WO2025021009A1 - 一种电解液和电池 - Google Patents

一种电解液和电池 Download PDF

Info

Publication number
WO2025021009A1
WO2025021009A1 PCT/CN2024/106306 CN2024106306W WO2025021009A1 WO 2025021009 A1 WO2025021009 A1 WO 2025021009A1 CN 2024106306 W CN2024106306 W CN 2024106306W WO 2025021009 A1 WO2025021009 A1 WO 2025021009A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte
lithium salt
additive
phosphate
Prior art date
Application number
PCT/CN2024/106306
Other languages
English (en)
French (fr)
Inventor
熊汉利
孙文坡
谢添
Original Assignee
广州天赐高新材料股份有限公司
九江天赐高新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州天赐高新材料股份有限公司, 九江天赐高新材料有限公司 filed Critical 广州天赐高新材料股份有限公司
Publication of WO2025021009A1 publication Critical patent/WO2025021009A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to an electrolyte and a battery, and to the technical field of batteries.
  • electrolyte plays an important role in battery performance.
  • the electrolyte mainly includes organic solvents and lithium salts dissolved in organic solvents.
  • Lithium hexafluorophosphate (LiPF 6 ) has high conductivity and safety and is currently the most important lithium salt for electrolytes.
  • LiPF 6 lithium bis(fluorosulfonyl)imide
  • LiFSI lithium bis(fluorosulfonyl)imide
  • LiODFB lithium difluorooxalatoborate
  • LiODFP lithium difluorobisoxalatophosphate
  • the present application provides an electrolyte to improve the cycle performance and high-temperature storage performance of a battery under high voltage.
  • the present application also provides a battery comprising the above electrolyte.
  • the present application provides an electrolyte solution in a first aspect, comprising a first lithium salt, a second lithium salt and a first additive
  • the first lithium salt comprises at least lithium bis(fluorosulfonyl)imide
  • the second lithium salt is selected from one or two of lithium difluorooxalatoborate and lithium difluorobis(oxalatophosphate);
  • the first additive is methylene methane disulfonate.
  • the molar concentration of the first lithium salt in the electrolyte is 0.3 to 2 mol/L.
  • the first lithium salt further includes lithium hexafluorophosphate.
  • the molar ratio of the lithium bis(fluorosulfonyl)imide to the lithium hexafluorophosphate is (0.2-1):1.
  • the mass of the second lithium salt is 0.1% to 3% of the total mass of the electrolyte.
  • the second lithium salt includes lithium difluorooxalatoborate and lithium difluorobisoxalatophosphate.
  • the mass ratio of the lithium difluorobisoxalate phosphate to the lithium difluorooxalate borate is 1:(0.2-4).
  • the mass of the first additive is 0.1% to 10% of the total mass of the electrolyte.
  • the electrolyte further includes a second additive, which is selected from vinylene carbonate, vinyl ethylene carbonate, vinyl sulfate, propylene carbonate, fluoroethylene carbonate, 1,3-propane sultone, 1,3-propylene sultone, 1,4-butane sultone, 2,4-butane sultone, succinic anhydride, maleic anhydride, 2-methylmaleic anhydride, methyl carbonate-2-propynyl ester, tetravinylsilane, triallyl isocyanurate, hexamethylene diisocyanate, o-phenanthroline, p-phenylene diisocyanate, 2,4-toluene diisocyanate, N-phenylbis(trifluoromethanesulfonyl)imide, diisocyanate, bis(trifluoromethanesulfonyl)imide ...
  • a second additive which is selected from vinylene carbon
  • the mass of the second additive is 0.1% to 5% of the total mass of the electrolyte.
  • a second aspect of the present application provides a battery, comprising any of the above-mentioned electrolytes.
  • the electrolyte provided in the present application includes a first lithium salt and a second lithium salt, and a first additive methylene disulfonate (MMDS) is added.
  • the second lithium salt helps to improve the cycle stability and high-temperature storage performance of the battery.
  • the combination with the first additive helps to improve the oxidation resistance of the second lithium salt under high voltage, and further modifies the composition and structure of the SEI film, reduces the impedance of the SEI film and improves the stability of the SEI film, thereby improving the cycle performance and high-temperature storage performance of the battery.
  • the electrolyte mainly includes organic solvents and lithium salts dissolved in organic solvents.
  • LiFSI has advantages in solubility, ionic conductivity, thermal stability, etc.
  • FSI - anions are easily decomposed to produce impurities during the preparation and purification of LiFSI, and the removal of impurities is difficult and costly.
  • trace impurities will corrode the current collector at high voltage, limiting its scope of use in the battery.
  • Adding additives such as LiODFB and LiODFP to the electrolyte helps to inhibit the corrosion of LiFSI on the current collector, but these additives are not resistant to oxidation at high potentials, which affects the battery's cycle performance and high-temperature storage performance at high voltage.
  • the first aspect of the present application provides an electrolyte, which includes a first lithium salt, lithium bis(fluorosulfonyl)imide, and a second lithium salt with an inhibitory effect, and a first additive MMDS is added.
  • the second lithium salt helps to improve the cycle stability and high-temperature storage performance of the battery.
  • the combination with the first additive helps to improve the oxidation resistance of the second lithium salt under high voltage, and further modifies the composition and structure of the SEI film, reduces the impedance of the SEI film and improves the stability of the SEI film, thereby improving the cycle performance and high-temperature storage performance of the battery.
  • the molar concentration of the first lithium salt in the electrolyte is 0.3-2 mol/L, that is, each liter of the electrolyte includes 0.3-2 mol of the first lithium salt, which can be specifically selected from The range is 0.3 mol/L, 0.5 mol/L, 1.0 mol/L, 1.3 mol/L, 1.5 mol/L, 1.8 mol/L, 2.0 mol/L or any two thereof.
  • the molar concentration of the first lithium salt in the electrolyte is 0.3 to 1.5 mol/L; further, the molar concentration of the first lithium salt in the electrolyte is 0.3 to 1.2 mol/L.
  • the first lithium salt further includes LiPF 6 .
  • LiPF 6 is a commonly used lithium salt in the art. When mixed with LiFSI, it helps to improve the overall performance of the battery and reduce the preparation cost.
  • the molar ratio of LiPF6 and LiFSI is 1:(0.2 ⁇ 1), and further, the molar ratio of LiPF6 and LiFSI is 1:0.5. Too little LiFSI will affect the cycle performance and high temperature storage performance of the battery, while too much LiFSI will have limited room for improving battery performance and will also increase the preparation cost of the battery.
  • the second lithium salt is selected from one or both of LiODFB and LiODFP, and the mass of the second lithium salt is 0.1% to 3% of the total mass of the electrolyte, that is, each gram of the electrolyte includes 0.1g to 3g of the second lithium salt, which can be specifically selected from 0.1%, 0.5%, 1.0%, 1.1%, 1.5%, 2.0%, 2.1%, 2.5%, 3.0% or any two thereof.
  • the mass of the second lithium salt is 0.2% to 2% of the total mass of the electrolyte; further, the mass of the second lithium salt is 0.2% to 1.5% of the total mass of the electrolyte.
  • the second lithium salt includes LiODFB and LiODFP at the same time, and the synergistic effect of LiODFP and LiODFB helps to further improve the high temperature storage performance and cycle performance of the battery.
  • the mass ratio of LiODFP to LiODFB is 1:(0.2-4); further, the mass ratio of LiODFP to LiODFB is 1:(0.5-2); further, the mass ratio of LiODFP to LiODFB is 1:1.
  • the mass of the first additive is 0.1% to 10% of the total mass of the electrolyte, that is, each gram of electrolyte includes 0.1% to 10% MMDS, which can be specifically selected from 0.1%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%, 3.5%, 4.0%, 4.5%, 5.0%, 5.5%, 6.0%, 6.5%, 7.0%, 7.5%, 8.0%, 8.5%, 9.0%, 9.5%, 10.0% or any two of them.
  • the mass of the first additive is 0.1% to 5% of the total mass of the electrolyte; further, the mass of the first additive is 0.1% to 3% of the total mass of the electrolyte; further, the mass of the first additive is 0.1% to 2% of the total mass of the electrolyte.
  • a second additive can also be added to the electrolyte to optimize the overall performance of the battery.
  • the second additive is selected from vinylene carbonate, vinyl ethylene carbonate, vinyl sulfate, propylene carbonate, fluoroethylene carbonate, 1,3-propane sultone, 1,3-propylene sultone, 1,4-butane sultone, 2,4-butane sultone, succinic anhydride, maleic anhydride, 2-methylmaleic anhydride, methyl carbonate-2-propynyl ester, tetravinylsilane, triallyl isocyanurate, hexamethylene diisocyanate, o-phenanthroline, p-phenylene diisocyanate, 2,4-toluene diisocyanate, N-phenylbis(trifluoromethanesulfonyl)imide, divinyl sulfate,
  • the mass of the second additive is 0.1% to 5% of the total mass of the electrolyte, that is, each gram of electrolyte includes 0.1% to 5% of the second additive, which can be specifically selected from 0.1%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%, 3.5%, 4.0%, 4.5%, 5.0% or any two of them.
  • the mass of the second additive is 0.1% to 3% of the total mass of the electrolyte; further, the mass of the second additive is 0.1% to 2% of the total mass of the electrolyte.
  • the organic solvent provided in the present application is a conventional material in the art. Those skilled in the art can select the composition and content of the organic solvent according to their needs.
  • the organic solvent includes one or two of a cyclic organic solvent and a chain organic solvent; wherein the cyclic organic solvent is selected from one or more of propylene carbonate, ethylene carbonate and butylene carbonate, and the chain organic solvent is selected from one or more of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl formate, ethyl formate, methyl acetate and ethyl acetate.
  • a second aspect of the present application provides a battery, comprising any of the above-mentioned electrolytes.
  • the battery provided in the present application has good high-temperature storage performance and cycle performance.
  • the positive electrode Pole piece, negative electrode piece and separator specifically:
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer arranged on the surface of the positive electrode current collector, the positive electrode active material layer includes a positive electrode active material, a conductive agent and a binder, wherein the positive electrode current collector is generally an aluminum foil, and the positive electrode active material is selected from lithium transition metal oxides, for example, LiCoO2 , LiMn2O4 , LiMnO2 , Li2MnO4 , LiFePO4 , Li1 +aMn1 - xMxO2 , LiCo1 - xMxO2 , LiFe1 - xMxPO4 , Li2Mn1 - xO4 , M is selected from one or more of Ni, Co, Mn, Al , Cr, Mg, Zr, Mo, V, Ti, B, F, 0 ⁇ a ⁇ 0.2, 0 ⁇ x ⁇ 1.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer arranged on the surface of the negative electrode current collector, the negative electrode active material layer includes a negative electrode active material, a conductive agent and a binder, wherein the negative electrode current collector is generally a copper foil, and the negative electrode active material is selected from one or more of carbonaceous materials, silicon-carbon materials, alloy materials, and lithium-containing metal composite oxides.
  • the conductive agent and the binder in the positive electrode active material layer and the negative electrode active material layer may be conventional materials in the art.
  • the diaphragm is a diaphragm known in the art that can be used in batteries and is stable to the electrolyte used, and can specifically include one or more of polyolefin, aromatic polyamide, polytetrafluoroethylene, and polyethersulfone. Further, the diaphragm includes one or both of polyethylene and polypropylene. In addition, the diaphragm can be obtained by stacking multiple layers of materials in sequence, for example, the diaphragm includes a polypropylene layer, a polyethylene layer, and a polypropylene layer stacked in sequence.
  • the electrolyte provided in this embodiment includes an organic solvent, a first lithium salt, a second lithium salt, a first additive and a second additive, wherein the organic solvent includes ethylene carbonate (EC) and ethyl methyl carbonate (EMC), and the mass ratio of the two is 3:7; the first lithium salt includes 1 mol/L LiPF 6 and 0.2 mol/L LiFSI; the second lithium salt includes 0.5% LiODFP and 0.5% LiODFB; the first additive is MMDS, and its mass is 0.5% of the total mass of the electrolyte; the second additive is vinylene carbonate, and its mass is 0.5% of the total mass of the electrolyte.
  • the organic solvent includes ethylene carbonate (EC) and ethyl methyl carbonate (EMC), and the mass ratio of the two is 3:7;
  • the first lithium salt includes 1 mol/L LiPF 6 and 0.2 mol/L LiFSI;
  • the second lithium salt includes 0.5% LiODFP and 0.5% LiODFB;
  • the preparation method of the electrolyte provided in this embodiment includes: mixing EC and EMC in a mass ratio of 3:7, adding a second lithium salt, a first additive and a second additive according to the molar concentration and mass fraction of each component after mixing, and mixing evenly to obtain an electrolyte.
  • the electrolyte formulas provided in Examples 2 to 16 and Comparative Examples 1 to 5 are substantially the same as those in Example 1, except that: the molar concentrations of the first lithium salts used in Examples 2 to 3 are different; the molar concentrations of the first lithium salts used in Examples 4 to 5 are different, and the second lithium salts used include only LiODFP or LiODFB; the contents of the first lithium salts and the second lithium salts used in Examples 6 to 7 are different; the contents of the first additives used in Examples 8 to 10 are different; the mass ratios of the second lithium salts LiODFP and LiODFB in Examples 11 to 12 are different; no second additive is contained in Example 13; the contents of the second additives in Example 14 are different; the types of the second additives in Examples 15 to 16 are different; no second lithium salt and the first additive are contained in Comparative Example 1; only one of the second lithium salt and the first additive is contained in Comparative Examples 2 to 5, and the specific differences are listed in Table 1.
  • the electrolytes provided in Examples 1 to 16 and Comparative Examples 1 to 5 were matched with positive electrode sheets, negative electrode sheets and separators to prepare lithium-ion batteries.
  • positive electrode active material lithium nickel cobalt manganese oxide material purchased from Zhenhua New Materials
  • conductive agent carbon black conductive agent carbon nanotubes
  • binder polyvinylidene fluoride were dispersed in a solvent N-methylpyrrolidone at a mass ratio of 94.5:3.5:0.5:1.5 to obtain positive electrode active material layer slurry
  • the positive electrode active material layer slurry was evenly coated on the surface of the positive electrode current collector aluminum foil, and the positive electrode sheet was obtained after drying, rolling, baking, slitting and spot welding of the pole ears, and the total thickness of the positive electrode sheet was 90 ⁇ m.
  • the negative electrode active material graphite (purchased from Jiangxi Zichen), the conductive agent carbon black, the binder polyvinylidene fluoride and sodium carboxymethyl cellulose were dispersed in deionized water in a mass ratio of 94.5:2:2:1.5, and stirred evenly to obtain the negative electrode active material layer slurry; the negative electrode active material layer slurry was evenly coated on the surface of the negative electrode collector copper foil, and the negative electrode sheet was obtained after drying, rolling, baking, slitting and spot welding of the pole ears. The total thickness of the negative electrode sheet was 128 ⁇ m.
  • the prepared positive electrode sheet, negative electrode sheet and separator are stacked in order, the separator is placed between the positive electrode sheet and the negative electrode sheet, and a battery cell is obtained after winding.
  • the battery cell is placed in an outer package, and the above-mentioned electrolyte is injected into the battery cell in a glove box. After packaging, formation, aging and capacity separation, the preparation of the lithium-ion battery is completed.
  • the lithium ion batteries prepared in Examples 1 to 16 and Comparative Examples 1 to 5 were tested for normal temperature cycle performance and high temperature performance.
  • the test methods are as follows:
  • the molar concentration of LiFSI is preferably 0.4 mol/L; According to Examples 4 to 6, when the second lithium salt includes LiODFP and LiODFB at the same time, the effect of improving the battery performance is significantly better than adding only one second lithium salt; According to Examples 2 and Examples 6 to 7, as the content of the second lithium salt increases, the room temperature cycle performance and high temperature cycle performance of the lithium ion battery are improved, but when the content is higher than 1.6%, the room temperature cycle performance and high temperature performance of the lithium ion battery are reduced.
  • the content of the second lithium salt is preferably 1% ;
  • the content of the first additive increases, the room temperature cycle performance and high temperature storage performance of the lithium ion battery are improved, but when the content of the first additive reaches 1%, the performance of the lithium ion battery decreases instead, therefore, the content of the first additive is preferably 0.5%;
  • the second additive helps to improve the room temperature cycle performance of the lithium ion battery, but when the content is greater than 2%, it is not conducive to the improvement of the room temperature cycle performance of the battery, therefore, the content of the second additive is preferably 0.1% to 2%, and more preferably 0.5%;
  • different second additives have different effects on the room temperature cycle performance of the battery, among which vinylene carbonate has the best

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种电解液和电池,所述电解液包括第一锂盐、第二锂盐和第一添加剂,所述第一锂盐至少包括双氟磺酰亚胺锂,所述第二锂盐选自二氟草酸硼酸锂、二氟双草酸磷酸锂中的一种或两种;所述第一添加剂为甲烷二磺酸亚甲酯。所述电解液在包括第一锂盐和第二锂盐基础上,还加入了第一添加剂甲烷二磺酸亚甲酯(MMDS),第二锂盐有助于提高电池的循环稳定性和高温存储性能,搭配第一添加剂有助于提高第二锂盐在高电压下的耐氧化性,并进一步修饰SEI膜的成分和结构,降低SEI膜的阻抗并提高SEI膜的稳定性,提高电池的循环性能和高温存储性能。

Description

一种电解液和电池
本申请要求于2023年07月27日提交中国专利局、申请号为202310932718.3、申请名称为“一种电解液和电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种电解液和电池,涉及电池技术领域。
背景技术
随着电池在新能源汽车、电子设备等各个领域的广泛应用,电池的性能的提高也受到了广泛的关注。电解液作为电池的重要组成之一,对电池的性能起着重要作用。电解液主要包括有机溶剂和溶解在有机溶剂中的锂盐,六氟磷酸锂(LiPF6)具有较高的电导率和安全性,是目前最主要的电解液用锂盐,但与LiPF6相比,双氟磺酰亚胺锂盐(LiFSI)在溶解度、离子电导率和热稳定性等方面存在优势,然而FSI-阴离子在LiFSI的制备和纯化过程中易分解产生杂质,同时除杂的难度大、成本高。而且痕量的杂质在高电压时会腐蚀集流体,限制了其在电池中的使用范围。
通过向电解液中加入二氟草酸硼酸锂(LiODFB)、二氟双草酸磷酸锂(LiODFP)等添加剂,有助于抑制LiFSI对集流体的腐蚀,并形成低阻抗的SEI膜,提高电池的循环稳定性和高温存储性能。但这些添加剂在高电位下的耐氧化性不足,影响电池在高电压下的循环性能和高温存储性能。
发明内容
本申请提供一种电解液,以提高电池在高电压下的循环性能和高温存储性能。
本申请还提供一种包括上述电解液的电池。
本申请第一方面提供一种电解液,包括第一锂盐、第二锂盐和第一添加 剂,所述第一锂盐至少包括双氟磺酰亚胺锂,所述第二锂盐选自二氟草酸硼酸锂、二氟双草酸磷酸锂中的一种或两种;
所述第一添加剂为甲烷二磺酸亚甲酯。
在一种可能的实现方式中,所述第一锂盐在电解液中的体积摩尔浓度为0.3~2mol/L。
在一种可能的实现方式中,所述第一锂盐还包括六氟磷酸锂。
在一种可能的实现方式中,所述双氟磺酰亚胺锂与所述六氟磷酸锂的摩尔比为(0.2-1):1。
在一种可能的实现方式中,所述第二锂盐的质量为电解液总质量的0.1%~3%。
在一种可能的实现方式中,所述第二锂盐包括二氟草酸硼酸锂和二氟双草酸磷酸锂。
在一种可能的实现方式中,所述二氟双草酸磷酸锂和二氟草酸硼酸锂的质量比为1:(0.2~4)。
在一种可能的实现方式中,所述第一添加剂的质量为电解液总质量的0.1%~10%。
在一种可能的实现方式中,所述电解液还包括第二添加剂,所述第二添加剂选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、硫酸乙烯酯、碳酸丙烯酯、氟代碳酸乙烯酯、1,3-丙烷磺酸内酯、1,3-丙烯磺酸内酯、1,4-丁磺酸内酯、2,4-丁磺内酯、丁二酸酐、马来酸酐、2-甲基马来酸酐、甲基碳酸-2-丙炔基酯、四乙烯硅烷、三烯丙基异氰脲酸酯、六亚甲基二异腈酸酯、邻菲罗啉、对苯二异氰酸酯、2,4-甲苯二异氰酸酯、N-苯基双(三氟甲烷磺酰)亚胺、双硫酸乙烯酯、甲磺酸苯酯、双硫酸乙烯酯、双螺硫酸丙烯酯、对苯二酚二氟磺酸酯、三烯丙基磷酸酯、三炔丙基磷酸酯、2,4-丁烷磺内酯、甲基丙烯酸异氰基乙酯、三(三甲基硅烷)硼酸酯、三(三甲基硅烷)磷酸酯、三(乙烯基二甲硅烷)磷酸酯、4,4'-联-1,3-二氧戊环-2,2'-二酮、丙基二丙-2-炔基磷酸酯、乙基二丙-2-炔基磷酸酯、(2-烯丙基苯氧基)三甲硅、四甲基亚甲基二磷酸酯、甲基丙烯酸异氰基乙酯、2-氟吡啶中的一种或多种。
在一种可能的实现方式中,所述第二添加剂的质量为电解液总质量的0.1%~5%。
本申请第二方面提供一种电池,包括上述任一所述的电解液。
本申请提供的电解液在包括第一锂盐和第二锂盐的基础上,加入了第一添加剂甲烷二磺酸亚甲酯(MMDS),第二锂盐有助于提高电池的循环稳定性和高温存储性能,搭配第一添加剂有助于提高第二锂盐在高电压下的耐氧化性,并进一步修饰SEI膜的成分和结构,降低SEI膜的阻抗并提高SEI膜的稳定性,提高电池的循环性能和高温存储性能。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请的实施例,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
电解液主要包括有机溶剂和溶解在有机溶剂中的锂盐,LiFSI在溶解度、离子电导率、热稳定性等方面存在优势,然而FSI-阴离子在LiFSI的制备和纯化过程中易分解产生杂质,同时除杂的难度大、成本高。而且痕量的杂质在高电压时会腐蚀集流体,限制了其在电池中的使用范围。通过向电解液中LiODFB、LiODFP等添加剂,有助于抑制LiFSI对集流体的腐蚀,但这些添加剂在高电位下耐氧化性不足,影响电池在高电压下的循环性能和高温存储性能。
为了解决上述技术问题,本申请第一方面提供一种电解液,在包括第一锂盐双氟磺酰亚胺锂和具有抑制作用的第二锂盐的基础上,加入第一添加剂MMDS,第二锂盐有助于提高电池的循环稳定性和高温存储性能,搭配第一添加剂有助于提高第二锂盐在高电压下的耐氧化性,并进一步修饰SEI膜的成分和结构,降低SEI膜的阻抗并提高SEI膜的稳定性,提高电池的循环性能和高温存储性能。
在一种具体实施方式中,第一锂盐在电解液中的体积摩尔浓度为0.3~2mol/L,即每升的电解液中包括0.3~2mol的第一锂盐,具体可选自 0.3mol/L、0.5mol/L、1.0mol/L、1.3mol/L、1.5mol/L、1.8mol/L、2.0mol/L或其中的任意两者组成的范围。
进一步地,第一锂盐在电解液中的体积摩尔浓度为0.3~1.5mol/L;更进一步地,第一锂盐在电解液中的体积摩尔浓度为0.3~1.2mol/L。
在一种具体实施方式中,第一锂盐还包括LiPF6,LiPF6作为本领域常用锂盐,与LiFSI混合使用有助于提高电池的综合性能并降低制备成本。
当第一锂盐包括LiPF6和LiFSI时,LiPF6和LiFSI的摩尔比为1:(0.2~1),进一步地,LiPF6和LiFSI的摩尔比为1:0.5,过少的LiFSI会影响电池的循环性能和高温存储性能,而过多的LiFSI对电池性能的提升空间有限,还会增加电池的制备成本。
在一种具体实施方式中,第二锂盐选自LiODFB、LiODFP中的一种或两种,第二锂盐的质量为电解液总质量的0.1%~3%,即每克的电解液中包括0.1g~3g的第二锂盐,具体可选自0.1%、0.5%、1.0%、1.1%、1.5%、2.0%、2.1%、2.5%、3.0%或其中的任意两者组成的范围。
进一步地,第二锂盐的质量为电解液总质量的0.2%~2%;更进一步地,第二锂盐的质量为电解液总质量的0.2%~1.5%。
进一步地,第二锂盐同时包括LiODFB和LiODFP,通过LiODFP和LiODFB的协同作用,有助于进一步提高电池的高温存储性能和循环性能。
进一步地,当第二锂盐包括LiODFB和LiODFP时,LiODFP和LiODFB的质量比为1:(0.2~4);进一步地,LiODFP和LiODFB的质量比为1:(0.5~2),更进一步地,LiODFP和LiODFB的质量比为1:1。
在一种具体实施方式中,第一添加剂的质量为电解液总质量的0.1%~10%,即每克的电解液中包括0.1%~10%的MMDS,具体可选自0.1%、0.5%、1.0%、1.5%、2.0%、2.5%、3.0%、3.5%、4.0%、4.5%、5.0%、5.5%、6.0%、6.5%、7.0%、7.5%、8.0%、8.5%、9.0%、9.5%、10.0%或其中的任意两者组成的范围。
进一步地,第一添加剂的质量为电解液总质量的0.1%~5%;更进一步地,第一添加剂的质量为电解液总质量的0.1%~3%;更进一步地,第一添加剂的质量为电解液总质量的0.1%~2%。
此外,根据本领域常规技术手段,还可以向电解液中添加第二添加剂,以优化电池的综合性能。在一种具体实施方式中,第二添加剂选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、硫酸乙烯酯、碳酸丙烯酯、氟代碳酸乙烯酯、1,3-丙烷磺酸内酯、1,3-丙烯磺酸内酯、1,4-丁磺酸内酯、2,4-丁磺内酯、丁二酸酐、马来酸酐、2-甲基马来酸酐、甲基碳酸-2-丙炔基酯、四乙烯硅烷、三烯丙基异氰脲酸酯、六亚甲基二异腈酸酯、邻菲罗啉、对苯二异氰酸酯、2,4-甲苯二异氰酸酯、N-苯基双(三氟甲烷磺酰)亚胺、双硫酸乙烯酯、甲磺酸苯酯、双硫酸乙烯酯、双螺硫酸丙烯酯、对苯二酚二氟磺酸酯、三烯丙基磷酸酯、三炔丙基磷酸酯、2,4-丁烷磺内酯、甲基丙烯酸异氰基乙酯、三(三甲基硅烷)硼酸酯、三(三甲基硅烷)磷酸酯、三(乙烯基二甲硅烷)磷酸酯、4,4'-联-1,3-二氧戊环-2,2'-二酮、丙基二丙-2-炔基磷酸酯、乙基二丙-2-炔基磷酸酯、(2-烯丙基苯氧基)三甲硅、四甲基亚甲基二磷酸酯、甲基丙烯酸异氰基乙酯、2-氟吡啶中的一种或多种。
进一步地,第二添加剂的质量为电解液总质量的0.1%~5%,即每克的电解液中包括0.1%~5%的第二添加剂,具体可选自0.1%、0.5%、1.0%、1.5%、2.0%、2.5%、3.0%、3.5%、4.0%、4.5%、5.0%或其中的任意两者组成的范围。
进一步地,第二添加剂的质量为电解液总质量的0.1%~3%;更进一步地,第二添加剂的质量为电解液总质量的0.1%~2%。
本申请提供的有机溶剂为本领域常规材料,本领域技术人员可根据需要选择有机溶剂的组成和含量,在一种具体实施方式中,有机溶剂包括环状有机溶剂、链状有机溶剂中的一种或两种;其中,环状有机溶剂选自碳酸丙烯酯、碳酸乙烯酯和碳酸丁烯酯中的一种或多种,链状有机溶剂选自碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸甲丙酯、甲酸甲酯、甲酸乙酯、乙酸甲酯、乙酸乙酯中的一种或多种。
本申请第二方面提供一种电池,包括上述任一所述的电解液。
基于本申请第一方面提供的电解液,本申请提供的电池具有较好的高温存储性能和循环性能。
在一种具体实施方式中,除本申请第一方面提供的电解液外,还包括正极 极片、负极极片和隔膜,具体地:
正极极片包括正极集流体和设置在正极集流体表面的正极活性物质层,正极活性物质层包括正极活性物质、导电剂和粘结剂,其中,正极集流体一般为铝箔,正极活性物质选自锂的过渡金属氧化物,例如,LiCoO2、LiMn2O4、LiMnO2、Li2MnO4、LiFePO4、Li1+aMn1-xMxO2、LiCo1-xMxO2、LiFe1-xMxPO4、Li2Mn1-xO4,M选自Ni、Co、Mn、Al、Cr、Mg、Zr、Mo、V、Ti、B、F中的一种或多种,0≤a<0.2,0≤x<1。
负极极片包括负极集流体和设置在负极集流体表面的负极活性物质层,负极活性物质层包括负极活性物质、导电剂和粘结剂,其中,负极集流体一般为铜箔,负极活性物质选自碳质材料、硅碳材料、合金材料、含锂金属复合氧化物中的一种或多种。
正极活性物质层和负极活性物质层中导电剂、粘结剂的选择均可为本领域常规材料。
隔膜是本领域技术公知的可被用于电池并且对于所使用的电解液稳定的隔膜,具体可包括聚烯烃、芳香族聚酰胺、聚四氟乙烯、聚醚砜中的一种或多种。进一步地,隔膜包括聚乙烯、聚丙烯中的一种或两种。此外,隔膜可由多层材料依次层叠后得到,例如,隔膜包括依次层叠的聚丙烯层、聚乙烯层和聚丙烯层。
以下结合具体实施例对本申请提供的电解液进行详细阐述:
实施例1
本实施例提供的电解液包括有机溶剂、第一锂盐、第二锂盐、第一添加剂和第二添加剂,其中,有机溶剂包括碳酸乙烯酯(EC)和碳酸甲乙酯(EMC),二者质量比为3:7;第一锂盐包括1mol/L的LiPF6和0.2mol/L的LiFSI;第二锂盐包括0.5%的LiODFP和0.5%的LiODFB;第一添加剂为MMDS,其质量为电解液总质量的0.5%;第二添加剂为碳酸亚乙烯酯,其质量为电解液总质量的0.5%。
本实施例提供的电解液的制备方法包括:将EC和EMC按质量比3:7进行混合,混合后按照各组分的摩尔浓度和质量分数加入第二锂盐、第一添加剂和第二添加剂,混合均匀得到电解液。
实施例2~16以及对比例1~5提供的电解液配方与实施例1基本相同,不同之处在于:实施例2~3中所使用的第一锂盐的摩尔浓度不同;实施例4~5中所使用的第一锂盐的摩尔浓度不同,所使用的第二锂盐仅包括LiODFP或LiODFB;实施例6~7中所使用的第一锂盐和第二锂盐的含量不同;实施例8~10中所使用的第一添加剂的含量不同;实施例11~12中第二锂盐LiODFP和LiODFB的质量比不同;实施例13中不含有第二添加剂;实施例14中第二添加剂的含量不同;实施例15~16中第二添加剂的种类不同;对比例1中不含有第二锂盐和第一添加剂;对比例2~5中仅含有第二锂盐和第一添加剂中的一种,具体不同之处在表1中列出。
表1实施例1~16和对比例1~5提供的电解液的组成

将实施例1~16和对比例1~5提供的电解液搭配正极极片、负极极片和隔膜制备得到锂离子电池,具体地:将正极活性物质镍钴锰酸锂材料(购自振华新材)、导电剂碳黑、导电剂碳纳米管和粘结剂聚偏二氟乙烯按照94.5:3.5:0.5:1.5的质量比分散在溶剂N-甲基吡咯烷酮中,得到正极活性物质层浆料;将正极活性物质层浆料均匀涂布在正极集流体铝箔的表面,经过烘干、碾压、烘烤、分切和点焊极耳后得到正极极片,正极极片的总厚度为90μm。
将负极活性物质石墨(购自江西紫宸)、导电剂炭黑、粘结剂聚偏二氟乙烯和羧甲基纤维素钠按照94.5:2:2:1.5的质量比分散在去离子水中,搅拌均匀得到负极活性物质层浆料;将负极活性物质层浆料均匀涂布在负极集流体铜箔表面,经过烘干、碾压、烘烤、分切和点焊极耳后得到负极极片,负极极片的总厚度为128μm。
将制备得到的正极极片、负极极片和隔膜按顺序叠好,将隔膜放置在正极极片和负极极片之间,卷绕后得到电芯,将电芯置于外包装中,并在手套箱中将上述电解液注入电芯中,经封装、化成、老化、分容后完成锂离子电池的制备。
对实施例1~16和对比例1~5制备得到的锂离子电池进行常温循环性能、高温性能测试,测试方法如下:
常温循环性能测试方法:在25℃下,用1C恒流恒压充电至4.4V,静置5分钟后,用1C恒流放电至2.75V,循环500周后计算容量保持率,计算方式:容量保持率(%)=(第500次放电容量/第1次放电容量)×100%。
高温存储性能测试方法:在25℃下,用1C恒流恒压充电至4.4V,测量 此时锂离子电池的初始厚度,然后在60℃下存储15天,测试锂离子电池的厚度,根据公式:膨胀率(%)=(存储后的厚度-初始厚度)/初始厚度×100%计算电池的膨胀率。
高温循环性能测试方法:将经过高温存储后的锂离子电池用1C放电至2.75V,测量并计算电池的容量保持率,计算公式如下:容量保持率(%)=保持容量/初始容量×100%。
测试结果如表2所示。
表2实施例1~16和对比例1~5制备得到的锂离子电池的性能测试结果
根据表2可知,相比对比例1,在电解液中添加第二锂盐或者第一添加剂均有助于提高锂离子电池的常温循环性能,且第二锂盐的添加效果优于第一添加剂,但是包括第二锂盐的锂离子电池的高温性能欠佳;相比对比例1~6,实施例1~16提供的电解液中同时包括第二锂盐和第一添加剂,有助于提高锂离子电池的常温循环性能和高温性能。
根据实施例1~3可知,在第一锂盐的总摩尔浓度不变的情况下,随着LiFSI摩尔浓度的提高,锂离子电池的常温循环性能和高温存储性能均有所提高,但当LiFSI的摩尔浓度达到0.6M时,锂离子电池的性能提升比例有限,反而增加了电池的制备成本,因此,LiFSI的摩尔浓度优选为0.4mol/L;根据实施例4~6可知,当第二锂盐同时包括LiODFP和LiODFB时,其对电池性能的提升效果明显优于仅添加一种第二锂盐;根据实施例2和实施例6~7可知,随着第二锂盐含量的提高,锂离子电池的常温循环性能和高温循环性能有所提高,但当含量高于1.6%时,锂离子电池的常温循环性能和高温性能均有所下降,因此,第二锂盐的含量优选为1%;根据实施例2、8~10可知,随着第一添加剂含量的提高,锂离子电池的常温循环性能和高温存储性能提高,但当第一添加剂的含量达到1%时,锂离子电池的性能反而下降,因此,第一添加剂的含量优选为0.5%;根据实施例11~12可知,当第二锂盐LiODFP和LiODFB的质量比为1:1时,电池的常温循环性能和高温存储性能较好;根据实施例2和13~14可知,第二添加剂有助于提高锂离子电池的常温循环性能,但含量大于2%时,反而不利于电池常温循环性能的提高,因此,第二添加剂的含量优选为0.1%~2%,进一步优选为0.5%;根据实施例15~16可知,不同第二添加剂对电池常温循环性能的影响不同,其中以碳酸亚乙烯酯的效果最优。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (11)

  1. 一种电解液,其中,包括第一锂盐、第二锂盐和第一添加剂,所述第一锂盐至少包括双氟磺酰亚胺锂,所述第二锂盐选自二氟草酸硼酸锂、二氟双草酸磷酸锂中的一种或两种;
    所述第一添加剂为甲烷二磺酸亚甲酯。
  2. 根据权利要求1所述的电解液,其中,所述第一锂盐在电解液中的体积摩尔浓度为0.3~2mol/L。
  3. 根据权利要求1或2所述的电解液,其中,所述第一锂盐还包括六氟磷酸锂。
  4. 根据权利要求3所述的电解液,其中,所述双氟磺酰亚胺锂与所述六氟磷酸锂的摩尔比为(0.2-1):1。
  5. 根据权利要求1所述的电解液,其中,所述第二锂盐的质量为电解液总质量的0.1%~3%。
  6. 根据权利要求1或5所述的电解液,其中,所述第二锂盐包括二氟草酸硼酸锂和二氟双草酸磷酸锂。
  7. 根据权利要求6所述的电解液,其中,所述二氟双草酸磷酸锂和二氟草酸硼酸锂的质量比为1:(0.2~4)。
  8. 根据权利要求1所述的电解液,其中,所述第一添加剂的质量为电解液总质量的0.1%~10%。
  9. 根据权利要求1所述的电解液,其中,所述电解液还包括第二添加剂,所述第二添加剂选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、硫酸乙烯酯、碳酸丙烯酯、氟代碳酸乙烯酯、1,3-丙烷磺酸内酯、1,3-丙烯磺酸内酯、1,4-丁磺酸内酯、2,4-丁磺内酯、丁二酸酐、马来酸酐、2-甲基马来酸酐、甲基碳酸-2-丙炔基酯、四乙烯硅烷、三烯丙基异氰脲酸酯、六亚甲基二异腈酸酯、邻菲罗啉、对苯二异氰酸酯、2,4-甲苯二异氰酸酯、N-苯基双(三氟甲烷磺酰)亚胺、双硫酸乙烯酯、甲磺酸苯酯、双硫酸乙烯酯、双螺硫酸丙烯酯、对苯二酚二氟磺酸酯、三烯丙基磷酸酯、三炔丙基磷酸酯、2,4-丁烷磺内酯、甲 基丙烯酸异氰基乙酯、三(三甲基硅烷)硼酸酯、三(三甲基硅烷)磷酸酯、三(乙烯基二甲硅烷)磷酸酯、4,4'-联-1,3-二氧戊环-2,2'-二酮、丙基二丙-2-炔基磷酸酯、乙基二丙-2-炔基磷酸酯、(2-烯丙基苯氧基)三甲硅、四甲基亚甲基二磷酸酯、甲基丙烯酸异氰基乙酯、2-氟吡啶中的一种或多种。
  10. 根据权利要求9所述的电解液,其中,所述第二添加剂的质量为电解液总质量的0.1%~5%。|
  11. 一种电池,其中,包括权利要求1~10任一项所述的电解液。
PCT/CN2024/106306 2023-07-27 2024-07-19 一种电解液和电池 WO2025021009A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310932718.3 2023-07-27
CN202310932718.3A CN116706241A (zh) 2023-07-27 2023-07-27 一种电解液和电池

Publications (1)

Publication Number Publication Date
WO2025021009A1 true WO2025021009A1 (zh) 2025-01-30

Family

ID=87843533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/106306 WO2025021009A1 (zh) 2023-07-27 2024-07-19 一种电解液和电池

Country Status (2)

Country Link
CN (1) CN116706241A (zh)
WO (1) WO2025021009A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116706241A (zh) * 2023-07-27 2023-09-05 广州天赐高新材料股份有限公司 一种电解液和电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848404A (zh) * 2017-02-22 2017-06-13 中航锂电(洛阳)有限公司 一种锂离子电池电解液用功能添加剂、锂离子电池电解液及锂离子电池
CN107394267A (zh) * 2017-07-27 2017-11-24 湛江市金灿灿科技有限公司 电解液及锂离子电池
CN111653829A (zh) * 2020-07-20 2020-09-11 中航锂电技术研究院有限公司 锂离子电池电解液及锂离子电池
US20230047398A1 (en) * 2019-12-27 2023-02-16 Microvast Power Systems Co.,Ltd. Electrolyte containing solid particles and lithium ion secondary battery
CN116706241A (zh) * 2023-07-27 2023-09-05 广州天赐高新材料股份有限公司 一种电解液和电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848404A (zh) * 2017-02-22 2017-06-13 中航锂电(洛阳)有限公司 一种锂离子电池电解液用功能添加剂、锂离子电池电解液及锂离子电池
CN107394267A (zh) * 2017-07-27 2017-11-24 湛江市金灿灿科技有限公司 电解液及锂离子电池
US20230047398A1 (en) * 2019-12-27 2023-02-16 Microvast Power Systems Co.,Ltd. Electrolyte containing solid particles and lithium ion secondary battery
CN111653829A (zh) * 2020-07-20 2020-09-11 中航锂电技术研究院有限公司 锂离子电池电解液及锂离子电池
CN116706241A (zh) * 2023-07-27 2023-09-05 广州天赐高新材料股份有限公司 一种电解液和电池

Also Published As

Publication number Publication date
CN116706241A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
CN109390631B (zh) 一种高镍三元正极材料电解液
CN108847501B (zh) 一种锂离子电池非水电解液及锂离子电池
CN108808087B (zh) 一种含有磷酰亚胺锂的电解液及使用该电解液的电池
CN111525190B (zh) 电解液及锂离子电池
WO2016110123A1 (zh) 一种非水电解液及锂离子二次电池
CN107331893B (zh) 一种高温锂离子电池电解液及其制备方法和高温锂离子电池
CN103594727B (zh) 一种锂离子电池用非水电解液及使用该非水电解液的锂离子电池
WO2010067549A1 (ja) 非水電解液二次電池
CN108110318B (zh) 一种用于锂离子电池的非水电解液及锂离子电池
CN110752406B (zh) 电解液及其应用
US20180076483A1 (en) Non-aqueous electrolyte of lithium-ion battery and lithium-ion battery
CN103367804A (zh) 一种锂离子电池用非水电解液及使用该非水电解液的锂离子电池
US20200006803A1 (en) Positive electrode plate and lithium-ion secondary battery
CN116918132A (zh) 一种电池包及其用电装置
WO2023206921A1 (zh) 一种锂离子电池
WO2025035922A1 (zh) 一种圆柱型锂离子电池
JP7481503B2 (ja) リチウムイオン二次電池の電解液及びその使用
WO2025015872A1 (zh) 一种锂离子电池及包含其的用电装置
WO2025021009A1 (zh) 一种电解液和电池
CN110444804A (zh) 一种锂离子电池非水电解液及锂离子电池
CN115275342A (zh) 一种锂离子电池电解液及锂离子电池
CN106340671B (zh) 锂离子电池及其电解液
CN116053583A (zh) 一种环状胺类功能性电解液添加剂、电解液及锂离子电池
CN115149102A (zh) 电解液、二次电池和用电设备
CN110661028A (zh) 一种锂离子电池非水电解液及锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24844701

Country of ref document: EP

Kind code of ref document: A1