction-curable adhesive, a thermosetting adhesive, and an ultraviolet-curable adhesive, and an anaerobic-curable adhesive. Various curable adhesives can be used. As the composition of the adhesive,
For example, any type such as an epoxy type, an acrylate type, and a silicone type may be used. The formation of the adhesive layer 5 is performed by, for example, a coating method.

【0081】前記硬化型接着剤を用いる場合、例えば被
転写層4上に硬化型接着剤を塗布し、その上に後述する
転写体6を接合した後、硬化型接着剤の特性に応じた硬
化方法により前記硬化型接着剤を硬化させて、被転写層
4と転写体6とを接着、固定する。
In the case of using the curable adhesive, for example, a curable adhesive is applied on the layer 4 to be transferred, and a transfer member 6 described later is bonded thereon, and then cured according to the characteristics of the curable adhesive. The transferable layer 4 and the transfer body 6 are adhered and fixed by curing the curable adhesive by a method.

【0082】光硬化型接着剤を用いる場合は、透光性の
転写体6を未硬化の接着層5上に配置した後、転写体6
上から硬化用の光を照射して接着剤を硬化させることが
好ましい。また、基板1が透光性を有するものであれ
ば、基板1と転写体6の両側から硬化用の光を照射して
接着剤を硬化させれば、硬化が確実となり好ましい。
When a photo-curable adhesive is used, the light-transmissive transfer member 6 is placed on the uncured adhesive layer 5 and then transferred to the transfer member 6.
It is preferable to irradiate curing light from above to cure the adhesive. If the substrate 1 has a light-transmitting property, it is preferable to cure the adhesive by irradiating curing light from both sides of the substrate 1 and the transfer body 6, which is preferable because curing is ensured.

【0083】なお、図示と異なり、転写体6側に接着層
5を形成し、その上に被転写層4を接着してもよい。ま
た、被転写層4と接着層5との間に、前述したような中
間層を設けてもよい。また、例えば転写体6自体が接着
機能を有する場合等には、接着層5の形成を省略しても
よい。
It is to be noted that, different from the illustration, the adhesive layer 5 may be formed on the transfer body 6 side, and the transferred layer 4 may be bonded thereon. Further, an intermediate layer as described above may be provided between the transfer layer 4 and the adhesive layer 5. Further, for example, when the transfer body 6 itself has an adhesive function, the formation of the adhesive layer 5 may be omitted.

【0084】転写体6としては、特に限定されないが、
基板(板材)、特に透明基板が挙げられる。なお、この
ような基板は、平板であっても、湾曲板であってもよ
い。
The transfer body 6 is not particularly limited.
Substrates (plate materials), particularly transparent substrates, may be mentioned. Note that such a substrate may be a flat plate or a curved plate.

【0085】また、転写体6は、前記基板1に比べ、耐
熱性、耐食性等の特性が劣るものであってもよい。その
理由は、本発明では、基板1側に被転写層4を形成し、
その後、該被転写層4を転写体6に転写するため、転写
体6に要求される特性、特に耐熱性は、被転写層4の形
成の際の温度条件等に依存しないからである。
The transfer member 6 may be inferior to the substrate 1 in properties such as heat resistance and corrosion resistance. The reason is that, in the present invention, the transferred layer 4 is formed on the substrate 1 side,
After that, since the transferred layer 4 is transferred onto the transfer member 6, the characteristics required for the transfer member 6, especially the heat resistance, do not depend on the temperature conditions at the time of forming the transferred layer 4.

【0086】従って、被転写層4の形成の際の最高温度
をTmax としたとき、転写体6の構成材料として、ガラ
ス転移点(Tg)または軟化点がTmax 以下のものを用
いることができる。例えば、転写体6は、ガラス転移点
(Tg)または軟化点が好ましくは800℃以下、より
好ましくは500℃以下、さらに好ましくは320℃以
下の材料で構成することができる。
Accordingly, assuming that the maximum temperature at the time of forming the transfer layer 4 is Tmax, a material having a glass transition point (Tg) or softening point of Tmax or less can be used as the material of the transfer body 6. For example, the transfer body 6 can be made of a material having a glass transition point (Tg) or a softening point of preferably 800 ° C. or lower, more preferably 500 ° C. or lower, and further preferably 320 ° C. or lower.

【0087】また、転写体6の機械的特性としては、あ
る程度の剛性(強度)を有するものが好ましいが、可撓
性、弾性を有するものであってもよい。
As the mechanical properties of the transfer member 6, those having a certain degree of rigidity (strength) are preferable, but those having flexibility and elasticity may be used.

【0088】このような転写体6の構成材料としては、
各種合成樹脂または各種ガラス材が挙げられ、特に、各
種合成樹脂や通常の(低融点の)安価なガラス材が好ま
しい。
As a constituent material of such a transfer body 6,
Various synthetic resins and various glass materials are mentioned, and particularly, various synthetic resins and ordinary (low melting point) inexpensive glass materials are preferable.

【0089】合成樹脂としては、熱可塑性樹脂、熱硬化
性樹脂のいずれでもよく、例えば、ポリエチレン、ポリ
プロピレン、エチレン−プロピレン共重合体、エチレン
−酢酸ビニル共重合体(EVA)等のポリオレフィン、
環状ポリオレフィン、変性ポリオレフィン、ポリ塩化ビ
ニル、ポリ塩化ビニリデン、ポリスチレン、ポリアミ
ド、ポリイミド、ポリアミドイミド、ポリカーボネー
ト、ポリ−(4−メチルペンテン−1)、アイオノマ
ー、アクリル系樹脂、ポリメチルメタクリレート(PM
MA)、アクリロニトリル−ブタジエン−スチレン共重
合体(ABS樹脂)、アクリロニトリル−スチレン共重
合体(AS樹脂)、ブタジエン−スチレン共重合体、ポ
リオキシメチレン、ポリビニルアルコール(PVA)、
エチレン−ビニルアルコール共重合体(EVOH)、ポ
リエチレンテレフタレート(PET)、ポリブチレンテ
レフタレート(PBT)、ポリシクロヘキサンテレフタ
レート(PCT)等のポリエステル、ポリエーテル、ポ
リエーテルケトン(PEK)、ポリエーテルエーテルケ
トン(PEEK)、ポリエーテルイミド、ポリアセター
ル(POM)、ポリフェニレンオキシド、変性ポリフェ
ニレンオキシド、ポリサルフォン、ポリフェニレンサル
ファイド(PPS)、ポリエーテルスルホン(PE
S)、ポリアリレート、芳香族ポリエステル(液晶ポリ
マー)、ポリテトラフルオロエチレン、ポリフッ化ビニ
リデン、その他フッ素系樹脂、スチレン系、ポリオレフ
ィン系、ポリ塩化ビニル系、ポリウレタン系、ポリエス
テル系、ポリアミド系、ポリブタジエン系、トランスポ
リイソプレン系、フッ素ゴム系、塩素化ポリエチレン系
等の各種熱可塑性エラストマー、エポキシ樹脂、フェノ
ール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエス
テル、シリコーン樹脂、ポリウレタン等、またはこれら
を主とする共重合体、ブレンド体、ポリマーアロイ等が
挙げられ、これらのうちの1種または2種以上を組み合
わせて(例えば2層以上の積層体として)用いることが
できる。
As the synthetic resin, any of a thermoplastic resin and a thermosetting resin may be used. For example, polyolefin such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer (EVA),
Cyclic polyolefin, modified polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, polyimide, polyamideimide, polycarbonate, poly- (4-methylpentene-1), ionomer, acrylic resin, polymethyl methacrylate (PM
MA), acrylonitrile-butadiene-styrene copolymer (ABS resin), acrylonitrile-styrene copolymer (AS resin), butadiene-styrene copolymer, polyoxymethylene, polyvinyl alcohol (PVA),
Polyester such as ethylene-vinyl alcohol copolymer (EVOH), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polycyclohexane terephthalate (PCT), polyether, polyether ketone (PEK), polyether ether ketone (PEEK) ), Polyetherimide, polyacetal (POM), polyphenylene oxide, modified polyphenylene oxide, polysulfone, polyphenylene sulfide (PPS), polyether sulfone (PE)
S), polyarylate, aromatic polyester (liquid crystal polymer), polytetrafluoroethylene, polyvinylidene fluoride, other fluororesins, styrene, polyolefin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene , Trans-polyisoprene-based, fluororubber-based, chlorinated polyethylene-based thermoplastic elastomers, epoxy resins, phenolic resins, urea resins, melamine resins, unsaturated polyesters, silicone resins, polyurethanes, etc. Examples thereof include polymers, blends, and polymer alloys, and one or more of these can be used in combination (for example, as a laminate of two or more layers).

【0090】ガラス材としては、例えば、ケイ酸ガラス
(石英ガラス)、ケイ酸アルカリガラス、ソーダ石灰ガ
ラス、カリ石灰ガラス、鉛(アルカリ)ガラス、バリウ
ムガラス、ホウケイ酸ガラス等が挙げられる。このう
ち、ケイ酸ガラス以外のものは、ケイ酸ガラスに比べて
融点が低く、また、成形、加工も比較的容易であり、し
かも安価であり、好ましい。
Examples of the glass material include silicate glass (quartz glass), alkali silicate glass, soda lime glass, potassium lime glass, lead (alkali) glass, barium glass, borosilicate glass and the like. Of these, those other than silicate glass have a lower melting point than silicate glass, are relatively easy to mold and process, and are inexpensive, and are therefore preferable.

【0091】転写体6として合成樹脂で構成されたもの
を用いる場合には、大型の転写体6を一体的に成形する
ことができるとともに、湾曲面や凹凸を有するもの等の
複雑な形状であっても容易に製造することができ、ま
た、材料コスト、製造コストも安価であるという種々の
利点が享受できる。従って、大型で安価なデバイス(例
えば、液晶ディスプレイ)を容易に製造することができ
るようになる。
When the transfer member 6 is made of synthetic resin, the large transfer member 6 can be integrally formed and has a complicated shape such as one having a curved surface or irregularities. However, various advantages such as easy production and low material cost and low production cost can be enjoyed. Therefore, a large and inexpensive device (for example, a liquid crystal display) can be easily manufactured.

【0092】なお、転写体6は、例えば、液晶セルのよ
うに、それ自体独立したデバイスを構成するものや、例
えばカラーフィルター、電極層、誘電体層、絶縁層、半
導体素子のように、デバイスの一部を構成するものであ
ってもよい。
The transfer member 6 may be one that constitutes an independent device such as a liquid crystal cell, or a device such as a color filter, an electrode layer, a dielectric layer, an insulating layer, or a semiconductor element. May be a part of the above.

【0093】さらに、転写体6は、金属、セラミック
ス、石材、木材、紙等の物質であってもよいし、ある品
物を構成する任意の面上(時計の面上、エアコンの表面
上、プリント基板の上等)、さらには壁、柱、梁、天
井、窓ガラス等の構造物の表面上であってもよい。
Further, the transfer body 6 may be a substance such as metal, ceramics, stone, wood, paper, or the like, or on any surface constituting a certain product (on a clock, on an air conditioner, or on a print surface). On a substrate, etc.), or on the surface of a structure such as a wall, a column, a beam, a ceiling, or a window glass.

【0094】[5] 図5に示すように、基板1の裏面
側(照射光入射面12側)から照射光7を照射する。こ
の照射光7は、基板1を透過した後、界面2a側から分
離層2に照射される。これにより、図6または図7に示
すように、分離層2に層内剥離および/または界面剥離
が生じ、結合力が減少または消滅するので、基板1と転
写体6とを離間させると、被転写層4が基板1から離脱
して、転写体6へ転写される。
[5] As shown in FIG. 5, the irradiation light 7 is irradiated from the back side of the substrate 1 (the irradiation light incident surface 12 side). After passing through the substrate 1, the irradiation light 7 is applied to the separation layer 2 from the interface 2 a side. As a result, as shown in FIG. 6 or FIG. 7, in-layer peeling and / or interfacial peeling occurs in the separation layer 2 and the bonding force decreases or disappears. The transfer layer 4 separates from the substrate 1 and is transferred to the transfer body 6.

【0095】なお、図6は、分離層2に層内剥離が生じ
た場合を示し、図7は、分離層2に界面2aでの界面剥
離が生じた場合を示す。分離層2の層内剥離および/ま
たは界面剥離が生じる原理は、分離層2の構成材料にア
ブレーションが生じること、また、分離層2内に内蔵し
ているガスの放出、さらには照射直後に生じる溶融、蒸
散等の相変化によるものであることが推定される。
FIG. 6 shows a case in which separation in the separation layer 2 has occurred, and FIG. 7 shows a case in which separation in the separation layer 2 at the interface 2a has occurred. The principle that the separation within the separation layer 2 and / or the interfacial separation occurs is that ablation occurs in the constituent material of the separation layer 2, the gas contained in the separation layer 2 is released, and the separation occurs immediately after the irradiation. It is presumed that this is due to a phase change such as melting and transpiration.

【0096】ここで、アブレーションとは、照射光を吸
収した固体材料(分離層2の構成材料)が光化学的また
は熱的に励起され、その表面や内部の原子または分子の
結合が切断されて放出することを言い、主に、分離層2
の構成材料の全部または一部が溶融、蒸散(気化)等の
相変化を生じる現象として現れる。また、前記相変化に
よって微小な発泡状態となり、結合力が低下することも
ある。
Here, ablation means that the solid material (constituting material of the separation layer 2) which has absorbed the irradiation light is photochemically or thermally excited, and the surface or the inside of the material is cut off the bonds of atoms or molecules to be released. Mainly, the separation layer 2
All or a part of the constituent material of (1) appears as a phenomenon that causes a phase change such as melting and evaporation (vaporization). In addition, a minute foaming state may be caused by the phase change, and the bonding force may be reduced.

【0097】分離層2が層内剥離を生じるか、界面剥離
を生じるか、またはその両方であるかは、分離層2の組
成や、その他種々の要因に左右され、その要因の1つと
して、照射光7の種類、波長、強度、到達深さ等の条件
が挙げれる。
Whether the separation layer 2 causes intra-layer separation, interfacial separation, or both of them depends on the composition of the separation layer 2 and other various factors, and one of the factors is as follows. Conditions such as the type, wavelength, intensity, and reaching depth of the irradiation light 7 are given.

【0098】照射光7としては、分離層2に層内剥離お
よび/または界面剥離を起こさせるものであればいかな
るものでもよく、例えば、X線、紫外線、可視光、赤外
線(熱線)、レーザ光、ミリ波、マイクロ波、電子線、
放射線(α線、β線、γ線)等が挙げられるが、そのな
かでも、分離層2の剥離(アブレーション)を生じさせ
易いという点で、レーザ光が好ましい。
The irradiation light 7 may be any as long as it causes separation within the separation layer 2 and / or interface separation, such as X-rays, ultraviolet light, visible light, infrared light (heat rays), and laser light. , Millimeter wave, microwave, electron beam,
Radiation (α-rays, β-rays, γ-rays) and the like can be mentioned, and among them, laser light is preferable because it easily causes separation (ablation) of the separation layer 2.

【0099】このレーザ光を発生させるレーザ装置とし
ては、各種気体レーザ、固体レーザ(半導体レーザ)等
が挙げられるが、エキシマレーザ、Nd−YAGレー
ザ、Arレーザ、CO2 レーザ、COレーザ、He−N
eレーザ等が好適に用いられ、その中でもエキシマレー
ザが特に好ましい。
Examples of a laser device for generating this laser beam include various gas lasers and solid-state lasers (semiconductor lasers). Excimer lasers, Nd-YAG lasers, Ar lasers, CO2 lasers, CO lasers, He-N
An e-laser or the like is suitably used, and among them, an excimer laser is particularly preferable.

【0100】エキシマレーザは、短波長域で高エネルギ
ーを出力するため、極めて短時間で分離層2にアブレー
ションを生じさせることができ、よって、隣接するまた
は近傍の中間層3、被転写層4、基板1等に温度上昇を
ほとんど生じさせることなく、すなわち劣化、損傷を生
じさせることなく分離層2を剥離することができる。
Since the excimer laser outputs high energy in a short wavelength region, ablation can be caused in the separation layer 2 in a very short time, so that the adjacent or nearby intermediate layer 3, transferred layer 4, The separation layer 2 can be peeled off without substantially increasing the temperature of the substrate 1 or the like, that is, without causing deterioration or damage.

【0101】また、分離層2にアブレーションを生じさ
せるに際しての照射光に波長依存性がある場合、照射さ
れるレーザ光の波長は、100〜350nm程度であるの
が好ましい。
When the irradiation light for causing ablation in the separation layer 2 has wavelength dependence, the wavelength of the laser light to be irradiated is preferably about 100 to 350 nm.

【0102】また、分離層2に、例えばガス放出、気
化、昇華等の相変化を起こさせて分離特性を与える場
合、照射されるレーザ光の波長は、350〜1200nm
程度であるのが好ましい。
When the separation characteristics are given to the separation layer 2 by causing a phase change such as gas release, vaporization, and sublimation, the wavelength of the laser light to be irradiated is 350 to 1200 nm.
It is preferred to be on the order of magnitude.

【0103】また、照射されるレーザ光のエネルギー密
度、特に、エキシマレーザの場合のエネルギー密度は、
10〜5000mJ/cm2程度とするのが好ましく、100
〜500mJ/cm2程度とするのがより好ましい。また、照
射時間は、1〜1000nsec程度とするのが好ましく、
10〜100nsec程度とするのがより好ましい。エネル
ギー密度が低いかまたは照射時間が短いと、十分なアブ
レーション等が生じず、また、エネルギー密度が高いか
または照射時間が長いと、分離層2および中間層3を透
過した照射光により被転写層4へ悪影響を及ぼすことが
ある。
The energy density of the irradiated laser beam, particularly the energy density of an excimer laser, is
It is preferably about 10 to 5000 mJ / cm2, and 100
More preferably, it is about 500 mJ / cm2. Further, the irradiation time is preferably about 1 to 1000 nsec,
More preferably, it is about 10 to 100 nsec. If the energy density is low or the irradiation time is short, sufficient ablation or the like does not occur, and if the energy density is high or the irradiation time is long, the transfer light is transmitted through the separation layer 2 and the intermediate layer 3. 4 may be adversely affected.

【0104】このようなレーザ光に代表される照射光7
は、その強度が均一となるように照射されるのが好まし
い。
Irradiation light 7 represented by such a laser light
Is preferably applied so that its intensity becomes uniform.

【0105】照射光7の照射方向は、分離層2に対し垂
直な方向に限らず、分離層2に対し所定角度傾斜した方
向であってもよい。
The irradiation direction of the irradiation light 7 is not limited to the direction perpendicular to the separation layer 2 but may be a direction inclined at a predetermined angle with respect to the separation layer 2.

【0106】また、分離層2の面積が照射光の1回の照
射面積より大きい場合には、分離層2の全領域に対し、
複数回に分けて照射光を照射することもできる。また、
同一箇所に2回以上照射してもよい。
When the area of the separation layer 2 is larger than the irradiation area of one irradiation light, the whole area of the separation layer 2 is
Irradiation light can be irradiated in a plurality of times. Also,
The same location may be irradiated more than once.

【0107】また、異なる種類、異なる波長(波長域)
の照射光(レーザ光)を同一領域または異なる領域に2
回以上照射してもよい。
In addition, different types and different wavelengths (wavelength ranges)
Irradiation light (laser light) in the same area or a different area
Irradiation may be performed more than once.

【0108】[6] 図8に示すように、中間層3に付
着している分離層2を、例えば洗浄、エッチング、アッ
シング、研磨等の方法またはこれらを組み合わせた方法
により除去する。
[6] As shown in FIG. 8, the separation layer 2 adhering to the intermediate layer 3 is removed by a method such as cleaning, etching, ashing, polishing or a combination thereof.

【0109】図6に示すような分離層2の層内剥離の場
合には、基板1に付着している分離層2も同様に除去す
る。
In the case of separation within the separation layer 2 as shown in FIG. 6, the separation layer 2 adhering to the substrate 1 is also removed.

【0110】なお、基板1が石英ガラスのような高価な
材料、希少な材料で構成されている場合等には、基板1
は、好ましくは再利用(リサイクル)に供される。換言
すれば、再利用したい基板1に対し、本発明を適用する
ことができ、有用性が高い。
If the substrate 1 is made of an expensive or rare material such as quartz glass, the substrate 1
Is preferably subjected to reuse. In other words, the present invention can be applied to the substrate 1 to be reused, and is highly useful.

【0111】以上のような各工程を経て、被転写層4の
転写体6への転写が完了する。その後、被転写層4に隣
接する中間層3の除去や、他の任意の層の形成等を行う
こともできる。
Through the above steps, the transfer of the transferred layer 4 to the transfer member 6 is completed. Thereafter, removal of the intermediate layer 3 adjacent to the layer to be transferred 4 or formation of another arbitrary layer can also be performed.

【0112】本発明では、被剥離物である被転写層4自
体を直接剥離するのではなく、被転写層4に接合された
分離層2において剥離するため、被剥離物(被転写層
4)の特性、条件等にかかわらず、容易かつ確実に、し
かも均一に剥離(転写)することができ、剥離操作に伴
う被剥離物(被転写層4)へのダメージもなく、被転写
層4の高い信頼性を維持することができる。
In the present invention, the transfer target layer 4 itself, which is the transfer target layer 4, is not directly peeled but is separated at the separation layer 2 joined to the transfer target layer 4, so that the transfer target layer (transfer target layer 4) Irrespective of the characteristics, conditions, etc., the transfer (transfer) can be easily and surely and uniformly performed, and there is no damage to the transfer target layer (transfer target layer 4) due to the peeling operation. High reliability can be maintained.

【0113】また、図示の実施例では、被転写層4の転
写体6への転写方法について説明したが、本発明の剥離
方法は、このような転写を行わないものであってもよ
い。この場合には、前述した被転写層4に代えて、被剥
離物とされる。この被剥離物は、層状のもの、層を構成
しないもののいずれでもよい。
In the illustrated embodiment, the method of transferring the transfer-receiving layer 4 to the transfer body 6 has been described. However, the transfer method of the present invention may not perform such transfer. In this case, an object to be peeled is used instead of the above-mentioned layer to be transferred 4. The object to be peeled may be either a layered material or a material that does not constitute a layer.

【0114】また、被剥離物の剥離目的は、例えば、前
述したような薄膜(特に機能性薄膜)の不要部分の除去
(トリミング)、ゴミ、酸化物、重金属、炭素、その他
不純物等のような付着物の除去、それを利用した基板等
のリサイクル等いかなるものであってもよい。
The object to be peeled is, for example, removal (trimming) of an unnecessary portion of the thin film (particularly a functional thin film) as described above, dust, oxide, heavy metal, carbon, and other impurities. Any method may be used, such as removal of extraneous matter and recycling of substrates and the like using the same.

【0115】また、転写体6は、前述したものに限ら
ず、例えば、各種金属材料、セラミックス、炭素、紙
材、ゴム等、基板1と全く性質が異なる材料(透光性の
有無を問わない)で構成されたものでもよい。特に、転
写体6が、被転写層4を直接形成することができないか
または形成するのに適さない材料の場合には、本発明を
適用することの価値が高い。
The transfer member 6 is not limited to the above-described material, and may be a material having completely different properties from the substrate 1 (with or without translucency), such as various metallic materials, ceramics, carbon, paper, rubber, and the like. ) May be used. In particular, when the transfer body 6 is a material that cannot directly form the transfer-receiving layer 4 or is not suitable for forming the transfer-receiving layer 4, the application of the present invention is highly valuable.

【0116】また、図示の実施例では、基板1側から照
射光7を照射したが、例えば、付着物(被剥離物)を除
去する場合や、被転写層4が照射光7の照射により悪影
響を受けないものの場合には、照射光7の照射方向は前
記に限定されず、基板1と反対側から照射光を照射して
もよい。
In the illustrated embodiment, the irradiation light 7 is irradiated from the substrate 1 side. However, for example, when the adhered matter (object to be peeled) is removed, or when the transfer layer 4 is irradiated with the irradiation light 7, the irradiation light 7 is adversely affected. In the case of not receiving the light, the irradiation direction of the irradiation light 7 is not limited to the above, and the irradiation light may be irradiated from the side opposite to the substrate 1.

【0117】以上、本発明の剥離方法を図示の実施例に
ついて説明したが、本発明は、これに限定されるもので
はない。
Although the peeling method of the present invention has been described with reference to the illustrated embodiment, the present invention is not limited to this.

【0118】例えば、分離層2の面方向に対し部分的
に、すなわち所定のパターンで照射光を照射して、被転
写層4を前記パターンで剥離または転写するような構成
であってもよい(第1の方法)。この場合には、前記
[5]の工程に際し、基板1の照射光入射面12に対
し、前記パターンに対応するマスキングを施して照射光
7を照射するか、あるいは、照射光7の照射位置を精密
に制御する等の方法により行うことができる。
For example, the transfer layer 4 may be peeled or transferred in the aforementioned pattern by irradiating the irradiation light partially in the plane direction of the separation layer 2, that is, in a predetermined pattern. First method). In this case, in the step [5], the irradiation light incident surface 12 of the substrate 1 is subjected to masking corresponding to the pattern and irradiated with the irradiation light 7, or the irradiation position of the irradiation light 7 is changed. It can be performed by a method such as precise control.

【0119】また、分離層2を基板1の分離層形成面1
1全面に形成するのではなく、分離層2を所定のパター
ンで形成することもできる(第2の方法)。この場合、
マスキング等により分離層2を予め所定のパターンに形
成するか、あるいは、分離層2を分離層形成面11の全
面に形成した後、エッチング等によりパターンニングま
たはトリミングする方法が可能である。
The separation layer 2 is formed on the separation layer forming surface 1 of the substrate 1.
Instead of forming on the entire surface, the separation layer 2 can be formed in a predetermined pattern (second method). in this case,
A method in which the separation layer 2 is formed in a predetermined pattern by masking or the like in advance, or a method in which the separation layer 2 is formed on the entire surface of the separation layer formation surface 11 and then patterned or trimmed by etching or the like is possible.

【0120】以上のような第1の方法および第2の方法
によれば、被転写層4の転写を、そのパターンニングや
トリミングと共に行うことができる。
According to the first and second methods as described above, the transfer of the transferred layer 4 can be performed together with the patterning and trimming.

【0121】また、前述した方法と同様の方法により、
転写を2回以上繰り返し行ってもよい。この場合、転写
回数が偶数回であれば、最後の転写体に形成された被転
写層の表・裏の位置関係を、最初に基板1に被転写層を
形成した状態と同じにすることができる。
Further, by the same method as described above,
The transfer may be repeated two or more times. In this case, if the number of transfers is an even number, the positional relationship between the front and back of the transfer layer formed on the last transfer body should be the same as the state where the transfer layer was first formed on the substrate 1. it can.

【0122】また、大型の透明基板(例えば、有効領域
が900mm×1600mm)を転写体6とし、小型の基板
1(例えば、有効領域が45mm×40mm)に形成した小
単位の被転写層4(薄膜トランジスタ)を複数回(例え
ば、約800回)好ましくは隣接位置に順次転写して、
大型の透明基板の有効領域全体に被転写層4を形成し、
最終的に前記大型の透明基板と同サイズの液晶ディスプ
レイを製造することもできる。
A large transparent substrate (for example, an effective area of 900 mm × 1600 mm) is used as the transfer body 6, and a small unit transfer layer 4 (for example, an effective area of 45 mm × 40 mm) is formed on a small substrate 1 (for example, 45 mm × 40 mm). Thin film transistor) a plurality of times (for example, about 800 times), preferably successively to adjacent positions,
Forming the transferred layer 4 over the entire effective area of the large transparent substrate,
Finally, a liquid crystal display having the same size as the large transparent substrate can be manufactured.

【0123】[0123]

【実施例】次に、本発明の具体的実施例について説明す
る。
Next, specific examples of the present invention will be described.

【0124】(実施例1)縦50mm×横50mm×厚さ
1.1mmの石英基板(軟化点:1630℃、歪点:10
70℃、エキシマレーザの透過率:ほぼ100%)を用
意し、この石英基板の片面に、分離層(レーザ光吸収
層)として非晶質シリコン(a−Si)膜を低圧CVD
法(Si2 H6 ガス、425℃)により形成した。分離
層の膜厚は、100nmであった。
(Example 1) A quartz substrate having a length of 50 mm x a width of 50 mm x a thickness of 1.1 mm (softening point: 1630 ° C, strain point: 10
70 ° C., transmittance of excimer laser: almost 100%), and an amorphous silicon (a-Si) film as a separation layer (laser light absorption layer) is formed on one side of this quartz substrate by low pressure CVD.
It was formed by a method (Si2 H6 gas, 425 DEG C.). The thickness of the separation layer was 100 nm.

【0125】次に、分離層上に、中間層としてSiO2
膜をECR−CVD法(SiH4 +O2 ガス、100
℃)により形成した。中間層の膜厚は、200nmであっ
た。
Next, on the separation layer, SiO2 was used as an intermediate layer.
The film is formed by ECR-CVD (SiH4 + O2 gas, 100
C). The thickness of the intermediate layer was 200 nm.

【0126】次に、中間層上に、被転写層として膜厚5
0nmの非晶質シリコン膜を低圧CVD法(Si2 H6 ガ
ス、425℃)により形成し、この非晶質シリコン膜に
レーザ光(波長308nm)を照射して、結晶化させ、ポ
リシリコン膜とした。その後、このポリシリコン膜に対
し、所定のパターンニングを施し、薄膜トランジスタの
ソース・ドレイン・チャネルとなる領域を形成した。こ
の後、1000°C以上の高温によりポリシリコン膜表
面を熱酸化してゲート絶縁膜SiO2 を形成した後、ゲ
ート絶縁膜上にゲート電極(ポリシリコンにMo等の高
融点金属が積層形成された構造)を形成し、ゲート電極
をマスクとしてイオン注入することによって、自己整合
的(セルファライン)にソース・ドレイン領域を形成
し、薄膜トランジスタを形成した。この後、必要に応じ
て、ソース・ドレイン領域に接続される電極及び配線、
ゲート電極につながる配線が形成される。これらの電極
や配線にはAlが使用されるが、これに限定されるもの
ではない。また、後工程のレーザー照射によりAlの溶
融が心配される場合は、Alよりも高融点の金属(後工
程のレーザー照射により溶融しないもの)を使用しても
よい。
Next, on the intermediate layer, a layer having a thickness of 5
A 0 nm amorphous silicon film is formed by a low pressure CVD method (Si2 H6 gas, 425 DEG C.), and the amorphous silicon film is irradiated with a laser beam (wavelength: 308 nm) to be crystallized to form a polysilicon film. . Thereafter, the polysilicon film was subjected to predetermined patterning to form a region serving as a source, a drain, and a channel of the thin film transistor. Thereafter, the surface of the polysilicon film is thermally oxidized at a high temperature of 1000 ° C. or more to form a gate insulating film SiO2, and then a gate electrode (a high melting point metal such as Mo is laminated on the polysilicon is formed on the gate insulating film). Structure), and ion implantation using the gate electrode as a mask to form source / drain regions in a self-aligned manner (self-alignment), thereby forming a thin film transistor. Thereafter, if necessary, electrodes and wirings connected to the source / drain regions,
A wiring connected to the gate electrode is formed. Although Al is used for these electrodes and wirings, the present invention is not limited to this. Further, when there is a concern about melting of Al due to laser irradiation in a later step, a metal having a higher melting point than Al (a metal not melted by laser irradiation in a later step) may be used.

【0127】次に、前記薄膜トランジスタの上に、紫外
線硬化型接着剤を塗布し(膜厚:100μm )、さらに
その塗膜に、転写体として縦200mm×横300mm×厚
さ1.1mmの大型の透明なガラス基板(ソーダガラス、
軟化点:740℃、歪点:511℃)を接合した後、ガ
ラス基板側から紫外線を照射して接着剤を硬化させ、こ
れらを接着固定した。
Next, an ultraviolet curable adhesive was applied on the thin film transistor (film thickness: 100 μm), and a large-sized 200 mm × 300 mm × 1.1 mm thick transfer member was applied to the coating film. Transparent glass substrate (soda glass,
(Softening point: 740 ° C., strain point: 511 ° C.), and then the adhesive was cured by irradiating ultraviolet rays from the glass substrate side, and these were bonded and fixed.

【0128】次に、Xe−Clエキシマレーザ(波長:
308nm)を石英基板側から照射し、分離層に剥離(層
内剥離および界面剥離)を生じさせた。照射したXe−
Clエキシマレーザのエネルギー密度は、250mJ/cm
2、照射時間は、20nsecであった。なお、エキシマレ
ーザの照射は、スポットビーム照射とラインビーム照射
とがあり、スポットビーム照射の場合は、所定の単位領
域(例えば8mm×8mm)にスポット照射し、このスポッ
ト照射を単位領域の1/10程度ずつずらしながら照射
していく。また、ラインビーム照射の場合は、所定の単
位領域(例えば378mm×0.1mmや378mm×0.3
mm(これらはエネルギーの90%以上が得られる領
域))を同じく1/10程度ずつずらしながら照射して
いく。これにより、分離層の各点は少なくとも10回の
照射を受ける。このレーザ照射は、石英基板全面に対し
て、照射領域をずらしながら実施される。
Next, a Xe-Cl excimer laser (wavelength:
308 nm) from the quartz substrate side to cause peeling (intralayer peeling and interfacial peeling) of the separation layer. Irradiated Xe-
The energy density of Cl excimer laser is 250mJ / cm
2. The irradiation time was 20 nsec. Excimer laser irradiation includes spot beam irradiation and line beam irradiation. In the case of spot beam irradiation, spot irradiation is performed on a predetermined unit area (for example, 8 mm × 8 mm), and this spot irradiation is performed 1/1 of the unit area. Irradiation is performed while shifting by about 10 steps. In the case of line beam irradiation, a predetermined unit area (for example, 378 mm × 0.1 mm or 378 mm × 0.3
mm (these are regions where 90% or more of energy can be obtained) are similarly shifted by about 1/10. Thereby, each point of the separation layer receives at least 10 irradiations. This laser irradiation is performed while shifting the irradiation area over the entire surface of the quartz substrate.

【0129】この後、石英基板とガラス基板(転写体)
とを分離層において引き剥がし、石英基板上に形成され
た薄膜トランジスタおよび中間層をガラス基板側に転写
した。
Thereafter, a quartz substrate and a glass substrate (transfer body)
Were peeled off at the separation layer, and the thin film transistor and the intermediate layer formed on the quartz substrate were transferred to the glass substrate side.

【0130】その後、ガラス基板側の中間層の表面に付
着した分離層を、エッチングや洗浄またはそれらの組み
合わせにより除去した。また、石英基板についても同様
の処理を行い、再使用に供した。
Thereafter, the separation layer adhered to the surface of the intermediate layer on the glass substrate side was removed by etching, washing or a combination thereof. The same processing was performed on the quartz substrate, and the quartz substrate was reused.

【0131】なお、転写体となるガラス基板が石英基板
より大きな基板であれば、本実施例のような石英基板か
らガラス基板への転写を、平面的に異なる領域に繰り返
して実施し、ガラス基板上に、石英基板に形成可能な薄
膜トランジスタの数より多くの薄膜トランジスタを形成
することができる。さらに、ガラス基板上に繰り返し積
層し、同様により多くの薄膜トランジスタを形成するこ
とができる。
If the glass substrate serving as the transfer body is a substrate larger than the quartz substrate, the transfer from the quartz substrate to the glass substrate as in this embodiment is repeatedly performed on different areas in a plane, and Further, more thin film transistors than the number of thin film transistors that can be formed over the quartz substrate can be formed. Further, the thin film transistor can be repeatedly stacked over a glass substrate to form more thin film transistors.

【0132】(実施例2)分離層を、H(水素)を20
at%含有する非晶質シリコン膜とした以外は実施例1と
同様にして、薄膜トランジスタの転写を行った。
(Example 2) The separation layer was formed by adding H (hydrogen) to 20
A thin film transistor was transferred in the same manner as in Example 1 except that the amorphous silicon film contained at%.

【0133】なお、非晶質シリコン膜中のH量の調整
は、低圧CVD法による成膜時の条件を適宜設定するこ
とにより行った。
The adjustment of the amount of H in the amorphous silicon film was carried out by appropriately setting the conditions at the time of film formation by the low-pressure CVD method.

【0134】(実施例3)分離層を、スピンコートによ
りゾル−ゲル法で形成したセラミックス薄膜(組成:P
bTiO3 、膜厚:200nm)とした以外は実施例1と
同様にして、薄膜トランジスタの転写を行った。
Example 3 A ceramic thin film (composition: P) in which a separation layer was formed by a sol-gel method by spin coating.
A thin film transistor was transferred in the same manner as in Example 1 except that bTiO3 (thickness: 200 nm) was used.

【0135】(実施例4)分離層を、スパッタリングに
より形成したセラミックス薄膜(組成:BaTiO3 、
膜厚:400nm)とした以外は実施例1と同様にして、
薄膜トランジスタの転写を行った。
(Example 4) A ceramic thin film (composition: BaTiO3,
Except that the film thickness was 400 nm).
The transfer of the thin film transistor was performed.

【0136】(実施例5)分離層を、レーザアブレーシ
ョン法により形成したセラミックス薄膜(組成:Pb
(Zr,Ti)O3 (PZT)、膜厚:50nm)とした
以外は実施例1と同様にして、薄膜トランジスタの転写
を行った。
Example 5 A ceramic thin film (composition: Pb) in which a separation layer was formed by a laser ablation method
The transfer of the thin film transistor was performed in the same manner as in Example 1 except that (Zr, Ti) O3 (PZT), film thickness: 50 nm).

【0137】(実施例6)分離層を、スピンコートによ
り形成したポリイミド膜(膜厚:200nm)とした以外
は実施例1と同様にして、薄膜トランジスタの転写を行
った。
Example 6 A thin film transistor was transferred in the same manner as in Example 1 except that the separation layer was a polyimide film (thickness: 200 nm) formed by spin coating.

【0138】(実施例7)分離層を、スピンコートによ
り形成したポリフェニレンサルファイド膜(膜厚:20
0nm)とした以外は実施例1と同様にして、薄膜トラン
ジスタの転写を行った。
(Example 7) A polyphenylene sulfide film (film thickness: 20) formed by spin coating the separation layer was used.
The transfer of the thin film transistor was performed in the same manner as in Example 1 except that the thickness was set to 0 nm).

【0139】(実施例8)分離層を、スパッタリングに
より形成したAl層(膜厚:300nm)とした以外は実
施例1と同様にして、薄膜トランジスタの転写を行っ
た。
Example 8 A thin film transistor was transferred in the same manner as in Example 1 except that the separation layer was an Al layer (thickness: 300 nm) formed by sputtering.

【0140】(実施例9)照射光として、Kr−Fエキ
シマレーザ(波長:248nm)を用いた以外は実施例2
と同様にして、薄膜トランジスタの転写を行った。な
お、照射したレーザのエネルギー密度は、250mJ/cm
2、照射時間は、20nsecであった。
Example 9 Example 2 was repeated except that a Kr-F excimer laser (wavelength: 248 nm) was used as the irradiation light.
The transfer of the thin film transistor was performed in the same manner as described above. The energy density of the irradiated laser was 250 mJ / cm
2. The irradiation time was 20 nsec.

【0141】(実施例10)照射光として、Nd−YA
IGレーザ(波長:1068nm)を用いた以外は実施例
2と同様にして薄膜トランジスタの転写を行った。な
お、照射したレーザのエネルギー密度は、400mJ/cm
2、照射時間は、20nsecであった。
Example 10 Nd-YA was used as the irradiation light.
The transfer of the thin film transistor was performed in the same manner as in Example 2 except that an IG laser (wavelength: 1068 nm) was used. The energy density of the irradiated laser was 400 mJ / cm
2. The irradiation time was 20 nsec.

【0142】(実施例11)被転写層として、高温プロ
セス1000℃によるポリシリコン膜(膜厚80nm)
の薄膜トランジスタとした以外は実施例1と同様にし
て、薄膜トランジスタの転写を行った。
Embodiment 11 As a layer to be transferred, a polysilicon film (thickness: 80 nm) formed by a high-temperature process at 1000 ° C.
The transfer of the thin film transistor was performed in the same manner as in Example 1 except that the thin film transistor was used.

【0143】(実施例12)転写体として、ポリカーボ
ネート(ガラス転移点:130℃)製の透明基板を用い
た以外は実施例1と同様にして、薄膜トランジスタの転
写を行った。
Example 12 A thin film transistor was transferred in the same manner as in Example 1 except that a transparent substrate made of polycarbonate (glass transition point: 130 ° C.) was used as a transfer body.

【0144】(実施例13)転写体として、AS樹脂
(ガラス転移点:70〜90℃)製の透明基板を用いた
以外は実施例2と同様にして、薄膜トランジスタの転写
を行った。
Example 13 A thin film transistor was transferred in the same manner as in Example 2 except that a transparent substrate made of an AS resin (glass transition point: 70 to 90 ° C.) was used as a transfer body.

【0145】(実施例14)転写体として、ポリメチル
メタクリレート(ガラス転移点:70〜90℃)製の透
明基板を用いた以外は実施例3と同様にして、薄膜トラ
ンジスタの転写を行った。
Example 14 A thin film transistor was transferred in the same manner as in Example 3 except that a transparent substrate made of polymethyl methacrylate (glass transition point: 70 to 90 ° C.) was used as a transfer body.

【0146】(実施例15)転写体として、ポリエチレ
ンテレフタレート(ガラス転移点:67℃)製の透明基
板を用いた以外は実施例5と同様にして、薄膜トランジ
スタの転写を行った。
Example 15 A thin film transistor was transferred in the same manner as in Example 5, except that a transparent substrate made of polyethylene terephthalate (glass transition point: 67 ° C.) was used as a transfer body.

【0147】(実施例16)転写体として、高密度ポリ
エチレン(ガラス転移点:77〜90℃)製の透明基板
を用いた以外は実施例6と同様にして、薄膜トランジス
タの転写を行った。
Example 16 A thin film transistor was transferred in the same manner as in Example 6, except that a transparent substrate made of high-density polyethylene (glass transition point: 77 to 90 ° C.) was used as a transfer body.

【0148】(実施例17)転写体として、ポリアミド
(ガラス転移点:145℃)製の透明基板を用いた以外
は実施例9と同様にして、薄膜トランジスタの転写を行
った。
Example 17 A thin film transistor was transferred in the same manner as in Example 9 except that a transparent substrate made of polyamide (glass transition point: 145 ° C.) was used as a transfer body.

【0149】(実施例18)転写体として、エポキシ樹
脂(ガラス転移点:120℃)製の透明基板を用いた以
外は実施例10と同様にして、薄膜トランジスタの転写
を行った。
Example 18 A thin film transistor was transferred in the same manner as in Example 10, except that a transparent substrate made of an epoxy resin (glass transition point: 120 ° C.) was used as a transfer body.

【0150】(実施例19)転写体として、ポリメチル
メタクリレート(ガラス転移点:70〜90℃)製の透
明基板を用いた以外は実施例11と同様にして、薄膜ト
ランジスタの転写を行った。
Example 19 A thin film transistor was transferred in the same manner as in Example 11 except that a transparent substrate made of polymethyl methacrylate (glass transition point: 70 to 90 ° C.) was used as a transfer body.

【0151】実施例1〜19について、それぞれ、転写
された薄膜トランジスタの状態を肉眼と顕微鏡とで視観
察したところ、いずれも、欠陥やムラがなく、均一に転
写がなされていた。
In each of Examples 1 to 19, when the state of the transferred thin film transistor was visually observed with the naked eye and a microscope, it was found that there was no defect or unevenness and the transfer was uniform.

【0152】[0152]

【発明の効果】以上述べたように、本発明の剥離方法に
よれば、被剥離物(被転写層)の特性、条件等にかかわ
らず、容易かつ確実に剥離することができ、特に、転写
体を選ばず、種々の転写体への転写が可能となる。例え
ば、薄膜を直接形成することができないかまたは形成す
るのに適さない材料、成形が容易な材料、安価な材料等
で構成されたものや、移動しにくい大型の物体等に対し
ても、転写によりそれを形成することができる。
As described above, according to the peeling method of the present invention, the peeling can be easily and reliably performed regardless of the properties and conditions of the object (layer to be transferred). It is possible to transfer to various transfer bodies regardless of the body. For example, even when a thin film cannot be directly formed or is not suitable for forming, a material that is easily formed, a material formed of an inexpensive material, or a large object that is difficult to move, it is transferred. To form it.

【0153】特に、転写体は、各種合成樹脂や融点の低
いガラス材のような、基板材料に比べ耐熱性、耐食性等
の特性が劣るものを用いることができる。そのため、例
えば、透明基板上に薄膜トランジスタ(特にポリシリコ
ンTFT)を形成した液晶ディスプレイを製造するに際
しては、基板として、耐熱性に優れる石英ガラス基板を
用い、転写体として、各種合成樹脂や融点の低いガラス
材のような安価でかつ加工のし易い材料の透明基板を用
いることにより、大型で安価な液晶ディスプレイを容易
に製造することができるようになる。このような利点
は、液晶ディスプレイに限らず、他のデバイスの製造に
ついても同様である。
In particular, as the transfer body, materials such as various synthetic resins and a glass material having a low melting point, which are inferior in heat resistance, corrosion resistance and the like as compared with the substrate material, can be used. Therefore, for example, when manufacturing a liquid crystal display in which a thin film transistor (especially a polysilicon TFT) is formed on a transparent substrate, a quartz glass substrate having excellent heat resistance is used as a substrate, and various synthetic resins and low melting points are used as a transfer body. By using a transparent substrate made of an inexpensive and easy-to-process material such as a glass material, a large and inexpensive liquid crystal display can be easily manufactured. Such advantages are not limited to the liquid crystal display, but are the same in the manufacture of other devices.

【0154】また、以上のような利点を享受しつつも、
信頼性の高い基板、特に石英ガラス基板のような耐熱性
の高い基板に対し機能性薄膜のような被転写層を形成
し、さらにはパターニングすることができるので、転写
体の材料特性にかかわらず、転写体上に信頼性の高い機
能性薄膜を形成することができる。
While enjoying the above advantages,
A transferable layer such as a functional thin film can be formed and patterned on a highly reliable substrate, especially a substrate with high heat resistance such as a quartz glass substrate, regardless of the material characteristics of the transfer body. Thus, a highly reliable functional thin film can be formed on the transfer member.

【0155】また、このような信頼性の高い基板は、高
価であるが、それを再利用することも可能であり、よっ
て、製造コストも低減される。
Although such a highly reliable substrate is expensive, it can be reused, thereby reducing the manufacturing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の剥離方法の実施例の工程を示す断面図
である。
FIG. 1 is a cross-sectional view showing the steps of an embodiment of the peeling method of the present invention.

【図2】本発明の剥離方法の実施例の工程を示す断面図
である。
FIG. 2 is a cross-sectional view showing the steps of an embodiment of the peeling method of the present invention.

【図3】本発明の剥離方法の実施例の工程を示す断面図
である。
FIG. 3 is a cross-sectional view showing the steps of an example of the peeling method of the present invention.

【図4】本発明の剥離方法の実施例の工程を示す断面図
である。
FIG. 4 is a cross-sectional view showing the steps of an embodiment of the peeling method of the present invention.

【図5】本発明の剥離方法の実施例の工程を示す断面図
である。
FIG. 5 is a cross-sectional view showing the steps of an embodiment of the peeling method of the present invention.

【図6】本発明の剥離方法の実施例の工程を示す断面図
である。
FIG. 6 is a cross-sectional view showing a step of an embodiment of the peeling method of the present invention.

【図7】本発明の剥離方法の実施例の工程を示す断面図
である。
FIG. 7 is a cross-sectional view showing a step of an embodiment of the peeling method of the present invention.

【図8】本発明の剥離方法の実施例の工程を示す断面図
である。
FIG. 8 is a cross-sectional view showing the steps of an example of the peeling method of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 11 分離層形成面 12 照射光入射面 2 分離層 2a、2b 界面 3 中間層 4 被転写層 5 接着層 6 転写体 7 照射光 DESCRIPTION OF SYMBOLS 1 Substrate 11 Separation layer formation surface 12 Irradiation light incidence surface 2 Separation layer 2a, 2b interface 3 Intermediate layer 4 Transfer receiving layer 5 Adhesive layer 6 Transfer body 7 Irradiation light

Claims (25)

【特許請求の範囲】[Claims] 【請求項1】 基板上に分離層を介して存在する被剥離
物を前記基板から剥離する剥離方法であって、 前記分離層に照射光を照射して、前記分離層の層内およ
び/または界面において剥離を生ぜしめ、前記被剥離物
を前記基板から離脱させることを特徴とする剥離方法。
1. A separation method for separating an object to be separated, which is present on a substrate via a separation layer, from the substrate, wherein the separation layer is irradiated with irradiation light to emit light in the separation layer and / or within the separation layer. A peeling method, wherein peeling occurs at an interface, and the object to be peeled is separated from the substrate.
【請求項2】 透光性の基板上に分離層を介して存在す
る被剥離物を前記基板から剥離する剥離方法であって、 前記基板側から前記分離層に照射光を照射して、前記分
離層の層内および/または界面において剥離を生ぜし
め、前記被剥離物を前記基板から離脱させることを特徴
とする剥離方法。
2. A separation method for separating an object to be separated present on a light-transmitting substrate via a separation layer from the substrate, wherein the separation layer is irradiated with irradiation light from the substrate side. A separation method in which separation is caused in a layer and / or an interface of the separation layer, and the object to be separated is separated from the substrate.
【請求項3】 基板上に分離層を介して形成された被転
写層を前記基板から剥離し、他の転写体に転写する方法
であって、 前記被転写層の前記基板と反対側に前記転写体を接合し
た後、 前記分離層に照射光を照射して、前記分離層の層内およ
び/または界面において剥離を生ぜしめ、前記被転写層
を前記基板から離脱させて前記転写体へ転写することを
特徴とする剥離方法。
3. A method for peeling a transfer layer formed on a substrate via a separation layer from the substrate and transferring the transfer layer to another transfer body, wherein the transfer layer is provided on a side of the transfer layer opposite to the substrate. After bonding the transfer member, the separation layer is irradiated with irradiation light to cause separation in the layer and / or interface of the separation layer, and the transfer target layer is separated from the substrate and transferred to the transfer member. A peeling method.
【請求項4】 透光性の基板上に分離層を介して形成さ
れた被転写層を前記基板から剥離し、他の転写体に転写
する方法であって、 前記被転写層の前記基板と反対側に前記転写体を接合し
た後、 前記基板側から前記分離層に照射光を照射して、前記分
離層の層内および/または界面において剥離を生ぜし
め、前記被転写層を前記基板から離脱させて前記転写体
へ転写することを特徴とする剥離方法。
4. A method of peeling a transfer layer formed on a light-transmitting substrate via a separation layer from the substrate and transferring the transfer layer to another transfer body, wherein the transfer layer and the substrate of the transfer layer are After joining the transfer body to the opposite side, the separation layer is irradiated with irradiation light from the substrate side to cause peeling in the layer and / or interface of the separation layer, and the transferred layer is removed from the substrate. A peeling method, comprising separating and transferring to the transfer body.
【請求項5】 透光性の基板上に分離層を形成する工程
と、 前記分離層上に直接または所定の中間層を介して被転写
層を形成する工程と、 前記被転写層の前記基板と反対側に転写体を接合する工
程と、 前記基板側から前記分離層に照射光を照射して、前記分
離層の層内および/または界面において剥離を生ぜし
め、前記被転写層を前記基板から離脱させて前記転写体
へ転写する工程とを有することを特徴とする剥離方法。
5. A step of forming a separation layer on a light-transmitting substrate; a step of forming a transfer layer on the separation layer directly or via a predetermined intermediate layer; Bonding the transfer body to the opposite side of the substrate, irradiating the separation layer with irradiation light from the substrate side to cause peeling in the separation layer and / or at the interface, and to transfer the transfer target layer to the substrate. Separating from the transfer member and transferring to the transfer member.
【請求項6】 前記被転写層の前記転写体への転写後、
前記基板側および/または前記転写体側に付着している
前記分離層を除去する工程を有する請求項5に記載の剥
離方法。
6. After transferring the transfer-receiving layer to the transfer body,
The stripping method according to claim 5, further comprising a step of removing the separation layer attached to the substrate side and / or the transfer body side.
【請求項7】 前記被転写層は、機能性薄膜または薄膜
デバイスである請求項3ないし6のいずれかに記載の剥
離方法。
7. The peeling method according to claim 3, wherein the transferred layer is a functional thin film or a thin film device.
【請求項8】 前記被転写層は、薄膜トランジスタであ
る請求項3ないし6のいずれかに記載の剥離方法。
8. The method according to claim 3, wherein the transferred layer is a thin film transistor.
【請求項9】 前記転写体は、透明基板である請求項3
ないし8のいずれかに記載の剥離方法。
9. The transfer member according to claim 3, wherein the transfer member is a transparent substrate.
9. The peeling method according to any one of items 1 to 8.
【請求項10】 前記転写体は、被転写層の形成の際の
最高温度をTmax としたとき、ガラス転移点(Tg)ま
たは軟化点がTmax 以下の材料で構成されている請求項
3ないし9のいずれかに記載の剥離方法。
10. The transfer member is made of a material having a glass transition point (Tg) or a softening point equal to or lower than Tmax, where Tmax is a maximum temperature at the time of forming a layer to be transferred. The stripping method according to any one of the above.
【請求項11】 前記転写体は、ガラス転移点(Tg)
または軟化点が800℃以下の材料で構成されている請
求項3ないし10のいずれかに記載の剥離方法。
11. The transfer body has a glass transition point (Tg).
The peeling method according to any one of claims 3 to 10, wherein the peeling method is made of a material having a softening point of 800 ° C or lower.
【請求項12】 前記転写体は、合成樹脂またはガラス
材で構成されている請求項3ないし11のいずれかに記
載の剥離方法。
12. The method according to claim 3, wherein the transfer body is made of a synthetic resin or a glass material.
【請求項13】 前記基板は、耐熱性を有するものであ
る請求項1ないし12のいずれかに記載の剥離方法。
13. The peeling method according to claim 1, wherein the substrate has heat resistance.
【請求項14】 前記基板は、被転写層の形成の際の最
高温度をTmax としたとき、歪点がTmax 以上の材料で
構成されている請求項3ないし12のいずれかに記載の
剥離方法。
14. The peeling method according to claim 3, wherein the substrate is made of a material having a strain point equal to or higher than Tmax when a maximum temperature at the time of forming the transferred layer is Tmax. .
【請求項15】 前記分離層の剥離は、分離層を構成す
る物質の原子間または分子間の結合力が消失または減少
することにより生じる請求項1ないし14のいずれかに
記載の剥離方法。
15. The peeling method according to claim 1, wherein the peeling of the separation layer is caused by a loss or a decrease in a bonding force between atoms or molecules of a substance constituting the separation layer.
【請求項16】 前記照射光は、レーザ光である請求項
1ないし15のいずれかに記載の剥離方法。
16. The peeling method according to claim 1, wherein the irradiation light is a laser light.
【請求項17】 前記レーザ光の波長が、100〜35
0nmである請求項16に記載の剥離方法。
17. The wavelength of the laser light is 100 to 35.
17. The method according to claim 16, wherein the thickness is 0 nm.
【請求項18】 前記レーザ光の波長が、350〜12
00nmである請求項16に記載の剥離方法。
18. The wavelength of the laser light is 350 to 12
17. The peeling method according to claim 16, wherein the thickness is 00 nm.
【請求項19】 前記分離層は、非晶質シリコンで構成
されている請求項1ないし18のいずれかに記載の剥離
方法。
19. The method according to claim 1, wherein the separation layer is made of amorphous silicon.
【請求項20】 前記非晶質シリコンは、H(水素)を
2at%以上含有するものである請求項19に記載の剥離
方法。
20. The stripping method according to claim 19, wherein the amorphous silicon contains H (hydrogen) at 2 at% or more.
【請求項21】 前記分離層は、セラミックスで構成さ
れている請求項1ないし18のいずれかに記載の剥離方
法。
21. The peeling method according to claim 1, wherein the separation layer is made of a ceramic.
【請求項22】 前記分離層は、金属で構成されている
請求項1ないし18のいずれかに記載の剥離方法。
22. The peeling method according to claim 1, wherein the separation layer is made of a metal.
【請求項23】 前記分離層は、有機高分子材料で構成
されている請求項1ないし18のいずれかに記載の剥離
方法。
23. The peeling method according to claim 1, wherein the separation layer is made of an organic polymer material.
【請求項24】 前記有機高分子材料は、−CH2 −、
−CO−、−CONH−、−NH−、−COO−、−N
=N−、−CH=N−のうちの少なくとも1種の結合を
有するものである請求項23に記載の剥離方法。
24. The organic polymer material is —CH 2 —,
-CO-, -CONH-, -NH-, -COO-, -N
24. The peeling method according to claim 23, wherein the peeling method has at least one kind of bond of = N- and -CH = N-.
【請求項25】 前記有機高分子材料は、構成式中に芳
香族炭化水素を有するものである請求項23または24
に記載の剥離方法。
25. The organic polymer material having an aromatic hydrocarbon in a constitutional formula.
4. The peeling method according to 1.
JP30037396A 1996-08-27 1996-11-12 Thin film device transfer method and device manufacturing method Expired - Fee Related JP4619461B2 (en)

Priority Applications (21)

Application Number Priority Date Filing Date Title
JP30037396A JP4619461B2 (en) 1996-08-27 1996-11-12 Thin film device transfer method and device manufacturing method
EP03076869A EP1351308B1 (en) 1996-08-27 1997-08-26 Exfoliating method and transferring method of thin film device
EP06076859A EP1744365B1 (en) 1996-08-27 1997-08-26 Exfoliating method and transferring method of thin film device
DE69737086T DE69737086T2 (en) 1996-08-27 1997-08-26 DISCONNECTING METHOD, METHOD FOR TRANSMITTING A THIN FILM COMPONENT, AND LIQUID CRYSTAL DISPLAY ELEMENT PRODUCED BY USING THE TRANSMISSION METHOD
PCT/JP1997/002972 WO1998009333A1 (en) 1996-08-27 1997-08-26 Separating method, method for transferring thin film device, thin film device, thin film integrated circuit device, and liquid crystal display device manufactured by using the transferring method
TW086112252A TW360901B (en) 1996-08-27 1997-08-26 Method of peeling thin-film device, method of transferring thin-film device, thin-film device thereby, thin-film IC circuit device, and liquid crystal display device
DE69739376T DE69739376D1 (en) 1996-08-27 1997-08-26 Deposition method and method for transferring a thin film device
KR10-1998-0703007A KR100481994B1 (en) 1996-08-27 1997-08-26 Stripping method, transfer method of thin film device, and thin film device, thin film integrated circuit device and liquid crystal display device manufactured using the same
DE69739368T DE69739368D1 (en) 1996-08-27 1997-08-26 Separation method and method for transferring a thin film device
EP06076860A EP1758169A3 (en) 1996-08-27 1997-08-26 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same
EP06075225A EP1655633A3 (en) 1996-08-27 1997-08-26 Exfoliating method, transferring method of thin film device, thin film integrated circuit device, and liquid crystal display device
CNB971911347A CN1143394C (en) 1996-08-27 1997-08-26 Separating method, method for transferring thin film device, thin film device, thin film IC device and liquid crystal display device mfg by using transferring method
CNA031579647A CN1495523A (en) 1996-08-27 1997-08-26 Transfer method and active matrix base board mfg. method
KR10-2004-7015277A KR100500520B1 (en) 1996-08-27 1997-08-26 A transferring method and a method for manufacturing an active matrix substrate
EP97935891A EP0858110B1 (en) 1996-08-27 1997-08-26 Separating method, method for transferring thin film device, and liquid crystal display device manufactured by using the transferring method
US09/051,966 US6372608B1 (en) 1996-08-27 1997-08-26 Separating method, method for transferring thin film device, thin film device, thin film integrated circuit device, and liquid crystal display device manufactured by using the transferring method
US10/091,562 US6645830B2 (en) 1996-08-27 2002-03-07 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device and liquid crystal display device produced by the same
US10/420,840 US6818530B2 (en) 1996-08-27 2003-04-23 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same
US10/851,202 US7094665B2 (en) 1996-08-27 2004-05-24 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same
US11/242,017 US7285476B2 (en) 1996-08-27 2005-10-04 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same
US11/514,985 US7468308B2 (en) 1996-08-27 2006-09-05 Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22564396 1996-08-27
JP8-225643 1996-08-27
JP30037396A JP4619461B2 (en) 1996-08-27 1996-11-12 Thin film device transfer method and device manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003382626A Division JP2004140380A (en) 1996-08-27 2003-11-12 Method of transferring thin film device and method of manufacturing device

Publications (2)

Publication Number Publication Date
JPH10125930A true JPH10125930A (en) 1998-05-15
JP4619461B2 JP4619461B2 (en) 2011-01-26

Family

ID=26526742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30037396A Expired - Fee Related JP4619461B2 (en) 1996-08-27 1996-11-12 Thin film device transfer method and device manufacturing method

Country Status (1)

Country Link
JP (1) JP4619461B2 (en)

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133809A (en) * 1998-10-27 2000-05-12 Seiko Epson Corp Peeling method
JP2001156183A (en) * 1999-11-24 2001-06-08 Seiko Epson Corp Storage device
JP2002031818A (en) * 2000-07-17 2002-01-31 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2002116455A (en) * 2000-08-01 2002-04-19 Kyodo Printing Co Ltd Liquid crystal display device, electrode substrate for the same device and method of manufacturing the same device
JP2002277859A (en) * 2001-01-15 2002-09-25 Seiko Epson Corp Method for manufacturing liquid crystal
JP2003031778A (en) * 2001-07-13 2003-01-31 Seiko Epson Corp Method for manufacturing thin film device
JP2003142666A (en) * 2001-07-24 2003-05-16 Seiko Epson Corp Transfer method for element, method for manufacturing element, integrated circuit, circuit board, electrooptic device, ic card and electronic apparatus
JP2003163337A (en) * 2001-08-10 2003-06-06 Semiconductor Energy Lab Co Ltd Stripping method and method for producing semiconductor device
JP2003163338A (en) * 2001-08-22 2003-06-06 Semiconductor Energy Lab Co Ltd Stripping method and method for producing semiconductor device
JP2003174153A (en) * 2001-07-16 2003-06-20 Semiconductor Energy Lab Co Ltd Peeling method, semiconductor device, and manufacturing method therefor
JP2003195787A (en) * 2001-07-16 2003-07-09 Semiconductor Energy Lab Co Ltd Manufacturing method for light emitting device
JP2003229548A (en) * 2001-11-30 2003-08-15 Semiconductor Energy Lab Co Ltd Vehicle, display device and method for manufacturing semiconductor device
JP2003258211A (en) * 2001-12-28 2003-09-12 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US6642542B1 (en) 1999-09-30 2003-11-04 Seiko Epson Corporation Large EL panel and manufacturing method therefor
JP2003318373A (en) * 2002-04-18 2003-11-07 Ind Technol Res Inst Method of forming thin film semiconductor device on plastic sheet
JP2004056143A (en) * 2002-07-16 2004-02-19 Semiconductor Energy Lab Co Ltd Method for releasing
KR100438819B1 (en) * 2000-07-05 2004-07-05 삼성코닝 주식회사 Method for fabricating GaN single crystal substrate
JP2004214281A (en) * 2002-12-27 2004-07-29 Semiconductor Energy Lab Co Ltd Semiconductor device, method of manufacturing the same, peeling method, and transfer method
JP2004235241A (en) * 2003-01-28 2004-08-19 Seiko Epson Corp Thin film transistor type display, process for fabricating thin film element, thin film transistor circuit board, electro-optical device, and electronic equipment
US6814832B2 (en) 2001-07-24 2004-11-09 Seiko Epson Corporation Method for transferring element, method for producing element, integrated circuit, circuit board, electro-optical device, IC card, and electronic appliance
JP2004349513A (en) * 2003-05-22 2004-12-09 Seiko Epson Corp Thin film circuit device, its manufacturing method, electrooptic device, and electronic equipment
JP2005033219A (en) * 2002-07-16 2005-02-03 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2005085705A (en) * 2003-09-10 2005-03-31 Seiko Epson Corp Electric device, its manufacturing method, electronic apparatus
US6887650B2 (en) 2001-07-24 2005-05-03 Seiko Epson Corporation Transfer method, method of manufacturing thin film devices, method of manufacturing integrated circuits, circuit board and manufacturing method thereof, electro-optical apparatus and manufacturing method thereof, ic card, and electronic appliance
JP2005182000A (en) * 2003-11-28 2005-07-07 Semiconductor Energy Lab Co Ltd Method of manufacturing display device
JP2005197673A (en) * 2003-12-12 2005-07-21 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
US6946361B2 (en) 2001-08-10 2005-09-20 Semiconductor Energy Laboratory Co., Ltd. Method of peeling off and method of manufacturing semiconductor device
US7005671B2 (en) 2001-10-01 2006-02-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, electronic equipment, and organic polarizing film
US7029960B2 (en) 2003-01-23 2006-04-18 Seiko Epson Corporation Device manufacturing method
US7034775B2 (en) 2001-03-26 2006-04-25 Seiko Epson Corporation Display device and method for manufacturing the same
JP2006120726A (en) * 2004-10-19 2006-05-11 Seiko Epson Corp Process for fabricating thin film device, electro-optical device, electronic apparatus
JP2006120720A (en) * 2004-10-19 2006-05-11 Seiko Epson Corp Process for fabricating thin film device, active matrix substrate, electro-optical device, electronic apparatus
US7045438B2 (en) 2001-07-27 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, semiconductor device, and method of fabricating the devices
US7045442B2 (en) 2002-12-27 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Method of separating a release layer from a substrate comprising hydrogen diffusion
JP2006135051A (en) * 2004-11-05 2006-05-25 Seiko Epson Corp Thin-film device, method for manufacturing the same, electrooptical device, and electronic apparatus
US7067926B2 (en) 2002-12-19 2006-06-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor chip and method for manufacturing the same
JP2006203219A (en) * 2001-08-10 2006-08-03 Semiconductor Energy Lab Co Ltd Peeling method
JP2006203220A (en) * 2001-07-16 2006-08-03 Semiconductor Energy Lab Co Ltd Peeling method
JP2006237634A (en) * 2006-04-21 2006-09-07 Semiconductor Energy Lab Co Ltd Peeling method
US7122445B2 (en) 2002-07-16 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Peeling method
CN1294618C (en) * 2001-07-16 2007-01-10 株式会社半导体能源研究所 Semiconductor device and stripping method and method for mfg. semiconductor device
US7164151B2 (en) 2003-02-12 2007-01-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with pixel portion and driving circuit, and electronic device
US7180093B2 (en) 2002-11-01 2007-02-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7189631B2 (en) 2002-10-30 2007-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7230316B2 (en) 2002-12-27 2007-06-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having transferred integrated circuit
US7241666B2 (en) 2003-10-28 2007-07-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7242441B2 (en) 2002-06-10 2007-07-10 Seiko Epson Corporation Method for manufacturing electro-optical device, and electro-optical device and electronic device manufactured with this manufacturing method
US7245331B2 (en) 2003-01-15 2007-07-17 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method for manufacturing display device using the peeling method
US7262088B2 (en) 2004-03-10 2007-08-28 Seiko Epson Corporation Thin film device supply body, method of fabricating thin film device, method of transfer, method of fabricating semiconductor device, and electronic equipment
US7303942B2 (en) 2002-12-26 2007-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7332381B2 (en) 2001-10-30 2008-02-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
CN100375236C (en) * 2005-11-30 2008-03-12 董玟昌 Method of forming separable interface and producing micro-electromechanical film with the method
US7407628B2 (en) 2003-09-01 2008-08-05 Seiko Epson Corporation Biosensor and method of manufacturing biosensor
US7436050B2 (en) 2003-01-22 2008-10-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a flexible printed circuit
US7453199B2 (en) 2004-04-21 2008-11-18 Seiko Epson Corporation Organic electroluminescent device
US7521383B2 (en) 2005-06-30 2009-04-21 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US7563147B2 (en) 2004-04-21 2009-07-21 Seiko Epson Corporation Organic electroluminescent device, method of manufacture thereof and electronic apparatus
US7576362B2 (en) 2003-03-14 2009-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having EL element, integrated circuit and adhesive layer therebetween
KR100913124B1 (en) * 2009-01-05 2009-08-19 학교법인 포항공과대학교 Manufacturing method for flexible element using laser
JP2009260387A (en) * 2009-08-04 2009-11-05 Semiconductor Energy Lab Co Ltd Method of making display, and method of making digital book
JP2010117516A (en) * 2008-11-12 2010-05-27 Nitto Denko Corp Method for producing polarizing plate, polarizing plate, optical film and image display
JP2010283355A (en) * 2010-06-16 2010-12-16 Semiconductor Energy Lab Co Ltd Peeling method
US7858411B2 (en) 2001-12-28 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating light emitting device and method for fabricating liquid crystal display device
US7875510B2 (en) 2008-07-17 2011-01-25 Seiko Epson Corporation Thin-film device, method for manufacturing the same, and electronic apparatus
US7973313B2 (en) 2003-02-24 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit device, IC label, container comprising the thin film integrated circuit, manufacturing method of the thin film integrated circuit device, manufacturing method of the container, and management method of product having the container
US8030132B2 (en) 2005-05-31 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including peeling step
KR20110120310A (en) * 2009-02-04 2011-11-03 마이크론 테크놀로지, 인크. Semiconductor material manufacture
US8058146B2 (en) * 2004-09-24 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Peeling method
CN103240770A (en) * 2012-02-09 2013-08-14 旭德科技股份有限公司 Edge separation equipment and operation method thereof
US8678958B2 (en) 2004-02-26 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Sports implement, amusement tool, and training tool
JP2014103403A (en) * 2013-12-25 2014-06-05 Semiconductor Energy Lab Co Ltd Light-emitting device
JP2014229820A (en) * 2013-05-24 2014-12-08 富士通株式会社 Manufacturing method of wiring board and mold for manufacturing wiring board
US9493119B2 (en) 2001-11-30 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Vehicle, display device and manufacturing method for a semiconductor device
KR20160141768A (en) 2014-03-31 2016-12-09 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming release layer
KR20160142331A (en) 2014-03-31 2016-12-12 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming releasing layer
JP2017037322A (en) * 2016-09-29 2017-02-16 株式会社半導体エネルギー研究所 Light-emitting device
JP2017040924A (en) * 2013-12-02 2017-02-23 株式会社半導体エネルギー研究所 Processing device
JP2017530206A (en) * 2014-07-22 2017-10-12 ブルーワー サイエンス アイ エヌ シー. Polyimide as a laser release material for 3-D IC applications
KR20170116065A (en) 2015-02-10 2017-10-18 닛산 가가쿠 고교 가부시키 가이샤 Composition for releasing layer
KR20170125362A (en) 2015-03-04 2017-11-14 닛산 가가쿠 고교 가부시키 가이샤 Composition for releasing layer
KR20170132803A (en) 2015-03-31 2017-12-04 닛산 가가쿠 고교 가부시키 가이샤 The composition for forming a peel layer and the peel layer
KR20170133395A (en) 2015-03-31 2017-12-05 닛산 가가쿠 고교 가부시키 가이샤 The composition for forming a peel layer and the peel layer
CN108369892A (en) * 2015-09-28 2018-08-03 Jsr株式会社 The processing method of object, temporary fixing composition, semiconductor device and its manufacturing method
KR20190011747A (en) 2016-05-23 2019-02-07 닛산 가가쿠 가부시키가이샤 The composition for forming a peel layer and the peel layer
KR20190035757A (en) 2016-08-03 2019-04-03 닛산 가가쿠 가부시키가이샤 Composition for forming a release layer for a transparent resin substrate
KR20190037265A (en) 2016-08-03 2019-04-05 닛산 가가쿠 가부시키가이샤 The composition for forming a peel layer and the peel layer
KR20190038846A (en) 2016-08-03 2019-04-09 닛산 가가쿠 가부시키가이샤 Composition for releasing layer
KR20190039148A (en) 2016-08-03 2019-04-10 닛산 가가쿠 가부시키가이샤 Composition for releasing layer
KR20190089208A (en) 2016-12-08 2019-07-30 닛산 가가쿠 가부시키가이샤 Manufacturing method of release layer
KR20190094197A (en) 2016-12-08 2019-08-12 닛산 가가쿠 가부시키가이샤 Manufacturing method of release layer
KR20190094198A (en) 2016-12-08 2019-08-12 닛산 가가쿠 가부시키가이샤 Manufacturing method of release layer
KR20190100228A (en) 2016-12-27 2019-08-28 닛산 가가쿠 가부시키가이샤 Composition for Forming Substrate Protective Layer
KR20190129103A (en) 2017-03-30 2019-11-19 닛산 가가쿠 가부시키가이샤 Peeling Layer Formation Composition and Peeling Layer
US10957722B2 (en) 2016-05-26 2021-03-23 Joled Inc. Method of manufacturing flexible device using multidirectional oblique irradiation of an interface between a support substrate and a flexible substrate
KR20220059552A (en) 2016-05-23 2022-05-10 닛산 가가쿠 가부시키가이샤 Detachable layer-forming composition and detachable layer
KR20220059551A (en) 2016-05-23 2022-05-10 닛산 가가쿠 가부시키가이샤 Detachable layer-forming composition and detachable layer
KR20230044351A (en) 2020-07-29 2023-04-04 도요보 가부시키가이샤 Manufacturing method of flexible electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102575775B1 (en) * 2023-03-29 2023-09-08 주식회사 비플러스 Method of separating layers of flexible display

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752455A (en) * 1986-05-27 1988-06-21 Kms Fusion, Inc. Pulsed laser microfabrication
JPH04170520A (en) * 1990-11-01 1992-06-18 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal display panel and liquid crystal display substrate
JPH04311929A (en) * 1991-04-11 1992-11-04 Seiko Instr Inc Light valve device and semiconductor device
JPH05211128A (en) * 1991-09-18 1993-08-20 Commiss Energ Atom Manufacture of thin film of semiconductor material
JPH06118441A (en) * 1991-11-05 1994-04-28 Tadanobu Kato Display cell
JPH06504139A (en) * 1990-12-31 1994-05-12 コピン・コーポレーシヨン Single crystal silicon array element for display panels
JPH07504782A (en) * 1992-02-13 1995-05-25 コピン・コーポレーシヨン High density electronic circuit module
JPH07170072A (en) * 1993-12-16 1995-07-04 Nec Corp Manufacture of polyimide multilayer wiring board
JPH07202424A (en) * 1993-12-28 1995-08-04 Nec Corp Production of multilayer wiring board
JPH07302889A (en) * 1994-03-10 1995-11-14 Canon Inc Manufacture of semiconductor substrate
JPH08213645A (en) * 1995-02-02 1996-08-20 Sony Corp Method of separating element formation layer from base body

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752455A (en) * 1986-05-27 1988-06-21 Kms Fusion, Inc. Pulsed laser microfabrication
JPH04170520A (en) * 1990-11-01 1992-06-18 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal display panel and liquid crystal display substrate
JPH06504139A (en) * 1990-12-31 1994-05-12 コピン・コーポレーシヨン Single crystal silicon array element for display panels
JPH04311929A (en) * 1991-04-11 1992-11-04 Seiko Instr Inc Light valve device and semiconductor device
JPH05211128A (en) * 1991-09-18 1993-08-20 Commiss Energ Atom Manufacture of thin film of semiconductor material
JPH06118441A (en) * 1991-11-05 1994-04-28 Tadanobu Kato Display cell
JPH07504782A (en) * 1992-02-13 1995-05-25 コピン・コーポレーシヨン High density electronic circuit module
JPH07170072A (en) * 1993-12-16 1995-07-04 Nec Corp Manufacture of polyimide multilayer wiring board
JPH07202424A (en) * 1993-12-28 1995-08-04 Nec Corp Production of multilayer wiring board
JPH07302889A (en) * 1994-03-10 1995-11-14 Canon Inc Manufacture of semiconductor substrate
JPH08213645A (en) * 1995-02-02 1996-08-20 Sony Corp Method of separating element formation layer from base body

Cited By (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133809A (en) * 1998-10-27 2000-05-12 Seiko Epson Corp Peeling method
US6967114B2 (en) 1999-09-30 2005-11-22 Seiko Epson Corporation Large EL panel and manufacturing method therefor
US6642542B1 (en) 1999-09-30 2003-11-04 Seiko Epson Corporation Large EL panel and manufacturing method therefor
JP2001156183A (en) * 1999-11-24 2001-06-08 Seiko Epson Corp Storage device
KR100438819B1 (en) * 2000-07-05 2004-07-05 삼성코닝 주식회사 Method for fabricating GaN single crystal substrate
JP2002031818A (en) * 2000-07-17 2002-01-31 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2002116455A (en) * 2000-08-01 2002-04-19 Kyodo Printing Co Ltd Liquid crystal display device, electrode substrate for the same device and method of manufacturing the same device
JP2002277859A (en) * 2001-01-15 2002-09-25 Seiko Epson Corp Method for manufacturing liquid crystal
US7034775B2 (en) 2001-03-26 2006-04-25 Seiko Epson Corporation Display device and method for manufacturing the same
JP2003031778A (en) * 2001-07-13 2003-01-31 Seiko Epson Corp Method for manufacturing thin film device
JP2016006897A (en) * 2001-07-16 2016-01-14 株式会社半導体エネルギー研究所 Manufacture method of semiconductor device
JP2006203220A (en) * 2001-07-16 2006-08-03 Semiconductor Energy Lab Co Ltd Peeling method
JP2003195787A (en) * 2001-07-16 2003-07-09 Semiconductor Energy Lab Co Ltd Manufacturing method for light emitting device
JP2003174153A (en) * 2001-07-16 2003-06-20 Semiconductor Energy Lab Co Ltd Peeling method, semiconductor device, and manufacturing method therefor
JP2010134466A (en) * 2001-07-16 2010-06-17 Semiconductor Energy Lab Co Ltd Method of manufacturing light emitting device, and method of manufacturing liquid crystal display
US9608004B2 (en) 2001-07-16 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and peeling off method and method of manufacturing semiconductor device
JP2017059839A (en) * 2001-07-16 2017-03-23 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method
CN1294618C (en) * 2001-07-16 2007-01-10 株式会社半导体能源研究所 Semiconductor device and stripping method and method for mfg. semiconductor device
US9202987B2 (en) 2001-07-16 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and peeling off method and method of manufacturing semiconductor device
JP4567282B2 (en) * 2001-07-16 2010-10-20 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
JP2020194788A (en) * 2001-07-16 2020-12-03 株式会社半導体エネルギー研究所 Manufacturing method for display device
JP2012119703A (en) * 2001-07-16 2012-06-21 Semiconductor Energy Lab Co Ltd Manufacturing method of light emitting device
JP2012178594A (en) * 2001-07-16 2012-09-13 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2018137455A (en) * 2001-07-16 2018-08-30 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method
JP2019057507A (en) * 2001-07-16 2019-04-11 株式会社半導体エネルギー研究所 Manufacturing method of light-emitting device
US10586816B2 (en) 2001-07-16 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and peeling off method and method of manufacturing semiconductor device
JP2016157966A (en) * 2001-07-16 2016-09-01 株式会社半導体エネルギー研究所 Peeling method
US6887650B2 (en) 2001-07-24 2005-05-03 Seiko Epson Corporation Transfer method, method of manufacturing thin film devices, method of manufacturing integrated circuits, circuit board and manufacturing method thereof, electro-optical apparatus and manufacturing method thereof, ic card, and electronic appliance
US6814832B2 (en) 2001-07-24 2004-11-09 Seiko Epson Corporation Method for transferring element, method for producing element, integrated circuit, circuit board, electro-optical device, IC card, and electronic appliance
JP2003142666A (en) * 2001-07-24 2003-05-16 Seiko Epson Corp Transfer method for element, method for manufacturing element, integrated circuit, circuit board, electrooptic device, ic card and electronic apparatus
US7045438B2 (en) 2001-07-27 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, semiconductor device, and method of fabricating the devices
US7534700B2 (en) 2001-07-27 2009-05-19 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device having a film in contact with a debonded layer
US8390019B2 (en) 2001-07-27 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, semiconductor device, and method of fabricating the devices
JP2003163337A (en) * 2001-08-10 2003-06-06 Semiconductor Energy Lab Co Ltd Stripping method and method for producing semiconductor device
US6946361B2 (en) 2001-08-10 2005-09-20 Semiconductor Energy Laboratory Co., Ltd. Method of peeling off and method of manufacturing semiconductor device
JP2006203219A (en) * 2001-08-10 2006-08-03 Semiconductor Energy Lab Co Ltd Peeling method
US9281403B2 (en) 2001-08-22 2016-03-08 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
CN100409401C (en) * 2001-08-22 2008-08-06 株式会社半导体能源研究所 Stripping method and method for producing semiconductor device
US9842994B2 (en) 2001-08-22 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
US9755148B2 (en) 2001-08-22 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
US10529748B2 (en) 2001-08-22 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
US11296131B2 (en) 2001-08-22 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
JP2003163338A (en) * 2001-08-22 2003-06-06 Semiconductor Energy Lab Co Ltd Stripping method and method for producing semiconductor device
US7005671B2 (en) 2001-10-01 2006-02-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, electronic equipment, and organic polarizing film
US8980700B2 (en) 2001-10-30 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7994506B2 (en) 2001-10-30 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US9620408B2 (en) 2001-10-30 2017-04-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7648862B2 (en) 2001-10-30 2010-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7332381B2 (en) 2001-10-30 2008-02-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US10607883B2 (en) 2001-10-30 2020-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US10629637B2 (en) 2001-11-30 2020-04-21 Semiconductor Energy Laboratory Co., Ltd. Vehicle, display device and manufacturing method for a semiconductor device
US10957723B2 (en) 2001-11-30 2021-03-23 Semiconductor Energy Laboratory Co., Ltd. Vehicle, display device and manufacturing method for a semiconductor device
US9493119B2 (en) 2001-11-30 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Vehicle, display device and manufacturing method for a semiconductor device
US10325940B2 (en) 2001-11-30 2019-06-18 Semiconductor Energy Laboratory Co., Ltd. Vehicle, display device and manufacturing method for a semiconductor device
JP2003229548A (en) * 2001-11-30 2003-08-15 Semiconductor Energy Lab Co Ltd Vehicle, display device and method for manufacturing semiconductor device
JP4567941B2 (en) * 2001-12-28 2010-10-27 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device and method for manufacturing display device
US9536901B2 (en) 2001-12-28 2017-01-03 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device by bonding a layer to a support with curvature
US9337341B2 (en) 2001-12-28 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having aluminum-containing layer between two curved substrates
JP2003258211A (en) * 2001-12-28 2003-09-12 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US7858411B2 (en) 2001-12-28 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating light emitting device and method for fabricating liquid crystal display device
US9123595B2 (en) 2001-12-28 2015-09-01 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device by bonding a layer to a support with curvature
JP2003318373A (en) * 2002-04-18 2003-11-07 Ind Technol Res Inst Method of forming thin film semiconductor device on plastic sheet
US7242441B2 (en) 2002-06-10 2007-07-10 Seiko Epson Corporation Method for manufacturing electro-optical device, and electro-optical device and electronic device manufactured with this manufacturing method
US7375006B2 (en) 2002-07-16 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Peeling method
US7122445B2 (en) 2002-07-16 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Peeling method
US7666719B2 (en) 2002-07-16 2010-02-23 Semiconductor Energy Laboratory Co., Ltd. Peeling method
JP2005033219A (en) * 2002-07-16 2005-02-03 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2004056143A (en) * 2002-07-16 2004-02-19 Semiconductor Energy Lab Co Ltd Method for releasing
JP2016021407A (en) * 2002-10-30 2016-02-04 株式会社半導体エネルギー研究所 Light-emitting device and electronic apparatus
US7923348B2 (en) 2002-10-30 2011-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9508620B2 (en) 2002-10-30 2016-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7547612B2 (en) 2002-10-30 2009-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9929190B2 (en) 2002-10-30 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9224667B2 (en) 2002-10-30 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8173520B2 (en) 2002-10-30 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8012854B2 (en) 2002-10-30 2011-09-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7189631B2 (en) 2002-10-30 2007-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8237164B2 (en) 2002-11-01 2012-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including magnet
US9263617B2 (en) 2002-11-01 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7180093B2 (en) 2002-11-01 2007-02-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7741642B2 (en) 2002-11-01 2010-06-22 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and manufacturing method thereof
US7067926B2 (en) 2002-12-19 2006-06-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor chip and method for manufacturing the same
US7511380B2 (en) 2002-12-19 2009-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor chip and method manufacturing the same
US7303942B2 (en) 2002-12-26 2007-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7564139B2 (en) 2002-12-26 2009-07-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101088104B1 (en) * 2002-12-27 2011-11-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing a semiconductor device
US7723209B2 (en) 2002-12-27 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, delamination method, and transferring method
US10038012B2 (en) 2002-12-27 2018-07-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, delamination method, and transferring method
JP2004214281A (en) * 2002-12-27 2004-07-29 Semiconductor Energy Lab Co Ltd Semiconductor device, method of manufacturing the same, peeling method, and transfer method
US8441102B2 (en) 2002-12-27 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a capacitor
US7230316B2 (en) 2002-12-27 2007-06-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having transferred integrated circuit
US8247246B2 (en) 2002-12-27 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, delamination method, and transferring method
US9543337B2 (en) 2002-12-27 2017-01-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, delamination method, and transferring method
US8691604B2 (en) 2002-12-27 2014-04-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, delamination method, and transferring method
US7407870B2 (en) 2002-12-27 2008-08-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9269817B2 (en) 2002-12-27 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, delamination method, and transferring method
CN100388411C (en) * 2002-12-27 2008-05-14 株式会社半导体能源研究所 Separating method
US8026152B2 (en) 2002-12-27 2011-09-27 Semiconductor Energy Laboratory Co., Ltd. Separation method of semiconductor device
US7045442B2 (en) 2002-12-27 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Method of separating a release layer from a substrate comprising hydrogen diffusion
US7245331B2 (en) 2003-01-15 2007-07-17 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method for manufacturing display device using the peeling method
US8228454B2 (en) 2003-01-15 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method for manufacturing display device using the peeling method
US8508682B2 (en) 2003-01-15 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method for manufacturing display device using the peeling method
US8830413B2 (en) 2003-01-15 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method for manufacturing display device using the peeling method
US7714950B2 (en) 2003-01-15 2010-05-11 Semiconductor Energy Laboratory Co., Ltd Peeling method and method for manufacturing display device using the peeling method
US9013650B2 (en) 2003-01-15 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method for manufacturing display device using the peeling method
US9299879B2 (en) 2003-01-15 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method for manufacturing display device using the peeling method
US7436050B2 (en) 2003-01-22 2008-10-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a flexible printed circuit
US7408207B2 (en) 2003-01-23 2008-08-05 Seiko Epson Corporation Device manufacturing method and device, electro-optic device, and electronic equipment
US7029960B2 (en) 2003-01-23 2006-04-18 Seiko Epson Corporation Device manufacturing method
JP2004235241A (en) * 2003-01-28 2004-08-19 Seiko Epson Corp Thin film transistor type display, process for fabricating thin film element, thin film transistor circuit board, electro-optical device, and electronic equipment
JP4524992B2 (en) * 2003-01-28 2010-08-18 セイコーエプソン株式会社 Thin film transistor type display device, thin film element manufacturing method, thin film transistor circuit board, electro-optical device, and electronic apparatus
US7746333B2 (en) 2003-02-12 2010-06-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9429800B2 (en) 2003-02-12 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8384699B2 (en) 2003-02-12 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8044946B2 (en) 2003-02-12 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7164151B2 (en) 2003-02-12 2007-01-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with pixel portion and driving circuit, and electronic device
US8193532B2 (en) 2003-02-24 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit device, IC label, container comprising the thin film integrated circuit, manufacturing method of the thin film integrated circuit device, manufacturing method of the container, and management method of product having the container
US7973313B2 (en) 2003-02-24 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit device, IC label, container comprising the thin film integrated circuit, manufacturing method of the thin film integrated circuit device, manufacturing method of the container, and management method of product having the container
US9640778B2 (en) 2003-03-14 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7576362B2 (en) 2003-03-14 2009-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having EL element, integrated circuit and adhesive layer therebetween
US11196020B2 (en) 2003-03-14 2021-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10186682B2 (en) 2003-03-14 2019-01-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10727437B2 (en) 2003-03-14 2020-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9178182B2 (en) 2003-03-14 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2004349513A (en) * 2003-05-22 2004-12-09 Seiko Epson Corp Thin film circuit device, its manufacturing method, electrooptic device, and electronic equipment
US7105422B2 (en) 2003-05-22 2006-09-12 Seiko Epson Corporation Thin film circuit device, manufacturing method thereof, electro-optical apparatus, and electronic system
US7407628B2 (en) 2003-09-01 2008-08-05 Seiko Epson Corporation Biosensor and method of manufacturing biosensor
US7998413B2 (en) 2003-09-01 2011-08-16 Seiko Epson Corporation Biosensor and method of manufacturing biosensor
JP2005085705A (en) * 2003-09-10 2005-03-31 Seiko Epson Corp Electric device, its manufacturing method, electronic apparatus
US7883989B2 (en) 2003-10-28 2011-02-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7622361B2 (en) 2003-10-28 2009-11-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7241666B2 (en) 2003-10-28 2007-07-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
EP2259300A2 (en) 2003-10-28 2010-12-08 Semiconductor Energy Laboratory Co., Ltd. Manufacture of semiconductor device
JP4689249B2 (en) * 2003-11-28 2011-05-25 株式会社半導体エネルギー研究所 Method for manufacturing display device
JP2005182000A (en) * 2003-11-28 2005-07-07 Semiconductor Energy Lab Co Ltd Method of manufacturing display device
JP2005197673A (en) * 2003-12-12 2005-07-21 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
US8678958B2 (en) 2004-02-26 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Sports implement, amusement tool, and training tool
US7262088B2 (en) 2004-03-10 2007-08-28 Seiko Epson Corporation Thin film device supply body, method of fabricating thin film device, method of transfer, method of fabricating semiconductor device, and electronic equipment
US7456059B2 (en) 2004-03-10 2008-11-25 Seiko Epson Corporation Thin film device supply body, method of fabricating thin film device, method of transfer, method of fabricating semiconductor device, and electronic equipment
US7453199B2 (en) 2004-04-21 2008-11-18 Seiko Epson Corporation Organic electroluminescent device
US7563147B2 (en) 2004-04-21 2009-07-21 Seiko Epson Corporation Organic electroluminescent device, method of manufacture thereof and electronic apparatus
US8058146B2 (en) * 2004-09-24 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Peeling method
JP2006120726A (en) * 2004-10-19 2006-05-11 Seiko Epson Corp Process for fabricating thin film device, electro-optical device, electronic apparatus
JP2006120720A (en) * 2004-10-19 2006-05-11 Seiko Epson Corp Process for fabricating thin film device, active matrix substrate, electro-optical device, electronic apparatus
US7393725B2 (en) 2004-10-19 2008-07-01 Seiko Epson Corporation Method of manufacturing thin film device electro-optic device, and electronic instrument
JP2006135051A (en) * 2004-11-05 2006-05-25 Seiko Epson Corp Thin-film device, method for manufacturing the same, electrooptical device, and electronic apparatus
US8030132B2 (en) 2005-05-31 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including peeling step
US7521383B2 (en) 2005-06-30 2009-04-21 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
CN100375236C (en) * 2005-11-30 2008-03-12 董玟昌 Method of forming separable interface and producing micro-electromechanical film with the method
JP4610515B2 (en) * 2006-04-21 2011-01-12 株式会社半導体エネルギー研究所 Peeling method
JP2006237634A (en) * 2006-04-21 2006-09-07 Semiconductor Energy Lab Co Ltd Peeling method
US7875510B2 (en) 2008-07-17 2011-01-25 Seiko Epson Corporation Thin-film device, method for manufacturing the same, and electronic apparatus
JP2010117516A (en) * 2008-11-12 2010-05-27 Nitto Denko Corp Method for producing polarizing plate, polarizing plate, optical film and image display
KR100913124B1 (en) * 2009-01-05 2009-08-19 학교법인 포항공과대학교 Manufacturing method for flexible element using laser
TWI423309B (en) * 2009-02-04 2014-01-11 Micron Technology Inc Semiconductor material manufacture
KR20110120310A (en) * 2009-02-04 2011-11-03 마이크론 테크놀로지, 인크. Semiconductor material manufacture
JP2012517123A (en) * 2009-02-04 2012-07-26 マイクロン テクノロジー, インク. Manufacture of semiconductor materials
JP2009260387A (en) * 2009-08-04 2009-11-05 Semiconductor Energy Lab Co Ltd Method of making display, and method of making digital book
JP2010283355A (en) * 2010-06-16 2010-12-16 Semiconductor Energy Lab Co Ltd Peeling method
CN103240770A (en) * 2012-02-09 2013-08-14 旭德科技股份有限公司 Edge separation equipment and operation method thereof
JP2014229820A (en) * 2013-05-24 2014-12-08 富士通株式会社 Manufacturing method of wiring board and mold for manufacturing wiring board
JP2017040923A (en) * 2013-12-02 2017-02-23 株式会社半導体エネルギー研究所 Display device manufacture method
US10879331B2 (en) 2013-12-02 2020-12-29 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP2018055103A (en) * 2013-12-02 2018-04-05 株式会社半導体エネルギー研究所 Processing device
US11672148B2 (en) 2013-12-02 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP2019023739A (en) * 2013-12-02 2019-02-14 株式会社半導体エネルギー研究所 Device
JP2017040924A (en) * 2013-12-02 2017-02-23 株式会社半導体エネルギー研究所 Processing device
US11004925B2 (en) 2013-12-02 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP2017040922A (en) * 2013-12-02 2017-02-23 株式会社半導体エネルギー研究所 Display device manufacture method
US10872947B2 (en) 2013-12-02 2020-12-22 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10854697B2 (en) 2013-12-02 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10312315B2 (en) 2013-12-02 2019-06-04 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10763322B2 (en) 2013-12-02 2020-09-01 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10355067B2 (en) 2013-12-02 2019-07-16 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP2014103403A (en) * 2013-12-25 2014-06-05 Semiconductor Energy Lab Co Ltd Light-emitting device
KR20160141768A (en) 2014-03-31 2016-12-09 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming release layer
KR20210154273A (en) 2014-03-31 2021-12-20 닛산 가가쿠 가부시키가이샤 Composition for forming releasing layer
KR20210156292A (en) 2014-03-31 2021-12-24 닛산 가가쿠 가부시키가이샤 Composition for forming releasing layer
KR20160142331A (en) 2014-03-31 2016-12-12 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming releasing layer
JP2017530206A (en) * 2014-07-22 2017-10-12 ブルーワー サイエンス アイ エヌ シー. Polyimide as a laser release material for 3-D IC applications
KR20220091609A (en) 2015-02-10 2022-06-30 닛산 가가쿠 가부시키가이샤 Composition for forming release layer
KR20170116065A (en) 2015-02-10 2017-10-18 닛산 가가쿠 고교 가부시키 가이샤 Composition for releasing layer
KR20170125362A (en) 2015-03-04 2017-11-14 닛산 가가쿠 고교 가부시키 가이샤 Composition for releasing layer
KR20170132803A (en) 2015-03-31 2017-12-04 닛산 가가쿠 고교 가부시키 가이샤 The composition for forming a peel layer and the peel layer
KR20170133395A (en) 2015-03-31 2017-12-05 닛산 가가쿠 고교 가부시키 가이샤 The composition for forming a peel layer and the peel layer
KR20230023831A (en) 2015-03-31 2023-02-17 닛산 가가쿠 가부시키가이샤 Composition for forming release layer, and release layer
CN108369892A (en) * 2015-09-28 2018-08-03 Jsr株式会社 The processing method of object, temporary fixing composition, semiconductor device and its manufacturing method
CN108369892B (en) * 2015-09-28 2022-07-05 Jsr株式会社 Method for treating object, composition for temporary fixation, semiconductor device, and method for manufacturing semiconductor device
KR20220059551A (en) 2016-05-23 2022-05-10 닛산 가가쿠 가부시키가이샤 Detachable layer-forming composition and detachable layer
KR20220059552A (en) 2016-05-23 2022-05-10 닛산 가가쿠 가부시키가이샤 Detachable layer-forming composition and detachable layer
KR20190011747A (en) 2016-05-23 2019-02-07 닛산 가가쿠 가부시키가이샤 The composition for forming a peel layer and the peel layer
KR20240032145A (en) 2016-05-23 2024-03-08 닛산 가가쿠 가부시키가이샤 Detachable layer-forming composition and detachable layer
US10957722B2 (en) 2016-05-26 2021-03-23 Joled Inc. Method of manufacturing flexible device using multidirectional oblique irradiation of an interface between a support substrate and a flexible substrate
KR20190037265A (en) 2016-08-03 2019-04-05 닛산 가가쿠 가부시키가이샤 The composition for forming a peel layer and the peel layer
KR20190035757A (en) 2016-08-03 2019-04-03 닛산 가가쿠 가부시키가이샤 Composition for forming a release layer for a transparent resin substrate
KR20190038846A (en) 2016-08-03 2019-04-09 닛산 가가쿠 가부시키가이샤 Composition for releasing layer
KR20190039148A (en) 2016-08-03 2019-04-10 닛산 가가쿠 가부시키가이샤 Composition for releasing layer
KR20230020011A (en) 2016-08-03 2023-02-09 닛산 가가쿠 가부시키가이샤 Composition for forming release layer, and release layer
JP2017037322A (en) * 2016-09-29 2017-02-16 株式会社半導体エネルギー研究所 Light-emitting device
KR20190094198A (en) 2016-12-08 2019-08-12 닛산 가가쿠 가부시키가이샤 Manufacturing method of release layer
KR20190089208A (en) 2016-12-08 2019-07-30 닛산 가가쿠 가부시키가이샤 Manufacturing method of release layer
KR20190094197A (en) 2016-12-08 2019-08-12 닛산 가가쿠 가부시키가이샤 Manufacturing method of release layer
KR20190100228A (en) 2016-12-27 2019-08-28 닛산 가가쿠 가부시키가이샤 Composition for Forming Substrate Protective Layer
KR20190129103A (en) 2017-03-30 2019-11-19 닛산 가가쿠 가부시키가이샤 Peeling Layer Formation Composition and Peeling Layer
KR20230044351A (en) 2020-07-29 2023-04-04 도요보 가부시키가이샤 Manufacturing method of flexible electronic device

Also Published As

Publication number Publication date
JP4619461B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4619461B2 (en) Thin film device transfer method and device manufacturing method
JP3809681B2 (en) Peeling method
JP4619462B2 (en) Thin film element transfer method
JP4478268B2 (en) Thin film device manufacturing method
JP3809712B2 (en) Thin film device transfer method
KR100494479B1 (en) Method for manufacturing an active matrix substrate
JP3809733B2 (en) Thin film transistor peeling method
KR100481994B1 (en) Stripping method, transfer method of thin film device, and thin film device, thin film integrated circuit device and liquid crystal display device manufactured using the same
JP4126747B2 (en) Manufacturing method of three-dimensional device
JP4085459B2 (en) Manufacturing method of three-dimensional device
JPH11243209A (en) Transfer method of thin-film device, the thin-film device, thin-film integrated circuit device, active matrix substrate, liquid crystal display device, and electronic apparatus
US20040209442A1 (en) Device manufacturing method and device, electro-optic device, and electronic equipment
JP2002217391A (en) Method for manufacturing laminate and semiconductor device
JP3809710B2 (en) Thin film element transfer method
JP4061846B2 (en) Laminated body manufacturing method and semiconductor device manufacturing method
JP5286684B2 (en) Thin film layer peeling method, thin film device transfer method
JPH10177187A (en) Method for attaining electric conduction between transferred thin film structure blocks, production of active matrix substrate, the active matrix substrate, and liquid crystal device
JP4619644B2 (en) Thin film element transfer method
JP2004165679A (en) Transfer method for thin-film device
JP2004140380A (en) Method of transferring thin film device and method of manufacturing device
JP4619645B2 (en) Thin film element transfer method
JP3809833B2 (en) Thin film element transfer method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070524

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees