JP3857420B2 - ガスタービン監視装置 - Google Patents

ガスタービン監視装置 Download PDF

Info

Publication number
JP3857420B2
JP3857420B2 JP14019998A JP14019998A JP3857420B2 JP 3857420 B2 JP3857420 B2 JP 3857420B2 JP 14019998 A JP14019998 A JP 14019998A JP 14019998 A JP14019998 A JP 14019998A JP 3857420 B2 JP3857420 B2 JP 3857420B2
Authority
JP
Japan
Prior art keywords
gas turbine
temperature
combustor liner
monitoring device
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14019998A
Other languages
English (en)
Other versions
JPH11337067A (ja
Inventor
雄三 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14019998A priority Critical patent/JP3857420B2/ja
Publication of JPH11337067A publication Critical patent/JPH11337067A/ja
Application granted granted Critical
Publication of JP3857420B2 publication Critical patent/JP3857420B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガスタービンプラント、コンバインドプラント等のガスタービン燃焼器の異常発熱等を監視してそのガスタービン燃焼器の健全性、ひいてはガスタービン全体の健全性の維持を図るためのガスタービン監視装置に係り、特に燃焼器ライナ胴の温度分布を的確に検出して熱環境の診断を適正に行えるようにしたガスタービン監視装置に関する。
【0002】
【従来の技術】
近年、ガスタービンプラントやコンバインドプラント等に使用されているガスタービンにおいては、高効率化を目標として動作条件が高温高圧力となり、燃焼ガス温度が高温化される傾向にある。これらの作動条件は、燃焼器ライナ胴を材料使用温度の上限付近またはそれを超える高温まで上昇させる結果を招くことから、これまで燃焼器ライナ胴の過熱要因である燃焼火炎温度の低下、あるいは燃焼器ライナ胴の最適な冷却等が図られており、これらの対策の導入によってある程度の良好な結果を得ている。
【0003】
一方、ガスタービン排気中に含まれるNOx濃度の低減のためには、燃焼器火炎温度を低下させる予混合燃焼方式の採用が必然である。この予混合燃焼方式を採用した場合には、ガスタービン空気圧縮器から吐出されて燃焼器周りに導入される圧縮空気が、主に安定燃焼火炎すなわち種火を得るための拡散燃焼用空気と、低NOx化のための予混合燃焼用空気と、燃焼器を構成する金属部品の冷却空気との3種類に大別され、それぞれ利用目的に適合した性能仕様条件下で流量割合が設定される。
【0004】
この場合、決められた圧縮空気流量において、低NOx化の向上を図るためには、燃焼火炎温度の低下に寄与する予混合燃焼空気割合を多くし、燃焼に直接関与しない冷却空気を減少させなければならず、金属材料やセラミック材料によって構成される燃焼器ライナ胴その他の構成部品を高温度に晒す結果となる。このことから、燃焼器ライナ胴等の高温部品の温度監視の必要が生じ、従来では燃焼器ライナ胴外表面に熱電対を取付け、補償導線を用いてガスタービンケーシング外に熱電対発生起電力信号を取り出し、温度指示記録計で計測記録表示することが行われている。
【0005】
しかし、燃焼器ライナ胴の外表面は乱流条件下の空気流れ場であり、前述の熱電対の取付け方法によっては、熱電対自体が空気流れで冷却され、真の燃焼器ライナ胴外表面を計測していない結果となる。また、熱電対取付けは、製品単体試験時の温度計測結果と冷却設計、および温度分布解析結果から予想される最高温度位置の選定等に基づいて複数個取付けられるが、ガスタービンの運転範囲での燃焼器ライナ胴の軸方向および周方向温度分布は燃焼条件によって異なるため、数点での計測のみで、常に最高温度を正確に監視することは困難である。さらに、燃焼器ライナ胴は複数の孔を通して空気を導入するフィルム冷却等を採用しており、このような冷却構造のもとでは、複数の熱電対を用いたとしても局所的な温度分布形態しか検出できず、したがって冷却性能評価は複雑で、熱電対による実測評価は不正確となり易い。
【0006】
また、セラミック燃焼器に熱電対を取付けて試験を行ったところ、金属燃焼器の場合と異なる問題があることが判明している。すなわち、この場合にはセラミック材料と熱電対シース材である金属材料とが、約1200℃以上で反応浸食し合い、双方が欠損飛散し、場合によってはセラミック燃焼器ライナ胴が壊滅的に破壊する等の危険を有しており、金属燃焼器のライナ胴外表面温度計測のように熱電対を直接取付けることができない。そのため、セラミック材表面に無機接着剤で熱電対を固着させる方法や、セラミック繊維紐で固定する等、種々の方法が試されたが、セラミック燃焼器の燃焼器ライナ胴に使用されているセラミック材とセラミック系の無機接着剤等との組合せ接着技術においては、高温域での材料特性や熱伸び等の機械的特性が異なることから、接着面間で剥離が生じたりして、熱電対を接着させることは非常に困難である。
【0007】
なお、室温での有機接着剤による熱電対の接着は可能であるが、燃焼器ライナ胴が過熱されて接着剤が高温に達すると同時に、接着剤成分中の有機物がガスとなったり、炭化して脆化し、接着剤としての機能は全くなくなる。したがって、高温のセラミック外表面温度を熱電対を用いて直接計測することは非常に困難であり、セラミック燃焼器を採用したガスタービンでの熱電対による燃焼器ライナ胴高温域での温度計測監視は実現できないものととみられる。
【0008】
図12は、ガスタービンプラントの監視および制御システムにおける基本的な信号系統を概略的に示したものである。この図12に示すように、ガスタービンプラントは、起動装置1、空気圧縮器2、ガスタービン3、発電機4が同軸に設けられ、ガスタービン燃焼器5は空気圧縮器2から吐出される圧縮空気を用いて燃料の燃焼を行い、燃焼ガスをガスタービン3に供給するようになっている。そして、空気圧縮器2では吸気室圧力損失、空気圧縮機IGV開度位置等の検出信号a1が出力されて監視され、ガスタービン燃焼器5では燃料供給圧、燃料流量等の検出信号a2が出力されて監視される。
【0009】
ガスタービン3では、回転軸回転数、回転軸振動振幅、ガスタービン排気室温度分布偏差、ガスタービン排ガス組成、ガスタービン付加制御応答、各機器の温度、回転軸潤滑制御(軸受メタル温度、給油圧、潤滑油温度等)の検出信号a3が出力されて監視され、発電機4では発電出力等の検出信号a4が出力されて監視される。なお、他の電気設備6および補機設備7についてもそれぞれ設備検出信号a5,補機検出信号a6が出力されて監視される。これらの出力信号a1〜a6はガスタービン制御装置(操作盤)8に入力され、ガスタービン制御装置8では各機器2〜7に対応する演算、判断等が行われ、必要な運転制御信号b1〜b6が出力されて各機器2〜7の制御が行われる。
【0010】
このような運転制御系統において、ガスタービン燃焼器5に関しては、上述したように、数点の熱電対による各部材料温度測定モニタのみが行われ、人為的に選択制御される運転条件の一つになっている。そして、ガスタービン3の運転停止の繰返しは、ガスタービン燃焼器5に定常および非定常の熱応力を負荷したり、燃焼振動および機械系からの振動負荷を与えたり、高温部の材料強度の低下等を生じさせる。
【0011】
一方、ガスタービン燃焼器5の内部での燃焼が不安定となり、局所的高温を発生した場合、前述したように、熱電対を用いた従来の監視装置では的確に高温部を検出監視することが困難であり、燃焼器ライナ胴の温度分布を推定するには至らない。さらに、燃焼器ライナ胴の高温部の発生を他の各種検出監視信号が間接的に捉えることは難しく、その結果、例えば燃焼器ライナ胴の一部に亀裂が発生したり、ライナ胴部品が溶融欠落したりして、燃焼器周りの空気バランスが崩れて燃焼条件が変化する等の不具合が発生する。
【0012】
図12の例では、ガスタービン燃焼器5の下流側でこれらの原因による各種検出監視信号に変化が生じた時点で、ガスタービン運転制御がなされることになるが、燃焼器ライナの損傷程度の大小によっては、ガスタービントリップ後の軽微な補修のみで元の状態に復帰できる場合に止まらず、即時壊滅的破壊の形態に至る場合もあり得る。すなわち、ガスタービン燃焼器5の温度検出の結果はガスタービン3を始めとして各機器の制御に大きい影響を与えるものであり、高効率高温ガスタービン設計制作、およびガスタービン運転制御の信頼性を向上させるためには、ガスタービン燃焼器5の温度監視が重要なポイントとなる。
【0013】
すなわち、ガスタービン制御の基本と各種制御系の関係においては、燃焼器ライナ胴の外表面温度測定と警報値との接点が、数点の熱電対による各部材料温度測定モニタとされており、人為的選択制御される運転条件の監視接点の一つであって、ガスタービン運転停止条件として自動制御回路に直接に組込まれていない。したがって、ガスタービン運転中に、燃焼器ライナ胴の冷却構造部が熱変形して冷却効果が失われ、変形と温度上昇とが相乗し、燃焼器ライナ胴冷却部に亀裂が発生したり、ライナ胴部品の溶融欠落の危険性が存在するように急激な温度上昇傾向の応答を示している場合、ガスタービン運転監視停止操作が遅延すると、燃焼器下流に位置するガスタービン部品の損傷発生の危険性が高くなる。熱電対の取付け方法と計測位置によっては、前述のような現象を捉えることができない状況となり、燃焼器ライナ胴の壊滅的な損傷に続くガスタービン損傷発生の危険性が高くなる等の問題がある。
【0014】
【発明が解決しようとする課題】
上述したように、従来ではガスタービン燃焼器の温度監視について、燃焼器ライナ胴と外筒とから形成される環状通路部内に複数本の熱電対を挿入し、これらの熱電対を燃焼器ライナ胴外表面に固定していたが、熱電対自体が空気流れで冷却され、真の燃焼器ライナ胴外表面を計測していない結果となる。
【0015】
また、熱電対は燃焼器ライナ胴に複数個取付けられるが、燃焼器ライナ胴の温度分布は燃焼条件によって異なるため、数点での計測のみで常に最高温度を正確に監視することは困難である。さらに、燃焼器ライナ胴は複数の孔を通して空気を導入するフィルム冷却等を採用しており、このような冷却構造のもとでは、複数の熱電対を用いたとしても局所的な温度分布形態しか検出できず、冷却性能評価は複雑で、熱電対による実測評価は不正確となり易い。
【0016】
また、セラミック燃焼器の場合には、セラミック材料と熱電対シース材である金属材料とが約1200℃以上で反応浸食し合って欠損飛散、セラミック燃焼器ライナ胴の破壊等の危険を有する。したがって、高温のセラミック外表面温度を熱電対を用いて直接計測することは非常に困難である。そして、ガスタービンの運転停止の繰返しは、ガスタービン燃焼器に定常および非定常の熱応力を負荷したり、燃焼振動および機械系からの振動負荷を与えたり、高温部の材料強度の低下等を生じさせる。
【0017】
一方、ガスタービン燃焼器の内部での燃焼が不安定となり、局所的高温を発生した場合、前述したように、熱電対を用いた従来の監視装置では的確に高温部を検出監視することが困難であり、燃焼器ライナ胴の温度分布を推定するには至らない。さらに、燃焼器ライナ胴の高温部の発生を他の各種検出監視信号が間接的に捉えることは難しく、その結果、例えば燃焼器ライナ胴の一部に亀裂が発生したり、ライナ胴部品が溶融欠落したりして、燃焼器周りの空気バランスが崩れて燃焼条件が変化する等の不具合が発生する。すなわち、ガスタービン燃焼器の温度検出の結果はガスタービンを始めとして各機器の制御に大きい影響を与え、高効率高温ガスタービン設計制作、およびガスタービン運転制御の信頼性を向上させるためには、ガスタービン燃焼器の温度監視が重要なポイントとなる。
【0018】
また、ガスタービン運転中に燃焼器ライナ胴の冷却構造部が熱変形して冷却効果が失われて変形と温度上昇とが相乗したり、燃焼器ライナ胴冷却部に亀裂が発生したり、ライナ胴部品の溶融欠落の危険性が存在するように急激な温度上昇傾向の応答を示している場合に、ガスタービン運転監視停止操作が遅延すると、燃焼器下流に位置するガスタービン部品の損傷発生の危険性が高くなる。熱電対の取付け方法と計測位置によっては、前述のような現象を捉えることができない状況となり、燃焼器ライナ胴の壊滅的な損傷に続くガスタービン損傷発生の危険性が高くなる等の問題がある。
【0019】
そして、金属燃焼器の場合には、高温部であり、かつ冷却構造故に温度差が大きく、熱応力が発生しやすい部位を対象として、ある程度の広範囲の面積に亘って温度分布の計測監視を行う必要がある一方、セラミック燃焼器の場合には、非接触方式による外表面温度計測の必要があるということができる。
【0020】
本発明はこのような事情に鑑みてなされたものであり、燃焼器ライナ胴の表面温度計測を破損等のおそれのない安全な構成のもとで、高精度で的確に、かつ容易に行うことができ、それによりガスタービン運転制御の信頼性向上が図れるガスタービン監視装置を提供することを目的とする。
【0021】
【課題を解決するための手段】
前記の目的を達成するために、請求項1の発明では、ガスタービン燃焼器の燃焼器ライナ胴の外表面に対向して配置され、前記燃焼器ライナ胴の外表面から発する赤外放射線に基づいて前記燃焼器ライナ胴の表面温度分布を検出する赤外放射温度検出器と、この赤外放射温度検出器による検出信号を画像処理する信号処理手段と、この信号処理手段で処理された画像を正常な燃焼条件時の温度分布の画像データと比較して温度が設定値以上か否か、および温度分布が正常か否かの判断を行う温度判断手段と、この温度判断手段によって運転時の温度が設定値以上であると判断された場合、および温度分布が不均一であると判断された場合の、少なくともいずれかの場合に、警報を発する警報発生手段とを備えたことを特徴とするガスタービン監視装置を提供する。
【0022】
請求項2の発明では、請求項1記載のガスタービン監視装置において、信号処理手段で処理された画像を表示する表示手段を備えたことを特徴とするガスタービン監視装置を提供する。
【0023】
請求項3の発明では、請求項1または2記載のガスタービン監視装置において、判断手段によって運転時の温度が設定値以上であると判断された場合、および温度分布が不均一であると判断された場合の、少なくともいずれかの場合に、ガスタービンの運転を制御するガスタービン運転制御手段を備えたことを特徴とするガスタービン監視装置を提供する。
【0024】
請求項4の発明では、請求項1から3までのいずれかに記載のガスタービン監視装置において、燃焼器ライナ胴の外表面の温度分布計測結果およびガスタービン燃焼器の運転状態値に基づいて、前記ライナ胴の中心部から径方向に沿う内部燃焼火炎温度、燃焼ガス温度、燃焼器ライナ胴の内外面の温度、燃焼器外筒およびガスタービンケーシングの内外面の温度の、少なくともいずれかの熱流束演算を行う熱流束演算手段を備えたことを特徴とするガスタービン監視装置を提供する。
【0025】
請求項5の発明では、請求項1から4までのいずれかに記載のガスタービン監視装置において、燃焼器ライナ胴の周りの流体状態値と熱流速演算結果とに基づいて前記燃焼器ライナ胴に作用する流体力および各種応力の推定演算を行い、これらの推定値を正常な燃焼条件における値と比較して、既定の正常時の条件を満足しない場合に警報指令を発するとともに、その警報指令を発する条件とその原因または要因についての推定結果の表示指令を発する比較演算手段を備えたことを特徴とするガスタービン監視装置を提供する。
【0026】
請求項6の発明では、請求項1から5までのいずれかに記載のガスタービン監視装置において、ガスタービン運転域における燃焼器着火時および失火時等の非定常条件下の温度応答分布データに基づいて、燃焼器ライナ胴の非定常熱応力を演算し、その演算結果に基づいて前記燃焼器ライナ胴の材料評価を行うとともに、前記データの蓄積により余寿命評価を行う評価演算手段を備えたことを特徴とするガスタービン監視装置を提供する。
【0027】
請求項7の発明では、請求項1から6までのいずれかに記載のガスタービン監視装置において、燃焼器ライナ胴の材料、その物性値および外表面処理状態についての既知の値に基づいて、ガスタービン運転および停止による熱環境変化の繰返しに対して前記燃焼器ライナ胴の外表面の赤外放射率変化を計測し、これにより前記燃焼器ライナ胴の外表面の変化状況を推定する変化状況推定演算手段を備えたことを特徴とするガスタービン監視装置を提供する。
【0028】
請求項8の発明では、請求項1から7までのいずれかに記載のガスタービン監視装置において、燃焼器ライナ胴は金属またはセラミックスによって構成されていることを特徴とするガスタービン監視装置を提供する。
【0029】
請求項9の発明では、請求項1から8までのいずれかに記載のガスタービン監視装置において、赤外放射温度分布検出器は、燃焼器ライナ胴の高温域に対応する配置でガスタービンケーシングの外部に1以上配置されており、これら赤外放射温度分布検出器と燃焼器ライナ胴との間には、前記ガスタービンケーシングを貫通してその内端部が前記燃焼器ライナ胴の外周部の環状空気通路に臨み、前記燃焼器ライナ胴から発せられる赤外放射光を前記赤外放射温度分布検出器に導く案内筒が設けられていることを特徴とするガスタービン監視装置を提供する。
【0030】
請求項10の発明では、請求項9記載のガスタービン監視装置において、案内筒のガスタービンケーシング側に位置する外端部に、燃焼器ライナ胴の外周部の環状空気通路を前記ガスタービンケーシングの外部に対して気密に封止する耐熱性の光透過材料からなる封止板が設けられていることを特徴とするガスタービン監視装置を提供する。
【0031】
請求項11の発明では、請求項9または10記載のガスタービン監視装置において、案内筒を冷却する案内筒冷却装置を備えたことを特徴とするガスタービン監視装置を提供する。
【0032】
請求項12の発明では、請求項11記載のガスタービン監視装置において、案内筒冷却装置は、ガスタービン圧縮器からの吐出空気を抽気して案内筒に導く抽気配管と、この抽気配管に設けられ抽気を冷却するための冷却器および前記抽気を加圧するための加圧器と、これら冷却器および加圧器で冷却および加圧された抽気を前記案内筒に通過させて案内筒冷却に供した後、その案内筒の内端部側を介して燃焼器ライナ胴の周囲の環状空気通路に流入させる流入部とを有することを特徴とするガスタービン監視装置を提供する。
【0033】
請求項13の発明では、請求項11記載のガスタービン監視装置において、案内筒冷却装置は、閉ループ状に構成されて冷却媒体を案内筒部位を介して循環させる冷却媒体循環配管と、この冷却媒体循環配管に設けられ少なくとも前記冷却媒体を強制循環させる循環ポンプおよび循環する冷却媒体を熱交換により冷却する熱交換器を有することを特徴とするガスタービン監視装置を提供する。
【0034】
請求項14の発明では、請求項13記載のガスタービン監視装置において、冷却媒体は、ガスタービン外部の空気、窒素ガス、水その他の流体であることを特徴とするガスタービン監視装置を提供する。
【0035】
請求項15の発明では、請求項9から14までのいずれかに記載のガスタービン監視装置において、案内筒を介して燃焼器ライナ胴の外表面から発せられる可視光線を入力し、その可視光線に基づいて前記燃焼器ライナ胴の色に対応する温度を検出する可視光線温度検出装置を備えたことを特徴とするガスタービン監視装置を提供する。
【0036】
請求項16の発明では、請求項15記載のガスタービン監視装置において、案内筒内にハーフミラーが設けられ、このハーフミラーを介して赤外放射温度検出器および可視光線温度検出装置の双方への入光を行わせる構成としたことを特徴とするガスタービン監視装置を提供する。
【0037】
請求項17の発明では、請求項9から16までのいずれかに記載のガスタービン監視装置において、赤外放射温度検出器は焦点調整が可能なレンズを有する赤外線カメラであり、燃焼器ライナ胴の外表面には、前記レンズの焦点合せの対象となる発熱可能な目標部材が固定配置され、この目標部材は案内筒の外部に設けた焦点校正用加熱装置に、前記案内筒の内部に配置した導線を介して連結されていることを特徴とするガスタービン監視装置を提供する。
【0038】
【発明の実施の形態】
以下、本発明に係るガスタービン監視装置の実施形態について、図面を参照して説明する。
【0039】
第1実施形態(図1〜図3)
この第1実施形態は、本発明に係るガスタービン監視装置の基本的な構成および燃焼器ライナ胴の温度分布を検出する構成等についてのものである。図1は温度分布検出機器およびそれに関連する信号処理系統等の要部を示す図である。図2は、本発明が適用されるガスタービンプラントの全体構成を示す説明図であり、図3は図2に示したガスタービン制御装置の詳細なシステム構成を示す回路図である。
【0040】
図2に示すように、本実施形態のガスタービンプラントは、起動装置11、吸気室12、空気圧縮器(ガスタービン圧縮器)13、ガスタービン燃焼器14、ガスタービン15、発電機16、受変電幹線遮断器17、燃焼ガス脱硝設備18、排煙用の煙突19等を備えた構成されている。そして、ガスタービン燃焼器14の燃料系統としての燃料ガス供給設備20、燃料配管21、ガス燃料圧縮器22、燃料遮断弁23、燃料流量制御弁24等が備えられている。また、燃料系統を制御する手段として、ガスタービン制御装置25が設けられている。
【0041】
ガスタービン制御装置25は図3に示すように、検出回路26、操作回路27、条件回路28、監視回路29、隔測回路30、警報回路31、およびこれらと並列な燃料系統の制御回路32等が備えられている。検出回路26では、状態検出および以上検出等が行われる。操作回路27には、手動操作および自動操作を行うための回路が組込まれている。条件回路28では例えば運転条件操作回路の直列接点等のインターロック、連動・単独等の条件設定が行われる。監視回路29では、運転、停止、故障等の監視が行われる。隔測回路30には、送受変電その他の電気系統および設備系統が接続される。警報回路31では、例えば負荷トリップ等の電気系統トリップ、回転オーバースピード等の機械設備トリップ、温度上昇等に対する警報指令出力等が行われる。制御回路32では、燃料系統の燃料遮断弁23および燃料流量制御弁24の制御指令出力等が行われ、燃料噴射弁から燃焼器ライナ内に噴射される燃料の制御により、燃焼火炎の調整が行われる。
【0042】
なお、上記の制御項目は大別して、ガスタービン運転条件として操作回路27に直列に組込まれる接点項目と、人為的選択制御される運転条件の接点項目等とがある。また、このガスタービンプラントでは、制御回路32からの燃料制御信号により燃料流量制御弁24が開度操作され、燃料流量制御により運転される基本制御方式が採用されている。さらに、例えばガスタービン15のトリップは、制御回路32の動作において、ガスタービントリップ信号とともに、受変電幹線の遮断、燃料遮断弁23の緊急閉止により、ガスタービン圧縮機13とガスタービン15および発電機16の回転軸のオーバスピードを抑制して円滑に停止させ、各機器の損傷を防止する。
【0043】
このような構成において、本実施形態では、ガスタービン燃焼器14の燃焼器ライナ胴から運転時に放射される赤外線に基づいて温度分布を監視し、それによりガスタービン燃焼器14の燃焼状態を監視する燃焼器監視装置を備え、この燃焼器監視装置をガスタービン制御装置25と組合わせてガスタービン監視装置が構成されている。以下、このガスタービン監視装置について詳述する。
【0044】
図1および図3に示すように、ガスタービン燃焼器14は、ガスタービンケーシング33内に外胴34と燃焼室形成用の燃焼器ライナ胴35とを挿入した構成となっており、この燃焼器ライナ胴35は金属またはセラミックスによって構成されている。燃焼器ライナ胴35の頭部には燃料ノズル36が組立てられ、この燃料ノズル36から燃焼室37内に燃料が噴出されて燃焼するようになっている。燃焼器ライナ胴35の後端部には燃焼ガスを燃焼室37からガスタービン15のノズル38に案内する尾筒39が連結されている。外胴34と燃焼器ライナ胴35との間には、ガスタービン圧縮機13から吐出される燃焼用空気を燃焼器ライナ胴35内の燃焼室37に向けて流通させる環状通路40が形成されている。
【0045】
本実施形態の燃焼器監視装置41は基本的に、ガスタービン燃焼器14の燃焼器ライナ胴35の外表面から燃焼時に発せられる赤外放射線を入光して燃焼器ライナ胴35の表面温度分布を検出する赤外放射温度検出器42と、この赤外放射温度検出器42による検出信号を画像処理する信号処理手段としてのコントローラ43と、このコントローラ43で処理された画像を表示する表示手段としてのディスプレイ44と、コントローラ43で処理された画像を正常な燃焼条件時の温度分布の画像データと比較して温度が設定値以上か否か、および温度分布が正常か否かの判断を行う温度判断手段としてのコンピュータ45と、このコンピュータ45によって運転時の温度が設定値以上であると判断された場合および温度分布が不均一であると判断された場合の少なくともいずれかの場合に警報を発する警報発生手段46とを備えている。なお、警報発生手段46はガスタービン制御装置25に組込まれる。
【0046】
このガスタービン燃焼器14の燃焼器ライナ胴35の高温域に対応する配置で、ガスタービンケーシング33の外側部のフランジ部33aに赤外放射温度検出器42が取付けられている。この赤外放射温度検出器42は赤外線カメラによって構成され、燃焼器ライナ胴35の高温域に対応する配置で1以上配置され、その入光面がガスタービンケーシング33を貫通した案内筒47の内部を通して燃焼器ライナ胴35の外表面に対向している。そして、この赤外放射温度検出器42は燃焼器ライナ胴35から発した赤外放射線の強度分布に対応した画像情報を入力してこれを電気信号に変換し、その電気信号を出力信号として温度信号検出ライン(信号線)42aを介してコントローラ43に伝送するようになっている。
【0047】
案内筒47は、例えば両端開口の円筒状のものであり、赤外放射温度分布検出器42と燃焼器ライナ胴35との間に位置してガスタービンケーシング33を貫通し、燃焼器ライナ胴35の径方向に軸心を一致させる配置で設けられている。そして、この案内筒47の内端部が燃焼器ライナ胴35の外周部の環状空気通路40に、空気流れを阻害しない状態で一部露出した状態で臨んで燃焼器ライナ胴35の外表面に正対している。また、案内筒47のガスタービンケーシング33側に位置する外端部には耐熱性の光透過材料、例えば石英ガラスからなる封止板47aが設けられ、この封止板47aによって燃焼器ライナ胴35の外周部の環状空気通路40がガスタービンケーシング33の外部に対して気密に封止され、これにより環状空気通路40を通るガスタービン圧縮器13からの高温吐出空気が大気から遮断され、外部へ漏洩することが防止されている。
【0048】
そして、ガスタービン運転時の燃焼室37内の燃焼火炎によって、燃焼器ライナ胴35が加熱されると、この燃焼器ライナ胴35の外表面から発せられた赤外放射線が案内筒47の内部および石英ガラス製の封止板47aを通過して、赤外放射温度分布検出器42に導かれる。そして、この赤外放射温度分布検出器42内で赤外放射温度分布が画像処理され、コントローラ43に電気信号として入力される。なお、赤外放射温度検出器42とコントローラ43との間、およびコントローラ43とこれに接続されたディスプレイ44およびコンピュータ45との間においても、双方向の信号送受信が行えるようになっている。
【0049】
そして、コントローラ43は赤外放射温度検出器42からの温度信号を熱画像に変換するとともに、その熱画像データを画像範囲のXY位置の行列アドレスと温度数値にデジタル変換処理する機能を有し、画像処理結果としての画像データをディスプレイ44とコンピュータ45とに出力するようになっている。
【0050】
したがって、ディスプレイ44には燃焼器ライナ胴外表面温度分布計測結果が、計測毎に常時表示できるとともに、コンピュータ45でのデータ処理結果等も表示できるようになっている。
【0051】
コンピュータ45は、メモリ内に予めガスタービン15の運転条件と各種監視計測データを全て記憶しており、ガスタービン燃焼器作動条件と設計条件とが比較できるようになっている。したがって、このコンピュータ45にコントローラ43からの温度計測の出力信号が入力されると、現在の運転に対応する画像データと、メモリに予め入力されているガスタービン15の同一条件の運転時の正常な温度データとの比較が行われ、燃焼器ライナ胴35の温度が設定値以上であるか否か、および温度分布が正常か否かが判断されるようになっている。これにより、ガスタービン燃焼器ライナ胴35の温度分布検出診断によるガスタービン監視が行われ、例えば温度が設定値以上であり、かつ温度分布が不均一であるとの判断がなされた場合には、このコンピュータ45の信号処理手段から警報指令信号がガスタービン制御装置25の警報発生手段46に出力され、警報が発せられる。また、警報発生時の条件等は、ディスプレイ44にも表示される。したがって、操作員は、警報およびディスプレイ44表示に基づいて制御操作を行い、制御回路32を通じてガスタービン燃焼器14の燃料遮断弁、燃料流量制御弁等の制御を行うことができる。
【0052】
なお、コンピュータ45にガスタービン運転制御装置の自動操作用の操作回路27を接続する構成としてもよく、その場合には前記操作が自動的に行われて自動制御による対応が行える。
【0053】
このような第1実施形態のガスタービン監視装置によれば、ガスタービン燃焼器14の燃焼器ライナ胴35の表面温度を赤外放射温度検出器42によって検出するようにしたので、燃焼器ライナ胴35の表面の一定の広範囲に亘る温度分布を検出することができる。したがって、熱電対を個別的に配置するために局所的情報しか得ることができなかった従来の監視装置と異なり、高精度の情報入力が同時に広範囲に亘って得られるので検出精度の向上が図れる。また、熱電対の場合には燃焼器ライナ胴35との接触面積が小さいため必ずしも正確な熱出力が得られないこと、および検出導線が環状空気流路を通るため、その部分で冷却されて発生出力に誤差の要素が大きかったことに対し、本実施形態の場合はそのような誤差の発生がなく、その面でもデータ入力上での高精度化が図れるようになる。しかも、セラミック燃焼器に対して従来では金属製の熱電対が異質材料の接合により破壊等の問題が生じる可能性があったのに対し、本実施形態によれば赤外放射温度分布により燃焼器ライナ胴35から離間した状態での検出を行うため、検出部における破壊等の問題も発生せず、強度上の信頼性、ひいては運用状の信頼性を向上することができる。
【0054】
また、本実施形態によれば、高精度の温度入力のもとで燃焼器ライナ胴35の温度が設定値以上、温度分布不均一等の条件によって警報を発生することから、燃焼器ライナ胴35の温度分布診断がより的確に行われ、それによりガスタービン監視の機能の向上が図れる。さらに、警報発生条件に至った場合にガスタービン15を自動制御するようにすれば、それにより外部機器を制御させるための条件入力接点を兼ね備えた構成となり、制御の自動化、高信頼化が図れるようになる。また、これらの判断情報はディスプレイ44にも表示されるので、手動制御による場合にも信頼性の向上が図れる。
【0055】
第2実施形態(図4)
本実施形態は、第1実施形態における燃焼器ライナ胴35の外表面の温度分布計測結果に加え、ガスタービン燃焼器運転状態値も使用してガスタービン燃焼器14内の熱流束演算を行うことにより、警報発生時にガスタービン燃焼器14内の燃焼状態を監視できるようにしたものである。図4は、本実施形態によるガスタービン監視装置の構成および熱流束演算のアルゴリズムを模式的に示す図である。なお、本実施形態において、第1実施形態と共通な構成部分については図1と同一の符号を付して説明を省略する。
【0056】
図4に示すように、本実施形態では図1に示したコンピュータ45に、双方向の信号送受信が可能な熱流束演算手段48が接続され、この熱流束演算手段58にガスタービン制御装置25からガスタービン燃焼器運転状態値を演算装置入力信号として入力するようにしてある。この熱流束演算手段48は、コンピュータ45で演算された燃焼器ライナ胴35外表面の温度分布計測結果と、ガスタービン制御装置25から入力されるガスタービン燃焼器運転状態値とに基づいて、熱流束の推定演算を行う解析プログラムを内臓している。この解析プログラムでは、例えば図4の右下枠に模式的に示したように、燃焼室37、燃焼器ライナ胴35、環状通路40、外筒34およびガスタービンケーシング33が、積層円筒状の熱通過モデルとして構成されるようになっており、この解析プログラムにより、燃焼器ライナ胴35の中心部から半径方向に沿う内部燃焼火炎温度、燃焼ガス温度、燃焼器ライナ胴35の内外表面温度、燃焼器外筒ならびにガスタービンケーシング33の内外表面温度等のシミュレーションによる熱流束推定演算が行なわれる。そして、この演算結果がコンピュータ45に出力されるとともに、その演算表示が双方向送受信可能なディスプレイ44に表示できるようになっている。
【0057】
したがって、本実施形態によれば、警報が発せられた場合に、燃焼器ライナ中心部から半径方向に沿う内部燃焼火炎温度、燃焼ガス温度および燃焼器ライナ胴35の内外表面温度の熱流束演算の結果をディスプレイ44への表示等によって監視することができるので、より詳細に状態把握を行うことが可能となり、異常事態に対する対応策等がより確実に行えるとともに、参照データとして記録することにより事後の対策にも役立たせることができる。
【0058】
第3実施形態(図5)
本実施形態は、第1実施形態および第2実施形態で行われる温度分布計測および熱流束演算の結果に基づいて、さらに燃焼器ライナ胴35に作用する流体力および応力等の推定演算を行い、その推定値が正常時の条件を満足しない場合に警報を発するようにしたものである。図5は、このような推定演算を行うための構成を示す図である。なお、本実施形態においても、第1実施形態および第2実施形態と共通な構成部分については、図1および図4と同一の符号を付して説明を省略する。
【0059】
図5に示すように、本実施形態でも赤外放射温度検出器42、コントローラ43、ディスプレイ44、コンピュータ45、熱流束演算手段48を備え、熱流束演算手段48にはガスタービン制御装置25からガスタービン燃焼器運転状態値が演算装置入力信号として入力され、ガスタービンケーシング33の内外表面温度等の熱流束推定演算が行なわれるようにしてある。
【0060】
このものにおいて、熱流束演算手段48にさらに双方向の信号送受信が可能な比較演算手段49が接続されている。この比較演算手段49は、正常な燃焼条件における燃焼器ライナ胴35および尾筒39等の他の燃焼器部品に作用する流体力および応力を記憶する機能と、燃焼器ライナ胴35の外表面の温度分布計測データ、ガスタービン15の運転条件および各種監視計測データに基づいて運転中の燃焼器ライナ胴35および尾筒39等に作用する流体力および応力をシミュレーションにより推定演算する機能と、さらにこの推定演算の結果に基づいて燃焼器ライナ胴35と尾筒39等に加わる応力を推定演算する機能とを有する。そしてさらに、この比較演算手段49は、正常時の流体力および応力と推定値とを比較し、推定値が正常時の条件を満足しない場合に警報指令を発するとともに、その警報指令を発する条件とその原因または要因についての推定結果の表示指令を発する機能を有する。
【0061】
このような構成により、運転時に燃焼器ライナ胴35および尾筒39等に作用する流体力および応力の推定値が正常な燃焼条件における値と比較され、既定の正常時の条件を満足しない場合に警報指令が発せられる。したがって、本実施形態によれば、流体力および応力の条件まで取込んだ監視が行われることから、さらに監視精度を高めることができる。また、警報時にはその指令を発する条件とその原因または要因についての推定結果がディスプレイ44に表示されるため、詳細に状態把握を行うことが可能となり、異常事態に対する対応策等が一層確実に行えるとともに、参照データとして記録することにより事後の対策にも役立たせることができる。
【0062】
第4実施形態(図6)
本実施形態は、ガスタービン運転域における燃焼器着火時および失火時等の非定常条件下の温度応答分布データに基づいて、燃焼器ライナ胴35に発生する非定常熱応力を演算し、その非定常熱応力が設計条件範囲の材料許容応力を超えた場合に警報を発するとともに、その非定常熱応力の演算結果に基づいて燃焼器ライナ胴35の材料評価を行い、そのデータの蓄積により余寿命評価を行うようにしたものである。図3は、このような非定常熱応力の演算および余寿命評価を行うための構成を示す図である。なお、本実施形態の基本的な構成は第3実施形態とほぼ共通しており、共通部分については、図5と同一の符号を付して説明を省略する。
【0063】
図6に示すように、本実施形態でも赤外放射温度検出器42、コントローラ43、ディスプレイ44、コンピュータ45、熱流束演算手段、比較演算手段49等を備え、熱流束演算手段48にはガスタービン制御装置25からガスタービン燃焼器運転状態値が演算装置入力信号として入力されるようになっている。
【0064】
このものにおいて、赤外放射温度検出器42からの温度検出信号ライン42aおよびガスタービン制御装置25からの演算装置入力信号ライン25aに、入力信号線50a,50bを介して、非定常熱応力の演算および燃焼器ライナ胴35の材料評価を行うための評価演算手段52が接続されている。各入力信号線50a,50bには信号入力ゲート53a,53bが設けられ、一定のしきい値を超えた温度検出信号および演算装置入力信号が、評価演算手段52に入力されるようになっている。この評価演算手段52は、ガスタービン運転域における燃焼器着火時および失火トリップ時等の非定常条件下における急加熱および急冷却時の燃焼器ライナ胴35の外表面温度分布と、ガスタービン15の運転条件と、各種監視計測データとに基づいて、燃焼器ライナ胴35に発生する非定常熱応力と非定常温度とをシミュレーションによる推定演算により解析するプログラムを内臓し、このプログラムによる応力解析結果の表示出力を行う機能を有している。この応力解析結果の表示出力は、信号出力ゲート54を有する出力信号線55によって、コントローラ43に導かれ、ディスプレイ44での表示が行われるようになっている。
【0065】
また、評価演算手段52は、非定常熱応力の演算結果に基づく燃焼器ライナ胴35の材料評価、すなわち燃焼器ライナ胴35の材料物性値と応力解析結果との比較評価を行うとともに、これらのデータ蓄積を行い、さらに燃焼器ライナ胴35に発生した非定常熱応力が設計条件範囲の材料許容応力内であるか否かを判断し、既定の応力値以下の条件を満足しない場合は、警報指令信号を発するようになっている。
【0066】
なお、本実施形態ではプリトリガーデータ記録装置56が設けられ、このプリトリガーデータ記録装置56は、評価演算手段52への各入力信号線50a,50bの信号入力ゲート53a,53bおよびガスタービン制御装置25にデータ入力信号線57a,57b,57cを介して接続されている。そして、赤外放射温度分布計測データ、演算装置入力データ、燃焼器ライナ周りの流体状態値等が、非定常応答以前の時刻に遡って記録できるようになっている。
【0067】
このような構成の本実施形態によると、ガスタービン燃焼器14の着火時および失火トリップ時等に燃焼器ライナ胴35に非定常熱応力が発生した場合、非定常条件下の流体状態値および熱流束等の温度応答分布データが評価演算手段52に入力され、これらのデータに基づいて、燃焼器ライナ胴35に発生する非定常熱応力の演算等が行われる。例えば図4の右上破線枠で示すように、第1、第2演算装置との複合演算結果として、状態値トレンド、非定常熱応力応答、非定常温度応答等を得ることができ、この演算結果はディスプレイ44に表示される。そして、非定常熱応力が設計条件範囲の材料許容応力内であるか否か判断され、その非定常熱応力が設計条件範囲の材料許容応力を超えた場合には警報が発せられる。さらに、非定常熱応力の演算結果に基づいて、燃焼器ライナ胴35の材料評価が行われるので、ガスタービン監視と平行してデータ蓄積による余寿命評価を行うことができる。
【0068】
なお、プリトリガーデータ記録装置56を設けたことにより、赤外放射温度分布計測データ、演算装置入力データ、燃焼器ライナ胴35周りの流体状態値等が非定常応答以前の時刻に遡って記録されるので、再生により非定常データの推移を知ることにができ、原因究明等が詳細に行えるようになる。
【0069】
第5実施形態(図7)
本実施形態は、第4実施形態の構成に加え、長期間に亘るガスタービン運転停止の実績記録や、燃焼器ライナ胴35の外表面の放射率の変化等を計測、解析および記憶できるようにしたものである。図7は、このような本実施形態の構成を示す図である。なお、本実施形態の基本的な構成は第4実施形態とほぼ共通しており、共通部分については、図6と同一の符号を付して説明を省略する。
【0070】
図7に示すように、本実施形態では、熱流束演算手段48と双方向の送受信が可能な状態で、燃焼器ライナ胴35の外表面の変化状況を推定する変化状況推定演算手段58が設けられている。この変化状況推定演算手段58では、燃焼器ライナ胴35の材料、その物性値および外表面処理状態についての既知の値に基づいて、ガスタービン運転および停止による熱環境変化の繰返しに対して燃焼器ライナ胴35の外表面の赤外放射率変化を演算できるようになっている。
【0071】
すなわち、燃焼器ライナ胴35は金属またはセラミックスによって構成され、各種材料と外表面処理状態は既知であり、これらの状態値は材料の各種物性値とともに燃焼器監視装置41内に記憶されるようになっている。また、ガスタービン15の運転および停止等の熱環境変化の繰返しにより、燃焼器ライナ胴35の外表面の赤外放射率が変化するが、これらも計測されて燃焼器監視装置41内で記憶されるようになっている。また、赤外放射温度検出器42の被測定物表面の放射率の設定は、燃焼器ライナ胴25の材料とその外表面加工処理状態による放射率とに合致するように調整してあり、これらの初期状態値および材料の各種物性値も、プラント設置時等におけガスタービン燃焼器14の組立て完了による燃焼器着火未経験時のデータとして、燃焼器監視装置41内に記憶されるようになっている。
【0072】
そして、ガスタービン15の運転および停止による熱環境変化の繰返しによる燃焼器ライナ胴35の外表面の加熱酸化と空気中異物の付着等による放射率変化とが記憶され、燃焼器ライナ胴35の外表面の放射率変化とガスタービン運転の積算時間との相関関係として演算するようになっている。なお、これらのデータは、燃焼器監視装置内で随時検索引用できるようになっている。
【0073】
このような構成の本実施形態によれば、燃焼器ライナ胴35の外表面の加熱酸化と空気中異物の付着等の進行状況との評価推定を実現できるようになる。
【0074】
第6実施形態(図8)
本実施形態は、燃焼器ライナ胴外表面から発せられる赤外放射線を赤外放射温度検出器42に導く案内筒47の冷却技術についてのものである。本実施形態では、ガスタービン圧縮器13からの吐出空気を冷却媒体として利用する構成としており、図8は、この案内筒冷却構成を示す図である。なお、案内筒冷却構成以外については、図1に示した構成と変らないので、図8の対応部分に図1と同一の符号を付して説明を省略する。
【0075】
案内筒47は前述したように、ガスタービンケーシング33を貫通して環状空気通路に臨んでおり、ガスタービン圧縮器13から吐出された高温高圧空気に晒されている。また、案内筒47の内端部は、燃焼器ライナ胴35の外表面に接近しており、燃焼器ライナ胴35の外表面の高温場から放射熱および伝熱を受け、さらに高温となる。セラミック燃焼器の場合には、燃焼器ライナ胴35の外表面温度が1200℃以上になるため、案内筒47全体を積極的に冷却する必要がある。
【0076】
そこで、本実施形態では図8に示すように、ガスタービン圧縮器13からの吐出空気を用いて案内筒47を冷却する案内筒冷却装置59が設けてある。この案内筒冷却装置59は、ガスタービン圧縮器13からの吐出空気を例えばガスタービン燃焼器14の周囲部のガスタービンケーシング33から抽気し、案内筒47の外周側空間に導く抽気配管60を有している。この抽気配管60の途中に、冷却水循環式の水冷の冷却器61と、モータ62を駆動源とする加圧器(圧縮器)63とが順次に設けられ、これにより抽気した空気の冷却および加圧を行うようになっている。抽気配管60の冷却器61上流側には開閉弁64が設けられ、加圧器63下流側には空気流量調節弁65が設けられている。また、冷却器61には冷却水流量調節弁66が設けられている。そして、空気流量調節弁65と冷却水流量調節弁66とは制御盤67によって制御される構成となっている。すなわち、制御盤67は、抽気配管60の冷却器61下流側および加圧器63下流側にそれぞれ設けられた温度センサ68および圧力センサ69によって検出される抽気配管60内の空気温度および空気圧を入力値とし、これらの値に基づいて空気流量調節弁65および冷却水流量調節弁66の開度を設定し、これにより案内筒47に送る空気の温度および空気量を適正に制御するようになっている。抽気配管の先端側から案内筒47の外周側空間に送り出される空気は、案内筒47部位を通過して案内筒47の冷却に供された後、燃焼器ライナ胴35の周囲の環状空気通路40に流入してガスタービン圧縮器13からの吐出空気と合流するようになっている。
【0077】
このような構成の本実施形態による案内筒冷却装置59によれば、冷却媒体としてガスタービン圧縮器13からの吐出空気を利用することにより、比較的簡単な構成によって能率よく案内筒47を冷却し、案内筒47の過熱あるいは変形等を防止することができる。また、冷却仕事を終えた空気を環状空気通路40内のガスタービン圧縮機吐出空気に合流させることにより、ガスタービン外部へ圧縮空気を放出することなく、すなわちガスタービン圧縮器13の吐出空気流量を減少させることなく、案内筒47の冷却を実現することができる。
【0078】
第7実施形態(図9)
本実施形態も、案内筒47を冷却する案内筒冷却についてのものである。本実施形態では、ガスタービン圧縮器13からの吐出空気以外の冷却媒体を利用する構成としており、図9は、この案内筒冷却構成を示す図である。なお、案内筒冷却構成以外については、図1に示した構成と変らないので、図9の対応部分に図1と同一の符号を付して説明を省略する。
【0079】
図9に示すように、本実施形態の案内筒冷却装置70では、冷却媒体を窒素としており、ガスタービンケーシング33の外部に設けられて一部が案内筒47部位を通る閉ループ状の冷却媒体循環配管71を備え、この冷却媒体循環配管71の一方向(矢印方向)に窒素が液体またはガスの状態で循環するようになっている。すなわち、冷却媒体循環配管71は、案内筒47部位において、その案内筒47の周囲をコイル状に取巻く案内筒冷却部72を有し、この案内筒冷却部72から窒素の流れ方向(矢印方向)に沿って順次に、窒素ガス冷却用の熱交換器としての凝縮液化器73、液体窒素を強制循環させる循環ポンプとしてのモータ駆動式液体ポンプ74、減圧機構としての窒素ガス貯蔵タンク75、および気化用熱交換器としての蒸発器76が設けられている。冷却媒体循環配管71内では、窒素が矢印で示すように、窒素ガス貯蔵タンクから蒸発器76に流れてガス状となり、その後コイル状の案内筒冷却部72に導かれて冷却仕事をし、この冷却仕事により加熱された窒素ガスは凝縮液化器73に導かれて液体窒素となる。この液体窒素は強制循環用の液体ポンプ74によって加圧された後、窒素ガス貯蔵タンク75に還流して減圧されて窒素ガスとなる。
【0080】
冷却媒体循環配管71の凝縮液化器73上流側には開閉弁77が設けられ、液体ポンプ74下流側、窒素ガス貯蔵タンク75下流側および蒸発器76下流側には、それぞれ窒素流量調節弁78,79,80が設けられている。また、凝縮液化器73には冷媒流量調節弁73aが設けられている。そして、各窒素流量調節弁78,79,80、冷媒流量調節弁72および液体ポンプ74のモータ81は制御盤82によって制御される構成となっている。すなわち、制御盤82は、冷却媒体循環配管71の液体ポンプ74上下流側および蒸発器76下流側に設けられた圧力センサ83a,83bおよび温度センサ84によって検出される窒素の温度および圧力を入力値とし、これらの値に基づいて各流量調節弁78,79,80,73aの開度およびモータ81の回転数を設定し、これにより案内筒47の冷却部72に送る窒素ガスの温度および流量を適正に制御するようになっている。
【0081】
このような構成の案内筒冷却装置70によると、ガスタービン運転状態から独立した状態で案内筒47を積極的に冷却する構成としたことにより、冷却媒体循環配管71内の圧力を、ガスタービン圧縮器13の吐出圧力から隔絶させた低圧なものとして実施することができる。そして、冷却媒体循環配管71内を流れる冷却媒体として窒素を適用し、供給および回収を一連のサイクルで連続稼働させることができるため、ガスタービン本体部分と別置きの独立した補助装置として、冷却運転管理および冷却効果の調整等を容易に行うことができる。すなわち、本実施形態によれば、冷却媒体の供給および回収の循環冷却方法により、案内筒47の冷却効果を向上させ、ガスタービン運転状態に依存しない独立した冷却が実現できるようになる。
【0082】
なお、本実施形態では冷却媒体として窒素を適用したが、窒素以外に、空気、水等の種々の流体を適用することが可能である。
【0083】
第8実施形態(図10)
本実施形態は、赤外放射温度検出器42と同時に、燃焼器ライナ胴35の外表面の可視光線による温度検出を行う可視光線温度検出も行うようにしたものである。図10は、この可視光線温度検出用の構成を示す図である。
【0084】
図10に示すように、本実施形態では案内筒47がガスタービンケーシング33内を貫通する内部案内筒47bと、この内部案内筒47bの外側に同軸的に設けられた外部案内筒47cとを有する構成とされている。内部案内筒47bの外端部の開口が石英ガラス製の封止板47aで封止され、その封止板47aの外面側に外部案内筒47cが固定されている。外部案内筒47cはT字管状のもので、内部案内筒47bと同軸配置の本体筒部分47c1と、その中間部から側方に向かって連通状態で突出筒部分47c2とを有する。そして、本体筒部分47c1の外端部に赤外放射温度分布検出器42が設けられる一方、突出筒部47c2の先端に例えばCCDカメラ85、TVモニタ86、ビデオ装置87等を適用した可視光線温度検出装置88が設けられている。さらに、外部案内筒47c内にはハーフミラー89が設けられ、このハーフミラー89を介して赤外放射温度検出器42および可視光線温度検出装置88の双方への入光を行わせることができるようになっている。
【0085】
このような構成の本実施形態によると、燃焼器ライナ胴35の外表面から加熱時に発せられる赤外放射線を赤外放射温度検出器42で検出すると同時に、燃焼器ライナ胴35の外表面の赤熱化による可視光線である赤色光線等をハーフミラー89を介して可視光線温度検出装置88によって目視観察で検出することができる。したがって、これらの同時に得られる2種類の温度分布検出値を利用して、例えば赤外放射温度検出器42の検出値を可視光線温度検出装置88の検出値で比較補整する等により、温度検出精度を高めることが可能となり、燃焼器ライナ胴35の温度分布監視の信頼性を向上することができる。
【0086】
第9実施形態(図11)
本実施形態は、ガスタービン15の運転停止時等において、赤外放射温度検出器42のレンズの焦点調整、校正等を容易に行えるようにしたものである。図11は、この焦点調整等を行うための構成を示す図である。
【0087】
図11に示すように、本実施形態では、赤外放射温度検出器42が焦点調整の可能なレンズ90を有する赤外線カメラとされており、燃焼器ライナ胴35の外表面に、レンズ90の焦点合せの対象となる発熱可能な目標部材91が固定されている。また、案内筒47の外部に、加熱源92およびその温度設定器(コントローラ)93等からなる焦点校正用加熱装置94が設けられている。この焦点校正用加熱装置94の加熱源92に目標部材91が案内筒47の内部に配置した導線95を介して連結され、任意の温度に加熱できるようになっている。
【0088】
そして、赤外放射温度検出器42の焦点調整等を行う場合には、例えばガスタービン15の運転停止時、あるいはガスタービン燃焼器14の新設あるいは交換時等のように、燃焼器ライナ胴35が低温で赤外放射線の非発生状態において、焦点校正用加熱装置94によって燃焼器ライナ胴35の外表面の目標部材91を加熱する。この加熱は、例えば赤外放射温度検出器42の使用時を想定した必要な赤外放射条件の設定温度とする。このような加熱により、目標部材91から発する赤外放射線を、赤外放射温度検出器42で捉えながら、レンズの焦点調整、校正等を行うことができる。
【0089】
したがって、本実施形態によれば、ガスタービン停止中にかかわらず、赤外放射温度検出器42のレンズ90の焦点調整、温度測定機能の校正等を容易に行うことができる。なお、目標部材91の材質としては、燃焼器ライナ胴35と同一の材質を選定すれば、赤外放射温度検出器42の使用条件と検出対象が共通となるので焦点調整の容易化および高精度化が図れ、ひいては測定温度校正精度を向上させることができる。
【0090】
【発明の効果】
以上で詳述したように、本発明によれば、熱電対を用いた従来の監視装置で問題となっていた取付け構成上の困難性、高温部検出監視の低精度による燃焼器ライナ胴の温度分布推定の困難性、胴部品の溶融欠落等、燃焼器回りの空気による冷却の問題、燃焼器ライナ胴の損傷可能性およびガスタービン損傷の危険性等を克服し、燃焼器ライナ胴の表面温度計測を破損等のおそれのない安全な構成のもとで、高精度で的確に、かつ容易に行うことができ、それによりガスタービン運転制御の信頼性向上が図れる等の効果が奏される。
【図面の簡単な説明】
【図1】本発明に係るガスタービン監視装置の第1実施形態の要部構成を示す図。
【図2】前記実施形態における全体構成を示す図。
【図3】前記実施形態における全体の制御系の制御信号の流れを示す図。
【図4】本発明に係るガスタービン監視装置の第2実施形態の要部構成を示す図。
【図5】本発明に係るガスタービン監視装置の第3実施形態の要部構成を示す図。
【図6】本発明に係るガスタービン監視装置の第4実施形態の要部構成を示す図。
【図7】本発明に係るガスタービン監視装置の第5実施形態の要部構成を示す図。
【図8】本発明に係るガスタービン監視装置の第6実施形態の要部構成を示す図。
【図9】本発明に係るガスタービン監視装置の第7実施形態の要部構成を示す図。
【図10】本発明に係るガスタービン監視装置の第8実施形態の要部構成を示す図。
【図11】本発明に係るガスタービン監視装置の第9実施形態の要部構成を示す図。
【図12】従来例を説明するためのガスタービン制御系を示す図。
【符号の説明】
11 起動装置
12 吸気室
13 空気圧縮器(ガスタービン圧縮器)
14 ガスタービン燃焼器
15 ガスタービン
16 発電機
17 受変電幹線遮断器
18 燃焼ガス脱硝設備
19 煙突
20 燃料ガス供給設備
21 燃料配管
22 ガス燃料圧縮器
23 燃料遮断弁
24 燃料流量制御弁
25 ガスタービン制御装置
25a 演算装置入力信号ライン
26 検出回路
27 操作回路
28 条件回路
29 監視回路
30 隔測回路
31 警報回路
32 制御回路
33 ガスタービンケーシング
33a フランジ部
34 外胴
35 燃焼器ライナ胴
36 燃料ノズル
37 燃焼室
38 ノズル
39 尾筒
40 環状通路
41 燃焼器監視装置
42 赤外放射温度検出器
42a 温度信号検出ライン(信号線)
43 コントローラ
44 ディスプレイ
45 コンピュータ
46 警報発生手段
47 案内筒
47a 封止板
47b 内部案内筒
47c 外部案内筒
47c1 本体筒部分
47c2 突出筒部分
48 熱流束演算手段
49 比較演算手段
50a,50b 入力信号線
52 評価演算手段
53a,53b 信号入力ゲート
54 信号出力ゲート
56 プリトリガーデータ記録装置
57a,57b,57c データ入力信号線
58 変化状況推定演算手段
59 案内筒冷却装置
60 抽気配管
61 冷却器
62 モータ
63 加圧器(圧縮器)
64 開閉弁
65 空気流量調節弁
66 冷却水流量調節弁
67 制御盤
68 温度センサ
69 圧力センサ
70 案内筒冷却装置
71 冷却媒体循環配管
72 案内筒冷却部
73 凝縮液化器
73a 流量調節弁
74 モータ駆動式液体ポンプ
75 窒素ガス貯蔵タンク
76 蒸発器
77 開閉弁
78,79,80 窒素流量調節弁
81 モータ
82 制御盤
83a,83b 圧力センサ
84 温度センサ
85 CCDカメラ
86 TVモニタ
87 ビデオ装置
88 可視光線温度検出装置
89 ハーフミラー
90 レンズ
91 目標部材
92 加熱源
93 温度設定器(コントローラ)
94 焦点校正用加熱装置
95 導線

Claims (17)

  1. ガスタービン燃焼器の燃焼器ライナ胴の外表面に対向して配置され、前記燃焼器ライナ胴の外表面から発する赤外放射線に基づいて前記燃焼器ライナ胴の表面温度分布を検出する赤外放射温度検出器と、この赤外放射温度検出器による検出信号を画像処理する信号処理手段と、この信号処理手段で処理された画像を正常な燃焼条件時の温度分布の画像データと比較して温度が設定値以上か否か、および温度分布が正常か否かの判断を行う温度判断手段と、この温度判断手段によって運転時の温度が設定値以上であると判断された場合、および温度分布が不均一であると判断された場合の、少なくともいずれかの場合に、警報を発する警報発生手段とを備えたことを特徴とするガスタービン監視装置。
  2. 請求項1記載のガスタービン監視装置において、信号処理手段で処理された画像を表示する表示手段を備えたことを特徴とするガスタービン監視装置。
  3. 請求項1または2記載のガスタービン監視装置において、判断手段によって運転時の温度が設定値以上であると判断された場合、および温度分布が不均一であると判断された場合の、少なくともいずれかの場合に、ガスタービンの運転を制御するガスタービン運転制御手段を備えたことを特徴とするガスタービン監視装置。
  4. 請求項1から3までのいずれかに記載のガスタービン監視装置において、燃焼器ライナ胴の外表面の温度分布計測結果およびガスタービン燃焼器の運転状態値に基づいて、前記ライナ胴の中心部から径方向に沿う内部燃焼火炎温度、燃焼ガス温度、燃焼器ライナ胴の内外面の温度、燃焼器外筒およびガスタービンケーシングの内外面の温度の、少なくともいずれかの熱流束演算を行う熱流束演算手段を備えたことを特徴とするガスタービン監視装置。
  5. 請求項1から4までのいずれかに記載のガスタービン監視装置において、燃焼器ライナ胴の周りの流体状態値と熱流速演算結果とに基づいて前記燃焼器ライナ胴に作用する流体力および各種応力の推定演算を行い、これらの推定値を正常な燃焼条件における値と比較して、既定の正常時の条件を満足しない場合に警報指令を発するとともに、その警報指令を発する条件とその原因または要因についての推定結果の表示指令を発する比較演算手段を備えたことを特徴とするガスタービン監視装置。
  6. 請求項1から5までのいずれかに記載のガスタービン監視装置において、ガスタービン運転域における燃焼器着火時および失火時等の非定常条件下の温度応答分布データに基づいて、燃焼器ライナ胴の非定常熱応力を演算し、その演算結果に基づいて前記燃焼器ライナ胴の材料評価を行うとともに、前記データの蓄積により余寿命評価を行う評価演算手段を備えたことを特徴とするガスタービン監視装置。
  7. 請求項1から6までのいずれかに記載のガスタービン監視装置において、燃焼器ライナ胴の材料、その物性値および外表面処理状態についての既知の値に基づいて、ガスタービン運転および停止による熱環境変化の繰返しに対して前記燃焼器ライナ胴の外表面の赤外放射率変化を計測し、これにより前記燃焼器ライナ胴の外表面の変化状況を推定する変化状況推定演算手段を備えたことを特徴とするガスタービン監視装置。
  8. 請求項1から7までのいずれかに記載のガスタービン監視装置において、燃焼器ライナ胴は金属またはセラミックスによって構成されていることを特徴とするガスタービン監視装置。
  9. 請求項1から8までのいずれかに記載のガスタービン監視装置において、赤外放射温度分布検出器は、燃焼器ライナ胴の高温域に対応する配置でガスタービンケーシングの外部に1以上配置されており、これら赤外放射温度分布検出器と燃焼器ライナ胴との間には、前記ガスタービンケーシングを貫通してその内端部が前記燃焼器ライナ胴の外周部の環状空気通路に臨み、前記燃焼器ライナ胴から発せられる赤外放射光を前記赤外放射温度分布検出器に導く案内筒が設けられていることを特徴とするガスタービン監視装置。
  10. 請求項9記載のガスタービン監視装置において、案内筒のガスタービンケーシング側に位置する外端部に、燃焼器ライナ胴の外周部の環状空気通路を前記ガスタービンケーシングの外部に対して気密に封止する耐熱性の光透過材料からなる封止板が設けられていることを特徴とするガスタービン監視装置。
  11. 請求項9または10記載のガスタービン監視装置において、案内筒を冷却する案内筒冷却装置を備えたことを特徴とするガスタービン監視装置。
  12. 請求項11記載のガスタービン監視装置において、案内筒冷却装置は、ガスタービン圧縮器からの吐出空気を抽気して案内筒に導く抽気配管と、この抽気配管に設けられ抽気を冷却するための冷却器および前記抽気を加圧するための加圧器と、これら冷却器および加圧器で冷却および加圧された抽気を前記案内筒に通過させて案内筒冷却に供した後、その案内筒の内端部側を介して燃焼器ライナ胴の周囲の環状空気通路に流入させる流入部とを有することを特徴とするガスタービン監視装置。
  13. 請求項11記載のガスタービン監視装置において、案内筒冷却装置は、閉ループ状に構成されて冷却媒体を案内筒部位を介して循環させる冷却媒体循環配管と、この冷却媒体循環配管に設けられ少なくとも前記冷却媒体を強制循環させる循環ポンプおよび循環する冷却媒体を熱交換により冷却する熱交換器を有することを特徴とするガスタービン監視装置。
  14. 請求項13記載のガスタービン監視装置において、冷却媒体は、ガスタービン外部の空気、窒素ガス、水その他の流体であることを特徴とするガスタービン監視装置。
  15. 請求項9から14までのいずれかに記載のガスタービン監視装置において、案内筒を介して燃焼器ライナ胴の外表面から発せられる可視光線を入力し、その可視光線に基づいて前記燃焼器ライナ胴の色に対応する温度を検出する可視光線温度検出装置を備えたことを特徴とするガスタービン監視装置。
  16. 請求項15記載のガスタービン監視装置において、案内筒内にハーフミラーが設けられ、このハーフミラーを介して赤外放射温度検出器および可視光線温度検出装置の双方への入光を行わせる構成としたことを特徴とするガスタービン監視装置。
  17. 請求項9から16までのいずれかに記載のガスタービン監視装置において、赤外放射温度検出器は焦点調整が可能なレンズを有する赤外線カメラであり、燃焼器ライナ胴の外表面には、前記レンズの焦点合せの対象となる発熱可能な目標部材が固定配置され、この目標部材は案内筒の外部に設けた焦点校正用加熱装置に、前記案内筒の内部に配置した導線を介して連結されていることを特徴とするガスタービン監視装置。
JP14019998A 1998-05-21 1998-05-21 ガスタービン監視装置 Expired - Lifetime JP3857420B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14019998A JP3857420B2 (ja) 1998-05-21 1998-05-21 ガスタービン監視装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14019998A JP3857420B2 (ja) 1998-05-21 1998-05-21 ガスタービン監視装置

Publications (2)

Publication Number Publication Date
JPH11337067A JPH11337067A (ja) 1999-12-10
JP3857420B2 true JP3857420B2 (ja) 2006-12-13

Family

ID=15263228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14019998A Expired - Lifetime JP3857420B2 (ja) 1998-05-21 1998-05-21 ガスタービン監視装置

Country Status (1)

Country Link
JP (1) JP3857420B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831835B2 (ja) * 2007-09-25 2011-12-07 三菱重工業株式会社 ガスタービン燃焼器
JP2009130255A (ja) * 2007-11-27 2009-06-11 Ulvac Japan Ltd 成膜装置
JP5419378B2 (ja) * 2008-04-11 2014-02-19 三菱重工業株式会社 火炎検出器の取付構造
US8437941B2 (en) * 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
JP5448597B2 (ja) * 2009-06-19 2014-03-19 三菱重工業株式会社 ガスタービン及びこの運転方法
US8650883B2 (en) * 2010-08-11 2014-02-18 General Electric Company System and method for operating a gas turbine
US8158428B1 (en) * 2010-12-30 2012-04-17 General Electric Company Methods, systems and apparatus for detecting material defects in combustors of combustion turbine engines
JP6637179B2 (ja) * 2016-08-05 2020-01-29 東芝エネルギーシステムズ株式会社 ガスタービン燃焼器
JP2019106436A (ja) * 2017-12-12 2019-06-27 日本電気株式会社 磁性熱電変換素子及びそれを含む熱電変換システム
CN114893303B (zh) * 2022-05-31 2024-03-22 哈尔滨工程大学 一种适用于微型燃气轮机的滑油容错控制供油方法
CN116085830A (zh) * 2023-03-13 2023-05-09 中国空气动力研究与发展中心空天技术研究所 燃烧室火焰筒壁温热电偶的引线孔密封结构及其拆装方法

Also Published As

Publication number Publication date
JPH11337067A (ja) 1999-12-10

Similar Documents

Publication Publication Date Title
JP5890627B2 (ja) 発電システム内の故障を検出するための熱測定システム
JP3857420B2 (ja) ガスタービン監視装置
US5148667A (en) Gas turbine flame diagnostic monitor
US8410946B2 (en) Thermal measurement system and method for leak detection
US7489811B2 (en) Method of visually inspecting turbine blades and optical inspection system therefor
EP1804056A2 (en) Method and apparatus for measuring on-line failure of turbine thermal barrier coatings
WO2012084453A1 (en) Method of detecting a predetermined condition in a gas turbine and failure detection system for a gas turbine
JP2012037227A (ja) タービンシステム内の温度を測定するシステム及び方法
CN109751972B (zh) 高压涡轮工作叶片冷却气膜孔检测平台及测试方法
US20130104516A1 (en) Method of monitoring an operation of a compressor bleed valve
US7021126B1 (en) Methods for low-cost estimation of steam turbine performance
US6474935B1 (en) Optical stall precursor sensor apparatus and method for application on axial flow compressors
US20030012639A1 (en) Method for operating a turbine and turbine installation
EP2759819B1 (en) Multi-color pyrometry imaging system and method of operating the same
US8322202B2 (en) Method for inspecting a turbine installation and corresponding device
US20180171824A1 (en) Method for cooling a turbo machine
JPWO2007046139A1 (ja) 燃料ガスの湿分監視装置および湿分監視方法
JPH01176922A (ja) ガスタービンの排気温度検出装置
KR20160054413A (ko) 터보차저 장치
JP3715352B2 (ja) 翼温度監視装置およびガスタービン
JP4727087B2 (ja) ダクトの保温材劣化監視装置
CN113916542B (zh) 适用于测试高工况下涡轮叶片特性的综合试验系统及方法
CN116592137B (zh) 一种封堵组件及其燃气轮机
JP3238413U (ja) ガスタービンの燃料速度比制御バルブのリアルタイム監視装置
JPS59180323A (ja) 変位検出器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6