JP4581349B2 - Manufacturing method of bonded SOI wafer - Google Patents

Manufacturing method of bonded SOI wafer Download PDF

Info

Publication number
JP4581349B2
JP4581349B2 JP2003209513A JP2003209513A JP4581349B2 JP 4581349 B2 JP4581349 B2 JP 4581349B2 JP 2003209513 A JP2003209513 A JP 2003209513A JP 2003209513 A JP2003209513 A JP 2003209513A JP 4581349 B2 JP4581349 B2 JP 4581349B2
Authority
JP
Japan
Prior art keywords
wafer
semiconductor wafer
oxide film
polishing
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003209513A
Other languages
Japanese (ja)
Other versions
JP2005079109A (en
Inventor
悦郎 森田
真司 大川
五十六 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2003209513A priority Critical patent/JP4581349B2/en
Publication of JP2005079109A publication Critical patent/JP2005079109A/en
Application granted granted Critical
Publication of JP4581349B2 publication Critical patent/JP4581349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二枚のシリコンウェーハをシリコン酸化膜を介して貼合せてSOI(Silicon On Insulator)ウェーハを製造する、いわゆる貼合せSOIウェーハの製造方法に関する。更に詳しくは、埋込み酸化膜層全体が被包され、露出していない貼合せSOIウェーハの製造方法に関するものである。
【0002】
【従来の技術】
半導体集積回路の高集積性、高性能、多機能性、高信頼性に伴い、パターンの寸法はますます細かくなってきている。これに伴い、デバイス形成領域となるウェーハ表面層に酸化膜層を隔てて無欠陥の薄膜化したSOI層を有するSOIウェーハが要望されている。このようなSOIウェーハを作製する方法としては、薄膜化される活性ウェーハと、支持ウェーハを貼合せて形成する貼合せ法や、ウェーハ表面より酸素イオンを注入してウェーハ表面から所定の深さの領域にBOX層を形成するSIMOX(Separation by IMplanted OXygen)法等がある。
このうち、貼合せ法によるSOIウェーハの製造方法としては、図7(a)に示すように、SOIウェーハ4は、半導体ウェーハ1と支持ウェーハ2を酸化膜3を介して貼合せ、半導体ウェーハ1を所望の厚さに形成して単結晶シリコン層とすることにより形成される。得られたSOIウェーハ4の埋込みシリコン酸化層3における端縁3a,3aは埋込まれずに側面に露出する。このため、半導体デバイス製造工程においてフッ酸水溶液等によりエッチングされるときに、酸化膜3の露出した端縁3a,3aがエッチングにより除去される。その結果、図7(b)に示すように、上層に相当する単結晶シリコン層1の端面1a,1aがひさし状に張出した状態になる。この張出し部分1a,1aは厚さが薄いため、機械的強度に弱く、後続する種々の処理工程中に欠けたり、剥離する。これにより生じたシリコン片はパーティクルとなって活性領域の単結晶シリコン層1の表面に付着してパターン不良や各種の堆積膜の欠陥の原因となり、製品歩留りが低下する問題がある。またエピタキシャル成長させる場合、露出している酸化膜の部分では、ポリシリコンが成長し、フッ酸処理工程でパーティクルの発生原因となる問題がある。
【0003】
このような問題を改善する方策として、貼合せ法により作製されたSOI半導体基板の周辺部を除去した後に、該基板の上層部と下層部との間に介在するシリコン酸化膜層を、少なくとも該基板の側面部でシリコン酸化膜可溶剤に対する保護被膜で被覆し、その後上記被膜の不要部分を除去することを特徴とする半導体基板の製造方法が知られている(例えば、特許文献1参照。)
【0004】
【特許文献1】
特開平4−129267号公報(特許請求の範囲5.、3頁右下欄12行目〜5頁右上欄18行目及び第2図(A)〜(M))
【0005】
【発明が解決しようとする課題】
しかし、上記特許文献1に示された方法では、貼合せ法で一般的に行う工程の他に、貼合せた後に埋込み酸化膜の露出した端縁を気相成長により覆う工程や、気相成長により形成した膜を除去する工程が更に付加されており、工程数の増加によって製造コストが増大する問題があった。
本発明の目的は、埋込み酸化膜層全体が被包され、露出していない貼合せSOIウェーハを製造する方法を提供することにある。
本発明の別の目的は、製造コストを低減し得る、貼合せSOIウェーハの製造方法を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、図4に示すように、(A) 上面に研磨布が展張された研磨定盤と、この研磨定盤の上方に配置される研磨ヘッドとを備え、研磨ヘッドの下面に環状のテンプレートが固着され、このテンプレートの内側にウェーハの直径より若干大径な孔部が形成され、この孔内に軟質のウェーハ中央部のみが接触するような形状を有するバックパットが収納され、上記研磨定盤の上方には研磨布に向けて研磨剤を供給するためのノズルが配設された片面研磨装置を用い、バックパットと研磨布の間に半導体ウェーハを設置し、半導体ウェーハを研磨定盤の研磨布に押し付けて、バックパットに接触しないウェーハ周端縁及び面取り部を上凸に変形させることにより、半導体ウェーハ41の中央部のみを研磨して半導体ウェーハ41の断面形状が凹状となるように周端縁及び面取り部を立たせ、熱酸化して少なくとも半導体ウェーハの主面に絶縁膜である酸化膜41aを形成し、半導体ウェーハ41に形成した酸化膜41aのうち、重ね合わせる側の主面の周端縁及び面取り部に形成された酸化膜を除去して周端縁を除く重ね合わせ面のみに酸化膜41aを残留させた後、半導体ウェーハ41と支持ウェーハ42とを酸化膜41aを介して重ね合せることにより積層体43を形成する工程と、(B) 半導体ウェーハ41を所定の厚さに薄膜化することにより支持ウェーハ42上に埋込み酸化膜層41aを介して薄膜の単結晶シリコン層44を形成する工程とを含み、(C) 埋込み酸化膜層41a全体を支持ウェーハ42の重ね合わせ側の主面と単結晶シリコン層44により被包することを特徴とする貼合せSOIウェーハの製造方法である。
この請求項1に記載された貼合せSOIウェーハの製造方法では、埋込み酸化膜層41a全体を支持ウェーハ42の重ね合わせ側の主面と単結晶シリコン層44により被包するので、埋込み酸化膜41aの側面が露出しない。また、気相成長等の工程を付加していないため、製造コストを低減できる。
【0007】
請求項2に係る発明は、請求項1に係る発明であって、工程(B)の半導体ウェーハの薄膜化が、半導体ウェーハの機械加工、化学エッチング又は気相エッチングのいずれかの方法により行われる貼合せSOIウェーハの製造方法である。
請求項3に係る発明は、請求項2に係る発明であって、工程(B)の半導体ウェーハの機械加工による薄膜化が、重ね合わせる側と反対側の前記半導体ウェーハを重ね合わせた後で研削研磨することにより行われる貼合せSOIウェーハの製造方法である。
【0008】
請求項4に係る発明は、請求項2に係る発明であって、工程(B)の半導体ウェーハの機械加工による薄膜化が、半導体ウェーハを重ね合わせた後で半導体ウェーハを主面と平行に切断することにより行われる貼合せSOIウェーハの製造方法である。
この請求項4に記載された貼合せSOIウェーハの製造方法では、半導体ウェーハを主面と平行に切断することによって得られる切断ウェーハは、その切断面に生じた加工歪みに研削研磨を施すことで、貼合せ用の半導体ウェーハとして再度利用することができる。
【0009】
請求項5に係る発明は、請求項1に係る発明であって、図2に示すように、工程(B)の半導体ウェーハ21の薄膜化が、半導体ウェーハ21の重ね合わせる側の主面及びこの主面に続く面取り部にイオンを注入して半導体ウェーハ21内部にイオン注入領域21bを形成し、重ね合わせた後の積層体23を所定の温度で熱処理して半導体ウェーハ21をイオン注入領域21bで薄膜24から分離して除去することにより行われる貼合せSOIウェーハの製造方法である。
この請求項5に記載された貼合せSOIウェーハの製造方法では、イオン注入領域21bで薄膜24から分離することによって得られる剥離ウェーハ27は、そのイオン注入で生じた欠陥に研削研磨を施すことで、貼合せ用の半導体ウェーハとして再度利用することができる。
【0010】
請求項6に係る発明は、請求項1に係る発明であって、工程(A)と工程(B)の間における酸化膜の除去が研磨により行われる貼合せSOIウェーハの製造方法である。
この請求項6に記載された貼合せSOIウェーハの製造方法では、研磨、化学エッチングを行うことで重ね合わせる側の主面の周端縁及び面取り部に形成された酸化膜のみを除去できる。
【0011】
請求項7に係る発明は、請求項1ないし5いずれか1項に係る発明であって、工程(A)の半導体ウェーハ又は支持ウェーハのいずれか一方又はその双方における重ね合わせる側の主面を、酸化性雰囲気下、SC−1溶液により洗浄した後、重ね合わせる貼合せSOIウェーハの製造方法である。
請求項8に係る発明は、請求項1ないし5いずれか1項に係る発明であって、工程(A)の半導体ウェーハ又は支持ウェーハのいずれか一方又はその双方における重ね合わせる側の主面を、酸化性雰囲気下、有機酸及びオゾンを含む溶液により洗浄した後、重ね合わせる貼合せSOIウェーハの製造方法である。
請求項9に係る発明は、請求項1ないし5いずれか1項に係る発明であって、工程(A)の半導体ウェーハ又は支持ウェーハのいずれか一方又はその双方における重ね合わせる側の主面を、水とHFとの重量割合(HF:H2O)が1:50〜400の範囲内にある希HF溶液により洗浄した後、重ね合わせる貼合せSOIウェーハの製造方法である。
この請求項7ないし9いずれかに記載された貼合せSOIウェーハの製造方法では、SC−1溶液、有機酸及びオゾンを含む溶液、希HF溶液により洗浄した後に、重ね合わせることで、貼合せSOIウェーハにおいて過度の熱ストレス、汚染が起きにくく、OSFも発生しにくくなる。
【0012】
上記請求項1ないし9いずれか1項に記載された方法により、埋込み酸化膜の側面が露出しないため、高品質のSOIウェーハが得られる。
【0013】
【発明の実施の形態】
次に本発明の貼合せSOIウェーハの製造方法を説明する。
本発明の貼合せSOIウェーハの製造方法は、(A) 半導体ウェーハと支持ウェーハとを酸化膜を介して重ね合せることにより積層体を形成する工程と、(B) 半導体ウェーハを所定の厚さに薄膜化することにより支持ウェーハ上に埋込み酸化膜層を介して薄膜の単結晶シリコン層を形成する工程とを含む貼合せSOIウェーハの製造方法の改良である。その特徴ある構成は、(C) 埋込み酸化膜層全体を支持ウェーハの重ね合わせ側の主面と単結晶シリコン層により被包するところにある。埋込み酸化膜層全体を支持ウェーハの重ね合わせ側の主面と単結晶シリコン層により被包するので、埋込み酸化膜の側面が露出しない。また、気相成長等の工程を付加していないため、製造コストを低減できる。
具体的には、工程(C)の埋込み酸化膜層全体の被包は、図1に示すように、工程(A)における酸化膜11aを半導体ウェーハ11又は支持ウェーハ12のいずれか一方の重ね合わせる側の主面及びこの主面に続く面取り部に形成するか、或いは半導体ウェーハ11又は支持ウェーハ12のいずれか一方の両主面及び両主面に接続する面取り部に形成し、工程(A)と工程(B)の間で重ね合わせる側の主面の周端縁及び面取り部に形成された酸化膜を除去して周端縁を除く重ね合わせ面のみに酸化膜を残留させることにより行われる。周端縁及び面取り部に形成された酸化膜を除去することで側面から露出していた酸化膜に起因する製品歩留まりの低下を低減でき、周端縁を除く重ね合わせ面のみに酸化膜を残留させているため、高品質のSOIウェーハを得ることができる。
【0014】
次に本発明第1の実施形態における貼合せSOIウェーハの製造方法を図面に基づいて説明する。
図1に示すように、先ず、チョクラルスキー法で製造され、同一の直径と同一の厚さを有する半導体ウェーハ11と支持ウェーハ12をそれぞれ用意する(図1(a)及び図1(d))。この半導体ウェーハ11を熱酸化することによりウェーハ11の主面に絶縁膜である酸化膜(SiO2膜)11aを形成する(図1(b))。次いで、半導体ウェーハ11に形成した酸化膜のうち、重ね合わせる側の主面の周端縁及び面取り部に形成された酸化膜を除去して周端縁を除く重ね合わせ面のみに酸化膜を残留させる(図1(c))。ここでの重ね合わせる側の主面の周端縁及び面取り部に形成された酸化膜の除去方法としては研磨、化学エッチング等が挙げられる。
【0015】
研磨による酸化膜の除去には次の方法が挙げられる。両主面及び両主面に接続する面取り部に酸化膜11aが形成された半導体ウェーハ11を用いて説明する。図5(a)に示すように、一般的な片面研磨装置50を用意する。この片面研磨装置50は、上面に研磨布51が展張された研磨定盤52と、研磨定盤52の上方に配置される研磨ヘッド53とを備える。研磨ヘッド53の下面には環状のテンプレート56が固着される。このテンプレート56の内側には、ウェーハの直径より若干大径な孔部56aが形成され、この孔内にスエードパット、シリコーンゴム、不織布等の軟質のバックパット57が収納される。このバックパット57はウェーハ周端縁及び面取り部のみが接触するようなOリング形状を有する。研磨定盤52の上方には研磨布51に向けて研磨剤を供給するためのノズル55が配設される。このバックパット57と研磨布51の間に、重ね合わせる側の主面を研磨布51と向かい合わせるように半導体ウェーハ11を設置する。図5(b)に示すように、半導体ウェーハ11を研磨定盤52の研磨布51に押し付けると、バックパット57に接触しないウェーハ中央部が上凸に変形して、ウェーハ周端縁の酸化膜のみが研磨され、ウェーハ中央部の酸化膜は殆ど研磨されない。このような研磨方法により、図5(c)に示すように、研磨された半導体ウェーハ11は、周端縁及び面取り部の酸化膜のみが除去され周端縁を除く重ね合わせ面のみに酸化膜11aは残留する。
【0016】
化学エッチングによる酸化膜の除去には次の方法が挙げられる。両主面及び両主面に接続する面取り部に酸化膜11aが形成された半導体ウェーハ11を用いて説明する。図6に示すように、半導体ウェーハ11中央部を上チャック61及び下チャック62により保持し、ウェーハ周端縁及び面取り部に沿った形状を有するエッチングローラ64を半導体ウェーハ11の面取り部と一定の間隔を開けて設ける。このエッチングローラ64の上方には連通孔64aが形成され、この連通孔64aからウェーハ11の周端縁及び面取り部付近にエッチング液が供給可能となっている。上チャック61及び下チャック62により半導体ウェーハ11を水平回転させ、更に、連通孔64aよりエッチング液を供給する。ウェーハ11の周端縁及び面取り部に接触したエッチング液63は、表面張力、遠心力によってウェーハの中央部には行き渡らず、周端縁及び面取り部のみに残留する。このようにしてエッチング液をウェーハ11の周端縁及び面取り部のみに接触させることで、ウェーハ周端縁及び面取り部の酸化膜のみを除去する。これにより半導体ウェーハ11は、周端縁及び面取り部の酸化膜のみが除去され周端縁を除く重ね合わせ面のみに酸化膜11aは残留する。なお、図1(c)に示す半導体ウェーハ11はこの図6に示すエッチング方法により施されたものである。
化学エッチングには、水とHFとの重量割合(HF:H2O)が1:0〜10の範囲内にあるHF溶液により行われる。水とHFとの重量割合(HF:H2O)が1:10を越えると酸化膜のエッチング速度が遅くなり、均一な酸化膜除去ができなくなるという問題が生じる。
【0017】
次に、半導体ウェーハ11と支持ウェーハ12とを酸化膜11aを介して重ね合わせて積層体13を形成する前に、半導体ウェーハ11又は支持ウェーハ12のいずれか一方又はその双方における重ね合わせる側の主面を、酸化性雰囲気下、SC−1溶液により洗浄するか、又は有機酸及びオゾンを含む溶液により洗浄するか、或いは水とHFとの重量割合(HF:H2O)が1:50〜400の範囲内にある希HF溶液により洗浄した後、重ね合わせることが好ましい。酸化性雰囲気下、SC−1溶液により洗浄することで、洗浄したウェーハの主面に自然酸化膜が成長し、パーティクル除去に効果がある。また酸化性雰囲気下、有機酸及びオゾンを含む溶液により洗浄することで、洗浄したウェーハの主面に自然酸化膜が成長し、有機物、パーティクル除去に効果がある。更に、希HF洗浄により洗浄することで、HF分子がウェーハ表面のSi−O結合と反応し、Si−F結合となる。このSi−F結合は分極しているのでHFの攻撃を受け易く、これにより重ね合わせる側の主面のSiはSiF4となって脱離し、重ね合わせる側の主面はH基により終端される。このウェーハを重ね合わせ、更に熱処理を施すと、重ね合わせた界面にはH2が生じる。H2は体積が非常に小さいため、ここで生じたH2は、熱処理時間が比較的短くても、その重ね合わせた界面から抜け出やすい。この熱処理の結果、貼合せSOIウェーハにおいて過度の熱ストレス、汚染が起きにくく、OSFも発生しにくい。希HF溶液を水とHFとの重量割合(HF:H2O)が1:50〜400の範囲内に規定したのは、この濃度範囲であれば、ウェーハの重ね合わせ面のOH基の密度が小さくなり、重ね合わせた後に施す熱処理によって、界面に発生するH2Oの量が少なくなり、貼合せSOIウェーハの周辺部におけるボイドの発生率をより低減することができるためである。水とHFとの重量割合(HF:H2O)が1:50未満では、ウェーハ表面のSi−F結合のFがOH基に置換した場合にOH基の比率が高くなりすぎて、ウェーハ外周部でのボイド発生率が増大するからである。また、1:400を越えると、自然酸化膜の除去に時間がかかりすぎる問題を生じる。
【0018】
次に、図1に戻って、支持ウェーハ12の主面に半導体ウェーハ11を酸化膜11aを介して室温で重ね合わせて積層体13を形成する(図1(e))。この積層体13を酸素(O2)又は窒素(N2)雰囲気中で900〜1200℃の範囲に昇温しこの温度範囲に30〜120分間保持する熱処理を行う。この熱処理は半導体ウェーハ11の支持ウェーハ12への貼合せを強固にする熱処理である。
次に、半導体ウェーハ11を所定の厚さに薄膜化する(図1(f))。半導体ウェーハ11の薄膜化は、半導体ウェーハ11の機械加工、化学エッチング又は気相エッチングのいずれかの方法により行われる。機械加工による薄膜化としては、重ね合わせる側と反対側の半導体ウェーハ11を重ね合わせた後で研削研磨するか、或いは、半導体ウェーハ11を主面と平行に切断することにより行われる。
切断は、例えばダイヤモンド内周刃で半導体ウェーハの所定厚さ位置で主面と平行に、即ち結合面と平行に切断する。内周刃切断装置としては、例えばSOIウェーハを保持して固定する保持盤と、これに対向配置される吸着盤を具備し、切断するSOIウェーハを挟持するようにする。そして、保持盤と吸着盤はそれぞれウェーハ面に垂直方向に進退動可能に構成されており、かつ保持盤は割り出しピッチ機構を備え、ウェーハが傾斜して切断されないように、内周刃と正確にSOIウェーハの結合面が平行になるように、面合わせ機能を有している。このような切断装置を用いれば、簡単に結合ウェーハの半導体ウェーハの所定位置で主面と平行に切断して、SOIウェーハと切断ウェーハに分割することができる。切断ウェーハは、その切断面に生じた加工歪みに研削研磨を施すことで、貼合せ用の半導体ウェーハとして再度利用することができる。
更に半導体ウェーハ11の薄膜化した面を1次研磨及びそれに続く仕上げ研磨を行って薄膜14を平滑化する(図1(f))。これにより側面に埋込み酸化膜11aが露出しないSOIウェーハ16が得られる。
【0019】
次に本発明第2の実施形態における貼合せSOIウェーハの製造方法を図2に基づいて説明する。
図2に示すように、この第2の実施形態では、工程(B)の半導体ウェーハ21の薄膜化が、半導体ウェーハ21の重ね合わせる側の主面及びこの主面に続く面取り部にイオンを注入して半導体ウェーハ21内部にイオン注入領域21bを形成し、重ね合わせた後の積層体23を所定の温度で熱処理して半導体ウェーハ21をイオン注入領域21bで薄膜24から分離して除去する、いわゆるスマートカット法によって行われる。
【0020】
この薄膜化の場合、先ず、重ね合わせて積層体23を形成する前の半導体ウェーハ21を熱酸化することによりウェーハ21の主面に絶縁膜である酸化膜(SiO2膜)21aを形成した後に、このウェーハ21の主面に水素ガスイオンである水素イオン(H+)を3.0×1016/cm2以上又は水素分子イオン(H2 +)を1.5×1016/cm2以上のドーズ量でイオン注入する(図2(a))。ここで図2(a)、図2(b)及び図2(d)中の符号21bは水素ガスイオン又は水素分子イオンの注入により半導体ウェーハ内部に形成されたイオン注入領域であり、このイオン注入領域21bは酸化膜21aに平行に、即ち半導体ウェーハ21表面に平行に形成される。また水素ガスイオン(H+)の場合には、水素分子イオン(H2 +)の場合の約2倍の注入量が必要である。なお、水素ガスイオン及び水素分子イオンの注入に代えて、或いは水素ガスイオン又は水素分子イオンとともに、ヘリウムイオン(He+)を注入してもよい。この場合、ヘリウムイオンのドーズ量は0.5×1016/cm2以上であることが好ましい。なお、図示しないが、酸化膜21aは半導体ウェーハ21の全面に形成してもよい。
【0021】
次いで、半導体ウェーハ21に形成した酸化膜のうち、重ね合わせる側の主面の周端縁及び面取り部に形成された酸化膜を除去して周端縁を除く重ね合わせ面のみに酸化膜を残留させる(図2(b))。この工程では前述した第1実施形態と同様の手法により周端縁及び面取り部に形成された酸化膜を除去を除去する。次に、支持ウェーハ22を用意し(図2(c))、この支持ウェーハ22の主面に半導体ウェーハ21を酸化膜21aを介して室温で重ね合わせて積層体23を形成する(図2(d))。この積層体23を窒素(N2)雰囲気中で500〜800℃の範囲に昇温し、この温度範囲に5〜30分間保持して薄膜分離熱処理を行う。これにより半導体ウェーハ21がイオン注入領域21bのところで割れて上部の厚肉の剥離ウェーハ27と下部の薄膜24に分離する(図2(e))。次に上記半導体ウェーハ21がイオン注入領域21bで割れた積層体23の温度を下げ、酸化膜21aを介して薄膜24が積層された支持ウェーハ22から剥離ウェーハ27を取除く(図2(f)及び図2(g))。上記支持ウェーハ22を酸素(O2)又は窒素(N2)雰囲気中で900〜1200℃の範囲に昇温しこの温度範囲に30〜120分間保持する熱処理を行う。この熱処理は薄膜24の支持ウェーハ22への貼合せを強固にする熱処理である。更に支持ウェーハ22の分離面をアニール処理するか又は研磨(タッチポリッシング)して平滑化する(図2(f))。これにより側面に埋込み酸化膜21aが露出しないSOIウェーハ26が得られる。なお、剥離ウェーハ27は、分離面を研磨して平滑化することにより、再び半導体ウェーハ21として再利用することができる。
【0022】
次に本発明第3の実施形態における貼合せSOIウェーハの製造方法を図3に基づいて説明する。
図3に示すように、この第3の実施形態では、工程(B)の半導体ウェーハ31の薄膜化が、半導体ウェーハ31の重ね合わせる側の主面及びこの主面に続く面取り部に多孔質のポーラスシリコン層37を陽極酸化により作製し、このポーラスシリコン層37に水素アニール処理を施した後に、エピタキシャル成長によって単結晶シリコン薄膜層34をこの順に形成し、単結晶シリコン薄膜層34又は支持ウェーハ32のいずれか一方の重ね合わせる側の主面及びこの主面に続く面取り部に酸化膜31aを形成し、重ね合わせた後の積層体33を所定の温度で熱処理して半導体ウェーハ31をポーラスシリコン層37で単結晶シリコン薄膜層34から分離して除去する、いわゆるELTRAN法によって行われる。
【0023】
この薄膜化の場合、先ず、重ね合わせて積層体33を形成する前の半導体ウェーハ31の重ね合わせる側の主面及びこの主面に続く面取り部に多孔質のポーラスシリコン層37を陽極酸化により作製する(図3(a))。次いで、この多孔質のポーラスシリコン層37に水素アニール処理を施した後に、ポーラスシリコン層37の上にエピタキシャル成長によって単結晶シリコン薄膜層34と絶縁膜であるシリコン酸化膜(SiO2膜)31aを形成する(図3(b))。
【0024】
次いで、半導体ウェーハ31に形成した酸化膜のうち、重ね合わせる側の主面の周端縁及び面取り部に形成された酸化膜を除去して周端縁を除く重ね合わせ面のみに酸化膜を残留させる(図3(c))。この工程では前述した第1実施形態と同様の手法により周端縁及び面取り部に形成された酸化膜を除去を除去する。次に、支持ウェーハ32を用意し(図3(d))、この支持ウェーハ32の主面に半導体ウェーハ31を酸化膜31aを介して室温で重ね合わせて積層体33を形成する(図3(e))。上記積層体33を酸素(O2)又は窒素(N2)雰囲気中で900〜1200℃の範囲に昇温しこの温度範囲に30〜120分間保持する熱処理を行う。冷却した後、機械的な力でポーラス層の部分でカットし、分離する(図3(f))。更に支持ウェーハ32の分離面を水素アニール処理により薄膜34を平滑化する(図3(g)及び図3(i))。これにより側面に埋込み酸化膜31aが露出しないSOIウェーハ36が得られる。なお、図3(h)に示す分離した半導体ウェーハ31は、分離面を研磨によってポーラスシリコン層37を除去した後、再度陽極酸化してポーラスシリコン層37を形成することで再利用することができる。
【0025】
更に本発明第4の実施形態における貼合せSOIウェーハの製造方法を図4に基づいて説明する。
図4に示すように、この第4の実施形態では、先ず、重ね合わせて積層体43を形成する前の半導体ウェーハ41のうち、中央部のみを研磨してウェーハの周端縁及び面取り部を立たせる(図4(a)及び図4(b))。この工程では、第1の実施形態における研磨による酸化膜の除去方法と同様の方法を用いることにより、中央部の厚さは薄く、周端縁及び面取り部の厚さは研磨前の厚さのまま、即ち、ウェーハ41の断面形状が凹状となるように加工できる。次に、熱酸化することによりウェーハ11の主面に絶縁膜である酸化膜(SiO2膜)41aを形成する(図4(c))。次に、半導体ウェーハ41に形成した酸化膜のうち、重ね合わせる側の主面の周端縁及び面取り部に形成された酸化膜を除去して周端縁を除く重ね合わせ面のみに酸化膜を残留させる(図4(d))。この工程では通常の研磨方法によりウェーハ表面を研磨して、ウェーハ周端縁及び面取り部の酸化膜を除去する程度の厚さにまで研磨を施すことで、ウェーハ中央部に位置する酸化膜のみを残留させることができる。以下に続く工程、即ち図4(f)〜図4(h)に示す工程は第1実施形態と同様である。
【0026】
このように上記本発明第1〜第4の実施形態における貼合せSOIウェーハの製造方法により製造された貼合せSOIウェーハは、埋込み酸化膜の側面が露出しないため、通常のシリコンウェーハと同様の品質が得られる。
【0027】
【発明の効果】
以上述べたように、本発明の貼合せSOIウェーハの製造方法は、(A) 半導体ウェーハの中央部のみを研磨して半導体ウェーハの断面形状が凹状となるように周端縁及び面取り部を立たせ、熱酸化して少なくとも半導体ウェーハの主面に絶縁膜である酸化膜を形成し、半導体ウェーハに形成した酸化膜のうち、重ね合わせる側の主面の周端縁及び面取り部に形成された酸化膜を除去して周端縁を除く重ね合わせ面のみに酸化膜を残留させた後、半導体ウェーハと支持ウェーハとを酸化膜を介して重ね合せることにより積層体を形成する工程と、(B) 半導体ウェーハを所定の厚さに薄膜化することにより支持ウェーハ上に埋込み酸化膜層を介して薄膜の単結晶シリコン層を形成する工程とを含み、(C) 埋込み酸化膜層全体を支持ウェーハの重ね合わせ側の主面と単結晶シリコン層により被包することを特徴とする。上記方法により、埋込み酸化膜層全体が被包され、露出していない貼合せSOIウェーハを製造することができる。
【図面の簡単な説明】
【図1】 本発明第1の実施形態における貼合せSOIウェーハの製造方法を工程順に示す図。
【図2】 本発明第2の実施形態における貼合せSOIウェーハの製造方法を工程順に示す図。
【図3】 本発明第3の実施形態における貼合せSOIウェーハの製造方法を工程順に示す図。
【図4】 本発明第4の実施形態における貼合せSOIウェーハの製造方法を工程順に示す図。
【図5】 (a) 片面研磨装置を用いた半導体ウェーハの周端縁及び面取り部の酸化膜の研磨方法を示す図。
(b) 下定盤に半導体ウェーハを押し付けた状態を示す図5(a)に対応する図。
(c) 研磨後の周端縁及び面取り部の酸化膜を除去した半導体ウェーハの断面図。
【図6】 半導体ウェーハの周端縁及び面取り部の酸化膜をエッチングする方法を示す図。
【図7】 (a) 従来の貼合せSOIウェーハを示す構成断面図。
(b) エッチングにより側面に露出した埋込み酸化膜が除去されて単結晶シリコン層が張り出した状態を示す図7(a)に対応するSOIウェーハの断面図。
【符号の説明】
11,21,31,41 半導体ウェーハ
11a,21a,31a,41a 埋込み酸化膜層
12,22,32,42 支持ウェーハ
13,23,33,43 積層体
14,24,34,44 単結晶シリコン層
16,26,36,46 SOIウェーハ
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a so-called bonded SOI wafer manufacturing method in which two silicon wafers are bonded together through a silicon oxide film to manufacture an SOI (Silicon On Insulator) wafer.To the lawRelated. More specifically, a method for manufacturing a bonded SOI wafer in which the entire buried oxide film layer is encapsulated and not exposed.To the lawIt is related.
[0002]
[Prior art]
  With the high integration, high performance, multi-functionality, and high reliability of semiconductor integrated circuits, the pattern dimensions are becoming finer. Along with this, there is a demand for an SOI wafer having an SOI layer with a defect-free thin film with an oxide film layer provided on a wafer surface layer serving as a device formation region. As a method for manufacturing such an SOI wafer, an active wafer to be thinned and a bonding method in which a supporting wafer is bonded together, or oxygen ions are implanted from the wafer surface to have a predetermined depth from the wafer surface. There is a SIMOX (Separation by IMplanted OXygen) method for forming a BOX layer in a region.
  Among these, as an SOI wafer manufacturing method by the bonding method, as shown in FIG. 7A, the SOI wafer 4 is formed by bonding the semiconductor wafer 1 and the support wafer 2 through the oxide film 3, and the semiconductor wafer 1 Is formed into a single crystal silicon layer with a desired thickness. Edges 3a and 3a in the buried silicon oxide layer 3 of the obtained SOI wafer 4 are not buried but exposed on the side surfaces. Therefore, when the semiconductor device manufacturing process is etched with a hydrofluoric acid aqueous solution or the like, the exposed edges 3a and 3a of the oxide film 3 are removed by etching. As a result, as shown in FIG. 7B, the end faces 1a and 1a of the single crystal silicon layer 1 corresponding to the upper layer are in an overhanging state. Since the overhang portions 1a and 1a are thin, they are weak in mechanical strength and are chipped or peeled off during various subsequent processing steps. The silicon pieces generated thereby become particles and adhere to the surface of the single-crystal silicon layer 1 in the active region, causing defective patterns and defects in various deposited films, resulting in a problem that the product yield is lowered. Further, in the case of epitaxial growth, there is a problem that polysilicon grows in the exposed oxide film portion and causes generation of particles in the hydrofluoric acid treatment process.
[0003]
  As a measure for improving such a problem, after removing the peripheral portion of the SOI semiconductor substrate manufactured by the bonding method, at least a silicon oxide film layer interposed between the upper layer portion and the lower layer portion of the substrate is provided. A semiconductor substrate manufacturing method is known in which a side surface portion of a substrate is coated with a protective coating against a silicon oxide film solubilizer, and then unnecessary portions of the coating are removed (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
  Japanese Patent Application Laid-Open No. 4-129267 (Claims 5, page 3, lower right column, line 12 to page 5, upper right column, line 18 and FIGS. 2 (A) to (M))
[0005]
[Problems to be solved by the invention]
  However, in the method shown in Patent Document 1, in addition to the step generally performed by the bonding method, the step of covering the exposed edge of the buried oxide film by vapor phase growth after bonding, or vapor phase growth The process of removing the film | membrane formed by this was further added, and there existed a problem which manufacturing cost increased by the increase in the number of processes.
  The object of the present invention is to produce a bonded SOI wafer in which the entire buried oxide layer is encapsulated and not exposed.The lawIt is to provide.
  Another object of the present invention is to manufacture a bonded SOI wafer, which can reduce the manufacturing cost.The lawIt is to provide.
[0006]
[Means for Solving the Problems]
  As shown in FIG. 4, the invention according to claim 1 is (A)A polishing surface plate having a polishing cloth spread on the upper surface and a polishing head disposed above the polishing surface plate, and an annular template is fixed to the lower surface of the polishing head. A slightly large-diameter hole is formed, and a back pad having a shape such that only the central portion of the soft wafer is in contact with the hole is housed in the hole. Using a single-side polishing machine with a nozzle for supplying, place the semiconductor wafer between the back pad and the polishing cloth, press the semiconductor wafer against the polishing cloth on the polishing surface plate, By deforming the edge and chamfered part upward,Only the central portion of the semiconductor wafer 41 is polished so that the peripheral edge and the chamfered portion are raised so that the cross-sectional shape of the semiconductor wafer 41 becomes concave, and is thermally oxidized to at least an oxide film 41a that is an insulating film on the main surface of the semiconductor wafer. In the oxide film 41a formed on the semiconductor wafer 41, the peripheral edge of the main surface on the overlapping side and the oxide film formed on the chamfered portion are removed to oxidize only the overlapping surface excluding the peripheral edge. After the film 41a remains, a step of forming a laminated body 43 by superposing the semiconductor wafer 41 and the support wafer 42 via the oxide film 41a, and (B) thinning the semiconductor wafer 41 to a predetermined thickness Forming a thin single crystal silicon layer 44 on the support wafer 42 via the buried oxide film layer 41a, and (C) forming the entire buried oxide film layer 41a on the support wafer. The second overlapping side main surface and the single crystal silicon layer 44 is the method for manufacturing a bonded SOI wafer, comprising encapsulating.
  In the method for manufacturing a bonded SOI wafer according to the first aspect, since the entire buried oxide film layer 41a is encapsulated by the main surface on the overlapping side of the support wafer 42 and the single crystal silicon layer 44, the buried oxide film 41a is formed. The side of is not exposed. Further, since a process such as vapor phase growth is not added, the manufacturing cost can be reduced.
[0007]
  The invention according to claim 2 is the invention according to claim 1, wherein the thinning of the semiconductor wafer in the step (B) is performed by any one of machining, chemical etching or vapor phase etching of the semiconductor wafer. It is a manufacturing method of a bonded SOI wafer.
  The invention according to claim 3 is the invention according to claim 2, wherein the thinning by the machining of the semiconductor wafer in the step (B) is performed after the semiconductor wafer on the side opposite to the side to be overlaid is ground. It is the manufacturing method of the bonding SOI wafer performed by grinding | polishing.
[0008]
  The invention according to claim 4 is the invention according to claim 2, wherein the thinning of the semiconductor wafer by machining in the step (B) is performed by cutting the semiconductor wafer parallel to the main surface after the semiconductor wafers are superposed. It is the manufacturing method of the bonding SOI wafer performed by doing.
  In the method for manufacturing a bonded SOI wafer according to claim 4, the cut wafer obtained by cutting the semiconductor wafer in parallel with the main surface is subjected to grinding and polishing to the processing strain generated on the cut surface. It can be used again as a semiconductor wafer for bonding.
[0009]
  The invention according to claim 5 is the invention according to claim 1, wherein, as shown in FIG. 2, the thinning of the semiconductor wafer 21 in the step (B) Ions are implanted into the chamfered portion that follows the main surface to form an ion implantation region 21b inside the semiconductor wafer 21, and the stacked body 23 after being superposed is heat-treated at a predetermined temperature to cause the semiconductor wafer 21 to be in the ion implantation region 21b. This is a method for manufacturing a bonded SOI wafer performed by separating and removing from the thin film 24.
  In the manufacturing method of the bonded SOI wafer described in claim 5, the separation wafer 27 obtained by separating from the thin film 24 in the ion implantation region 21b is subjected to grinding and polishing on the defects generated by the ion implantation. It can be used again as a semiconductor wafer for bonding.
[0010]
  The invention according to claim 6 is the method according to claim 1, wherein the oxide film is removed by polishing between the step (A) and the step (B).
  In the method for manufacturing a bonded SOI wafer according to the sixth aspect, only the oxide film formed on the peripheral edge and the chamfered portion of the main surface on the overlapping side can be removed by performing polishing and chemical etching.
[0011]
  The invention according to claim 7 is the invention according to any one of claims 1 to 5, wherein the main surface on the side to be overlapped in either one or both of the semiconductor wafer and the support wafer in the step (A), This is a method for manufacturing a bonded SOI wafer to be superposed after cleaning with an SC-1 solution in an oxidizing atmosphere.
  The invention according to claim 8 is the invention according to any one of claims 1 to 5, wherein the main surface on the overlapping side in either one or both of the semiconductor wafer and the support wafer in step (A), This is a method for manufacturing a bonded SOI wafer that is superposed after being washed with a solution containing an organic acid and ozone in an oxidizing atmosphere.
  The invention according to claim 9 is the invention according to any one of claims 1 to 5, wherein the main surface on the overlapping side in either one or both of the semiconductor wafer and the support wafer in the step (A), Weight ratio of water and HF (HF: H2This is a method for producing a bonded SOI wafer in which O) is washed with a dilute HF solution in the range of 1:50 to 400 and then superposed.
  In the method for manufacturing a bonded SOI wafer according to any one of claims 7 to 9, the bonded SOI is obtained by laminating after cleaning with an SC-1 solution, a solution containing an organic acid and ozone, and a diluted HF solution. Excessive thermal stress and contamination are less likely to occur in the wafer, and OSF is less likely to occur.
[0012]
Above contractThe method according to any one of claims 1 to 9BySince the side surface of the buried oxide film is not exposed, a high quality SOI wafer can be obtained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
  Next, the manufacturing method of the bonding SOI wafer of this invention is demonstrated.
  The method for producing a bonded SOI wafer according to the present invention comprises (A) a step of forming a laminate by superposing a semiconductor wafer and a support wafer via an oxide film, and (B) a semiconductor wafer having a predetermined thickness. And forming a thin single-crystal silicon layer on the supporting wafer through a buried oxide film layer by reducing the film thickness, and improving the method for manufacturing a bonded SOI wafer. The characteristic configuration is that (C) the entire buried oxide film layer is encapsulated by the main surface on the overlapping side of the supporting wafer and the single crystal silicon layer. Since the entire buried oxide film layer is encapsulated by the main surface on the overlapping side of the supporting wafer and the single crystal silicon layer, the side surface of the buried oxide film is not exposed. Further, since a process such as vapor phase growth is not added, the manufacturing cost can be reduced.
  Specifically, in the encapsulation of the entire buried oxide film layer in the step (C), the oxide film 11a in the step (A) is superposed on either the semiconductor wafer 11 or the support wafer 12 as shown in FIG. Forming the main surface on the side and the chamfered portion following the main surface, or forming the chamfered portion connected to both the main surfaces and both main surfaces of either the semiconductor wafer 11 or the support wafer 12; And the step (B) is performed by removing the oxide film formed on the peripheral edge and the chamfered portion of the main surface on the side to be overlapped and leaving the oxide film only on the overlap surface excluding the peripheral edge. . By removing the oxide film formed on the peripheral edge and chamfered portion, the reduction in product yield due to the oxide film exposed from the side surface can be reduced, and the oxide film remains only on the overlapping surface excluding the peripheral edge. Therefore, a high quality SOI wafer can be obtained.
[0014]
  Next, the manufacturing method of the bonding SOI wafer in the 1st Embodiment of this invention is demonstrated based on drawing.
  As shown in FIG. 1, first, a semiconductor wafer 11 and a support wafer 12 manufactured by the Czochralski method and having the same diameter and the same thickness are prepared (FIGS. 1A and 1D). ). By thermally oxidizing the semiconductor wafer 11, an oxide film (SiO 2) as an insulating film is formed on the main surface of the wafer 11.2A film) 11a is formed (FIG. 1B). Next, of the oxide film formed on the semiconductor wafer 11, the oxide film formed on the peripheral edge and the chamfered portion of the main surface on the overlapping side is removed, and the oxide film remains only on the overlapping surface excluding the peripheral edge. (FIG. 1 (c)). Examples of the method for removing the oxide film formed on the peripheral edge and the chamfered portion of the main surface on the overlapping side include polishing and chemical etching.
[0015]
  The following methods can be used to remove the oxide film by polishing. Description will be made using the semiconductor wafer 11 in which an oxide film 11a is formed on both main surfaces and chamfered portions connected to both main surfaces. As shown in FIG. 5A, a general single-side polishing apparatus 50 is prepared. The single-side polishing apparatus 50 includes a polishing surface plate 52 having an upper surface with a polishing cloth 51 spread thereon, and a polishing head 53 disposed above the polishing surface plate 52. An annular template 56 is fixed to the lower surface of the polishing head 53. Inside the template 56, a hole 56a having a diameter slightly larger than the diameter of the wafer is formed, and a soft back pad 57 such as a suede pad, silicone rubber, or non-woven fabric is accommodated in the hole. The back pad 57 has an O-ring shape such that only the peripheral edge of the wafer and the chamfered portion are in contact with each other. A nozzle 55 for supplying an abrasive toward the polishing cloth 51 is disposed above the polishing surface plate 52. The semiconductor wafer 11 is placed between the back pad 57 and the polishing pad 51 so that the main surface on the side to be overlapped faces the polishing pad 51. As shown in FIG. 5 (b), when the semiconductor wafer 11 is pressed against the polishing pad 51 of the polishing surface plate 52, the central portion of the wafer that does not contact the back pad 57 is deformed upward, and an oxide film on the peripheral edge of the wafer. Only the oxide film at the center of the wafer is not polished. With this polishing method, as shown in FIG. 5C, the polished semiconductor wafer 11 is formed by removing only the oxide film at the peripheral edge and the chamfered portion and removing the oxide film only on the overlapping surface excluding the peripheral edge. 11a remains.
[0016]
  The following methods can be used to remove the oxide film by chemical etching. Description will be made using the semiconductor wafer 11 in which an oxide film 11a is formed on both main surfaces and chamfered portions connected to both main surfaces. As shown in FIG. 6, the central portion of the semiconductor wafer 11 is held by the upper chuck 61 and the lower chuck 62, and an etching roller 64 having a shape along the peripheral edge of the wafer and the chamfered portion is fixed to the chamfered portion of the semiconductor wafer 11. Provide an interval. A communication hole 64 a is formed above the etching roller 64, and an etching solution can be supplied from the communication hole 64 a to the peripheral edge of the wafer 11 and the vicinity of the chamfered portion. The semiconductor wafer 11 is horizontally rotated by the upper chuck 61 and the lower chuck 62, and an etching solution is supplied from the communication hole 64a. The etching solution 63 that has contacted the peripheral edge and the chamfered portion of the wafer 11 does not reach the central portion of the wafer due to surface tension and centrifugal force, but remains only at the peripheral edge and the chamfered portion. In this way, only the peripheral edge of the wafer 11 and the chamfered portion are brought into contact with the etching solution, thereby removing only the oxide film on the peripheral edge of the wafer and the chamfered portion. As a result, only the oxide film at the peripheral edge and the chamfered portion of the semiconductor wafer 11 is removed, and the oxide film 11a remains only on the overlapping surface excluding the peripheral edge. Incidentally, the semiconductor wafer 11 shown in FIG. 1C is formed by the etching method shown in FIG.
  For chemical etching, the weight ratio of water to HF (HF: H2O) is carried out with an HF solution in the range 1: 0-10. Weight ratio of water and HF (HF: H2If O) exceeds 1:10, the etching rate of the oxide film becomes slow, and there is a problem that uniform oxide film removal becomes impossible.
[0017]
  Next, before the semiconductor wafer 11 and the support wafer 12 are overlapped with each other through the oxide film 11a to form the stacked body 13, one of the semiconductor wafer 11 and the support wafer 12 or both of them are overlapped. The surface is cleaned with an SC-1 solution in an oxidizing atmosphere, or with a solution containing an organic acid and ozone, or a weight ratio of water to HF (HF: H2It is preferable to superimpose after washing with a diluted HF solution in which O) is in the range of 1:50 to 400. By cleaning with an SC-1 solution in an oxidizing atmosphere, a natural oxide film grows on the main surface of the cleaned wafer, which is effective for particle removal. In addition, by cleaning with a solution containing an organic acid and ozone in an oxidizing atmosphere, a natural oxide film grows on the main surface of the cleaned wafer, which is effective in removing organic substances and particles. Furthermore, by cleaning with diluted HF cleaning, HF molecules react with Si—O bonds on the wafer surface to form Si—F bonds. Since this Si-F bond is polarized, it is susceptible to attack by HF, so that Si on the main surface on the side to be superimposed is SiF.FourThe main surface on the overlapping side is terminated by an H group. When this wafer is overlapped and further heat-treated, H2Occurs. H2Has a very small volume, so the H generated here2Can easily escape from the overlapped interface even if the heat treatment time is relatively short. As a result of this heat treatment, excessive thermal stress and contamination hardly occur in the bonded SOI wafer, and OSF hardly occurs. The dilute HF solution is mixed with the weight ratio of water and HF (HF: H2O) is defined within the range of 1:50 to 400 within this concentration range, the density of OH groups on the overlapping surface of the wafer decreases, and is generated at the interface by heat treatment performed after the overlapping. H2This is because the amount of O is reduced, and the void generation rate in the peripheral portion of the bonded SOI wafer can be further reduced. Weight ratio of water and HF (HF: H2If O) is less than 1:50, when the Si-F bond F on the wafer surface is substituted with OH groups, the ratio of OH groups becomes too high, increasing the void generation rate at the outer periphery of the wafer. . On the other hand, if it exceeds 1: 400, it takes too much time to remove the natural oxide film.
[0018]
  Next, returning to FIG. 1, the semiconductor wafer 11 is superposed on the main surface of the support wafer 12 via the oxide film 11a at room temperature to form a laminate 13 (FIG. 1 (e)). This laminated body 13 is oxygen (O2) Or nitrogen (N2) Heat treatment is performed in an atmosphere at a temperature in the range of 900 to 1200 ° C., and a heat treatment is performed in this temperature range for 30 to 120 minutes. This heat treatment is a heat treatment for strengthening the bonding of the semiconductor wafer 11 to the support wafer 12.
  Next, the semiconductor wafer 11 is thinned to a predetermined thickness (FIG. 1 (f)). The thinning of the semiconductor wafer 11 is performed by any one of machining, chemical etching, or vapor phase etching of the semiconductor wafer 11. Thinning by machining is performed by grinding and polishing the semiconductor wafer 11 on the side opposite to the side to be overlaid, or by cutting the semiconductor wafer 11 in parallel with the main surface.
  The cutting is performed, for example, with a diamond inner peripheral blade at a predetermined thickness position of the semiconductor wafer in parallel with the main surface, that is, in parallel with the bonding surface. As an inner peripheral blade cutting device, for example, a holding plate for holding and fixing an SOI wafer and a suction plate disposed opposite to the holding plate are provided so as to sandwich the SOI wafer to be cut. The holding plate and suction plate are each configured to be movable back and forth in the direction perpendicular to the wafer surface, and the holding plate is provided with an indexing pitch mechanism so that the wafer can be accurately cut with the inner peripheral blade so that the wafer is not inclined and cut. It has a surface matching function so that the bonding surfaces of the SOI wafers are parallel. By using such a cutting apparatus, it is possible to easily divide the bonded wafer into a SOI wafer and a cut wafer by cutting in parallel with the main surface at a predetermined position of the semiconductor wafer. The cut wafer can be reused as a semiconductor wafer for bonding by grinding and polishing the processing distortion generated on the cut surface.
  Further, the thinned surface of the semiconductor wafer 11 is subjected to primary polishing and subsequent finish polishing to smooth the thin film 14 (FIG. 1 (f)). As a result, an SOI wafer 16 in which the buried oxide film 11a is not exposed on the side surface is obtained.
[0019]
  Next, the manufacturing method of the bonding SOI wafer in the 2nd Embodiment of this invention is demonstrated based on FIG.
  As shown in FIG. 2, in the second embodiment, the thinning of the semiconductor wafer 21 in the step (B) is performed by implanting ions into the main surface on the side where the semiconductor wafer 21 is overlapped and the chamfered portion following the main surface. Then, an ion implantation region 21b is formed inside the semiconductor wafer 21, and the stacked body 23 after being superposed is heat-treated at a predetermined temperature to separate the semiconductor wafer 21 from the thin film 24 and remove it at the ion implantation region 21b. This is done by the smart cut method.
[0020]
  In the case of this thinning, first, an oxide film (SiO 2) that is an insulating film is formed on the main surface of the wafer 21 by thermally oxidizing the semiconductor wafer 21 before the stacked body 23 is formed by superposition.2After the film 21a is formed, hydrogen ions (H+) 3.0 × 1016/ Cm2Or hydrogen molecular ion (H2 +) 1.5 × 1016/ Cm2Ions are implanted with the above dose (FIG. 2A). Here, reference numeral 21b in FIGS. 2 (a), 2 (b) and 2 (d) denotes an ion implantation region formed in the semiconductor wafer by implantation of hydrogen gas ions or hydrogen molecular ions, and this ion implantation. The region 21b is formed in parallel with the oxide film 21a, that is, in parallel with the surface of the semiconductor wafer 21. Hydrogen gas ions (H+) In the case of hydrogen molecular ion (H2 +) About twice as much as in the case of (). Instead of hydrogen gas ion and hydrogen molecular ion implantation, or together with hydrogen gas ion or hydrogen molecular ion, helium ion (He+) May be injected. In this case, the dose of helium ions is 0.5 × 1016/ Cm2The above is preferable. Although not shown, the oxide film 21 a may be formed on the entire surface of the semiconductor wafer 21.
[0021]
  Next, among the oxide films formed on the semiconductor wafer 21, the oxide film formed on the peripheral edge and the chamfered portion of the main surface on the overlapping side is removed, and the oxide film remains only on the overlapping surface excluding the peripheral edge. (FIG. 2B). In this step, removal of the oxide film formed on the peripheral edge and the chamfered portion is removed by the same method as in the first embodiment. Next, a support wafer 22 is prepared (FIG. 2C), and a laminated body 23 is formed by superimposing a semiconductor wafer 21 on the main surface of the support wafer 22 through an oxide film 21a at room temperature (FIG. d)). The laminated body 23 is made of nitrogen (N2) The temperature is raised in the range of 500 to 800 ° C. in the atmosphere, and the film is kept in this temperature range for 5 to 30 minutes to perform thin film separation heat treatment. As a result, the semiconductor wafer 21 is broken at the ion implantation region 21b and separated into an upper thick release wafer 27 and a lower thin film 24 (FIG. 2E). Next, the temperature of the laminated body 23 in which the semiconductor wafer 21 is broken in the ion implantation region 21b is lowered, and the separation wafer 27 is removed from the support wafer 22 on which the thin film 24 is laminated via the oxide film 21a (FIG. 2F). And FIG. 2 (g)). The support wafer 22 is made of oxygen (O2) Or nitrogen (N2) Heat treatment is performed in an atmosphere at a temperature in the range of 900 to 1200 ° C., and a heat treatment is performed in this temperature range for 30 to 120 minutes. This heat treatment is a heat treatment for strengthening the bonding of the thin film 24 to the support wafer 22. Further, the separation surface of the support wafer 22 is annealed or polished (touch polishing) and smoothed (FIG. 2F). As a result, an SOI wafer 26 in which the buried oxide film 21a is not exposed on the side surface is obtained. The separation wafer 27 can be reused as the semiconductor wafer 21 again by polishing and smoothing the separation surface.
[0022]
  Next, the manufacturing method of the bonding SOI wafer in the 3rd Embodiment of this invention is demonstrated based on FIG.
  As shown in FIG. 3, in the third embodiment, the thinning of the semiconductor wafer 31 in the step (B) is performed on the main surface on the side where the semiconductor wafer 31 overlaps and the chamfered portion following the main surface. A porous silicon layer 37 is formed by anodic oxidation, and after hydrogen annealing treatment is performed on the porous silicon layer 37, a single crystal silicon thin film layer 34 is formed in this order by epitaxial growth, and the single crystal silicon thin film layer 34 or the support wafer 32 is formed. An oxide film 31a is formed on one of the main surface to be overlapped and a chamfered portion following the main surface, and the stacked body 33 after the stacking is heat-treated at a predetermined temperature so that the semiconductor wafer 31 is porous silicon layer 37. Is performed by the so-called ELTRAN method in which the single crystal silicon thin film layer 34 is separated and removed.
[0023]
  In the case of this thinning, first, a porous porous silicon layer 37 is produced by anodic oxidation on the main surface of the semiconductor wafer 31 to be stacked and the chamfered portion following the main surface before the stacked body 33 is formed by overlapping. (FIG. 3A). Next, after this porous porous silicon layer 37 is subjected to a hydrogen annealing treatment, the single crystal silicon thin film layer 34 and a silicon oxide film (SiO 2) as an insulating film are epitaxially grown on the porous silicon layer 37.2A film) 31a is formed (FIG. 3B).
[0024]
  Next, among the oxide films formed on the semiconductor wafer 31, the oxide film formed on the peripheral edge and the chamfered portion of the main surface on the overlapping side is removed, and the oxide film remains only on the overlapping surface excluding the peripheral edge. (FIG. 3C). In this step, removal of the oxide film formed on the peripheral edge and the chamfered portion is removed by the same method as in the first embodiment. Next, a support wafer 32 is prepared (FIG. 3D), and a laminated body 33 is formed by superposing the semiconductor wafer 31 on the main surface of the support wafer 32 at room temperature via an oxide film 31a (FIG. 3 ( e)). The laminate 33 is oxygen (O2) Or nitrogen (N2) Heat treatment is performed in an atmosphere at a temperature in the range of 900 to 1200 ° C., and a heat treatment is performed in this temperature range for 30 to 120 minutes. After cooling, the porous layer is cut and separated by mechanical force (FIG. 3 (f)). Further, the thin film 34 is smoothed by hydrogen annealing on the separation surface of the support wafer 32 (FIGS. 3G and 3I). As a result, an SOI wafer 36 in which the buried oxide film 31a is not exposed on the side surface is obtained. Note that the separated semiconductor wafer 31 shown in FIG. 3H can be reused by removing the porous silicon layer 37 by polishing the separation surface and then anodizing again to form the porous silicon layer 37. .
[0025]
  Furthermore, the manufacturing method of the bonding SOI wafer in the 4th Embodiment of this invention is demonstrated based on FIG.
  As shown in FIG. 4, in the fourth embodiment, first, the peripheral edge and the chamfered portion of the wafer are polished by polishing only the central portion of the semiconductor wafer 41 before being stacked and forming the stacked body 43. Stand up (FIGS. 4A and 4B). In this step, by using the same method as the removal method of the oxide film by polishing in the first embodiment, the thickness of the central portion is thin, and the thickness of the peripheral edge and the chamfered portion is the thickness before polishing. That is, it can be processed so that the cross-sectional shape of the wafer 41 becomes concave. Next, an oxide film (SiO2) that is an insulating film is formed on the main surface of the wafer 11 by thermal oxidation.2Film) 41a is formed (FIG. 4C). Next, among the oxide films formed on the semiconductor wafer 41, the oxide film formed on the peripheral edge and the chamfered portion of the main surface on the overlapping side is removed, and the oxide film is applied only to the overlapping surface excluding the peripheral edge. It is left (FIG. 4 (d)). In this process, the wafer surface is polished by a normal polishing method and polished to a thickness that removes the oxide film on the peripheral edge of the wafer and the chamfered portion, so that only the oxide film located at the center of the wafer is removed. Can remain. The subsequent steps, that is, the steps shown in FIGS. 4F to 4H are the same as those in the first embodiment.
[0026]
  As described above, the bonded SOI wafer manufactured by the bonded SOI wafer manufacturing method according to the first to fourth embodiments of the present invention does not expose the side surface of the buried oxide film, and therefore has the same quality as a normal silicon wafer. Is obtained.
[0027]
【The invention's effect】
  As described above, the method for manufacturing a bonded SOI wafer according to the present invention is as follows: (A) The peripheral edge and the chamfered portion are raised so that only the central portion of the semiconductor wafer is polished and the cross-sectional shape of the semiconductor wafer becomes concave. Then, an oxide film, which is an insulating film, is formed at least on the main surface of the semiconductor wafer by thermal oxidation, and among the oxide films formed on the semiconductor wafer, the oxidation formed on the peripheral edge and chamfered portion of the main surface on the overlapping side (B) a step of forming a laminate by removing the film and leaving the oxide film only on the overlapping surface excluding the peripheral edge, and then superposing the semiconductor wafer and the support wafer through the oxide film; Forming a thin single-crystal silicon layer on the support wafer through the buried oxide film layer by thinning the semiconductor wafer to a predetermined thickness, and (C) forming the entire buried oxide film layer on the support wafer. Superposition And wherein the encapsulating the side of the main surface and the single crystal silicon layer. By the above method, a bonded SOI wafer in which the entire buried oxide film layer is encapsulated and not exposed can be manufactured.
[Brief description of the drawings]
FIG. 1 is a view showing a method for manufacturing a bonded SOI wafer according to a first embodiment of the present invention in the order of steps.
FIG. 2 is a view showing a method for manufacturing a bonded SOI wafer according to a second embodiment of the present invention in the order of steps.
FIG. 3 is a view showing a method for manufacturing a bonded SOI wafer according to a third embodiment of the present invention in the order of steps.
FIG. 4 is a view showing a method for manufacturing a bonded SOI wafer according to a fourth embodiment of the present invention in the order of steps.
FIG. 5A is a view showing a method for polishing an oxide film on a peripheral edge and a chamfered portion of a semiconductor wafer using a single-side polishing apparatus;
(b) The figure corresponding to Drawing 5 (a) showing the state where a semiconductor wafer was pressed on the lower surface plate.
(c) Sectional drawing of the semiconductor wafer which removed the oxide film of the peripheral edge and chamfering part after grinding | polishing.
FIG. 6 is a view showing a method for etching an oxide film on a peripheral edge and a chamfered portion of a semiconductor wafer.
FIG. 7A is a structural cross-sectional view showing a conventional bonded SOI wafer.
FIG. 7B is a cross-sectional view of the SOI wafer corresponding to FIG. 7A showing a state in which the buried oxide film exposed on the side surface is removed by etching and the single crystal silicon layer protrudes.
[Explanation of symbols]
  11, 21, 31, 41 Semiconductor wafer
  11a, 21a, 31a, 41a buried oxide layer
  12, 22, 32, 42 Support wafer
  13, 23, 33, 43 Laminate
  14, 24, 34, 44 Single crystal silicon layer
  16, 26, 36, 46 SOI wafer

Claims (9)

(A) 上面に研磨布が展張された研磨定盤と、前記研磨定盤の上方に配置される研磨ヘッドとを備え、前記研磨ヘッドの下面に環状のテンプレートが固着され、前記テンプレートの内側にウェーハの直径より若干大径な孔部が形成され、この孔内に軟質のウェーハ中央部のみが接触するような形状を有するバックパットが収納され、前記研磨定盤の上方には前記研磨布に向けて研磨剤を供給するためのノズルが配設された片面研磨装置を用い、前記バックパットと前記研磨布の間に半導体ウェーハを設置し、前記半導体ウェーハを前記研磨定盤の前記研磨布に押し付けて、前記バックパットに接触しないウェーハ周端縁及び面取り部を上凸に変形させることにより、前記半導体ウェーハの中央部のみを研磨して前記半導体ウェーハの断面形状が凹状となるように周端縁及び面取り部を立たせ、熱酸化して少なくとも前記半導体ウェーハの主面に絶縁膜である酸化膜を形成し、前記半導体ウェーハに形成した酸化膜のうち、重ね合わせる側の主面の周端縁及び面取り部に形成された酸化膜を除去して前記周端縁を除く重ね合わせ面のみに酸化膜を残留させた後、前記半導体ウェーハと支持ウェーハとを酸化膜を介して重ね合せることにより積層体を形成する工程と、
(B) 前記半導体ウェーハを所定の厚さに薄膜化することにより前記支持ウェーハ上に埋込み酸化膜層を介して薄膜の単結晶シリコン層を形成する工程と
を含み、
(C) 前記埋込み酸化膜層全体を前記支持ウェーハの重ね合わせ側の主面と前記単結晶シリコン層により被包することを特徴とする貼合せSOIウェーハの製造方法。
(A) a polishing surface plate having a polishing cloth stretched on the upper surface, and a polishing head disposed above the polishing surface plate, an annular template is fixed to the lower surface of the polishing head, and the inner side of the template A hole part slightly larger than the diameter of the wafer is formed, and a back pad having a shape such that only the central part of the soft wafer contacts is accommodated in the hole, and the polishing cloth is placed above the polishing surface plate. Using a single-side polishing apparatus provided with a nozzle for supplying an abrasive toward the semiconductor wafer, a semiconductor wafer is installed between the back pad and the polishing cloth, and the semiconductor wafer is placed on the polishing cloth of the polishing surface plate. pressed, by deforming upward convex wafer peripheral edge and the chamfered portion is not in contact with the back pad, the cross-sectional shape of the semiconductor wafer by polishing only the central portion of the semiconductor wafer is concave The peripheral edge and the chamfered portion are raised so as to be thermally oxidized to form an oxide film as an insulating film on at least the main surface of the semiconductor wafer, and among the oxide films formed on the semiconductor wafer, After removing the oxide film formed on the peripheral edge and the chamfered portion of the main surface and leaving the oxide film only on the overlapping surface excluding the peripheral edge, the semiconductor wafer and the support wafer are interposed through the oxide film. Forming a laminate by superimposing and
(B) forming a thin single-crystal silicon layer through a buried oxide film layer on the support wafer by thinning the semiconductor wafer to a predetermined thickness,
(C) A method for producing a bonded SOI wafer, wherein the whole buried oxide film layer is encapsulated by a main surface on the overlapping side of the support wafer and the single crystal silicon layer.
工程(B)の半導体ウェーハの薄膜化が、前記半導体ウェーハの機械加工、化学エッチング又は気相エッチングのいずれかの方法により行われる請求項1記載の貼合せSOIウェーハの製造方法。  The method for producing a bonded SOI wafer according to claim 1, wherein the thinning of the semiconductor wafer in the step (B) is performed by any one of machining, chemical etching or vapor phase etching of the semiconductor wafer. 工程(B)の半導体ウェーハの機械加工による薄膜化が、重ね合わせる側と反対側の前記半導体ウェーハを重ね合わせた後で研削研磨することにより行われる請求項2記載の貼合せSOIウェーハの製造方法。  3. The method for producing a bonded SOI wafer according to claim 2, wherein the thinning of the semiconductor wafer by machining in the step (B) is performed by grinding and polishing after superposing the semiconductor wafer on the side opposite to the superposing side. . 工程(B)の半導体ウェーハの機械加工による薄膜化が、前記半導体ウェーハを重ね合わせた後で前記半導体ウェーハを主面と平行に切断することにより行われる請求項2記載の貼合せSOIウェーハの製造方法。  3. The bonded SOI wafer manufacturing method according to claim 2, wherein the thinning of the semiconductor wafer by machining in the step (B) is performed by cutting the semiconductor wafer in parallel with the main surface after the semiconductor wafers are overlaid. Method. 工程(B)の半導体ウェーハの薄膜化が、半導体ウェーハの重ね合わせる側の主面及びこの主面に続く面取り部にイオンを注入して前記半導体ウェーハ内部にイオン注入領域を形成し、重ね合わせた後の積層体を所定の温度で熱処理して前記半導体ウェーハを前記イオン注入領域で薄膜から分離して除去することにより行われる請求項1記載の貼合せSOIウェーハの製造方法。  The thinning of the semiconductor wafer in the step (B) is performed by implanting ions into the main surface of the semiconductor wafer to be overlapped and a chamfered portion following the main surface to form an ion implantation region inside the semiconductor wafer and superimposing the semiconductor wafer. The method for producing a bonded SOI wafer according to claim 1, which is performed by heat-treating a subsequent laminated body at a predetermined temperature and separating and removing the semiconductor wafer from the thin film in the ion implantation region. 工程(A)と工程(B)の間における酸化膜の除去が研磨により行われる請求項1記載の貼合せSOIウェーハの製造方法。  The method for producing a bonded SOI wafer according to claim 1, wherein the removal of the oxide film between the step (A) and the step (B) is performed by polishing. 工程(A)の半導体ウェーハ又は支持ウェーハのいずれか一方又はその双方における重ね合わせる側の主面を、酸化性雰囲気下、SC−1溶液により洗浄した後、重ね合わせる請求項1ないし5いずれか1項に記載の貼合せSOIウェーハの製造方法。  6. The superposition side main surface of either or both of the semiconductor wafer and the support wafer in step (A) is washed with an SC-1 solution in an oxidizing atmosphere and then overlaid. A method for producing a bonded SOI wafer according to the item. 工程(A)の半導体ウェーハ又は支持ウェーハのいずれか一方又はその双方における重ね合わせる側の主面を、酸化性雰囲気下、有機酸及びオゾンを含む溶液により洗浄した後、重ね合わせる請求項1ないし5いずれか1項に記載の貼合せSOIウェーハの製造方法。  6. The main surface on the superimposing side of one or both of the semiconductor wafer and the supporting wafer in step (A) is washed with a solution containing an organic acid and ozone in an oxidizing atmosphere and then superposed. The manufacturing method of the bonding SOI wafer of any one of Claims 1. 工程(A)の半導体ウェーハ又は支持ウェーハのいずれか一方又はその双方における重ね合わせる側の主面を、水とHFとの重量割合(HF:H2O)が1:50〜400の範囲内にある希HF溶液により洗浄した後、重ね合わせる請求項1ないし5いずれか1項に記載の貼合せSOIウェーハの製造方法。The main surface on the side to be superposed on either one or both of the semiconductor wafer and the support wafer in step (A) is within a range of the weight ratio of water to HF (HF: H 2 O) of 1:50 to 400. The method for producing a bonded SOI wafer according to any one of claims 1 to 5, wherein the wafer is overlaid after being washed with a dilute HF solution.
JP2003209513A 2003-08-29 2003-08-29 Manufacturing method of bonded SOI wafer Expired - Lifetime JP4581349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209513A JP4581349B2 (en) 2003-08-29 2003-08-29 Manufacturing method of bonded SOI wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003209513A JP4581349B2 (en) 2003-08-29 2003-08-29 Manufacturing method of bonded SOI wafer

Publications (2)

Publication Number Publication Date
JP2005079109A JP2005079109A (en) 2005-03-24
JP4581349B2 true JP4581349B2 (en) 2010-11-17

Family

ID=34402419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209513A Expired - Lifetime JP4581349B2 (en) 2003-08-29 2003-08-29 Manufacturing method of bonded SOI wafer

Country Status (1)

Country Link
JP (1) JP4581349B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303201A (en) * 2005-04-21 2006-11-02 Sumco Corp Process for producing soi substrate
JP5315596B2 (en) * 2006-07-24 2013-10-16 株式会社Sumco Manufacturing method of bonded SOI wafer
JP5310004B2 (en) * 2009-01-07 2013-10-09 信越半導体株式会社 Manufacturing method of bonded wafer
WO2012015022A1 (en) * 2010-07-30 2012-02-02 京セラ株式会社 Composite substrate, electronic component, method for producing composite substrate, and method for manufacturing electronic component
JP2012054451A (en) * 2010-09-02 2012-03-15 Shin Etsu Chem Co Ltd Method of manufacturing bonded substrate and semiconductor substrate cleaning liquid

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429353A (en) * 1990-05-24 1992-01-31 Sharp Corp Semiconductor device
JPH08195483A (en) * 1995-01-19 1996-07-30 Hitachi Ltd Soi substrate, and its manufacture
JPH0992803A (en) * 1995-07-13 1997-04-04 Canon Inc Manufacture of semiconductor substrate
JPH10303089A (en) * 1997-02-27 1998-11-13 Mitsubishi Materials Shilicon Corp Manufacture of laminated substrate
JPH11163307A (en) * 1997-11-28 1999-06-18 Sumitomo Sitix Corp Manufacture of laminated substrate
JPH11204452A (en) * 1998-01-13 1999-07-30 Mitsubishi Electric Corp Semiconductor substrate and method for treatment thereof
JPH11340443A (en) * 1998-05-22 1999-12-10 Shin Etsu Handotai Co Ltd Soi wafer and method for creating the sane
JP2000030992A (en) * 1998-07-10 2000-01-28 Shin Etsu Handotai Co Ltd Manufacture of bonded wafer and bonded water
JP2001035827A (en) * 1999-07-16 2001-02-09 Memc Kk High concentration ozone water, preparation method thereof and cleaning method using the same
JP2001168308A (en) * 1999-09-30 2001-06-22 Canon Inc Method of manufacturing silicon thin film, forming method of soi substrate, and semiconductor device
JP2001257139A (en) * 2000-01-07 2001-09-21 Canon Inc Semiconductor substrate and its manufacturing method
JP2003068996A (en) * 2001-08-22 2003-03-07 Sumitomo Mitsubishi Silicon Corp Method for manufacturing laminated silicon substrate
JP2003224247A (en) * 2002-01-29 2003-08-08 Shin Etsu Handotai Co Ltd Soi wafer and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2823596B1 (en) * 2001-04-13 2004-08-20 Commissariat Energie Atomique SUBSTRATE OR DISMOUNTABLE STRUCTURE AND METHOD OF MAKING SAME

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429353A (en) * 1990-05-24 1992-01-31 Sharp Corp Semiconductor device
JPH08195483A (en) * 1995-01-19 1996-07-30 Hitachi Ltd Soi substrate, and its manufacture
JPH0992803A (en) * 1995-07-13 1997-04-04 Canon Inc Manufacture of semiconductor substrate
JPH10303089A (en) * 1997-02-27 1998-11-13 Mitsubishi Materials Shilicon Corp Manufacture of laminated substrate
JPH11163307A (en) * 1997-11-28 1999-06-18 Sumitomo Sitix Corp Manufacture of laminated substrate
JPH11204452A (en) * 1998-01-13 1999-07-30 Mitsubishi Electric Corp Semiconductor substrate and method for treatment thereof
JPH11340443A (en) * 1998-05-22 1999-12-10 Shin Etsu Handotai Co Ltd Soi wafer and method for creating the sane
JP2000030992A (en) * 1998-07-10 2000-01-28 Shin Etsu Handotai Co Ltd Manufacture of bonded wafer and bonded water
JP2001035827A (en) * 1999-07-16 2001-02-09 Memc Kk High concentration ozone water, preparation method thereof and cleaning method using the same
JP2001168308A (en) * 1999-09-30 2001-06-22 Canon Inc Method of manufacturing silicon thin film, forming method of soi substrate, and semiconductor device
JP2001257139A (en) * 2000-01-07 2001-09-21 Canon Inc Semiconductor substrate and its manufacturing method
JP2003068996A (en) * 2001-08-22 2003-03-07 Sumitomo Mitsubishi Silicon Corp Method for manufacturing laminated silicon substrate
JP2003224247A (en) * 2002-01-29 2003-08-08 Shin Etsu Handotai Co Ltd Soi wafer and its manufacturing method

Also Published As

Publication number Publication date
JP2005079109A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US7855129B2 (en) Method for manufacturing direct bonded SOI wafer and direct bonded SOI wafer manufactured by the method
EP1635396B1 (en) Laminated semiconductor substrate and process for producing the same
KR101151458B1 (en) Method for manufacturing bonded wafer and bonded wafer
JP6168143B2 (en) Method for manufacturing hybrid substrate
JP4398934B2 (en) Manufacturing method of SOI wafer
JP2009032972A (en) Method of manufacturing bonded wafer
JP4277469B2 (en) Method for producing bonded wafer and bonded wafer
WO2005024925A1 (en) Method for producing soi wafer
JP2901031B2 (en) Semiconductor substrate and method of manufacturing the same
JP2005311199A (en) Method for manufacturing substrate
JPH11121310A (en) Manufacture of semiconductor substrate
JPH11288858A (en) Reproducing method for soi substrate and reproduced substrate
JP4581349B2 (en) Manufacturing method of bonded SOI wafer
JP2006216662A (en) Process for producing bonding soi wafer, and the bonding soi wafer
JPH0567598A (en) Manufacture of semiconductor substrate
WO2003046994A1 (en) Method for producing cemented wafer
JP3412449B2 (en) Method for manufacturing SOI substrate
JPH11354761A (en) Soi substrate and its production
JPH10326883A (en) Substrate and manufacture thereof
US20050266657A1 (en) Substrate manufacturing method
JP4492054B2 (en) Reclaimed wafer reclaim processing method and reclaimed wafer
JP3887973B2 (en) Manufacturing method of SOI wafer and SOI wafer
JP3013932B2 (en) Semiconductor member manufacturing method and semiconductor member
JP3945130B2 (en) Manufacturing method of bonded dielectric isolation wafer
JP3962972B2 (en) Manufacturing method of bonded substrates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R150 Certificate of patent or registration of utility model

Ref document number: 4581349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term