JP2000133809A - Peeling method - Google Patents

Peeling method

Info

Publication number
JP2000133809A
JP2000133809A JP10305884A JP30588498A JP2000133809A JP 2000133809 A JP2000133809 A JP 2000133809A JP 10305884 A JP10305884 A JP 10305884A JP 30588498 A JP30588498 A JP 30588498A JP 2000133809 A JP2000133809 A JP 2000133809A
Authority
JP
Japan
Prior art keywords
layer
separation layer
separation
substrate
irradiation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10305884A
Other languages
Japanese (ja)
Other versions
JP2000133809A5 (en
Inventor
Sumio Utsunomiya
純夫 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10305884A priority Critical patent/JP2000133809A/en
Publication of JP2000133809A publication Critical patent/JP2000133809A/en
Publication of JP2000133809A5 publication Critical patent/JP2000133809A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68359Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during manufacture of interconnect decals or build up layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68363Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which can easily and surely peel a layer to be transferred which has a large area, irrespective of its characteristics, conditions, etc. SOLUTION: On a substrate 10, an isolation layer 20 made of, e.g. amorphous silicon is formed, and a layer 40 to be transferred is formed directly or via an intermediate layer 30 thereon. A transfer body 60 is bonded on the layer 40 to be transferred via an adhesive layer 50. The substrate 10 is repeatedly irradiated with an irradiating light having high energy, from the rear side of the substrate 10. Interface roughness is generated in isolation layer interfaces 21 and/or 22, and contact area of the interface is reduced, so that the adhesion of the isolation layer interfaces 21 and/or 22 is reduced and exfoliation is generated in the interfaces. Interface roughness of the isolation layer interfaces 21 and/or 22, i.e., the force necessary for exfoliation can be controlled through the irradiation frequency of the irradiation light 70.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被転写層の剥離方
法、特に、機能性薄膜のような薄膜より成る被転写層を
剥離し、種々の転写体へ転写する転写方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for peeling a layer to be transferred, and more particularly to a method for peeling a layer to be transferred made of a thin film such as a functional thin film and transferring it to various transfer members.

【0002】[0002]

【従来の技術】例えば薄膜トランジスタ(TFT)を用い
た液晶ディスプレイ(LCD)を製造する際、化学気相成
長法(CVD法)等により透明基板上に薄膜トランジスタ
を形成する工程を経る。
2. Description of the Related Art For example, when manufacturing a liquid crystal display (LCD) using a thin film transistor (TFT), a process of forming the thin film transistor on a transparent substrate by a chemical vapor deposition (CVD) method or the like is performed.

【0003】この薄膜トランジスタには、非晶質シリコ
ンを用いたものと、ポリシリコンを用いたものがあり、
さらに、ポリシリコンを用いたものは、高温プロセスを
経て形成されるものと、低温プロセスを経て形成される
ものとに分類される。このような薄膜トランジスタの形
成は、平坦な耐熱性ガラスや石英ガラスなど、脆く割れ
易く、重量の大きな基板上に行われる。また、耐熱性ガ
ラスや石英ガラスなどは、大型化が困難な上、通常のガ
ラスに比べて非常に高価である。これらの欠点は、大型
で安価な液晶ディスプレイを製造する上での障害となっ
ている。
There are two types of thin film transistors, one using amorphous silicon and the other using polysilicon.
Further, those using polysilicon are classified into those formed through a high-temperature process and those formed through a low-temperature process. Such a thin film transistor is formed on a fragile, easily broken, and heavy substrate such as flat heat-resistant glass or quartz glass. In addition, heat-resistant glass, quartz glass, and the like are difficult to increase in size and are very expensive as compared with ordinary glass. These drawbacks are an obstacle to producing large and inexpensive liquid crystal displays.

【0004】このような問題に対処するため、基板上に
分離層を介して存在する被転写層を前記基板から剥離す
る剥離方法が既に提案されている。被転写層の剥離は、
例えば、特開平10-125929号公報や、特開平10-125930号
公報、特開平10-125931号公報に記載された方法に従っ
て行うことができる。
[0004] In order to cope with such a problem, a peeling method for peeling a transferred layer existing on a substrate via a separation layer from the substrate has already been proposed. The peeling of the transferred layer
For example, it can be carried out according to the methods described in JP-A-10-125929, JP-A-10-125930, and JP-A-10-125931.

【0005】しかしながら、上記方法では、被転写層の
剥離に大きな力を必要とするため、小さな面積を有する
被転写層の剥離には好適であるものの、大きな面積を有
する被転写層をその全面に渡って不良なく剥離するのは
困難である。
However, in the above method, a large force is required for peeling the transferred layer. Therefore, although the method is suitable for peeling the transferred layer having a small area, the transferred layer having a large area is coated on the entire surface. It is difficult to peel off without failure.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、大面
積基板に形成された被転写層の転写を可能にするため
に、被転写層に損傷を与えず、且つより小さな力で剥離
を実現する方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to remove a transferred layer formed on a large-area substrate without damaging the transferred layer and with a smaller force. It is to provide a method for realizing it.

【0007】[0007]

【課題を解決するための手段】本発明では、基板上に非
晶質シリコン等で構成される分離層を形成し、その上に
被転写層である薄膜デバイス等を形成する。例えば石英
基板上等にTFT等の薄膜デバイスを形成する場合、分離
層と被転写層、または分離層と基板との間の界面は非常
に均一且つ清浄であり、互いの層は上記界面を挟んで強
く密着している。この密着力は、薄膜デバイスを基板上
に安定に形成するために必要不可欠である。
According to the present invention, a separation layer made of amorphous silicon or the like is formed on a substrate, and a thin film device or the like, which is a layer to be transferred, is formed thereon. For example, when a thin film device such as a TFT is formed on a quartz substrate or the like, the interface between the separation layer and the transferred layer or between the separation layer and the substrate is very uniform and clean, and the layers sandwich each other. Strongly adhered. This adhesive force is indispensable for stably forming a thin film device on a substrate.

【0008】一方で、形成された前記被転写層の剥離
は、予め形成された前記分離層界面において、選択的に
前記密着力を低減させることにより可能となる。本発明
では、前記分離層界面に対して高エネルギーの照射光を
2回以上照射することにより前記被転写層の剥離を実現
する方法を提供する。特に、前記分離層に対して前記照
射光を繰り返し照射することにより、前記分離層界面に
対して故意に界面粗さを生ぜしめ、該分離層界面におけ
る結合有効面積を極端に低下させることにより密着力を
低下させ、被転写層の剥離を実現することを特徴とす
る。
On the other hand, peeling of the formed transferred layer is made possible by selectively reducing the adhesion at the interface of the previously formed separation layer. In the present invention, the irradiation light of high energy is applied to the interface of the separation layer.
There is provided a method for realizing peeling of the transferred layer by irradiating the transferred layer two or more times. In particular, by repeatedly irradiating the irradiation light to the separation layer, an interface roughness is intentionally generated at the separation layer interface, and the bonding effective area at the separation layer interface is extremely reduced, thereby causing close contact. It is characterized in that the force is reduced and the transferred layer is peeled off.

【0009】被転写層は、剥離後および転写体へ転写し
た後に種々の機能を発揮するものであるため、剥離に際
しては被転写層に損傷が加わってはならない。このた
め、分離層の組成および厚さ、照射光の光源およびエネ
ルギー密度、被転写層および/または基板の保護のため
の保護層の組成等を適切に選択する必要がある。更に、
照射光のエネルギー密度および照射回数を適切に選択
し、前記分離層界面の界面粗さを制御することにより該
分離層界面における密着力を大幅に低減することを特徴
とする。
The transferred layer exhibits various functions after peeling and after being transferred to a transfer member, so that the transferred layer must not be damaged during peeling. Therefore, it is necessary to appropriately select the composition and thickness of the separation layer, the light source and energy density of the irradiation light, the composition of the protective layer for protecting the transferred layer and / or the substrate, and the like. Furthermore,
By appropriately selecting the energy density of irradiation light and the number of times of irradiation, and controlling the interface roughness of the interface of the separation layer, the adhesion at the interface of the separation layer is greatly reduced.

【0010】本発明の具体的な解決方法について、下記
(1)〜(20)に記す。
The specific solution of the present invention is described in the following (1) to (20).

【0011】(1)基板上に分離層を介して存在する被
転写層を前記基板から剥離する剥離方法であって、前記
分離層に照射光を照射して、該分離層の界面において剥
離を生ぜしめ、前記被転写層を前記基板から離脱させる
ことを特徴とする剥離方法。
(1) A peeling method for peeling a transferred layer present on a substrate via a separating layer from the substrate, wherein the separating layer is irradiated with irradiation light to remove the peeling at the interface of the separating layer. Causing the transferred layer to separate from the substrate.

【0012】(2)前記分離層の剥離は、前記照射光の
照射を2回以上行うことを特徴とする上記(1)に記載の
剥離方法。
(2) The method according to the above (1), wherein the separation layer is separated by irradiating the irradiation light twice or more.

【0013】(3)前記分離層の剥離は、該分離層の界
面に粗さを生ぜしめ、前記被転写層と前記分離層の接触
面積が減少することによる密着力の低下を利用する上記
(1)または(2)に記載の剥離方法。
(3) The peeling of the separation layer causes roughness at the interface of the separation layer, and utilizes the decrease in adhesion due to the decrease in the contact area between the transfer-receiving layer and the separation layer. The peeling method according to (1) or (2).

【0014】(4)前記分離層の剥離は、該分離層の界
面に粗さを生ぜしめ、前記基板と前記分離層の接触面積
が減少することによる密着力の低下を利用する上記
(1)ないし(3)のいずれかに記載の剥離方法。
(4) The peeling of the separation layer causes roughness at the interface of the separation layer, and utilizes the decrease in adhesion due to the decrease in the contact area between the substrate and the separation layer. Or the peeling method according to any of (3).

【0015】(5)前記基板は、前記照射光に対して透
過性を有することを特徴とする上記(1)ないし(4)の
いずれかに記載の剥離方法。
(5) The peeling method according to any one of the above (1) to (4), wherein the substrate has transparency to the irradiation light.

【0016】(6)前記基板は、前記剥離が終了した後
に再利用に供されることを特徴とする上記(1)ないし
(5)のいずれかに記載の剥離方法。
(6) The peeling method according to any one of (1) to (5), wherein the substrate is reused after the peeling is completed.

【0017】(7)前記基板は、該基板表面の保護層を
含むことを特徴とする上記(1)ないし(6)のいずれか
に記載の剥離方法。
(7) The peeling method according to any one of (1) to (6), wherein the substrate includes a protective layer on the surface of the substrate.

【0018】(8)前記分離層の剥離は、前記分離層の
破壊を伴うことを特徴とする上記(1)または(7)に記
載の剥離方法。
(8) The peeling method according to the above (1) or (7), wherein the peeling of the separation layer involves destruction of the separation layer.

【0019】(9)前記被転写層は、機能性薄膜または
薄膜デバイスである上記(1)ないし(8)のいずれかに
記載の剥離方法。
(9) The peeling method according to any one of the above (1) to (8), wherein the transferred layer is a functional thin film or a thin film device.

【0020】(10)前記被転写層は、薄膜トランジスタ
である上記(1)ないし(9)のいずれかに記載の剥離方
法。
(10) The method according to any one of the above (1) to (9), wherein the transferred layer is a thin film transistor.

【0021】(11)前記分離層は、非晶質シリコンで構
成される光吸収層を有する上記(1)ないし(10)のい
ずれかに記載の剥離方法。
(11) The stripping method according to any one of the above (1) to (10), wherein the separation layer has a light absorbing layer made of amorphous silicon.

【0022】(12)前記非晶質シリコンは、前記照射光
の照射によりポリシリコンに相転移することを特徴とす
る上記(11)に記載の剥離方法。
(12) The peeling method according to the above (11), wherein the amorphous silicon undergoes a phase transition to polysilicon by irradiation of the irradiation light.

【0023】(13)前記非晶質シリコンは、水素を2at%
以上含有するものである上記(11)ないし(12)のいず
れかに記載の剥離方法。
(13) The amorphous silicon contains 2 at% of hydrogen.
The peeling method according to any one of the above (11) to (12), which contains the above.

【0024】(14)前記分離層は、ポリシリコンで構成
される光吸収層を有する上記(1)ないし(10)のいず
れかに記載の剥離方法。
(14) The stripping method according to any one of the above (1) to (10), wherein the separation layer has a light absorbing layer made of polysilicon.

【0025】(15)前記ポリシリコンは、水素を2at%以
上含有するものである上記(14)に記載の剥離方法。
(15) The stripping method according to the above (14), wherein the polysilicon contains 2 at% or more of hydrogen.

【0026】(16)前記分離層は、前記照射光を吸収し
て該分離層に変化を生じるとともに、前記照射光が前記
被転写層に到達して前記被転写層に損傷が加わることを
防ぐことを特徴とする上記(1)ないし(15)のいずれ
かに記載の剥離方法。
(16) The separation layer absorbs the irradiation light and causes a change in the separation layer, and also prevents the irradiation light from reaching the transfer-receiving layer and damaging the transfer-receiving layer. The peeling method according to any one of the above (1) to (15), wherein

【0027】(17)前記分離層は、前記照射光が被転写
層へ到達することを防ぐ遮光層および/または反射層を
含むことを特徴とする上記(1)ないし(16)のいずれ
かに記載の剥離方法。
(17) The method according to any one of (1) to (16), wherein the separation layer includes a light-shielding layer and / or a reflection layer for preventing the irradiation light from reaching the transfer-receiving layer. The stripping method as described.

【0028】(18)前記分離層は、前記照射光の照射回
数により、その界面粗さの制御が可能であることを特徴
とする上記(1)ないし(17)のいずれかに記載の剥離
方法。
(18) The peeling method according to any one of (1) to (17), wherein the interface roughness of the separation layer can be controlled by the number of irradiations of the irradiation light. .

【0029】(19)前記照射光は、レーザー光である上
記(1)ないし(18)のいずれかに記載の剥離方法。
(19) The peeling method according to any one of the above (1) to (18), wherein the irradiation light is a laser light.

【0030】(20)前記照射光の波長が、100〜350nmで
ある上記(1)ないし(19)のいずれかに記載の剥離方
法。
(20) The stripping method according to any one of (1) to (19), wherein the wavelength of the irradiation light is 100 to 350 nm.

【0031】(21)前記照射光の波長が、350〜1200nm
である上記(1)ないし(20)のいずれかに記載の剥離
方法。
(21) The wavelength of the irradiation light is 350 to 1200 nm
The peeling method according to any one of the above (1) to (20).

【0032】[0032]

【発明の実施の形態】以下に、本発明の剥離方法を添付
図に示す好適実施例に基いて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The peeling method of the present invention will be described below in detail based on a preferred embodiment shown in the accompanying drawings.

【0033】〔工程1〕図1に示すように、基板10の片面
に、分離層20を形成する。
[Step 1] As shown in FIG. 1, a separation layer 20 is formed on one surface of the substrate 10.

【0034】基板10は、例えば基板裏面11側から後述す
る照射光70を照射する場合、該照射光70が透過し得る透
光性を有することが望ましい。また、基板10は、分離層
20、後述する中間層30および被転写層40を形成するプロ
セス温度をTmaxとしたとき、歪点がTmax以上の材料で構
成されているものが好ましい。
When the substrate 10 is irradiated with irradiation light 70 described later, for example, from the substrate back surface 11 side, it is desirable that the substrate 10 has a light-transmitting property through which the irradiation light 70 can be transmitted. Further, the substrate 10 has a separation layer
20, when the process temperature for forming the intermediate layer 30 and the transferred layer 40 described later is Tmax, it is preferable that the material be formed of a material having a strain point equal to or higher than Tmax.

【0035】分離層20は、後述する照射光を吸収し、そ
れにより後述する分離層界面21に粗さを生じるような性
質を有するものが好ましい。更に、照射光70を繰り返し
照射することにより、分離層界面21の粗さを制御できる
ような性質を有するものがより好ましい。
It is preferable that the separation layer 20 has such a property that it absorbs irradiation light described later and thereby causes roughness at the separation layer interface 21 described later. Further, it is more preferable that the material has such a property that the roughness of the separation layer interface 21 can be controlled by repeatedly irradiating the irradiation light 70.

【0036】また、照射光70の照射により、分離層20に
含有される気体が放出され、放出された気体が界面に空
隙を生ぜしめることにより分離層界面21の形状変化をも
たらす場合もある。この場合、照射光70の照射回数およ
び/または気体元素の含有量により、照射光70を照射し
た後の分離層界面21の粗さを制御することが可能であ
る。
Further, the gas contained in the separation layer 20 may be released by the irradiation of the irradiation light 70, and the released gas may cause a gap at the interface, thereby causing a change in the shape of the interface 21 of the separation layer. In this case, the roughness of the separation layer interface 21 after irradiation with the irradiation light 70 can be controlled by the number of irradiations of the irradiation light 70 and / or the content of the gas element.

【0037】このような分離層20の組成としては、例え
ば非晶質シリコンが挙げられる。
The composition of the separation layer 20 is, for example, amorphous silicon.

【0038】非晶質シリコンは、レーザー等の高エネル
ギーを有する光の照射により瞬間的に溶融し、再び凝固
する際にポリシリコンに変化する。非晶質シリコンが結
晶化する際、結晶粒界が形成されるため、分離層界面21
には結晶粒界に起因する起伏が生じる。更に、結晶化し
た分離層20に対して繰り返し照射光70を照射した場合、
結晶粒界と結晶粒内では溶融・凝固の形態が異なるた
め、分離層界面21の粗さが増大する。
Amorphous silicon is instantaneously melted by irradiation with light having a high energy such as a laser, and changes to polysilicon when solidified again. When the amorphous silicon is crystallized, a crystal grain boundary is formed.
Cause undulations due to crystal grain boundaries. Furthermore, when repeatedly irradiating the irradiation light 70 to the crystallized separation layer 20,
Since the forms of melting and solidification are different between the crystal grain boundaries and the crystal grains, the roughness of the separation layer interface 21 increases.

【0039】また、この非晶質シリコンには、水素が含
有されていてもよい。この場合、水素の含有量は2at%以
上程度であるのが好ましく、2〜20%程度であるのがより
好ましい。このように、水素が所定量含有されている
と、照射光の照射により水素が放出され、放出された水
素が界面に空隙を生ぜしめ、分離層界面21に起伏を形成
する。更に、照射光を繰り返し照射した場合、含有され
る水素が徐々に放出され、界面の粗さが増大する場合が
ある。この場合、水素含有量に応じた回数の照射を受け
ることで、水素が完全に放出されると、その後は照射光
を繰り返し照射しても変化は生じない。
Further, this amorphous silicon may contain hydrogen. In this case, the hydrogen content is preferably about 2 at% or more, more preferably about 2 to 20%. As described above, when a predetermined amount of hydrogen is contained, hydrogen is released by the irradiation of the irradiation light, and the released hydrogen causes voids at the interface to form undulations at the interface 21 of the separation layer. Further, when the irradiation light is repeatedly irradiated, the contained hydrogen may be gradually released, and the roughness of the interface may increase. In this case, when the hydrogen is completely released by receiving the irradiation according to the hydrogen content, the change does not occur even if the irradiation light is repeatedly irradiated thereafter.

【0040】また、分離層20の組成として、例えばポリ
シリコンを挙げることもできる。
The composition of the separation layer 20 may include, for example, polysilicon.

【0041】ポリシリコンは、上記非晶質シリコンと同
様に、高エネルギーを有する光の照射により瞬間的に溶
融し、再び凝固する。このとき、結晶粒界と結晶粒内で
は溶融・凝固の形態が異なるため、照射光70を繰り返し
照射することにより分離層界面21の粗さを増大せしめる
ことができる。
Polysilicon, like amorphous silicon, is instantaneously melted by irradiation with light having high energy and solidified again. At this time, since the form of melting and solidification is different between the crystal grain boundary and the crystal grain, the roughness of the separation layer interface 21 can be increased by irradiating the irradiation light 70 repeatedly.

【0042】分離層20の組成としてポリシリコンを採用
することの利点は、非晶質シリコンがポリシリコンに相
転移する境界温度をTthとしたとき、前記TmaxをTth以上
の温度に設定することができる点である。換言すれば、
被転写層40を形成する際のプロセス温度の幅を広げるこ
とができる。
The advantage of employing polysilicon as the composition of the separation layer 20 is that, when the boundary temperature at which amorphous silicon undergoes a phase transition to polysilicon is Tth, the Tmax is set to a temperature equal to or higher than Tth. It is possible. In other words,
The range of the process temperature when forming the transfer layer 40 can be widened.

【0043】例えば、被転写層40として薄膜トランジス
タを形成する場合、形成方法として低温プロセスのみな
らず、高温プロセスを適用することが可能となる。
For example, when a thin film transistor is formed as the layer to be transferred 40, not only a low-temperature process but also a high-temperature process can be applied as a forming method.

【0044】分離層20の厚さは、該分離層20の組成、層
構成、形成方法等の諸条件により異なるが、照射光70を
吸収するのに十分な厚さを有することが望ましい。分離
層20の膜厚が小さすぎると、分離層20で吸収されずに透
過した照射光70が被転写層40に達し、被転写層40に損傷
を与える場合がある。また、分離層20の膜厚が大きすぎ
ると、照射光70のエネルギーが分離層界面21にまで伝わ
らず、照射光を照射しても界面には何ら変化をもたらさ
ない場合がある。
The thickness of the separation layer 20 varies depending on various conditions such as the composition, layer structure, and formation method of the separation layer 20, but it is desirable that the separation layer 20 has a thickness sufficient to absorb the irradiation light 70. If the thickness of the separation layer 20 is too small, the irradiation light 70 transmitted without being absorbed by the separation layer 20 may reach the transferred layer 40 and damage the transferred layer 40 in some cases. If the thickness of the separation layer 20 is too large, the energy of the irradiation light 70 may not be transmitted to the separation layer interface 21 and irradiation may cause no change in the interface.

【0045】例えば、分離層20が前記非晶質シリコンで
あり、照射光がXeClエキシマレーザー(波長308nm)で
ある場合、分離層20の厚さは25nm以上であることが好ま
しく、50〜200nmであることがより好ましい。
For example, when the separation layer 20 is the above-mentioned amorphous silicon and the irradiation light is a XeCl excimer laser (wavelength 308 nm), the thickness of the separation layer 20 is preferably 25 nm or more, and 50 to 200 nm. More preferably, there is.

【0046】分離層20は、照射光70が該分離層を透過し
て被転写層40に到達し、該被転写層に影響を及ぼすこと
を防ぐ目的で、遮光層および/または反射層を含んでい
ても良い。
The separation layer 20 includes a light-shielding layer and / or a reflection layer for the purpose of preventing the irradiation light 70 from passing through the separation layer and reaching the transfer-receiving layer 40 and affecting the transfer-receiving layer. You can go out.

【0047】〔工程2〕図2に示すように、分離層20の上
に中間層30(下地層)を介して、被転写層40を形成す
る。
[Step 2] As shown in FIG. 2, a transfer layer 40 is formed on the separation layer 20 via an intermediate layer 30 (underlying layer).

【0048】この中間層30は、種々の形成目的で形成さ
れ、例えば、製造時または使用時において後述する被転
写層40を物理的または化学的に保護する保護層、導電
層、照射光70の遮光層または反射層、被転写層40へのま
たは被転写層40からの成分の移行を阻止するバリア層と
しての機能の内、少なくとも1つを発揮するものが挙げ
られる。
The intermediate layer 30 is formed for various formation purposes. For example, a protective layer, a conductive layer, and an irradiation light 70 for physically or chemically protecting the transferred layer 40 described later during manufacturing or use. The light-shielding layer or the reflective layer, and the one that exerts at least one of the functions as a barrier layer that prevents the transfer of components to or from the transfer layer 40 are exemplified.

【0049】この中間層30の組成は、その形成目的に応
じて適宜設定され、例えば、分離層20としての非晶質シ
リコンと被転写層40としての薄膜トランジスタとの間に
形成される中間層30の場合には、酸化ケイ素(SiO2)が
挙げられる。
The composition of the intermediate layer 30 is appropriately set according to the purpose of its formation. For example, the composition of the intermediate layer 30 formed between amorphous silicon as the separation layer 20 and the thin film transistor as the transfer layer 40 In the case of ( 1 ), silicon oxide (SiO 2 ) is used.

【0050】また、中間層30を形成する工程を省き、分
離層20の上に直接被転写層40を形成しても構わない。
The step of forming the intermediate layer 30 may be omitted, and the transfer layer 40 may be formed directly on the separation layer 20.

【0051】〔工程3〕図3に示すように、被転写層40の
上に接着層50を形成し、該接着層50を介して転写体60を
接着する。
[Step 3] As shown in FIG. 3, an adhesive layer 50 is formed on the layer to be transferred 40, and a transfer body 60 is adhered via the adhesive layer 50.

【0052】接着層50を構成する接着剤の好適な例とし
ては、反応硬化型接着剤、熱硬化型接着剤、紫外線硬化
型接着剤等の光硬化型接着剤、嫌気硬化型接着剤等の各
種硬化型接着剤が挙げられる。接着剤の組成としては、
例えば、エポキシ系、アクリレート系、シリコーン系
等、いかなるものでもよい。このような接着層50の形成
は、例えば、塗布法、スピンコート法等によりなされ
る。
Preferred examples of the adhesive constituting the adhesive layer 50 include a light-curable adhesive such as a reaction-curable adhesive, a thermosetting adhesive, and an ultraviolet-curable adhesive, and an anaerobic-curable adhesive. Various curable adhesives can be used. As the composition of the adhesive,
For example, any type such as an epoxy type, an acrylate type, and a silicone type may be used. Such an adhesive layer 50 is formed by, for example, a coating method, a spin coating method, or the like.

【0053】前記硬化型接着剤を用いる場合、例えば転
写層40上に硬化型接着剤を塗布し、その上に後述する転
写体60を接着した後、硬化型接着剤の特性に応じた硬化
方法により前記硬化型接着剤を硬化させて、被転写層40
と転写体60を接着する。なお、上記順序とは異なり、接
着層50を転写体60の上に塗布し、その上に被転写層40を
接着しても構わない。
When the curable adhesive is used, for example, a curable adhesive is applied to the transfer layer 40, and a transfer member 60 described later is adhered thereon, and then a curing method according to the characteristics of the curable adhesive is used. By curing the curable adhesive by the
And the transfer body 60 are bonded. Note that, unlike the above order, the adhesive layer 50 may be applied on the transfer body 60, and the transfer target layer 40 may be bonded thereon.

【0054】転写体60としては、特に限定されず、金
属、セラミックス、ガラス、プラスチック等、いかなる
組成のものであっても構わない。また、転写体60の形状
も特に限定されず、平面を有するもの、曲面を有するも
の、可曲性を有するもの、フィルム等、いかなる形状で
あっても構わない。
The transfer member 60 is not particularly limited, and may have any composition such as metal, ceramics, glass, plastic, and the like. Also, the shape of the transfer body 60 is not particularly limited, and may be any shape such as a flat surface, a curved surface, a bendable film, and a film.

【0055】〔工程4〕照射光70を分離層20に照射す
る。図4には、基板10の基板裏面11側から照射光70を照
射した例について示す。照射光70は、基板10を透過した
後、分離層20に照射される。照射光70が分離層20に照射
されると、分離層20は溶融、結晶化、再結晶化、気体放
出、含有不純物元素の分離等の変化を生じる。これによ
り、図5に示すように、分離層界面21に前記界面粗さが
生じる。また、照射光70を繰り返し照射することによ
り、分離層界面21の界面粗さを増大せしめることができ
る。
[Step 4] The separation layer 20 is irradiated with irradiation light 70. FIG. 4 shows an example in which the irradiation light 70 is irradiated from the substrate rear surface 11 side of the substrate 10. The irradiation light 70 is transmitted through the substrate 10 and then irradiated on the separation layer 20. When the irradiation light 70 is irradiated on the separation layer 20, the separation layer 20 undergoes changes such as melting, crystallization, recrystallization, outgassing, and separation of contained impurity elements. This causes the interface roughness at the separation layer interface 21 as shown in FIG. Further, by repeatedly irradiating the irradiation light 70, the interface roughness of the separation layer interface 21 can be increased.

【0056】照射光70は、被転写層40の組成および特性
に応じて、被転写層40側から照射しても構わない。この
場合、被転写層40が照射光70の照射により何ら変化を受
けないか、あるいは変化しても剥離後あるいは転写後に
おいて被転写層40に要求される特性を失わないことが望
ましい。
The irradiation light 70 may be applied from the transfer layer 40 side in accordance with the composition and characteristics of the transfer layer 40. In this case, it is desirable that the transferred layer 40 does not undergo any change due to the irradiation of the irradiation light 70, or that the properties required for the transferred layer 40 are not lost after peeling or after transfer.

【0057】照射光70の光源としては、レーザー光が好
適に用いられる。レーザー光の種類は、ルビーレーザ
ー、YAGレーザー、ガラスレーザー等の固体レーザー、H
e-Neレーザー、CO2レーザー、エキシマレーザー等の気
体レーザー、ZnS、GaAs、GaP、GaAlAs等を発光源として
用いた半導体レーザー等、いかなる種類のものであって
も構わない。特にエキシマレーザー、YAGレーザー、CO2
レーザーは、高出力で均一なエネルギー密度分布を得易
いために好ましく用いられる。
As a light source of the irradiation light 70, laser light is preferably used. Laser light types include solid lasers such as ruby lasers, YAG lasers, and glass lasers, and H lasers.
It may be of any type, such as a gas laser such as an e-Ne laser, a CO 2 laser, an excimer laser, or a semiconductor laser using ZnS, GaAs, GaP, GaAlAs or the like as a light emitting source. Especially excimer laser, YAG laser, CO 2
A laser is preferably used because a high output and a uniform energy density distribution are easily obtained.

【0058】またレーザー発振の形態は、連続発振、パ
ルス発振のいずれの形態でも構わず、更にビーム形状に
関しても、スポット照射、ライン照射等いかなる形状で
も構わない。
The form of laser oscillation may be any of continuous oscillation and pulse oscillation, and the beam shape may be any shape such as spot irradiation or line irradiation.

【0059】基板10、分離層20、被転写層40の組成およ
び特性に応じて、照射光70の光源としてハロゲンランプ
等から発せられる可視光、赤外線、紫外線、マイクロ波
等を用いることもできる。
Depending on the composition and properties of the substrate 10, the separation layer 20, and the transfer layer 40, visible light, infrared light, ultraviolet light, microwaves, or the like emitted from a halogen lamp or the like can be used as the light source of the irradiation light 70.

【0060】上記のように分離層20が照射光70の全てあ
るいはほとんどを吸収するのに十分な適当な厚さを有す
るか、または分離層20に含まれる遮光層および/または
反射層が照射光70の透過を防ぐ場合、分離層界面21には
粗さが生じる一方で、中間層30ならびに被転写層40には
何ら変化は起こらない。このとき、図5に示すように分
離層20と中間層30の分離層界面21の接触面積は大きく減
少し、この分離層界面21における密着力が大幅に低下
し、この界面において被転写層の剥離が可能となる。ま
た、分離層界面21の粗さが大きいほど、小さな力で容易
に被転写層40の剥離を行うことができる。
As described above, the separation layer 20 has an appropriate thickness sufficient to absorb all or most of the irradiation light 70, or the light-shielding layer and / or the reflection layer included in the separation layer 20 is When preventing the transmission of 70, roughness occurs in the separation layer interface 21, while no change occurs in the intermediate layer 30 and the transfer receiving layer 40. At this time, as shown in FIG. 5, the contact area of the separation layer interface 21 between the separation layer 20 and the intermediate layer 30 is greatly reduced, and the adhesion at the separation layer interface 21 is greatly reduced. Peeling becomes possible. Further, as the roughness of the separation layer interface 21 is larger, the transfer-receiving layer 40 can be more easily peeled off with a smaller force.

【0061】図5では中間層30と分離層20の間の分離層
界面21において剥離が生じる場合について記したが、図
6に示すように基板10と分離層20の間の分離層界面22に
おいて上記と同様の形状変化が生じる場合もある。この
場合には、被転写層40に付着した分離層20をエッチング
等により除去する方法を用いることが可能である。この
方法により、被転写層40および中間層30のみを転写体60
に転写する工程が完了する。
FIG. 5 shows a case where separation occurs at the separation layer interface 21 between the intermediate layer 30 and the separation layer 20.
As shown in FIG. 6, the same shape change may occur at the separation layer interface 22 between the substrate 10 and the separation layer 20 as described above. In this case, a method of removing the separation layer 20 attached to the transfer target layer 40 by etching or the like can be used. By this method, only the transferred layer 40 and the intermediate layer 30 are transferred
Is completed.

【0062】また、分離層界面21と分離層界面22の密着
力が同等である場合、剥離する界面は分離層界面21と分
離層界面22のどちらにも限定されない。このような場
合、分離層界面21と分離層界面22のうち、より密着力の
小さい界面において剥離が生じる。例えば、図7に示す
ように、分離層が破壊することにより分離層界面21と分
離層界面22の任意の界面で剥離を生じる。この場合、被
転写層40に付着した分離層を、前記エッチング等により
除去することにより、被転写層40のみを転写体60に転写
する工程が完了する。
When the adhesion between the separation layer interface 21 and the separation layer interface 22 is the same, the interface to be separated is not limited to either the separation layer interface 21 or the separation layer interface 22. In such a case, separation occurs at the interface having a smaller adhesive force between the separation layer interface 21 and the separation layer interface 22. For example, as shown in FIG. 7, delamination of the separation layer causes separation at an arbitrary interface between the separation layer interface 21 and the separation layer interface 22. In this case, the step of transferring only the transferred layer 40 to the transfer member 60 is completed by removing the separation layer attached to the transferred layer 40 by the above-described etching or the like.

【0063】なお、図示の順序とは異なり、分離層20に
照射光70を照射して分離層界面21または22の密着力を低
減させた後、接着層50を介して転写体60を接着し、その
後に被転写層40の引き剥がしを行っても構わない。
It is to be noted that, unlike the order shown in the drawing, after the separation layer 20 is irradiated with irradiation light 70 to reduce the adhesion of the separation layer interface 21 or 22, the transfer body 60 is bonded via the bonding layer 50. Thereafter, the transfer layer 40 may be peeled off.

【0064】剥離を行った後の基板10は、該基板10の表
面に残存する分離層20の除去等の適切な処置を施した
後、再利用に供することができる。この際、再利用に供
された後の基板10の表面を保護する等の目的により、基
板10の表面には、該基板10と組成の異なる層が予め形成
されていても良い。
The substrate 10 after the peeling can be reused after performing an appropriate treatment such as removal of the separation layer 20 remaining on the surface of the substrate 10. At this time, a layer having a composition different from that of the substrate 10 may be formed in advance on the surface of the substrate 10 for the purpose of protecting the surface of the substrate 10 after being used for reuse.

【0065】次に、本発明の具体的実施例について説明
する。
Next, specific examples of the present invention will be described.

【0066】(実施例1)直径100mm、厚さ1.1mmの石英
基板(軟化点1630℃、歪点1070℃、エキシマレーザの透
過率ほぼ100%)を用い、この石英基板の片面に分離層と
して非晶質シリコン(a-Si)膜を減圧CVD法(Si2H6
ス、基板温度425℃)により形成した。分離層の膜厚
は、100nmとした。
Example 1 A quartz substrate having a diameter of 100 mm and a thickness of 1.1 mm (softening point 1630 ° C., strain point 1070 ° C., transmittance of excimer laser almost 100%) was used as a separation layer on one side of the quartz substrate. An amorphous silicon (a-Si) film was formed by a low pressure CVD method (Si 2 H 6 gas, substrate temperature: 425 ° C.). The thickness of the separation layer was 100 nm.

【0067】次に、分離層上に、中間層としてSiO2膜を
ECR-CVD法(SiH4+O2ガス、基板温度100℃)により形成
した。中間層の膜厚は、200nmとした。
Next, an SiO 2 film was formed as an intermediate layer on the separation layer.
It was formed by an ECR-CVD method (SiH 4 + O 2 gas, substrate temperature 100 ° C.). The thickness of the intermediate layer was 200 nm.

【0068】次に、中間層上に、被転写層として膜厚50
nmの非晶質シリコン膜を減圧CVD法(Si2H6ガス、基板温
度425℃)により形成し、この非晶質シリコン膜に前記
石英基板の非晶質シリコン膜形成面側からXeClエキシマ
レーザ光(波長308nm)を照射して、非晶質シリコン膜
を結晶化させ、ポリシリコン膜とした。その後、このポ
リシリコン膜に対し、所定のパターニングを施し、薄膜
トランジスタのソース・ドレイン・チャネルとなる領域
を形成した。この後、ECR-CVD法(SiH4+O2ガス、基板
温度100℃)により膜厚120nmのSiO2ゲート絶縁膜を形成
した後、高周波スパッタリング法によりゲート絶縁膜上
に膜厚ゲート電極(Ta、膜厚750nm)を形成した。その
後、ゲート電極に所定のパターニングを施した後、この
ゲート電極をマスクとしてイオン注入することによっ
て、自己整合的(セルフアライン)にソース・ドレイン
領域を形成し、薄膜トランジスタを形成した。この後、
必要に応じて、ソース・ドレイン領域に接続される電極
および配線、ゲート電極に接続される配線を形成した。
これらの電極や配線材にはAlを使用した。
Next, on the intermediate layer, a film having a thickness of 50
nm amorphous silicon film is formed by a low pressure CVD method (Si 2 H 6 gas, substrate temperature 425 ° C.). XeCl excimer laser is applied to this amorphous silicon film from the side of the quartz substrate on which the amorphous silicon film is formed. The amorphous silicon film was crystallized by irradiation with light (wavelength: 308 nm) to form a polysilicon film. After that, the polysilicon film was subjected to predetermined patterning to form a region serving as a source, a drain, and a channel of the thin film transistor. After that, a SiO 2 gate insulating film having a thickness of 120 nm is formed by ECR-CVD (SiH 4 + O 2 gas, substrate temperature 100 ° C.), and a gate electrode (Ta, Ta, (A film thickness of 750 nm). Thereafter, after predetermined patterning was performed on the gate electrode, ion implantation was performed using the gate electrode as a mask, thereby forming source / drain regions in a self-aligned manner (self-alignment) to form a thin film transistor. After this,
If necessary, electrodes and wires connected to the source / drain regions and wires connected to the gate electrodes were formed.
Al was used for these electrodes and wiring members.

【0069】次に、前記薄膜トランジスタの上に、紫外
線硬化型樹脂を塗布し(膜厚約100mm)、紫外線を照射
して樹脂を硬化させた。この処理は、後に分離層に剥離
を生じさせたときに、薄膜トランジスタに内在する応力
により薄膜トランジスタ自体が破壊されるのを防ぐ目的
で行ったが、分離層の密着力が適切に制御される場合に
は必ずしも必要ではない。
Next, an ultraviolet curable resin was applied on the thin film transistor (film thickness: about 100 mm), and the resin was cured by irradiating ultraviolet rays. This treatment was performed for the purpose of preventing the thin film transistor itself from being destroyed by the stress inherent in the thin film transistor when the separation layer was peeled later, but when the adhesion force of the separation layer is appropriately controlled. Is not necessary.

【0070】次に、XeClエキシマレーザ(波長308nm)
を前記石英基板側から照射し、分離層に界面剥離を生じ
させた。照射したXeClエキシマレーザのエネルギー密度
は、280mJ・cm-2、照射時間は20nsecとした。なお、エキ
シマレーザの照射は7mm×7mmのスポット照射とした。
Next, a XeCl excimer laser (wavelength 308 nm)
Was irradiated from the quartz substrate side to cause interface separation in the separation layer. The energy density of the irradiated XeCl excimer laser was 280 mJ · cm −2 , and the irradiation time was 20 nsec. The excimer laser irradiation was a 7 mm × 7 mm spot irradiation.

【0071】分離層を介して薄膜トランジスタを形成し
た前記石英基板に対して、前記レーザ照射条件にてレー
ザー照射を行った。このとき、照射回数は0回、1回およ
び10回とした。
Laser irradiation was performed on the quartz substrate on which the thin film transistor was formed via the separation layer under the laser irradiation conditions. At this time, the number of irradiations was set to 0, 1 and 10 times.

【0072】この後、前記石英基板の紫外線硬化型樹脂
を塗布した面に、同種の紫外線硬化型樹脂を重ねて塗布
し、転写体となるガラス基板を接着した後に紫外線を照
射して硬化させた。その後、図7に示すように、前記石
英基板とガラス基板(転写体)とを分離層と前記中間層
(SiO2)との界面において引き剥がし、石英基板上に形
成された薄膜トランジスタおよび中間層をガラス基板側
に転写した。
Thereafter, the same type of UV-curable resin was applied on the surface of the quartz substrate on which the UV-curable resin was applied, and the same type of UV-curable resin was applied thereon. . Thereafter, as shown in FIG. 7, the quartz substrate and the glass substrate (transfer member) are peeled off at the interface between the separation layer and the intermediate layer (SiO 2 ), and the thin film transistor and the intermediate layer formed on the quartz substrate are separated. Transferred to the glass substrate side.

【0073】図9〜図11に、剥離を行った後の分離層界
面21を、原子間力顕微鏡(AFM)により観察した結果を
示す。
FIGS. 9 to 11 show the results obtained by observing the separation layer interface 21 after peeling off by using an atomic force microscope (AFM).

【0074】図9に示すように、レーザー照射を行わな
かった場合、分離層の表面は非常になだらかであり、界
面の平均粗さは約0.3nmと小さい。この数値は、被転写
層である中間層の表面の平均粗さと同等である。
As shown in FIG. 9, when laser irradiation was not performed, the surface of the separation layer was very gentle, and the average roughness of the interface was as small as about 0.3 nm. This value is equivalent to the average roughness of the surface of the intermediate layer which is the layer to be transferred.

【0075】図10に示すように、レーザ照射を1回行っ
た場合、分離層の中表面には凹凸が生じ、界面の平均粗
さは約0.7nmと増大する。
As shown in FIG. 10, when laser irradiation is performed once, irregularities occur on the inner surface of the separation layer, and the average roughness of the interface increases to about 0.7 nm.

【0076】図11に示すように、レーザー照射を10回行
った場合、前記レーザー照射を1回行った領域と同様
に、分離層の表面に平均粗さ約0.7nmの凹凸が生じる。
これに加えて、およそ3nm以上の高さを有する突起の密
度が増大する。
As shown in FIG. 11, when laser irradiation is performed 10 times, irregularities having an average roughness of about 0.7 nm occur on the surface of the separation layer, as in the region where laser irradiation is performed once.
In addition, the density of protrusions having a height of about 3 nm or more increases.

【0077】一方、レーザー照射を10回行った後に前記
石英基板と前記ガラス基板を引き剥がし、図8に示す中
間層界面31をAFMにより観察した結果を、図12に示す。
図において、レーザー照射を繰り返し行った後において
も、中間層界面31は平坦な形状を呈しており、レーザー
照射を繰り返し行っても、中間層30および被転写層40に
は何ら変化が生じないことを示している。
On the other hand, FIG. 12 shows the result of observing the intermediate layer interface 31 shown in FIG. 8 by AFM after peeling off the quartz substrate and the glass substrate after performing laser irradiation 10 times.
In the figure, even after repeated laser irradiation, the intermediate layer interface 31 has a flat shape, and even if the laser irradiation is repeatedly performed, no change occurs in the intermediate layer 30 and the transferred layer 40. Is shown.

【0078】前記引き剥がしに際して、引き剥がしに要
する力は、レーザ照射を10回行った領域で最も小さく、
レーザ照射を1回行った領域、レーザ照射を行わなかっ
た領域の順に、引き剥がしに大きな力を要した。換言す
れば、剥離層界面21の粗さが大きいほど、剥離層界面21
と中間層30の密着力が低減され、剥離を容易に行うこと
ができる。
At the time of the peeling, the force required for the peeling is smallest in a region where laser irradiation is performed 10 times.
A large force was required for peeling in the order of the area where laser irradiation was performed once and the area where laser irradiation was not performed. In other words, the greater the roughness of the release layer interface 21, the greater the release layer interface 21
And the intermediate layer 30 have a reduced adhesive force, and can be easily peeled off.

【0079】(実施例2)基板として、耐熱ガラス基板
を用い、XeClエキシマレーザーのエネルギー密度を1100
mJ・cm-2とした以外は実施例1と同様にして、薄膜トラン
ジスタの転写を行った。
Example 2 A heat-resistant glass substrate was used as the substrate, and the energy density of the XeCl excimer laser was 1100.
The transfer of the thin film transistor was performed in the same manner as in Example 1 except that mJ · cm −2 was used.

【0080】(実施例3)照射光70として、YAGレーザー
を用いた以外は実施例1と同様にして、薄膜トランジス
タの転写を行った。
Example 3 A thin film transistor was transferred in the same manner as in Example 1 except that a YAG laser was used as the irradiation light 70.

【0081】(実施例4)照射光70として、CO2レーザー
を用いた以外は実施例1と同様にして、薄膜トランジス
タの転写を行った。
Example 4 A thin film transistor was transferred in the same manner as in Example 1 except that a CO 2 laser was used as the irradiation light 70.

【0082】以上述べたように、照射光70の照射を行う
ことにより、剥離層界面21に界面粗さを生ぜしめ、更
に、前記照射を繰り返し行うことにより、剥離層界面21
の粗さを増大せしめることができる。なお、照射光70と
してXeClエキシマレーザーを用い、且つ分離層20として
非晶質シリコンを用いた場合には、照射回数を10回以上
に設定しても、照射回数が10回の場合とほぼ同等の変化
が現れる。換言すれば、照射回数は5回以上が好まし
く、5回〜10回がより好ましい。これに対し、中間層30
の表面はレーザ照射の有無、または回数により変化する
ことはない。このことは、照射されたレーザー光が分離
層によって完全にあるいはほとんど吸収されるために他
ならない。前記同様、照射光70がXeClエキシマレーザー
であって且つ分離層が非晶質シリコンである場合には、
照射光を完全にまたはほとんど吸収して被転写層40に損
傷を与えないためには、非晶質シリコンで形成される分
離層の膜厚は25nm以上が好ましく、50〜200nmがより好
ましい。
As described above, by irradiating the irradiation light 70, the interface roughness of the peeling layer interface 21 is generated, and by repeating the irradiation, the peeling layer interface 21 is irradiated.
Can be increased in roughness. Note that when using XeCl excimer laser as the irradiation light 70 and using amorphous silicon as the separation layer 20, even if the number of irradiations is set to 10 or more, the number of irradiations is almost the same as the case of 10 times. Changes appear. In other words, the number of times of irradiation is preferably 5 or more, more preferably 5 to 10 times. In contrast, the middle layer 30
The surface does not change depending on the presence or absence of laser irradiation or the number of times. This is true because the irradiated laser light is completely or almost absorbed by the separation layer. As described above, when the irradiation light 70 is a XeCl excimer laser and the separation layer is amorphous silicon,
In order to completely or almost absorb the irradiation light and not to damage the transferred layer 40, the thickness of the separation layer formed of amorphous silicon is preferably 25 nm or more, and more preferably 50 to 200 nm.

【0083】上記のように、分離層20が照射光70を完全
に吸収して被転写層40に損傷を与えず、且つ分離層20の
界面に意図的に起伏を生ぜしめることにより、分離層と
被転写層の間の接触面積を大幅に減少させ、界面の付着
力を低下させることにより、容易かつ確実に被転写層の
剥離が可能となる。
As described above, the separation layer 20 completely absorbs the irradiation light 70 without damaging the transfer receiving layer 40 and intentionally causes undulation at the interface of the separation layer 20, whereby the separation layer By greatly reducing the contact area between the transfer layer and the transferred layer and reducing the adhesion at the interface, the transferred layer can be easily and reliably separated.

【0084】[0084]

【発明の効果】以上述べたように、本発明の剥離方法に
よれば、被転写層の特性、条件に拘らず、容易かつ確実
に剥離することができる。
As described above, according to the stripping method of the present invention, stripping can be easily and reliably performed regardless of the characteristics and conditions of the layer to be transferred.

【0085】特に、分離層界面の粗さを制御することに
より、引き剥がしに要する力を大幅に低減することがで
き、大面積を有する被転写層への適用が容易となる。ま
た、剥離不良を大幅に低減することができ、被転写層の
歩留りを向上させることができる。
In particular, by controlling the roughness of the interface of the separation layer, the force required for peeling can be greatly reduced, and application to a transfer layer having a large area becomes easy. In addition, peeling failure can be significantly reduced, and the yield of the transferred layer can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の剥離方法の実施例の工程を示す断面図
である。
FIG. 1 is a cross-sectional view showing a step of an example of a peeling method of the present invention.

【図2】発明の剥離方法の実施例の工程を示す断面図で
ある。
FIG. 2 is a cross-sectional view illustrating a process of an embodiment of the peeling method of the present invention.

【図3】本発明の剥離方法の実施例の工程を示す断面図
である。
FIG. 3 is a cross-sectional view illustrating a process of an example of the peeling method of the present invention.

【図4】本発明の剥離方法の実施例の工程を示す断面図
である。
FIG. 4 is a cross-sectional view showing the steps of an example of the peeling method of the present invention.

【図5】本発明の剥離方法の実施例の工程を示す断面図
である。
FIG. 5 is a cross-sectional view showing a step of an example of the peeling method of the present invention.

【図6】本発明の剥離方法の実施例の工程を示す断面図
である。
FIG. 6 is a cross-sectional view showing a step of an example of the peeling method of the present invention.

【図7】本発明の剥離方法の実施例の工程を示す断面図
である。
FIG. 7 is a cross-sectional view showing a step of an example of the peeling method of the present invention.

【図8】本発明の剥離方法の実施例の工程を示す断面図
である。
FIG. 8 is a cross-sectional view showing a step of an example of the peeling method of the present invention.

【図9】本発明の剥離方法による剥離後の界面を示す原
子間力顕微鏡(AFM)像である。
FIG. 9 is an atomic force microscope (AFM) image showing an interface after separation by the separation method of the present invention.

【図10】本発明の剥離方法による剥離後の界面を示す原
子間力顕微鏡(AFM)像である。
FIG. 10 is an atomic force microscope (AFM) image showing an interface after separation by the separation method of the present invention.

【図11】本発明の剥離方法による剥離後の界面を示す原
子間力顕微鏡(AFM)像である。
FIG. 11 is an atomic force microscope (AFM) image showing an interface after separation by the separation method of the present invention.

【図12】本発明の剥離方法による剥離後の界面を示す原
子間力顕微鏡(AFM)像である。
FIG. 12 is an atomic force microscope (AFM) image showing an interface after separation by the separation method of the present invention.

【符号の説明】[Explanation of symbols]

10 基板 11 基板裏面 20 分離層 21 中間層と接する分離層界面 22 基板と接する分離層界面 30 中間層 31 中間層界面 40 被転写層 50 接着層 60 転写体 70 照射光 10 Substrate 11 Backside of substrate 20 Separation layer 21 Separation layer interface in contact with intermediate layer 22 Separation layer interface in contact with substrate 30 Intermediate layer 31 Interlayer interface 40 Transfer layer 50 Adhesive layer 60 Transfer body 70 Irradiation light

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】基板上に分離層を介して存在する被転写層
を前記基板から剥離する剥離方法であって、前記分離層
に照射光を照射して、該分離層の界面において剥離を生
ぜしめ、前記被転写層を前記基板から離脱させることを
特徴とする剥離方法。
1. A method for separating a transferred layer existing on a substrate via a separation layer from the substrate, wherein the separation layer is irradiated with irradiation light to cause separation at an interface of the separation layer. A method for separating the transferred layer from the substrate.
【請求項2】前記分離層の剥離は、前記照射光の照射を
2回以上行うことを特徴とする請求項1に記載の剥離方
法。
2. The method according to claim 1, wherein the separation of the separation layer is performed by irradiating the irradiation light.
The method according to claim 1, wherein the method is performed twice or more.
【請求項3】前記分離層の剥離は、該分離層の界面に粗
さを生ぜしめ、前記被転写層と前記分離層の接触面積が
減少することによる密着力の低下を利用する請求項1ま
たは2に記載の剥離方法。
3. The method according to claim 1, wherein the separation of the separation layer causes roughness at an interface of the separation layer, and utilizes a decrease in adhesion due to a decrease in a contact area between the transfer-receiving layer and the separation layer. Or the peeling method according to 2.
【請求項4】前記分離層の剥離は、該分離層の界面に粗
さを生ぜしめ、前記基板と前記分離層の接触面積が減少
することによる密着力の低下を利用する請求項1ないし
3のいずれかに記載の剥離方法。
4. The method according to claim 1, wherein the separation of the separation layer causes roughness at an interface of the separation layer, and utilizes a decrease in adhesion due to a decrease in a contact area between the substrate and the separation layer. The stripping method according to any one of the above.
【請求項5】前記基板は、前記照射光に対して透過性を
有することを特徴とする請求項1ないし4のいずれかに
記載の剥離方法。
5. The method according to claim 1, wherein the substrate has transparency to the irradiation light.
【請求項6】前記基板は、前記剥離が終了した後に再利
用に供されることを特徴とする請求項1ないし5のいず
れかに記載の剥離方法。
6. The peeling method according to claim 1, wherein the substrate is reused after the peeling is completed.
【請求項7】前記基板は、該基板表面の保護層を含むこ
とを特徴とする請求項1ないし6のいずれかに記載の剥
離方法。
7. The peeling method according to claim 1, wherein the substrate includes a protective layer on the surface of the substrate.
【請求項8】前記分離層の剥離は、前記分離層の破壊を
伴うことを特徴とする請求項1または7に記載の剥離方
法。
8. The method according to claim 1, wherein the separation of the separation layer involves destruction of the separation layer.
【請求項9】前記被転写層は、機能性薄膜または薄膜デ
バイスである請求項1ないし8のいずれかに記載の剥離
方法。
9. The peeling method according to claim 1, wherein the transferred layer is a functional thin film or a thin film device.
【請求項10】前記被転写層は、薄膜トランジスタであ
る請求項1ないし9のいずれかに記載の剥離方法。
10. The peeling method according to claim 1, wherein the transfer layer is a thin film transistor.
【請求項11】前記分離層は、非晶質シリコンで構成さ
れる光吸収層を有する請求項1ないし10のいずれかに
記載の剥離方法。
11. The peeling method according to claim 1, wherein said separation layer has a light absorbing layer made of amorphous silicon.
【請求項12】前記非晶質シリコンは、前記照射光の照
射によりポリシリコンに相転移することを特徴とする請
求項11に記載の剥離方法。
12. The method according to claim 11, wherein said amorphous silicon undergoes a phase transition to polysilicon by irradiation of said irradiation light.
【請求項13】前記非晶質シリコンは、水素を2at%以上
含有するものである11ないし12のいずれかに記載の
剥離方法。
13. The stripping method according to claim 11, wherein the amorphous silicon contains 2 at% or more of hydrogen.
【請求項14】前記分離層は、ポリシリコンで構成され
る光吸収層を有する請求項1ないし10のいずれかに記
載の剥離方法。
14. The peeling method according to claim 1, wherein said separation layer has a light absorption layer made of polysilicon.
【請求項15】前記ポリシリコンは、水素を2at%以上含
有するものである請求項14に記載の剥離方法。
15. The stripping method according to claim 14, wherein the polysilicon contains hydrogen at 2 at% or more.
【請求項16】前記分離層は、前記照射光を吸収して該
分離層に変化を生じるとともに、前記照射光が前記被転
写層に到達して前記被転写層に損傷が加わることを防ぐ
ことを特徴とする請求項1ないし15のいずれかに記載
の剥離方法。
16. The separation layer absorbs the irradiation light to cause a change in the separation layer and prevents the irradiation light from reaching the transfer-receiving layer and damaging the transfer-receiving layer. The method according to any one of claims 1 to 15, wherein:
【請求項17】前記分離層は、前記照射光が被転写層へ
到達することを防ぐ遮光層および/または反射層を含む
ことを特徴とする請求項1ないし16のいずれかに記載
の剥離方法。
17. The method according to claim 1, wherein the separation layer includes a light-shielding layer and / or a reflection layer for preventing the irradiation light from reaching the transfer-receiving layer. .
【請求項18】前記分離層は、前記照射光の照射回数に
より、その界面粗さの制御が可能であることを特徴とす
る請求項1ないし17のいずれかに記載の剥離方法。
18. The method according to claim 1, wherein the interface roughness of the separation layer can be controlled by the number of irradiations of the irradiation light.
【請求項19】前記照射光は、レーザー光である請求項
1ないし18のいずれかに記載の剥離方法。
19. The peeling method according to claim 1, wherein the irradiation light is a laser light.
【請求項20】前記照射光の波長が、100〜350nmである
請求項1ないし19のいずれかに記載の剥離方法。
20. The stripping method according to claim 1, wherein the wavelength of the irradiation light is 100 to 350 nm.
【請求項21】前記照射光の波長が、350〜1200nmであ
る請求項1ないし20のいずれかに記載の剥離方法。
21. The peeling method according to claim 1, wherein the wavelength of the irradiation light is 350 to 1200 nm.
JP10305884A 1998-10-27 1998-10-27 Peeling method Pending JP2000133809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10305884A JP2000133809A (en) 1998-10-27 1998-10-27 Peeling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10305884A JP2000133809A (en) 1998-10-27 1998-10-27 Peeling method

Publications (2)

Publication Number Publication Date
JP2000133809A true JP2000133809A (en) 2000-05-12
JP2000133809A5 JP2000133809A5 (en) 2004-11-11

Family

ID=17950483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10305884A Pending JP2000133809A (en) 1998-10-27 1998-10-27 Peeling method

Country Status (1)

Country Link
JP (1) JP2000133809A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002058178A1 (en) * 2001-01-19 2002-07-25 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell elecrolyte film-electrode bond
US6814832B2 (en) 2001-07-24 2004-11-09 Seiko Epson Corporation Method for transferring element, method for producing element, integrated circuit, circuit board, electro-optical device, IC card, and electronic appliance
JP2005115086A (en) * 2003-10-08 2005-04-28 Ricoh Co Ltd Method for manufacturing thin-film device, method for manufacturing active matrix substrate, method for manufacturing electrooptical device, thin-film device, active matrix substrate, and electrooptical device
US6887650B2 (en) 2001-07-24 2005-05-03 Seiko Epson Corporation Transfer method, method of manufacturing thin film devices, method of manufacturing integrated circuits, circuit board and manufacturing method thereof, electro-optical apparatus and manufacturing method thereof, ic card, and electronic appliance
US7029960B2 (en) 2003-01-23 2006-04-18 Seiko Epson Corporation Device manufacturing method
US7105422B2 (en) 2003-05-22 2006-09-12 Seiko Epson Corporation Thin film circuit device, manufacturing method thereof, electro-optical apparatus, and electronic system
CN1294618C (en) * 2001-07-16 2007-01-10 株式会社半导体能源研究所 Semiconductor device and stripping method and method for mfg. semiconductor device
JP2007004205A (en) * 2006-09-19 2007-01-11 Seiko Epson Corp Method for manufacturing electrooptical device, and electrooptical device
US7253087B2 (en) 2003-05-23 2007-08-07 Seiko Epson Corporation Method of producing thin-film device, electro-optical device, and electronic apparatus
US7262088B2 (en) 2004-03-10 2007-08-28 Seiko Epson Corporation Thin film device supply body, method of fabricating thin film device, method of transfer, method of fabricating semiconductor device, and electronic equipment
JP2008042218A (en) * 2001-06-07 2008-02-21 Ind Technol Res Inst Manufacturing method of thin film transistor panel
US7342354B2 (en) 2003-05-23 2008-03-11 Seiko Epson Corporation Organic EL display device, electronic equipment, and method for manufacturing the same
US7393725B2 (en) 2004-10-19 2008-07-01 Seiko Epson Corporation Method of manufacturing thin film device electro-optic device, and electronic instrument

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125930A (en) * 1996-08-27 1998-05-15 Seiko Epson Corp Separation method
JPH10125929A (en) * 1996-08-27 1998-05-15 Seiko Epson Corp Separation method
JPH10125931A (en) * 1996-08-27 1998-05-15 Seiko Epson Corp Transfer of thin film element, thin film element, thin film integrated circuit device, active materix substrate and liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125930A (en) * 1996-08-27 1998-05-15 Seiko Epson Corp Separation method
JPH10125929A (en) * 1996-08-27 1998-05-15 Seiko Epson Corp Separation method
JPH10125931A (en) * 1996-08-27 1998-05-15 Seiko Epson Corp Transfer of thin film element, thin film element, thin film integrated circuit device, active materix substrate and liquid crystal display device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1278260A4 (en) * 2001-01-19 2007-08-01 Matsushita Electric Ind Co Ltd Method for manufacturing fuel cell elecrolyte film-electrode bond
WO2002058178A1 (en) * 2001-01-19 2002-07-25 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell elecrolyte film-electrode bond
USRE41651E1 (en) * 2001-01-19 2010-09-07 Panasonic Corporation Method for manufacturing fuel cell electrolyte film-electrode bond
US6977234B2 (en) 2001-01-19 2005-12-20 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell electrolyte film-electrode bond
EP1278260A1 (en) * 2001-01-19 2003-01-22 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell elecrolyte film-electrode bond
CN100338805C (en) * 2001-01-19 2007-09-19 松下电器产业株式会社 Method for manufacturing fuel cell electrolyte film-electrode bond
JP2008042218A (en) * 2001-06-07 2008-02-21 Ind Technol Res Inst Manufacturing method of thin film transistor panel
CN1294618C (en) * 2001-07-16 2007-01-10 株式会社半导体能源研究所 Semiconductor device and stripping method and method for mfg. semiconductor device
US6814832B2 (en) 2001-07-24 2004-11-09 Seiko Epson Corporation Method for transferring element, method for producing element, integrated circuit, circuit board, electro-optical device, IC card, and electronic appliance
US6887650B2 (en) 2001-07-24 2005-05-03 Seiko Epson Corporation Transfer method, method of manufacturing thin film devices, method of manufacturing integrated circuits, circuit board and manufacturing method thereof, electro-optical apparatus and manufacturing method thereof, ic card, and electronic appliance
US7029960B2 (en) 2003-01-23 2006-04-18 Seiko Epson Corporation Device manufacturing method
US7408207B2 (en) 2003-01-23 2008-08-05 Seiko Epson Corporation Device manufacturing method and device, electro-optic device, and electronic equipment
US7105422B2 (en) 2003-05-22 2006-09-12 Seiko Epson Corporation Thin film circuit device, manufacturing method thereof, electro-optical apparatus, and electronic system
US7253087B2 (en) 2003-05-23 2007-08-07 Seiko Epson Corporation Method of producing thin-film device, electro-optical device, and electronic apparatus
US7342354B2 (en) 2003-05-23 2008-03-11 Seiko Epson Corporation Organic EL display device, electronic equipment, and method for manufacturing the same
JP2005115086A (en) * 2003-10-08 2005-04-28 Ricoh Co Ltd Method for manufacturing thin-film device, method for manufacturing active matrix substrate, method for manufacturing electrooptical device, thin-film device, active matrix substrate, and electrooptical device
JP4495939B2 (en) * 2003-10-08 2010-07-07 株式会社リコー Thin film device device manufacturing method, active matrix substrate manufacturing method, and electro-optical device manufacturing method
US7456059B2 (en) 2004-03-10 2008-11-25 Seiko Epson Corporation Thin film device supply body, method of fabricating thin film device, method of transfer, method of fabricating semiconductor device, and electronic equipment
US7262088B2 (en) 2004-03-10 2007-08-28 Seiko Epson Corporation Thin film device supply body, method of fabricating thin film device, method of transfer, method of fabricating semiconductor device, and electronic equipment
US7393725B2 (en) 2004-10-19 2008-07-01 Seiko Epson Corporation Method of manufacturing thin film device electro-optic device, and electronic instrument
JP2007004205A (en) * 2006-09-19 2007-01-11 Seiko Epson Corp Method for manufacturing electrooptical device, and electrooptical device

Similar Documents

Publication Publication Date Title
KR100494479B1 (en) Method for manufacturing an active matrix substrate
JP3809712B2 (en) Thin film device transfer method
JP3809733B2 (en) Thin film transistor peeling method
US6818530B2 (en) Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device, and liquid crystal display device produced by the same
TWI316753B (en) Semiconductor device and manufacturing method thereof
KR100787901B1 (en) Thin film device supply body, method of fabricating thin film device, method of transfer, and method of fabricating semiconductor device
JP4619462B2 (en) Thin film element transfer method
JP4151421B2 (en) Device manufacturing method
JPH1124106A (en) Substrate for liquid crystal panel, liquid crystal panel, and their manufacture
JP2000133809A (en) Peeling method
JP3809710B2 (en) Thin film element transfer method
JP4619644B2 (en) Thin film element transfer method
JP3849683B2 (en) Thin film transistor peeling method
JP4525603B2 (en) Thin film transistor transfer method
JP2005085830A (en) Thin film device and method for manufacturing the same
JP2679676B2 (en) SOI substrate manufacturing method and semiconductor device manufacturing method
JP2004140383A (en) Method of transferring thin film element, thin film element, thin film integrated circuit device, active matrix substrate, and liquid crystal display device
JP3809833B2 (en) Thin film element transfer method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417