WO2024156092A1 - 一种控制方法、装置和运载工具 - Google Patents

一种控制方法、装置和运载工具 Download PDF

Info

Publication number
WO2024156092A1
WO2024156092A1 PCT/CN2023/073532 CN2023073532W WO2024156092A1 WO 2024156092 A1 WO2024156092 A1 WO 2024156092A1 CN 2023073532 W CN2023073532 W CN 2023073532W WO 2024156092 A1 WO2024156092 A1 WO 2024156092A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
user
cockpit
mode
human body
Prior art date
Application number
PCT/CN2023/073532
Other languages
English (en)
French (fr)
Inventor
王頔
王俊杰
胡靓
郑盛睿
杨京寰
宋宪玺
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2023/073532 priority Critical patent/WO2024156092A1/zh
Publication of WO2024156092A1 publication Critical patent/WO2024156092A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/037Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for occupant comfort, e.g. for automatic adjustment of appliances according to personal settings, e.g. seats, mirrors, steering wheel

Definitions

  • the present application relates to the field of smart cockpits, and more specifically, to a control method, device and vehicle.
  • the embodiments of the present application provide a control method, device and vehicle, which can automatically adjust the state of the cabin equipment in the first mode through human body posture information, which helps to improve the user's driving experience and also helps to improve the intelligence level of the vehicle.
  • the vehicles in this application may include road vehicles, water vehicles, air vehicles, industrial equipment, agricultural equipment, or entertainment equipment, etc.
  • the vehicle may be a vehicle, which is a vehicle in a broad sense, and may be a vehicle (such as a commercial vehicle, a passenger car, a motorcycle, a flying car, a train, etc.), an industrial vehicle (such as a forklift, a trailer, a tractor, etc.), an engineering vehicle (such as an excavator, a bulldozer, a crane, etc.), agricultural equipment (such as a mower, a harvester, etc.), amusement equipment, a toy vehicle, etc.
  • the embodiment of this application does not specifically limit the type of vehicle.
  • the vehicle may be a vehicle such as an airplane or a ship.
  • a control method is provided, which is applied to a cabin of a vehicle, the cabin including cabin equipment, the cabin equipment including at least one of a seat, a fragrance, a sound device, a lighting device, an air conditioner and a display device, the method comprising: when it is detected that a first mode is turned on, controlling the cabin equipment to be in a first state, the first mode being a mode related to rest of a user in the cabin; acquiring human body posture information; and according to the human body posture information, controlling the cabin equipment to adjust from the first state to a second state.
  • the state of the cockpit equipment in the first mode can be automatically adjusted through human body posture information.
  • the vehicle computer can make adjustment decisions autonomously based on the human body posture information, and can also adjust the cockpit equipment based on the instruction information contained in the human body posture information, which helps to improve the user's driving experience and also helps to improve the intelligence level of the vehicle.
  • the human body posture information includes hand gestures or torso postures.
  • the gesture posture includes an air gesture.
  • the gesture posture may be a hovering gesture, which is a gesture in which the user's five fingers are spread out and the palm is facing the display device.
  • the gesture posture may be a waving gesture, such as a waving gesture from the left to the right, or a waving gesture from the upper side to the lower side.
  • the torso posture may include the user's head posture and limb posture.
  • the head posture may include the facial posture.
  • the facial posture may be used to determine whether the user is in an eye-opening state or an eye-closing state.
  • the limb posture may include the posture of the user's two arms and two legs.
  • the data collected by the sensors in the cockpit may be used to determine whether the user is in an eye-opening state or an eye-closing state.
  • the frequency of changes in the postures of the limbs within a preset time period after falling asleep can be used to determine whether the user is in an uncomfortable state or a comfortable state.
  • the cockpit equipment in the first state may include the seat being at a first angle, the type of fragrance being a first type, the sound device being at a first volume, the lighting device being at a first brightness, the air conditioner being at a first temperature or a first air outlet speed, the display device being at a second brightness, etc.
  • the cockpit equipment being adjusted from the first state to the second state may include the seat angle being adjusted to a second angle, the type of fragrance being adjusted to a second type, the volume of the sound device being adjusted to a second volume, the brightness of the lighting device being adjusted to a third brightness, the temperature of the air conditioner being adjusted to a second temperature, the air outlet speed of the air conditioner being adjusted to a second air outlet speed, the brightness of the display device being adjusted to a fourth brightness, etc.
  • the second state is adapted to the human body posture information.
  • the above second state is adapted to the human body posture and can also be understood as the comfort level of the user in the cockpit when the cockpit equipment is in the second state is greater than the comfort level of the user in the cockpit when the cockpit equipment is in the first state.
  • the first mode is a nap mode, a sleep mode, a rest mode, or a camping mode.
  • the method also includes: obtaining sleep comfort, which is used to indicate the comfort level or sleep depth of the user when in a sleeping state; wherein, according to the human body posture information, controlling the cockpit equipment to adjust from the first state to the second state includes: according to the human body posture information and the sleep comfort, controlling the cockpit equipment to adjust from the first state to the second state.
  • the vehicle computer can autonomously adjust the state of the cabin equipment in the first mode based on the human posture information and the sleeping comfort level, without the need for manual adjustment by the user, which helps to improve the user's driving experience and the intelligence level of the vehicle.
  • the state of the cabin equipment in the first mode in combination with the sleeping comfort level, it helps to improve the sleep quality of the user when in the sleeping state.
  • the sleep comfort level is used to indicate the comfort level of the user when in a sleeping state.
  • the comfort level of the user when in a sleeping state includes whether the user is in a comfortable state or in an uncomfortable state when in a sleeping state.
  • the sleep comfort level can be used to indicate the sleep depth of the user when in a sleeping state.
  • the sleep depth can include a light sleep state and a deep sleep state.
  • obtaining the sleeping comfort level includes: when the human body posture information indicates that the user is in a sleeping state, obtaining the sleeping comfort level.
  • the user's sleeping comfort is obtained when it is determined that the user is in a sleeping state through human body posture information, thereby avoiding determining the sleeping comfort through data collected by sensors in the cockpit or data sent by wearable devices when the user is in a non-sleeping state, which helps to save the computing overhead of the vehicle and thus helps to reduce the power consumption of the vehicle.
  • the human body posture information used to determine whether the user is in a sleeping state includes the eye opening and closing state and/or the head angle.
  • obtaining the sleep comfort includes: determining the sleep comfort based on first data collected by a sensor in the cabin; or, receiving second data sent by a wearable device and determining the sleep comfort based on the second data.
  • the user's sleeping comfort can be determined by data collected by sensors in the cabin or by data sent by a wearable device. In this way, by adjusting the state of the cabin device in the first mode in combination with the sleeping comfort, it is helpful to improve the sleep quality of the user when in a sleeping state.
  • the senor in the cockpit includes a camera and/or a millimeter-wave radar.
  • the method of obtaining sleeping comfort includes: determining that the user is in an uncomfortable state when the number of changes in the user's torso posture is greater than or equal to a preset number of times determined by first data collected by sensors in the cabin within a preset time period since the user entered a sleeping state; or determining that the user is in a comfortable state when the number of changes in the user's torso posture is less than the preset number of times determined by first data collected by sensors within a preset time period since the user entered a sleeping state.
  • obtaining sleep comfort includes: determining the user's physiological parameters through first data collected by a sensor or second data sent by a wearable device within a preset time from the time the user enters a sleep state, the physiological parameters including heart rate and/or breathing rate; and determining whether the user is in a deep sleep state or a light sleep state based on the physiological parameters.
  • obtaining the sleeping comfort includes: determining the sleeping comfort according to first data collected by a sensor in the cockpit and second data sent by a wearable device.
  • the user's breathing frequency can be determined as a first frequency based on the first data collected by the millimeter-wave radar in the cabin, and the user's breathing frequency can be determined as a second frequency based on the second data sent by the wearable device.
  • it can be determined that the user is in a deep sleep state or a light sleep state based on the first frequency and the second frequency.
  • it can be determined that the user is in a deep sleep state or a light sleep state based on the average value of the first frequency and the second frequency.
  • the cabin equipment includes an air conditioner, and when in the first state, the temperature of the air conditioner is a first temperature, and based on the human body posture information and the sleeping comfort, the cabin equipment is controlled to adjust from the first state to the second state, including: when the human body posture information indicates that the user is in a sleeping state, the temperature of the air conditioner is controlled to adjust from the first temperature to the second temperature based on the sleeping comfort.
  • the temperature of the air conditioner when the user is in a sleeping state, can be adjusted according to the user's sleeping comfort, which helps to improve the sleep quality of the user in the sleeping state. For example, after the user enters a deep sleep state, his body temperature will also change accordingly. By adjusting the temperature of the air conditioner, the user can be prevented from being woken up by cold or heat in a deep sleep state, thereby affecting the user's sleep quality.
  • the wind speed of the air conditioner is a first wind speed when in the first state
  • the cabin equipment is controlled to adjust from the first state to the second state based on the human body posture information and the sleeping comfort, including: when the human body posture information indicates that the user is in a sleeping state, the wind speed of the air conditioner is controlled to adjust from the first wind speed to the second wind speed based on the sleeping comfort.
  • the wind speed of the air conditioner when the user is in a sleeping state, can be adjusted according to the user's sleeping comfort, which helps to improve the sleep quality of the user in the sleeping state.
  • the wind speed of the air conditioner is relatively high when the first mode is just entered. After the user enters a deep sleep state, if the high wind speed is maintained, it will affect the user's perceived thermal comfort and the dryness of the skin on the surface of the body.
  • the wind speed of the air conditioner By adjusting and reducing the wind speed of the air conditioner, the user's perceived thermal comfort and the comfort of the skin on the surface of the body can be improved in a deep sleep state, thereby improving the user's sleep quality.
  • the air outlet direction of the air conditioner when in the first state, is a first direction, and according to the human body posture information and the sleeping comfort, the cockpit equipment is controlled to adjust from the first state to the second state, including: when the human body posture information indicates that the user is in a sleeping state, according to the sleeping comfort, the air outlet direction of the air conditioner is controlled to adjust from the first direction to the second direction.
  • the cockpit device includes a sound-generating device, and when in the first state, the volume of the sound-generating device is a first volume, and according to the human body posture information and the sleeping comfort, controlling the cockpit device to adjust from the first state to the second state includes: when the human body posture information indicates that the user is sleeping; In the sleep state, according to the sleep comfort level, the volume of the sound-emitting device is controlled to be adjusted from the first volume to the second volume, or the sound-emitting device is turned off, and the second volume is less than the first volume.
  • the volume of the sound-emitting device when the user is sleeping, can be lowered or turned off according to the user's sleeping comfort, so as to avoid disturbing the user due to excessive volume, which helps to improve the user's sleep quality and thus helps to improve the user's driving experience.
  • the cockpit device includes a seat
  • controlling the cockpit device to adjust from the first state to the second state based on the human body posture information includes: controlling the state of the seat massage function based on the human body posture information.
  • the state of the seat massage function can be automatically adjusted through human posture information.
  • the seat massage function when the first mode is started, the seat massage function is in an off state.
  • the seat massage function can be automatically turned on to help the user relax so that the user can fall asleep as soon as possible.
  • the seat massage function can be turned off, or the massage intensity of the seat massage function can be controlled to be reduced, which helps to avoid the interference of the seat massage on the user after falling asleep, and helps to improve the user's sleep quality.
  • the method further includes: prompting the user to start the seat massage function.
  • the user before controlling the state of the seat massage function to start, the user can also be prompted to start the seat massage function. This can avoid disturbing the user by automatically turning on the seat massage function, and help improve the user's driving experience.
  • the method before prompting the user to start the seat massage function, the method also includes: within a preset time period since the cockpit equipment is in the first state, determining that the number of changes in the user's torso posture is greater than or equal to a preset number, wherein prompting the user to start the seat massage function includes: at the end of the first mode, prompting the user to turn on the seat massage function.
  • the number of changes or the frequency of changes in the user's torso posture within a preset time period from when the cockpit device is in the first state can be counted. For example, if the frequency of changes in the user's torso posture within a preset time period from when the cockpit device is in the first state is too large, it can be considered that the user is in an uncomfortable state. At the end of the first mode, the user can be actively prompted to turn on the seat massage function, thereby helping the user to relax and relieve the user's discomfort.
  • the human posture information includes the user's eye state
  • the cockpit equipment includes a display device and the brightness of the display device is a first brightness when in the first state
  • the cockpit equipment is controlled to adjust from the first state to the second state based on the human posture information, including: when the eye state indicates that the user is with his eyes closed, controlling the brightness of the display device to adjust from the first brightness to the second brightness, or turning off the display device, and the second brightness is less than the first brightness.
  • the brightness of the display device when the user closes his eyes, the brightness of the display device can be reduced or the display device can be turned off. In this way, by reducing the brightness of the display device, it helps to promote the user's sleep, thereby helping to improve the user's driving experience.
  • the method also includes: before detecting that the first mode is turned on, controlling the brightness of the display device to a third brightness, wherein the third brightness is higher than the first brightness; when detecting that the first mode is turned on, controlling the brightness of the display device to be adjusted from the third brightness to the first brightness; when the human body posture information indicates that the user is in a sleeping state, controlling the brightness of the display device to be adjusted from the first brightness to the second brightness.
  • the brightness of the display device is controlled to be adjusted from the first brightness to the second brightness.
  • the human body posture information includes a first hand gesture of the user
  • controlling the cockpit device to adjust from the first state to the second state based on the human body posture information includes: controlling the cockpit device to adjust from the first state to the second state based on the first hand gesture.
  • the state of the cockpit equipment in the first mode can be adjusted through hand gestures, which helps to improve the user's driving experience and the intelligence of the vehicle.
  • the user's seat angle is adjusted to a lying state. If the user needs to lower the volume of the sound device at this time, the user does not need to stand up and operate the display device to lower the volume, but can directly lower the volume through hand gestures in the lying state, thereby making the method of lowering the volume more humane.
  • the cockpit includes a first area, the user is located in the first area, and the cockpit device is controlled to adjust from the first state to the second state according to the first gesture posture, including: according to the first gesture posture, controlling the device in the cockpit device associated with the first area to adjust from the first state to the second state.
  • the state of the device associated with the first area in the cockpit equipment can be adjusted through the gestures of the users in the first area. In this way, fine control of the different areas in the cockpit can be achieved.
  • the user in the first area wants to adjust the state of the device associated with the first area in the cockpit equipment, it avoids causing trouble to the user in the second area in the cockpit, which helps to improve the driving experience of multiple users in the first mode and also helps to improve the intelligence of the vehicle.
  • the first area may be the main driving area or the co-driving area, wherein the main driving area may be the area where the driver's seat is located, and the co-driving area may be the area where the co-driver's seat is located.
  • the devices associated with the first area may include the seat in the main driving area, the air conditioner in the main driving area, the instrument screen, the ambient light in the main driving area, the speaker on the door in the main driving area, the headrest speaker on the seat in the main driving area, etc.
  • the duration of the first mode is a first duration
  • the method further includes: when the first duration ends, prompting the user to turn off the first mode through an alarm; according to the user's second gesture, controlling the alarm to turn off, or controlling the alarm to delay the prompt.
  • the alarm can be turned off by a second gesture, or the alarm can be controlled to delay the prompt by the second gesture, which avoids the user turning off the alarm or delaying the prompt by clicking on the display device, making it convenient for the user to turn off the alarm in time or control the alarm delay prompt, and also makes the method of turning off the alarm or controlling the alarm delay prompt more humane.
  • controlling the alarm to turn off includes: controlling the alarm to turn off when a hover gesture of the user is detected.
  • the hovering gesture is a gesture in which the user spreads out five fingers and the palm faces the display device.
  • controlling the alarm to delay the prompt includes: when a left-slide gesture or a right-slide gesture by the user is detected, controlling the alarm to delay the prompt.
  • the user sits in the first seat in the first area and detects that the first mode is turned on. Before starting, according to the user's advance setting operation of the first seat angle or according to the state of the first seat before the last exit from the first mode, it is determined that the angle of the first seat is controlled to be the first angle when the first mode is started; the method also includes: when it is detected that the first mode is turned on, detecting whether there is a user on the second seat; when there is a user on the second seat and adjusting the angle of the first seat to the first angle will affect the user on the second seat, controlling the scheduling of the first seat to be adjusted to a second angle, the second seat is a seat located behind the first seat and adjacent to the first seat, and the second angle is smaller than the first angle.
  • the angle of the first seat can be controlled to be adjusted to the second angle. In this way, the inconvenience caused to the user on the second seat by the state of the first seat after entering the first mode is avoided, which helps to improve the driving experience of multiple users in the cabin and also helps to improve the intelligence level of the vehicle.
  • the angle of the first seat may be an angle formed between a seat cushion of the first seat and a backrest of the first seat.
  • a control device which includes: a detection unit for detecting that a first mode is turned on, the first mode being a mode related to rest for a user in a cabin of a vehicle, the cabin including cabin equipment, the cabin equipment including at least one of a seat, a fragrance, a sound device, a lighting device, an air conditioner and a display device; a control unit for controlling the cabin equipment to be in a first state; an acquisition unit for acquiring human body posture information; the control unit is also for controlling the cabin equipment to adjust from the first state to the second state according to the human body posture information.
  • the acquisition unit is further used to acquire sleep comfort, which is used to indicate the comfort level or sleep depth of the user when in a sleeping state; wherein the control unit is used to: control the cockpit equipment to adjust from the first state to the second state according to the human body posture information and the sleep comfort.
  • the acquisition unit is used to: determine the sleeping comfort based on first data collected by the sensor in the cabin; or, receive second data sent by the wearable device and determine the sleeping comfort based on the second data.
  • the cabin equipment includes an air conditioner
  • the temperature of the air conditioner is a first temperature when in the first state.
  • the control unit is used to: when the human body posture information indicates that the user is in a sleeping state, control the temperature of the air conditioner from the first temperature to the second temperature according to the sleeping comfort.
  • the cockpit equipment includes a sound-emitting device, and when in the first state, the volume of the sound-emitting device is a first volume.
  • the control unit is used to: when the human body posture information indicates that the user is in a sleeping state, according to the sleeping comfort, control the volume of the sound-emitting device from the first volume to the second volume, or turn off the sound-emitting device, and the second volume is less than the first volume.
  • the cockpit equipment includes a seat
  • the control unit is used to control a state of a massage function of the seat according to the human body posture information.
  • the device further includes: a first prompting unit, configured to prompt a user to start the seat massage function.
  • the human body posture information includes the user's eye state
  • the cockpit equipment includes a display device and the brightness of the display device is a first brightness when in the first state
  • the control unit is used to: when the eye state indicates that the user is with his eyes closed, control the brightness of the display device to adjust from the first brightness to the second brightness, or turn off the display device, and the second brightness is less than the first brightness.
  • the human body posture information includes a first gesture posture of the user
  • the control unit is used to: control the cockpit equipment to adjust from the first state to the second state according to the first gesture posture.
  • the cockpit includes a first area
  • the user is located in the first area
  • the control unit is used to: control the device associated with the first area in the cockpit device to adjust from the first state to the second state according to the first gesture posture.
  • the duration of the first mode is a first duration
  • the device also includes: a second prompt unit, used to prompt the user to turn off the first mode through an alarm when the first duration ends; wherein the control unit is also used to control the alarm to turn off according to the user's second gesture, or to control the alarm to delay the prompt.
  • the second state is adapted to the human body posture information.
  • the first mode is a nap mode, a sleep mode, a rest mode, or a camping mode.
  • a control device which includes a processing unit and a storage unit, wherein the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit to enable the control device to perform any possible method in the first aspect.
  • a control system which includes cockpit equipment and a computing platform, wherein the computing platform includes any possible control device in the second aspect or the third aspect, and the cockpit equipment includes at least one of a seat, a fragrance, a sound device, a lighting device, an air conditioner and a display device.
  • control system further includes one or more sensors.
  • a vehicle which includes any possible control device in the second aspect, or includes the control device described in the third aspect, or includes the control system described in the fourth aspect.
  • the vehicle is a vehicle.
  • a computer program product comprising: a computer program code, when the computer program code is run on a computer, the computer executes any possible method in the first aspect above.
  • the above-mentioned computer program code can be stored in whole or in part on the first storage medium, wherein the first storage medium can be packaged together with the processor or separately packaged with the processor, and the embodiments of the present application do not specifically limit this.
  • a computer-readable medium stores a program code, and when the computer program code is executed on a computer, the computer executes any possible method in the first aspect.
  • an embodiment of the present application provides a chip system, which includes a processor for calling a computer program or computer instructions stored in a memory so that the processor executes any possible method in the above-mentioned first aspect.
  • the processor is coupled to the memory through an interface.
  • the chip system also includes a memory, in which a computer program or computer instructions are stored.
  • the state of the cockpit equipment in the first mode can be automatically adjusted through human body posture information, which helps to improve the user's driving experience and also helps to improve the intelligence level of the vehicle.
  • the state of the cabin equipment in the first mode in combination with the sleep comfort it is helpful to improve the sleep quality of the user when in a sleeping state.
  • the temperature of the air conditioner can be adjusted according to the user's sleep comfort, which is helpful to improve the sleep quality of the user when in a sleeping state.
  • the wind speed of the air conditioner can be adjusted according to the user's sleeping comfort, which can improve the user's perceived thermal comfort and skin comfort in deep sleep, thereby improving the user's sleep quality.
  • the volume of the sound device can be lowered or turned off according to the user's sleeping comfort, so as to avoid disturbing the user due to excessive volume, which helps to improve the user's sleep quality and thus helps to improve the user's driving experience.
  • the seat massage function can be automatically turned on to help the user relax so that the user can fall asleep as soon as possible.
  • the seat massage function can be turned off or the massage intensity of the seat massage function can be controlled to be reduced, which helps to avoid the seat massage from disturbing the user after falling asleep and helps to improve the user's sleep quality.
  • the state of the cockpit equipment in the first mode can be adjusted through hand gestures, which helps to improve the user's driving experience and also helps to improve the intelligence level of the vehicle.
  • the state of the device associated with the first area in the cockpit equipment can be adjusted through the gestures of the users in the first area. In this way, fine control of the different areas in the cockpit can be achieved.
  • the users in the first area want to adjust the state of the device associated with the first area in the cockpit equipment, it avoids causing trouble to the users in the second area in the cockpit.
  • the alarm can be turned off by a second gesture, or the alarm can be controlled to delay the reminder by the second gesture, avoiding the user from turning off the alarm or delaying the reminder by clicking on the display device, making it convenient for the user to turn off the alarm or control the alarm delay reminder in time, and also making the method of turning off the alarm or controlling the alarm delay reminder more user-friendly.
  • FIG1 is a functional block diagram of a vehicle provided in an embodiment of the present application.
  • FIG2 is a functional block diagram of a vehicle provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the distribution of display screens in a vehicle cabin according to an embodiment of the present application.
  • FIG. 4 is a schematic flow chart of a control method provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of estimating a user's gesture posture provided by an embodiment of the present application.
  • FIG. 6 is another schematic flow chart of the control method provided in an embodiment of the present application.
  • FIG. 7 is another schematic flow chart of the control method provided in an embodiment of the present application.
  • FIG8 is a schematic block diagram of a control device provided in an embodiment of the present application.
  • prefixes such as “first” and “second” are used only to distinguish different description objects, and have no limiting effect on the position, order, priority, quantity or content of the described objects.
  • the use of prefixes such as ordinal numbers to distinguish description objects in the embodiments of the present application does not constitute a limitation on the described objects.
  • the meaning of "multiple" is two or more.
  • FIG1 is a functional block diagram of a vehicle 100 provided in an embodiment of the present application.
  • the vehicle 100 may include a perception system 120, a cockpit device 130, and a computing platform 150, wherein the perception system 120 may include one or more sensors for sensing information about the environment surrounding the vehicle 100.
  • the perception system 120 may include a positioning system, and the positioning system may be a global positioning system (GPS), or a Beidou system or other positioning systems.
  • the perception system 120 may also include one or more of an inertial measurement unit (IMU), a laser radar, a millimeter wave radar, an ultrasonic radar, a microphone array, a temperature sensor, a light sensor, and a camera.
  • the camera in the embodiment of the present application includes but is not limited to a red green blue (RGB) camera, a time of flight (TOF) camera, or an infrared (IR) camera.
  • RGB red green blue
  • TOF time of flight
  • IR infrared
  • the computing platform 150 may include one or more processors, such as processors 151 to 15n (n is a positive integer).
  • the processor is a circuit with signal processing capability.
  • the processor may be a circuit with instruction reading and execution capability, such as a central processing unit (CPU), a microprocessor, a graphics processing unit (GPU) (which can be understood as a microprocessor), or a digital signal processor (DSP); in another implementation, the processor may implement certain functions through the logical relationship of a hardware circuit, and the logical relationship of the hardware circuit is fixed or reconfigurable, such as a processor that is a hardware circuit implemented by an application-specific integrated circuit (ASIC) or a programmable logic device (PLD), such as a field programmable gate array (FPGA).
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the process of the processor loading a configuration document to implement the hardware circuit configuration can be understood as the process of the processor loading instructions to implement the functions of some or all of the above units.
  • the processor can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as a neural network processing unit (NPU), a tensor processing unit (TPU), a deep learning processing unit (DPU), etc.
  • the computing platform 150 can also include a memory, the memory is used to store instructions, and some or all of the processors 151 to 15n can call the instructions in the memory and execute the instructions to implement the corresponding functions.
  • the cockpit equipment 130 may include at least one of a seat, a fragrance, a sound device, a lighting device, an air conditioner, and a display device.
  • display devices are mainly divided into two categories.
  • the first category is the vehicle-mounted display screen; the second category is the projection display screen, such as a head up display (HUD).
  • the vehicle-mounted display screen is a physical display screen and an important part of the vehicle infotainment system.
  • There can be multiple display screens in the cockpit such as a digital instrument display screen, a central control screen, a display screen in front of the passenger in the front passenger seat (also called the front passenger), a display screen in front of the left rear passenger, and a display screen in front of the right rear passenger.
  • Head-up display also known as HUD Display system.
  • HUD Mainly used to display driving information such as speed and navigation on the display device in front of the driver (such as a windshield).
  • driving information such as speed and navigation on the display device in front of the driver (such as a windshield).
  • HUD includes, for example, a combined head-up display (combiner-HUD, C-HUD) system, a windshield head-up display (windshield-HUD, W-HUD) system, and an augmented reality head-up display system (augmented reality HUD, AR-HUD).
  • augmented reality HUD augmented reality head-up display system
  • HUD may also have other types of systems as technology evolves, and this application is not limited to this.
  • the above display device is described by taking a vehicle-mounted display screen and a projection display screen as examples, and the embodiments of the present application are not limited thereto.
  • the display device may also be a light display screen or a projection screen.
  • the lighting device may include an ambient light, a reading light, and the like.
  • the computing platform 150 can receive data sent by the perception system 120 and adjust the state of the cockpit equipment 130 according to the data.
  • connection between the computing platform 150 and the perception system 120 and the cockpit equipment 130 via a connecting line in FIG1 above may indicate that the computing platform 150, the perception system 120 and the cockpit equipment 130 are connected in a wired manner, or it may also indicate that the computing platform 150, the perception system 120 and the cockpit equipment 130 are connected in a wireless manner.
  • FIG2 shows a functional block diagram of a vehicle 200 provided in an embodiment of the present application.
  • the vehicle 200 may include a microphone 201, a camera 202 in the cabin, a millimeter-wave radar 203, other cabin sensors 204, a vehicle platform 205, a seat 206, an air conditioner 207, a display screen 208 in the cabin, a speaker 209, an atmosphere light 210, and a vehicle fragrance 211.
  • the microphone 201, the camera 202 in the cabin, the millimeter-wave radar 203, and other cabin sensors 204 may be located in the above-mentioned perception system 120
  • the vehicle platform 205 may be located in the above-mentioned computing platform 150
  • the seat 206, the air conditioner 207, the display screen 208 in the cabin, the speaker 209, the atmosphere light 210, and the vehicle fragrance 211 may be located in the above-mentioned cabin equipment 130.
  • the other cabin sensors 204 mentioned above may include a temperature sensor, a light sensor, and the like.
  • the vehicle platform 205 can receive data collected by one or more sensors including the microphone 201, the in-cabin camera 202, the millimeter-wave radar 203, and other in-cabin sensors 204.
  • the vehicle platform 205 can adjust the status of one or more devices including the seat 206, the air conditioner 207, the in-cabin display screen 208, the speaker 209, the ambient light 210, and the in-vehicle fragrance 211 according to the data.
  • the vehicle platform 205 can control the temperature of the air conditioner 207 to 20°C and the brightness of the display screen 208 in the cabin to 200 nits.
  • the vehicle platform 205 can also control the camera 202 in the cabin to turn on and collect images in the cabin.
  • the temperature of the air conditioner 207 can be increased from 20°C to 26°C and the display brightness of the display screen 208 in the cabin can be reduced from 200 nits to 100 nits.
  • FIG3 shows a schematic diagram of an exemplary display screen distribution in a vehicle cabin provided by an embodiment of the present application.
  • the vehicle cabin may include a display screen 301 (or, it may also be referred to as a central control screen), a display screen 302 (or, it may also be referred to as a passenger entertainment screen), a display screen 303 (or, it may also be referred to as an entertainment screen in the left area of the second row), a display screen 304 (or, it may also be referred to as an entertainment screen in the right area of the second row), and an instrument screen.
  • a display screen 301 or, it may also be referred to as a central control screen
  • a display screen 302 or, it may also be referred to as a passenger entertainment screen
  • a display screen 303 or, it may also be referred to as an entertainment screen in the left area of the second row
  • a display screen 304 or, it may also be referred to as an entertainment screen in the right area of the second row
  • an instrument screen
  • GUI graphical user interface
  • the cockpit may include a central control screen, a passenger entertainment screen, an entertainment screen in the second row left area, an entertainment screen in the second row right area, an entertainment screen in the third row left area, and an entertainment screen in the third row right area.
  • the cabin may include a front row entertainment screen and a rear row entertainment screen; or, the cabin may include a display screen in the driving area and an entertainment screen in the passenger area.
  • the entertainment screen in the passenger area may also be arranged on the top of the cabin.
  • the vehicle will adjust the device to the configured state according to the user's pre-manual configuration.
  • the user needs to change the state of the device, the user needs to perform cumbersome manual adjustments, which will affect the user's driving experience.
  • the embodiments of the present application provide a control method, device and vehicle, which can automatically adjust the state of the cabin equipment in the first mode through human body posture information, which helps to improve the user's driving experience and also helps to improve the intelligence level of the vehicle.
  • FIG4 shows a schematic flow chart of a control method 400 provided in an embodiment of the present application.
  • the method 400 may be executed by a vehicle (e.g., a vehicle), or the method 400 may be executed by the above-mentioned computing platform (e.g., a vehicle platform), or the method 400 may be executed by a system consisting of a computing platform and a cockpit device, or the method 400 may be executed by a system-on-a-chip (SoC) in the above-mentioned computing platform, or the method 400 may be executed by a processor in the computing platform.
  • the method 400 may be applied to a cockpit of a vehicle, which includes cockpit equipment, and the cockpit equipment includes at least one of a seat, a fragrance, a sound device, a lighting device, an air conditioner, and a display device.
  • the method 400 includes:
  • the first mode includes but is not limited to a nap mode, a sleep mode, a rest mode or a camping mode.
  • the detecting that the first mode is turned on includes: when detecting an input from a user indicating turning on the first mode, turning on the first mode.
  • the first mode when a user input is detected to activate a first mode, the first mode is activated, including: detecting a first operation of the user when the first mode is off, displaying a display interface of the first mode, the display interface including a control for activating the first mode; and detecting the user input to the control to activate the first mode.
  • the first operation is an operation of a user sliding from the top to the bottom of the display device
  • the display interface may be a drop-down menu display interface, which includes a control for starting the first mode.
  • the first mode when a user input indicating turning on a first mode is detected, the first mode is turned on, including: obtaining a user's voice instruction when the first mode is off, the voice instruction being used to instruct turning on the first mode; and turning on the first mode according to the voice instruction.
  • the user is in the main driving area of the vehicle.
  • the area where the user who issued the voice command is located can be determined through the voice command collected by the microphone array in the cabin.
  • the user can be determined to be in the main driving area based on the voice command collected by the microphone array.
  • the cabin equipment in the main driving area can be controlled to be in the first state.
  • the detecting that the first mode is turned on includes: automatically turning on the first mode when the user's intention to rest or sleep is detected.
  • the first mode when the user's intention to rest or sleep is detected, the first mode is automatically turned on, including: when the user's yawning expression or sleepy expression is detected, the first mode is automatically turned on.
  • the first mode when the user's yawning expression is detected, the first mode is automatically turned on, including: when the number of times the user yawns is detected to be greater than or equal to a preset number within a first preset time period, the first mode is automatically turned on.
  • the first preset duration is 5 minutes, and the preset number of times is 5 times.
  • the first mode when a sleepy expression of the user is detected, the first mode is automatically turned on, including: when it is detected that the duration of the sleepy expression of the user is greater than or equal to a second preset duration, the first mode is automatically turned on.
  • the second preset duration is 3 minutes.
  • the first mode when a yawning or sleepy expression of a user is detected, the first mode can be automatically turned on. In this way, the user does not need to manually turn on the first mode, which helps to improve the user experience and also helps to improve the intelligence of the vehicle.
  • the first mode when the user's intention to rest or sleep is detected, the first mode is automatically turned on, including: when the user's intention to rest or sleep is detected in a non-main driving area, the cabin equipment in the non-main driving area is controlled to be in the first state.
  • the first mode when the user's intention to rest or sleep is detected, the first mode is automatically turned on, including: when the user's intention to rest or sleep is detected in the main driving area and the current vehicle is in a parking state, the cockpit equipment in the main driving area is controlled to be in the first state.
  • a mapping relationship between the user and the state of the cockpit equipment is stored in the vehicle, and controlling the cockpit equipment to be in the first state includes: determining that the first user triggers the activation of the first mode; and controlling the cockpit equipment to be in the first state according to the first user and the mapping relationship.
  • Table 1 shows a mapping relationship between a user and the status of a cockpit device.
  • the state of the cabin equipment may also include the wind speed and wind direction of the air conditioner, and the type of fragrance (eg, refreshing, removing odor, soothing and relaxing, etc.).
  • the type of fragrance eg, refreshing, removing odor, soothing and relaxing, etc.
  • the angle of the above seat can be the angle formed between the seat cushion and the seat backrest.
  • the method 400 before detecting that the first mode is turned on, the method 400 further includes: obtaining a setting instruction from a user, where the setting instruction is used to indicate that the state of the cockpit device is the first state when the first mode is turned on.
  • the method 400 before detecting that the first mode is turned on, the method 400 further includes: recording the state of the cockpit device during the last operation of the first mode, the state of the cockpit device being the first state.
  • the last time the first mode was run included a first moment, which was a moment of exiting the first mode
  • the recording of the state of the cockpit equipment during the last time the first mode was entered included: recording the state of the cockpit equipment at the first moment, which was the first state.
  • the human body posture information includes the user's hand gestures and torso posture.
  • FIG4 shows a schematic diagram of estimating the user's gesture posture provided by an embodiment of the present application.
  • the image data of the main driving area collected by the RGB camera can be input into a neural network (NN), so that The 2D result of the hand and the hand model are output.
  • the 2.5D result of the key points of the hand can be determined through the hand model.
  • the 3D key point position of the whole hand can be obtained through the perspective-n-point (PNP) algorithm.
  • PNP perspective-n-point
  • the user's torso posture can be obtained by referring to the process shown in Figure 4 above.
  • the image data of the main driving area collected by the RGB camera can be input into the NN, so that the torso 2D result and the torso model can be output.
  • the 2.5D result of the torso key point can be determined by the torso model.
  • the 3D key point position of the torso can be obtained by the PNP algorithm.
  • the torso posture of the user in the main driving area can be obtained.
  • the process of estimating the gesture posture shown in FIG. 4 is merely illustrative, and the embodiments of the present application are not limited thereto.
  • the gesture posture and the torso posture may also be determined in other ways.
  • the gesture posture may also be estimated by a convolutional pose machine (CPM) algorithm.
  • CPM convolutional pose machine
  • S430 Control the cockpit equipment to adjust from the first state to the second state according to the human body posture information.
  • the second state is adapted to the human body posture information.
  • the above second state is adapted to the human body posture information and can also be understood as the comfort level of the user in the cockpit when the cockpit equipment is in the second state is greater than the comfort level of the user in the cockpit when the cockpit equipment is in the first state.
  • the method 400 also includes: obtaining sleep comfort, which is used to indicate the comfort level or sleep depth of the user when in a sleeping state; wherein, according to the human body posture information, controlling the cockpit equipment to adjust from the first state to the second state includes: according to the human body posture information and the sleep comfort, controlling the cockpit equipment to adjust from the first state to the second state.
  • the sleep comfort level can be used to indicate the sleep depth of the user when in a sleeping state.
  • the sleep depth can include a light sleep state and a deep sleep state.
  • the state of the cabin equipment in the first mode can be automatically adjusted through human posture information and sleep comfort level, without the need for manual adjustment by the user, which helps to improve the user's driving experience and the intelligence level of the vehicle.
  • the state of the cabin equipment in the first mode in combination with the sleep comfort level, it helps to improve the sleep quality of the user when in a sleeping state.
  • obtaining the sleeping comfort level includes: when the human body posture information indicates that the user is in a sleeping state, obtaining the sleeping comfort level.
  • the human body posture information indicates that the user's eyes change from an open state to a closed state, it can be determined that the user is in a sleeping state.
  • the user's eye state can be determined based on data collected by an RGB sensor and/or an IR sensor in the cabin; or, when the ambient brightness in the cabin is less than a preset ambient brightness, the user's eye state can be determined based on data collected by an IR sensor and/or a millimeter-wave radar in the cabin.
  • the preset ambient brightness is 100 lux.
  • obtaining the sleeping comfort includes: determining the sleeping comfort based on first data collected by a sensor in the cabin; or, receiving second data sent by a wearable device and determining the sleeping comfort based on the second data.
  • the senor in the cabin may include a millimeter wave radar.
  • the data collected by the millimeter wave radar can determine the user's breathing frequency or heart rate.
  • the user's sleeping comfort can be determined based on the user's breathing frequency or heart rate.
  • the user's heart rate when the user's heart rate is determined to be within [70 times/minute, 100 times/minute] according to the data collected by the millimeter-wave radar, it can be determined that the user is in a light sleep state; or, when the user's heart rate is determined to be within [50 times/minute, 70 times/minute) according to the data collected by the millimeter-wave radar, it can be determined that the user is in a deep sleep state.
  • the user's breathing rate is determined to be within [16 times/minute, 20 times/minute] according to the data collected by the millimeter-wave radar, it can be determined that the user is in a light sleep state; or, when the user's heart rate is determined to be within (12 times/minute, 16 times/minute) according to the data collected by the millimeter-wave radar, it can be determined that the user is in a deep sleep state.
  • the sleeping comfort can also be determined in combination with the first data and the second data.
  • the first data collected by the millimeter wave radar in the cabin determines that the user's heart rate is 65 times/minute and the second data sent by the wearable device determines that the user's heart rate is 71 times/minute. Then, it can be determined that the user is in a deep sleep state based on the average value of the heart rate determined by the first data and the heart rate determined by the second data (for example, 68 times/minute).
  • the sleeping comfort level is used to indicate the comfort level of the user when in a sleeping state.
  • the comfort level of the user when in a sleeping state includes whether the user is in a comfortable state or in an uncomfortable state when in a sleeping state.
  • the sensor in the cockpit may include a camera, such as a camera of a driver monitoring system (DMS) or a camera of a cabin monitoring system (CMS).
  • a camera such as a camera of a driver monitoring system (DMS) or a camera of a cabin monitoring system (CMS).
  • DMS driver monitoring system
  • CMS cabin monitoring system
  • the vehicle can receive data sent by a smart watch or smart bracelet and determine the user's sleeping comfort based on the data. For example, when the human body posture information indicates that the user is in a sleeping state, the vehicle can initiate a connection request to the smart watch, and the connection request is used to request to establish a connection with the smart watch; the smart watch can establish a connection with the vehicle based on the connection request.
  • the vehicle and the smart watch can establish a connection through short-range communication technology, and short-range communication technology includes but is not limited to Bluetooth connection or Wi-Fi connection.
  • the vehicle and the smart watch can also establish a connection through a cloud server. After the vehicle and the smart watch are connected, the smart watch can periodically send data to the vehicle.
  • the vehicle when detecting that the first mode is turned on, the vehicle may send a broadcast message, which is used to request to establish a connection with the user's wearable device, and the broadcast message may include the user's identification information.
  • the smart watch After receiving the broadcast message, the smart watch may establish a connection with the vehicle according to the user's identification information.
  • the receiving of data sent by a smart watch or smart bracelet includes: receiving one or more of the user's heart rate, breathing rate, blood circulation speed, and blood pressure information sent by the smart watch or smart bracelet.
  • the user's sleep comfort is determined according to one or more of the heart rate, breathing rate, blood circulation speed, and blood pressure information.
  • receiving data sent by a smart watch or a smart bracelet includes: receiving information sent by the smart watch or the smart bracelet to indicate the user's sleeping comfort.
  • the user's sleep comfort can be determined by the data collected by the sensor in the cabin or by the data sent by the wearable device.
  • the status of the cockpit equipment is adjusted to help improve the sleep quality of the user when in sleep state.
  • the cabin device includes an air conditioner, and the temperature of the air conditioner is a first temperature when in the first state.
  • the cabin device is controlled to adjust from the first state to the second state according to the human posture information and the sleep comfort, including: when the human posture information indicates that the user is in a sleeping state, according to the sleep comfort, the temperature of the air conditioner is controlled to adjust from the first temperature to the second temperature.
  • the temperature of the air conditioner can be adjusted according to the user's sleep comfort when the user is in a sleeping state, which helps to improve the sleep quality of the user when in a sleeping state. For example, after the user enters a deep sleep state, his body temperature will also change accordingly.
  • the temperature of the air conditioner the user can be prevented from being woken up by cold or heat in a deep sleep state, thereby affecting the user's sleep quality.
  • the temperature of the air conditioner is controlled to be adjusted from the first temperature to the second temperature according to the sleeping comfort and the duration of the sleeping state.
  • the first mode is turned on at time T1 and the first mode will end at time T2 . It is detected that the user enters the sleep state at time T3 between time T1 and time T2 .
  • the sleep state of the user in the time period from time T3 to time T2 can be predicted, for example, it is predicted that the user is in a light sleep state in the time period [ T3 , T4 ] and in a deep sleep state in the time period [ T4 , T2 ].
  • the temperature of the air conditioner can be controlled to gradually increase from 20°C to a comfortable sleeping body temperature (for example, 26°C) for the human body in the time period [ T3 , T4 ].
  • a comfortable sleeping body temperature for example, 26°C
  • the temperature of the air conditioner can be controlled to increase by 0.3°C per minute in the time period [ T3 , T4 ].
  • the temperature of the air conditioner is kept at 26°C in the time period [ T4 , T2 ]. In this way, it can be ensured that the temperature of the air conditioner is at a temperature that the user feels more comfortable when entering a deep sleep state.
  • the comfortable sleeping temperature of the human body is 26°, but the embodiments of the present application are not limited thereto.
  • the comfortable sleeping temperature of the human body may also be 23°.
  • the above is an example of controlling the temperature of the air conditioner to increase by 0.3°C per minute during the time period [T 3 , T 4 ].
  • the air conditioner temperature can be adjusted linearly or nonlinearly.
  • the air conditioner temperature can also be adjusted based on the human body thermal comfort curve.
  • the frequency of the air conditioner temperature change can be increased within a preset time after time T5 . If the duration of the time period [ T3 , T5 ] is 10 minutes, then the temperature of the air conditioner is adjusted to 23°C at time T5 . After time T5 , the temperature of the air conditioner is increased by 0.6°C per minute until the temperature of the air conditioner is adjusted to 26°C.
  • the speed of the air conditioner temperature change can be increased so that the temperature of the air conditioner changes quickly to a temperature suitable for the user's deep sleep, which helps to improve the user's sleep quality.
  • the temperature of the air conditioner can be kept at 26° C. during the time period [T 4 , T 2 ].
  • the vehicle can also adjust the temperature of the air conditioner. For example, since the air conditioner temperature and the human body thermal comfort temperature do not completely coincide, the vehicle can adjust the temperature of the air conditioner by identifying the thickness of the user's clothing to ensure that the user's body temperature meets the human body thermal comfort.
  • the user's historical sleep data when predicting the user's sleep state in the time period from T3 to T2 , can be referred to.
  • the historical sleep data includes the ratio between the duration of light sleep and the duration of deep sleep after the user starts the first mode and enters the sleep state in the past period of time (for example, within a month).
  • the proportion of light sleep state (for example , 60% of the total sleep time) and the proportion of deep sleep state (for example, 40% of the total sleep time) can be preset in advance. minutes, it can be predicted that the user will be in light sleep for 18 minutes and in deep sleep for 12 minutes.
  • the user's sleep state includes a light sleep state and a deep sleep state, but the embodiments of the present application are not limited to this.
  • the user can successively experience a light sleep state, a deep sleep state, and a light sleep state.
  • a light sleep state For example, it is predicted that the user is in a light sleep state during the time period [T 3 , T 4 ], switches from a light sleep state to a deep sleep state during the time period (T 4 , T 6 ], and switches from a deep sleep state to a light sleep state during the time period (T 6 , T 2 ].
  • the temperature of the air conditioner is controlled to gradually return to 20°C.
  • the wind speed of the air conditioner is a first wind speed when in the first state
  • the cabin equipment is controlled to adjust from the first state to the second state according to the human body posture information and the sleeping comfort, including: when the human body posture information indicates that the user is in a sleeping state, the wind speed of the air conditioner is controlled to adjust from the first wind speed to the second wind speed according to the sleeping comfort.
  • the wind speed of the air conditioner can be controlled to gradually decrease from 2m/s to 1m/s in the time period [T 3 , T 4 ]. If the duration of the time period [T 3 , T 4 ] is 10 minutes, the wind speed of the air conditioner can be controlled to decrease by 0.1m/s per minute in the time period [T 3 , T 4 ]. The temperature of the air conditioner is kept at 1m/s in the time period [T 4 , T 2 ]. In this way, it can be ensured that the wind speed of the air conditioner is at a wind speed that the user feels more comfortable when entering a deep sleep state.
  • the frequency of the air conditioner temperature change can be increased within a preset time after time T5 . If the duration of the time period [ T3 , T5 ] is 5 minutes, then at time T5 the air conditioner wind speed drops to 1.5m/s. After time T5 , the air conditioner wind speed is reduced by 0.2m/s per minute until the air conditioner wind speed is adjusted to 1m/s.
  • the speed of the air conditioner wind speed change can be increased so that the air conditioner wind speed quickly changes to a wind speed suitable for the user's deep sleep, which helps to improve the user's sleep quality.
  • the wind speed of the air conditioner may be maintained at 1 m/s during the time period [T 4 , T 2 ].
  • the wind speed of the air conditioner when the user is in a sleeping state, can be adjusted according to the user's sleeping comfort, which helps to improve the sleep quality of the user in the sleeping state. For example, when the first mode is just entered, the wind speed of the air conditioner is relatively high. After the user enters a deep sleep state, the higher wind speed will affect the user's perceived comfort and bring about greater noise. By adjusting and reducing the wind speed of the air conditioner, the user's perceived comfort can be improved and the impact of noise on the user can be reduced, thereby improving the user's sleep quality.
  • the air outlet direction of the air conditioner is a first direction
  • the cabin equipment is controlled to be adjusted from the first state to the second state, including: when the human body posture information indicates that the user is in a sleeping state, according to the sleeping comfort, the air outlet direction of the air conditioner is controlled to be adjusted from the first direction to the second direction.
  • the air outlet direction of the air conditioner can be controlled to gradually deviate from the user in the time period [T 3 , T 4 ]. In this way, it can be avoided that the air conditioner blows directly to the user when the user enters a deep sleep state, causing the user to catch a cold, which helps to improve the user experience.
  • the air outlet direction of the air conditioner can be controlled to gradually deviate from the core area of the user; alternatively, when the first direction is toward the non-core area of the user and the user falls asleep, the air outlet direction of the air conditioner may not be adjusted.
  • the cockpit equipment includes a sound-emitting device, and when in the first state, the volume of the sound-emitting device is a first volume.
  • the cockpit equipment is controlled to adjust from the first state to the second state according to the human body posture information and the sleeping comfort, including: when the human body posture information indicates that the user is in a sleeping state, according to the sleeping comfort, the volume of the sound-emitting device is controlled to adjust from the first volume to the second volume, or the sound-emitting device is turned off, and the second volume is less than the first volume.
  • the volume of the speaker in the cabin is 70dB in the first state.
  • the volume of the speaker in the cabin can be reduced to 60dB.
  • the volume of the speaker can be controlled to gradually decrease from 60dB to 30dB. If the duration of the time period [T 3 , T 4 ] is 10 minutes, the volume of the speaker can be reduced by 3dB per minute in the time period [T 3 , T 4 ].
  • the volume of the speaker is kept at 30dB in the time period [T 4 , T 2 ]. In this way, the influence of the excessive volume of the speaker on the sleep quality of the user after the user enters a deep sleep state can be avoided.
  • the volume of the speaker in the cabin is 70dB in the first state.
  • the volume of the speaker in the cabin can be reduced to 60dB.
  • the speaker in the cabin can be directly turned off, or the volume of the speaker in the cabin can be controlled to 0dB.
  • the volume of the sound-emitting device when the user is in a sleeping state and the user's sleeping comfort is low, the volume of the sound-emitting device is lowered or turned off to avoid disturbing the user due to excessive volume, which helps to improve the user's sleep quality and thus helps to improve the user's driving experience.
  • the cockpit device includes a seat
  • controlling the cockpit device to adjust from the first state to the second state based on the human body posture information includes: controlling the state of the seat massage function based on the human body posture information.
  • the seat massage function when it is detected that the first mode is turned on, can be controlled to be in an on state; when the human body posture information indicates that the user has entered a sleep state, the vehicle computer can autonomously control the seat massage function to switch from an on state to an off state.
  • the seat massage function when it is detected that the first mode is turned on, can be controlled to be in an off state; when the human posture information indicates that the user has not entered a sleep state within a preset time period, the vehicle computer can autonomously control the seat massage function to switch from the off state to the on state.
  • the seat massage function can be controlled to switch from an off state to an on state, including: when the human posture information indicates that the user has not entered a sleep state within a preset time and the frequency of the user's torso posture change within the preset time is greater than a first preset frequency, the seat massage function can be controlled to switch from an off state to an on state.
  • the preset time is 40% of the running time of the first mode. For example, if the running time of the first mode is 30 minutes, then the preset time can be 12 minutes.
  • the method 400 further includes: controlling the massage intensity of the seat massage function according to the human body posture information.
  • the seat massage function when the human body posture information indicates that the user has not entered a sleep state within a preset time period, the seat massage function can be controlled to switch from an off state to an on state and the massage intensity of the seat massage function can be controlled to be a first intensity; when the human body posture information indicates that the user has entered a sleep state, the massage intensity of the seat massage function can be controlled to be reduced from the first intensity to the second intensity; when it is detected that the user has entered a deep sleep state, the massage intensity of the seat massage function can be reduced from the second intensity to the third intensity, or the seat massage function can be turned off.
  • the state of the seat massage function can be automatically adjusted according to the human posture information. For example, when the first mode is started, the seat massage function is in an off state. When the human posture information indicates that the user cannot fall asleep for a long time, the seat massage function can be automatically turned on to help the user relax so that the user can fall asleep as soon as possible. When the human posture information indicates that the user has fallen asleep, the seat massage function can be turned off, or the massage intensity of the seat massage function can be reduced, which helps to avoid the interference of the seat massage on the user after falling asleep, and helps to improve the sleep quality of the user.
  • the method 400 further includes: prompting the user to start the seat massage function.
  • prompting the user to start the seat massage function before controlling the state of the seat massage function to start, the user can also be prompted to start the seat massage function, which can avoid disturbing the user by automatically starting the seat massage function, and help improve the user's driving experience.
  • the seat massage function is in a closed state when the first mode is started.
  • the user may be prompted to start the seat massage function.
  • the user may be prompted to start the seat massage function through a voice message "It is detected that you are uncomfortable, do you want to start the seat massage function?".
  • the seat massage function may be started.
  • the prompting the user to activate the seat massage function includes: when there are multiple users in the cabin, controlling a sound-emitting device at the headrest of the seat where the user is located to prompt the user to activate the seat massage function.
  • the vehicle there are users in both the main driving area and the co-pilot area in the vehicle cabin.
  • the cabin equipment in the main driving area can be controlled to be in the first state, and the seat massage function is turned off in the first state.
  • the speaker at the headrest of the seat in the main driving area can be controlled to emit a prompt sound, thereby prompting the user in the main driving area whether to start the seat massage function. In this way, interference with the user in the co-pilot area can be avoided.
  • the method 400 before prompting the user to start the seat massage function, the method 400 further includes: determining that the frequency of changes in the user's torso posture is greater than or equal to a preset frequency within a preset time period from when the cockpit device is in the first state, wherein the prompting the user to start the seat massage function includes: prompting the user to turn on the seat massage function at the end of the first mode.
  • the frequency of changes in the user's torso posture within a preset time period from when the cockpit device is in the first state can be counted. For example, if the frequency of changes in the user's torso posture within the preset time period is too large, it can be considered that the user is in an uncomfortable state.
  • the user can be actively prompted to turn on the seat massage function, thereby helping the user to relax and relieving the user's discomfort.
  • the human posture information includes the user's eye state
  • the cockpit equipment includes a display device and the brightness of the display device is a first brightness when in the first state
  • the cockpit equipment is controlled to adjust from the first state to the second state according to the human posture information, including: when the eye state indicates that the user is with eyes closed, controlling the brightness of the display device to adjust from the first brightness to the second brightness, or turning off the display device, the second brightness is less than the first brightness.
  • the method 400 also includes: before detecting that the first mode is turned on, controlling the brightness of the display device to a third brightness, wherein the third brightness is higher than the first brightness; when detecting that the first mode is turned on, controlling the brightness of the display device to be adjusted from the third brightness to the first brightness; when the human body posture information indicates that the user is in a sleeping state, controlling the brightness of the display device to be adjusted from the first brightness to the second brightness.
  • the vehicle computer actively controls the brightness of the display device to be adjusted from the first brightness to the second brightness, or turns off the display device, including: when the user's eyes change from an open state to a closed state, controls the brightness of the display device to be adjusted from the first brightness to the second brightness, or turns off the display device.
  • controlling the brightness of the display device to adjust from the first brightness to the second brightness includes: controlling the brightness of the display device to adjust from the first brightness to the second brightness according to the brightness of the environment.
  • the brightness of the display device can be controlled to decrease from 200 nits to 0 nits; or, if the brightness of the environment is greater than or equal to 50 lux and less than 100 lux, the brightness of the display device can be controlled to decrease from 200 nits to 150 nits; or, if the brightness of the environment is greater than or equal to 100 lux, the brightness of the display device can be controlled to decrease from 200 nits to 180 nits.
  • the human body posture information includes a first hand gesture of the user, and controlling the cockpit device to adjust from the first state to the second state according to the human body posture information includes: controlling the cockpit device to adjust from the first state to the second state according to the first hand gesture.
  • the hand gesture may contain instruction information for adjusting the state of the cockpit device in the first mode, which helps to improve the user's driving experience and also helps to improve the intelligence level of the vehicle.
  • the user's seat angle is adjusted to a lying state. If the user needs to lower the volume of the sound-emitting device at this time, the user does not need to get up and operate the display device to lower the volume. Instead, the volume can be lowered directly in the lying state through hand gestures, thereby making the method of lowering the volume more humane.
  • the vehicle stores a mapping relationship between gesture postures and state adjustments of cockpit equipment.
  • Table 2 shows a mapping relationship between a gesture posture and a state adjustment of a cockpit device.
  • mapping relationship shown in Table 2 above is merely illustrative and is not specifically limited in the present application.
  • the temperature of the air conditioner in the first state is 20°C.
  • the temperature of the air conditioner can be controlled to increase from 20°C to 21°C; when it is detected that the user waves from the bottom to the top again, the temperature of the air conditioner can be controlled to increase from 21°C to 22°C.
  • the temperature of the air conditioner in the first state is 20°C.
  • the temperature of the air conditioner can be controlled to increase according to the distance moved from the bottom to the top. For example, when the distance moved from the bottom to the top by the user's hand is less than the first preset distance, the temperature of the air conditioner can be controlled to increase from 20°C to 21°C; or, when the distance moved from the bottom to the top by the user's hand is greater than or equal to the first preset distance, the temperature of the air conditioner can be controlled to increase from 20°C to 22°C.
  • the temperature of the air conditioner in the first state is 20°C.
  • the temperature of the air conditioner can be controlled to increase according to the speed of the movement from the bottom to the top.
  • the temperature of the air conditioner can be controlled to increase from 20°C to 21°C; or, when the speed at which the user's hand moves from the lower side to the upper side is greater than or equal to the first preset speed, the temperature of the air conditioner can be controlled to increase from 20°C to 22°C.
  • the cockpit includes a first area
  • the user is located in the first area
  • the cockpit device is controlled to adjust from the first state to the second state according to the first gesture, including: according to the first gesture, the device associated with the first area in the cockpit device is controlled to adjust from the first state to the second state.
  • the state of the device associated with the first area in the cockpit device can be adjusted by the gesture of the user in the first area. In this way, fine control of the different areas in the cockpit can be achieved.
  • the duration of the first mode is a first duration
  • the method further includes: when the first duration ends, prompting the user to turn off the first mode through an alarm; according to the user's second gesture, controlling the alarm to turn off, or controlling the alarm to delay the prompt.
  • the alarm can be turned off by the second gesture, or the alarm can be controlled to delay the prompt by the second gesture, which avoids the user turning off the alarm or delaying the prompt by clicking on the display device, making it convenient for the user to turn off the alarm in time or control the alarm delay prompt, and also makes the method of turning off the alarm or controlling the alarm delay prompt more humane.
  • the method 400 further includes: when the alarm is turned off, exiting the first mode.
  • the above exiting the first mode may include: restoring the state of the cockpit equipment to the state before the first mode is turned on.
  • the angle of the seat in the cabin is 100°
  • the air conditioner is turned off
  • the brightness of the display screen in the cabin is 200 nits.
  • the angle of the seat in the cabin is 170°
  • the temperature of the air conditioner is 26°C
  • the brightness of the display screen is 100 nits.
  • the angle of the seat in the cabin can be controlled to be adjusted from 170° to 100°
  • the air conditioner can be turned off
  • the brightness of the display screen can be controlled to be adjusted from 100 nits to 200 nits.
  • controlling the alarm to turn off includes: controlling the alarm to turn off when a hover gesture of the user is detected.
  • the hovering gesture is a gesture in which the user's five fingers are spread out and the palm is facing the display device.
  • controlling the alarm to delay the prompt includes: when a left-side sliding gesture or a right-side sliding gesture of the user is detected, controlling the alarm to delay the prompt.
  • the user sits on the first seat in the first area, and before detecting that the first mode is turned on, it is determined that the angle of the first seat is controlled to be the first angle when the first mode is started, based on the user's advance setting operation of the first seat angle or based on the state of the first seat before the first mode was last exited; the method also includes: when detecting that the first mode is turned on, detecting whether there is a user on the second seat; when there is a user on the second seat and adjusting the angle of the first seat to the first angle will affect the user on the second seat, controlling the scheduling of the first seat to be adjusted to a second angle, the second seat is a seat located behind the first seat and adjacent to the first seat, and the second angle is smaller than the first angle.
  • the first mode when the first mode is turned on, it can be detected whether there is a user on the second seat behind the first seat. If there is a user on the second seat and the angle of the first seat is adjusted to the first angle, it will affect the user on the second seat.
  • the angle of the first seat can be controlled to be adjusted to the second angle. In this way, the inconvenience caused to the user in the second seat by the state of the first seat after entering the first mode is avoided, which helps to improve the driving experience of multiple users in the cockpit and also helps to improve the intelligence of the vehicle.
  • the state of the cockpit equipment in the first mode can be automatically adjusted by human posture information, without the need for manual adjustment by the user, which helps to improve the user's driving experience and the intelligence level of the vehicle.
  • the adjustment of the cockpit equipment by human posture information can also improve the accuracy of the cockpit equipment adjustment, so that the cockpit equipment is always in a comfortable state for the user.
  • FIG6 shows a schematic flow chart of a control method 600 provided in an embodiment of the present application.
  • the method 600 can be executed by a vehicle (e.g., a vehicle), or the method 600 can be executed by the above-mentioned computing platform (e.g., a vehicle platform), or the method 600 can be executed by a system consisting of a computing platform and a cockpit device, or the method 600 can be executed by a SoC in the above-mentioned computing platform, or the method 600 can be executed by a processor in the computing platform.
  • the method 600 includes:
  • the sensors in the cockpit include cameras, millimeter-wave radars, etc.
  • the data collected by the camera in the cockpit can be used to determine that the user in the cockpit is user A, and the cockpit equipment is controlled to be in the first state, including: according to the mapping relationship between the user and the state of the cockpit equipment shown in Table 1 above, controlling the brightness of the central control screen to 200 nits, the volume of the speaker to 60 decibels, the color of the light strip to blue, the temperature of the air conditioner to 23°C, the seat massage function to be turned on, and the angle of the seat to 160°.
  • the above human multi-target detection and human key point detection process can refer to the implementation process shown in Figure 4.
  • the human multi-target detection result can be the above human hand 2D result or torso 2D result
  • the above human key point detection result can be the above human hand 3D key point or torso 3D key point.
  • the above millimeter-wave human body detection can be understood as determining the user's sleeping comfort through data collected by the millimeter-wave radar.
  • the user's facial posture can be determined based on the torso 2D result and the 3D key points of the torso.
  • the user's eye state can be obtained by analyzing the facial posture. When the eye state is an open state, it can be determined that the user is not in a sleeping state; or when the eye state is a closed state, it can be determined that the user is in a sleeping state.
  • the user's heart rate is determined to be within [70 times/minute, 100 times/minute] based on the data collected by the millimeter-wave radar, it can be determined that the user is in a light sleep state; or, when the user's heart rate is determined to be within [50 times/minute, 70 times/minute) based on the data collected by the millimeter-wave radar, it can be determined that the user is in a deep sleep state.
  • the volume of the speaker can be controlled to decrease from 60 decibels to 40 decibels
  • the seat massage function can be switched from on to off
  • the temperature of the air conditioner can be increased from 23°C to 24°C.
  • the volume of the speaker may be controlled to decrease from 40 decibels to 20 decibels, and the temperature of the air conditioner may be increased from 24° C. to 26° C.
  • S607 when the ambient brightness in the cabin is greater than or equal to the preset ambient brightness, S607 may be executed; otherwise, S608 is executed.
  • the preset ambient brightness is 100 lux.
  • S607 When the ambient brightness in the cabin is greater than or equal to the preset ambient brightness, determine the user's eye state according to data collected by the RGB camera and/or the IR camera.
  • the user's eye state may be determined mainly based on data collected by the RGB camera and supplemented by data collected by the IR camera.
  • S608 When the ambient brightness in the cabin is less than a preset ambient brightness, determine the user's eye state based on data collected by the IR camera and/or the millimeter-wave radar.
  • the user's eye state may be determined mainly based on data collected by an IR camera and supplemented by data collected by a millimeter-wave radar.
  • S609 Determine whether the user is in an eyes-open state.
  • the brightness of the display screen in the cockpit can be maintained at 200 nits.
  • reducing the brightness of the display screen in the cabin includes: reducing the brightness of the display screen when the duration of the user's eyes-closed state is greater than or equal to a preset duration.
  • the preset duration is 10 seconds (s).
  • the brightness of the display screen may be controlled to decrease from 200 nits to 100 nits.
  • reducing the brightness of the display screen in the cockpit includes: reducing the brightness of the display screen in the cockpit according to the sleeping comfort of the user.
  • the brightness of the display screen may be controlled to decrease from 200 nits to 100 nits.
  • the brightness of the display screen may be controlled to decrease from 100 nits to 50 nits, or the display screen may be turned off.
  • FIG7 shows a schematic flow chart of a control method 700 provided in an embodiment of the present application.
  • the method 700 can be executed by a vehicle (e.g., a vehicle), or the method 700 can be executed by the above-mentioned computing platform (e.g., a vehicle platform), or the method 700 can be executed by a system consisting of a computing platform and a cockpit device, or the method 700 can be executed by a SoC in the above-mentioned computing platform, or the method 700 can be executed by a processor in the computing platform.
  • the method 700 includes:
  • the above S701-S702 can refer to the description of the above S601-S602, which will not be repeated here.
  • S705 Adjust the state of the cockpit equipment according to the user's gestures.
  • the temperature of the air conditioner when it is detected that the user is waving from the bottom to the top, the temperature of the air conditioner can be increased.
  • the seat massage function can be turned on.
  • the alarm when the duration of the first mode reaches a preset duration, the alarm can be controlled to ring; otherwise, the alarm remains in an off state.
  • the alarm when it is detected that the user waves from the left side to the right side or from the right side to the left side, the alarm can be controlled to delay ringing.
  • the alarm when the alarm rings, it can also be determined whether the user has a hovering gesture. When the user's hovering gesture is detected, the alarm can be controlled to turn off; otherwise, the alarm continues to ring.
  • FIG8 shows a schematic block diagram of a control device 800 provided in an embodiment of the present application.
  • the device 800 includes: a detection unit 810, which is used to detect that a first mode is turned on, and the first mode is a mode related to resting of a user in a cabin of a vehicle, and the cabin includes cabin equipment, and the cabin equipment includes at least one of a seat, a fragrance, a sound device, a lighting device, an air conditioner, and a display device; a control unit 820, which is used to control the cabin equipment to be in a first state; an acquisition unit 830, which is used to acquire human posture information; the control unit 820 is also used to control the cabin equipment to adjust from the first state to the second state according to the human posture information.
  • a detection unit 810 which is used to detect that a first mode is turned on, and the first mode is a mode related to resting of a user in a cabin of a vehicle, and the cabin includes cabin equipment, and the cabin equipment includes at least one of a seat
  • the acquisition unit 830 is also used to acquire sleep comfort, which is used to indicate the comfort level or sleep depth of the user when in a sleeping state; wherein the control unit 820 is used to: control the cockpit equipment to adjust from the first state to the second state according to the human body posture information and the sleep comfort.
  • the acquisition unit 830 is used to: determine the sleeping comfort level according to first data collected by a sensor in the cabin; or, receive second data sent by a wearable device and determine the sleeping comfort level according to the second data.
  • the cabin equipment includes an air conditioner
  • the temperature of the air conditioner is a first temperature when in the first state.
  • the control unit 820 is used to: when the human body posture information indicates that the user is in a sleeping state, control the temperature of the air conditioner from the first temperature to the second temperature according to the sleeping comfort.
  • the cockpit equipment includes a sound-emitting device, and the volume of the sound-emitting device is a first volume when in the first state.
  • the control unit 820 is used to: when the human body posture information indicates that the user is in a sleeping state, according to the sleeping comfort, control the volume of the sound-emitting device to be adjusted from the first volume to a second volume, or turn off the sound-emitting device, and the second volume is less than the first volume.
  • the cockpit equipment includes a seat
  • the control unit 820 is used to control the state of the seat massage function according to the human body posture information.
  • the device 800 further includes: a first prompting unit, configured to prompt the user to start the seat massage function.
  • the human body posture information includes the user's eye state
  • the cockpit equipment includes a display device and the brightness of the display device is a first brightness when in the first state
  • the control unit 820 is used to: when the eye state indicates that the user is with his eyes closed, control the brightness of the display device to adjust from the first brightness to a second brightness, or turn off the display device, and the second brightness is less than the first brightness.
  • the human body posture information includes a first hand gesture of the user
  • the control unit 820 is used to control the cockpit device to adjust from the first state to the second state according to the first hand gesture.
  • the cockpit includes a first area
  • the user is located in the first area
  • the control unit 820 is used to: control the device associated with the first area in the cockpit device to adjust from the first state to the second state according to the first gesture posture.
  • the duration of the first mode is a first duration
  • the device 800 also includes: a second prompt unit, used to prompt the user to turn off the first mode through an alarm when the first duration ends; wherein the control unit 820 is also used to control the alarm to turn off according to the user's second gesture, or to control the alarm to delay the prompt.
  • the second state is adapted to the human body posture information.
  • the first mode is a nap mode, a sleep mode, a rest mode or a camping mode.
  • the detection unit 810 may be the computing platform in FIG. 1 or a processing circuit, a processor, or a controller in the computing platform. Taking the detection unit 810 as the processor 151 in the computing platform as an example, the processor 151 may obtain data collected by the camera and the touch sensor in the cabin. The processor 151 may determine that the user in the main driving area has turned on the first mode based on the data collected by the camera and the touch sensor in the cabin.
  • control unit 820 may be the computing platform in Figure 1 or a processing circuit, processor or controller in the computing platform. Taking the control unit 820 as the processor 152 in the computing platform as an example, the processor 152 may control the cockpit equipment in the cockpit to be in the first state when the processor 151 determines that the user in the main driving area turns on the first mode.
  • the acquisition unit 830 may be the computing platform in Figure 1 or a processing circuit, processor or controller in the computing platform. Taking the acquisition unit 830 as the processor 153 in the computing platform as an example, the processor 153 may determine the human body posture information of the user in the main driving area according to the data collected by the sensor in the cockpit when the processor 152 controls the cockpit device to be in the first state.
  • the processor 152 may also adjust the state of the cockpit equipment from the first state to the second state according to the human body posture information of the user in the main driving area determined by the processor 153 .
  • the functions implemented by the above detection unit 810, the functions implemented by the control unit 820 and the functions implemented by the acquisition unit 830 can be implemented by different processors, or some functions can be implemented by the same processor, or all functions can be implemented by the same processor, and the embodiments of the present application are not limited to this.
  • the division of the various units in the above device is only a division of logical functions. In actual implementation, they can be fully or partially integrated into one physical entity, or they can be physically separated.
  • the units in the device can be implemented in the form of a processor calling software; for example, the device includes a processor, the processor is connected to a memory, the memory stores instructions, and the processor calls the instructions stored in the memory to implement any of the above methods or to implement the functions of the various units of the device, wherein the processor is, for example, a general-purpose processor, such as a CPU or a microprocessor, and the memory is a memory inside the device or a memory outside the device.
  • the units in the device can be implemented in the form of hardware circuits, which can be implemented by designing the hardware circuits.
  • the functions of some or all units, the hardware circuit can be understood as one or more processors; for example, in one implementation, the hardware circuit is an ASIC, and the functions of some or all of the above units are realized by designing the logical relationship of the components in the circuit; for another example, in another implementation, the hardware circuit can be realized by PLD, taking FPGA as an example, it can include a large number of logic gate circuits, and the connection relationship between the logic gate circuits is configured by the configuration file, so as to realize the functions of some or all of the above units. All units of the above device can be realized in the form of software called by the processor, or in the form of hardware circuit, or in part by the form of software called by the processor, and the rest by the form of hardware circuit.
  • a processor is a circuit with the ability to process signals.
  • the processor may be a circuit with the ability to read and run instructions, such as a CPU, a microprocessor, a GPU, or a DSP; in another implementation, the processor may implement certain functions through the logical relationship of a hardware circuit, and the logical relationship of the hardware circuit is fixed or reconfigurable, such as a hardware circuit implemented by an ASIC or PLD, such as an FPGA.
  • the process of the processor loading a configuration document to implement the configuration of the hardware circuit can be understood as the process of the processor loading instructions to implement the functions of some or all of the above units.
  • it can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as an NPU, TPU, DPU, etc.
  • each unit in the above device can be one or more processors (or processing circuits) configured to implement the above method, such as: CPU, GPU, NPU, TPU, DPU, microprocessor, DSP, ASIC, FPGA, or a combination of at least two of these processor forms.
  • processors or processing circuits
  • the SoC may include at least one processor for implementing any of the above methods or implementing the functions of each unit of the device.
  • the type of the at least one processor may be different, for example, including CPU and FPGA, CPU and artificial intelligence processor, CPU and GPU, etc.
  • An embodiment of the present application also provides a control device, which includes a processing unit and a storage unit, wherein the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit so that the device executes the control method executed by the above embodiment.
  • the processing unit may be the processor 151 - 15n shown in FIG. 1 .
  • An embodiment of the present application also provides a control system, which may include a computing platform and cockpit equipment, and the computing platform may include the above-mentioned control device 800.
  • the cockpit equipment may include a display device, which may include an on-board display screen, such as one or more of display screen 301, display screen 302, display screen 303 or display screen 304 in FIG. 3 above.
  • a display device which may include an on-board display screen, such as one or more of display screen 301, display screen 302, display screen 303 or display screen 304 in FIG. 3 above.
  • control system further comprises one or more sensors.
  • An embodiment of the present application also provides a vehicle, which may include the above-mentioned control device 800 or control system.
  • the vehicle may be a vehicle.
  • the embodiment of the present application further provides a computer program product, which includes: a computer program code, and when the computer program code is executed on a computer, the computer executes the control method in the above embodiment.
  • the embodiment of the present application further provides a computer-readable medium, wherein the computer-readable medium stores a program code.
  • the computer program code is executed on a computer, the computer executes the control method in the above embodiment.
  • the present application also provides a chip including a circuit for executing the above-mentioned embodiment.
  • the control method in .
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the method disclosed in conjunction with the embodiment of the present application can be directly embodied as a hardware processor for execution, or a combination of hardware and software modules in a processor for execution.
  • the software module can be located in a storage medium mature in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or a power-on erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in conjunction with its hardware. To avoid repetition, it is not described in detail here.
  • the memory may include a read-only memory and a random access memory, and provide instructions and data to the processor.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

一种控制方法、装置和运载工具,涉及智能座舱领域,可以应用于运载工具的座舱,包括:在检测到与座舱内用户休息相关的模式开启时,控制座舱内的座椅、香氛、发声装置、灯光装置、空调和显示装置中的一个或者多个设备调整至某个预设的状态;获取人体姿态信息;根据人体姿态信息,控制一个或者多个设备从预设的状态调整至另一状态。实施例可以应用于智能汽车或者电动汽车,有助于提升用户的驾乘体验,也有助于提升运载工具的智能化程度。

Description

一种控制方法、装置和运载工具 技术领域
本申请涉及智能座舱领域,并且更具体地,涉及一种控制方法、装置和运载工具。
背景技术
随着车辆智能化的发展,越来越多的车辆上都配置有帮助用户放松身心或者休息的模式,例如小憩模式。当前在进入小憩模式后,车辆会根据用户预先手动配置,将座舱内的设备调整至配置好的状态。当用户需要调整设备的状态时,需要用户繁琐的手动调节,这样会对用户的驾乘体验造成影响。
发明内容
本申请实施例提供一种控制方法、装置和运载工具,通过人体姿态信息可以自动对第一模式下座舱设备的状态进行调节,有助于提升用户的驾乘体验,也有助于提升运载工具的智能化程度。
本申请中的运载工具可以包括路上交通工具、水上交通工具、空中交通工具、工业设备、农业设备、或娱乐设备等。例如运载工具可以为车辆,该车辆为广义概念上的车辆,可以是交通工具(如商用车、乘用车、摩托车、飞行车、火车等),工业车辆(如:叉车、挂车、牵引车等),工程车辆(如挖掘机、推土车、吊车等),农用设备(如割草机、收割机等),游乐设备,玩具车辆等,本申请实施例对车辆的类型不作具体限定。再如,运载工具可以为飞机、或轮船等交通工具。
第一方面,提供了一种控制方法,应用于运载工具的座舱,该座舱内包括座舱设备,该座舱设备包括座椅、香氛、发声装置、灯光装置、空调和显示装置中的至少一种,该方法包括:在检测到第一模式开启时,控制该座舱设备处于第一状态,该第一模式为与该座舱内用户休息相关的模式;获取人体姿态信息;根据该人体姿态信息,控制该座舱设备从该第一状态调整至第二状态。
本申请实施例中,通过人体姿态信息可以自动对第一模式下座舱设备的状态进行调节,车机可根据人体姿态信息自主做出调整决策,也可根据人体姿态信息中包含的指示信息对座舱设备进行调整,有助于提升用户的驾乘体验,也有助于提升运载工具的智能化程度。
在一些可能的实现方式中,该人体姿态信息包括手势姿态或者躯干姿态。
示例性的,手势姿态包括隔空手势。例如,手势姿态可以为悬停手势,该悬停手势为用户的五根手指展开且手掌朝向显示装置的手势。又例如,手势姿态可以为挥手手势,如从左侧向右侧挥动的手势,或者上侧向下侧挥动的手势。
示例性的,躯干姿态可以包括用户的头部姿态以及四肢姿态。例如,头部姿态可以包括脸部姿态。通过脸部姿态可以确定用户处于睁眼状态或者闭眼状态。又例如,四肢姿态包括用户的两个胳膊和两条腿的姿态。通过座舱内的传感器采集的数据可以确定从用户进 入睡眠状态起的预设时长内四肢姿态的变化频率,从而可以确定用户处于非舒适状态或者舒适状态。
以上座舱设备处于该第一状态可以包括座椅处于第一角度、香氛的类型为第一类型、发声装置处于第一音量、灯光装置处于第一亮度、空调处于第一温度或者第一出风速度、显示装置处于第二亮度等。该座舱设备从第一状态调整至该第二状态可以包括座椅的角度调整至第二角度、香氛的类型调整至第二类型、发声装置的音量调整至第二音量、灯光装置的亮度调整至第三亮度、空调的温度调整至第二温度、空调的出风速度调整至第二出风速度、显示装置的亮度调整至第四亮度等。
在一些可能的实现方式中,该第二状态与该人体姿态信息相适应。
以上该第二状态与该人体姿态相适应也可以理解为座舱设备处于第二状态时座舱内用户的舒适度大于座舱设备处于第一状态时座舱内用户的舒适度。
结合第一方面,在第一方面的某些实现方式中,该第一模式为小憩模式、睡眠模式、休息模式或者露营模式。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:获取睡眠舒适度,该睡眠舒适度用于指示用户处于睡眠状态时的舒适程度或者睡眠深度;其中,该根据该人体姿态信息,控制该座舱设备从该第一状态调整至第二状态,包括:根据该人体姿态信息和该睡眠舒适度,控制该座舱设备从该第一状态调整至该第二状态。
本申请实施例中,通过人体姿态信息和睡眠舒适度,可以由车机自主对第一模式下座舱设备的状态进行调节,无需用户进行手动调节,有助于提升用户的驾乘体验,也有助于提升运载工具的智能化程度。同时,通过结合睡眠舒适度对第一模式下座舱设备的状态进行调节,有助于提升处于睡眠状态时用户的睡眠质量。
在一些可能的实现方式中,该睡眠舒适度用于指示用户处于睡眠状态时的舒适程度。例如,该用户处于睡眠状态时的舒适程度包括用户在睡眠状态下处于舒适状态或者处于非舒适状态。在一些可能的实现方式中,该睡眠舒适度可以用于指示用户处于睡眠状态时的睡眠深度。例如,该睡眠深度可以包括浅睡眠状态和深度睡眠状态。
在一些可能的实现方式中,获取睡眠舒适度,包括:该人体姿态信息指示该用户处于睡眠状态时,获取该睡眠舒适度。
本申请实施例中,在通过人体姿态信息确定用户处于睡眠状态时获取用户的睡眠舒适度,避免了在用户处于非睡眠状态时通过座舱内的传感器采集的数据或者可穿戴设备发送的数据确定该睡眠舒适度,有助于节省运载工具的计算开销,从而有助于降低运载工具的功耗。
在一些可能的实现方式中,上述用于判断用户是否处于睡眠状态的人体姿态信息包括人眼开闭状态和/或头部角度。
结合第一方面,在第一方面的某些实现方式中,该获取睡眠舒适度,包括:根据该座舱内的传感器采集的第一数据,确定该睡眠舒适度;或者,接收可穿戴设备发送的第二数据且根据该第二数据确定该睡眠舒适度。
本申请实施例中,可以通过座舱内的传感器采集的数据来确定用户的睡眠舒适度或者可以通过可穿戴设备发送的数据来确定用户的睡眠舒适度。这样,通过结合睡眠舒适度对第一模式下座舱设备的状态进行调节,有助于提升处于睡眠状态时用户的睡眠质量。
在一些可能的实现方式中,该座舱内的传感器包括摄像头和/或毫米波雷达。
示例性的,该获取睡眠舒适度,包括:在用户进入睡眠状态起的预设时长内通过座舱内传感器采集的第一数据确定用户的躯干姿态变化的次数大于或者等于预设次数时,确定用户处于非舒适状态;或者,在用户进入睡眠状态起的预设时长内通过传感器采集的第一数据确定用户的躯干姿态变化的次数小于该预设次数时,确定用户处于舒适状态。
示例性的,该获取睡眠舒适度,包括:在用户进入睡眠状态起的预设时长内通过传感器采集的第一数据或者可穿戴设备发送的第二数据,确定用户的生理参数,该生理参数包括心跳频率和/或呼吸频率;根据该生理参数,确定用户处于深度睡眠状态或者浅睡眠状态。
在一些可能的实现方式中,该获取睡眠舒适度,包括:根据该座舱内的传感器采集的第一数据和可穿戴设备发送的第二数据,确定该睡眠舒适度。
示例性的,可以根据座舱内的毫米波雷达采集的第一数据确定用户的呼吸频率为第一频率且根据可穿戴设备发送的第二数据确定用户的呼吸频率为第二频率。从而可以根据该第一频率和第二频率,确定用户处于深度睡眠状态或者浅睡眠状态。例如,可以根据第一频率和该第二频率的平均值,确定用户处于深度睡眠状态或者浅睡眠状态。
结合第一方面,在第一方面的某些实现方式中,该座舱设备包括空调,处于该第一状态时该空调的温度为第一温度,该根据该人体姿态信息和该睡眠舒适度,控制该座舱设备从该第一状态调整至该第二状态,包括:在该人体姿态信息指示该用户处于睡眠状态时,根据该睡眠舒适度,控制该空调的温度从该第一温度调整至第二温度。
本申请实施例中,在用户处于睡眠状态时可以根据用户的睡眠舒适度对空调的温度进行调节,有助于提升处于睡眠状态时用户的睡眠质量。例如,在用户进入深度睡眠状态后,其体温也会发生相应的变化。通过调节空调的温度,可以避免用户在深度睡眠状态下被冻醒或者热醒,从而影响用户的睡眠质量。
在一些可能的实现方式中,处于该第一状态时该空调的风速为第一风速,该根据该人体姿态信息和该睡眠舒适度,控制该座舱设备从该第一状态调整至该第二状态,包括:在该人体姿态信息指示该用户处于睡眠状态时,根据该睡眠舒适度,控制该空调的风速从该第一风速调整至第二风速。
本申请实施例中,在用户处于睡眠状态时可以根据用户的睡眠舒适度对空调的风速进行调节,有助于提升处于睡眠状态时用户的睡眠质量。例如,在刚开始进入第一模式时空调的风速较大。在用户进入深度睡眠状态后,如果保持较大的风速会对用户的体感热舒适及体表皮肤干燥度造成影响。通过调节降低空调的风速,可以改善深度睡眠状态下用户的体感热舒适与体表皮肤舒适性,从而提升用户的睡眠质量。
在一些可能的实现方式中,处于该第一状态时该空调的出风方向为第一方向,该根据该人体姿态信息和该睡眠舒适度,控制该座舱设备从该第一状态调整至该第二状态,包括:在该人体姿态信息指示该用户处于睡眠状态时,根据该睡眠舒适度,控制该空调的出风方向从该第一方向调整至第二方向。
结合第一方面,在第一方面的某些实现方式中,该座舱设备包括发声装置,处于该第一状态时该发声装置的音量为第一音量,该根据该人体姿态信息和该睡眠舒适度,控制该座舱设备从该第一状态调整至该第二状态,包括:在该人体姿态信息指示该用户处于睡眠 状态时,根据该睡眠舒适度,控制该发声装置的音量从该第一音量调整至第二音量,或者,关闭该发声装置,该第二音量小于该第一音量。
本申请实施例中,在用户处于睡眠状态时可以根据用户的睡眠舒适度将发声装置的音量降低或者关闭发声装置,避免由于音量过大对用户的打扰,有助于提升用户的睡眠质量,从而有助于提升用户的驾乘体验。
结合第一方面,在第一方面的某些实现方式中,该座舱设备包括座椅,该根据该人体姿态信息,控制该座舱设备从该第一状态调整至该第二状态,包括:根据该人体姿态信息,控制该座椅按摩功能的状态。
本申请实施例中,通过人体姿态信息可以自动调整座椅按摩功能的状态。例如,在第一模式启动时座椅按摩功能处于关闭状态。在人体姿态信息指示用户长时间无法进入睡眠状态时,可以自动开启座椅按摩功能,从而帮助用户进行放松,使得用户可以尽快进入睡眠状态。在人体姿态信息指示用户进入睡眠状态时可以关闭座椅按摩功能,或者控制座椅按摩功能的按摩力度降低,有助于避免在进入睡眠状态后座椅按摩对用户的干扰,有助于提升用户的睡眠质量。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:提示该用户启动该座椅按摩功能。
本申请实施例中,在控制该座椅按摩功能的状态启动之前,还可以提示用户启动该座椅按摩功能,这样可以避免自动开启座椅按摩功能对用户的惊扰,有助于提升用户的驾乘体验。
在一些可能的实现方式中,提示该用户启动该座椅按摩功能之前,该方法还包括:在从座舱设备处于第一状态起的预设时长内,确定用户的躯干姿态变化次数大于或者等于预设次数,其中,该提示该用户启动该座椅按摩功能,包括:在该第一模式结束时,提示用户开启座椅按摩功能。
本申请实施例中,可以对从座舱设备处于第一状态起的预设时长内用户的躯干姿态变化次数或者变化频率进行统计。例如,若从座舱设备处于第一状态起的预设时长内用户的躯干姿态变化频率过大,可以认为用户处于不舒适的状态。在第一模式结束时可以主动提示用户开启座椅按摩功能,从而帮助用户进行放松,有助于缓解用户的不舒适感。
结合第一方面,在第一方面的某些实现方式中,该人体姿态信息包括用户的眼睛状态,该座舱设备包括显示装置且处于该第一状态时该显示装置的亮度为第一亮度,该根据该人体姿态信息,控制该座舱设备从该第一状态调整至第二状态,包括:在该眼睛状态指示该用户处于闭眼时,控制该显示装置的亮度从该第一亮度调整至第二亮度,或者,关闭该显示装置,该第二亮度小于该第一亮度。
本申请实施例中,在用户处于闭眼,可以将显示装置的亮度降低或者关闭显示装置。这样,通过降低显示装置的亮度,有助于促进用户的睡眠,从而有助于提升用户的驾乘体验。
在一些可能的实现方式中,该方法还包括:在检测到第一模式开启之前,控制该显示装置的亮度为第三亮度,其中,该第三亮度高于该第一亮度;在检测到第一模式开启时,控制该显示装置的亮度从该第三亮度调整为该第一亮度;在该人体姿态信息指示用户处于睡眠状态时,控制该显示装置的亮度从该第一亮度调整至第二亮度。
在一些可能的实现方式中,在该人体姿态信息指示用户的眼睛从睁眼状态变为闭眼状态时,控制该显示装置的亮度从该第一亮度调整至第二亮度。
结合第一方面,在第一方面的某些实现方式中,该人体姿态信息包括用户的第一手势姿态,该根据该人体姿态信息,控制该座舱设备从该第一状态调整至第二状态,包括:根据该第一手势姿态,控制该座舱设备从该第一状态调整至该第二状态。
本申请实施例中,通过手势姿态可以对第一模式下座舱设备的状态进行调节,有助于提升用户的驾乘体验,也有助于提升运载工具的智能化程度。例如,在第一模式下用户的座椅角度被调整为躺平状态,如果此时用户需要将发声装置的音量调低,无需用户起身对显示装置进行操作来调低音量,而是可以直接在躺平状态下通过手势姿态调低音量,从而使得调低音量的方式更加人性化。
结合第一方面,在第一方面的某些实现方式中,该座舱包括第一区域,该用户位于该第一区域,该根据该第一手势姿态,控制该座舱设备从该第一状态调整至该第二状态,包括:根据该第一手势姿态,控制该座舱设备中与该第一区域相关联的设备从该第一状态调整至该第二状态。
本申请实施例中,在第一模式下座舱内有多个用户时,可以通过第一区域的用户的手势姿态,来调整座舱设备中与第一区域相关联的设备的状态。这样,可以实现座舱内分区域的精细控制,在第一区域的用户希望调整座舱设备中与第一区域相关联的设备的状态时,避免对位于座舱内第二区域的用户造成困扰,有助于提升处于第一模式下的多个用户的驾乘体验,也有助于提升运载工具的智能化程度。
示例性的,以运载工具是车辆为例,该第一区域可以为主驾区域或者副驾区域,其中,主驾区域可以为驾驶位所在的区域,副驾区域可以为副驾驶位所在的区域。如该第一区域为主驾区域时,与第一区域相关联的设备可以包括主驾区域的座椅、主驾区域的空调、仪表屏、主驾区域的氛围灯、主驾区域车门上的扬声器、主驾区域的座椅上的头枕音箱等。
结合第一方面,在第一方面的某些实现方式中,该第一模式的持续时长为第一时长,该方法还包括:在该第一时长结束时,通过闹铃提示该用户关闭该第一模式;根据该用户的第二手势姿态,控制该闹铃关闭,或者,控制该闹铃进行延迟提示。
用户在被闹铃闹醒时,情绪和意识通常处于不清晰状态,如果此时让用户在显示装置上进行操作来关闭闹铃,会给用户带来不便且不人性化。本申请实施例中,在第一模式的持续时长结束时,可以通过第二手势姿态关闭该闹铃,或者,通过该第二手势姿态控制该闹铃进行延迟提示,避免了在用户通过显示装置上的点击操作来关闭闹铃或者延迟提示,方便用户及时关闭闹铃或者控制闹铃延迟提示,也使得关闭闹铃或者控制闹铃延迟提示的方式更加人性化。
在一些可能的实现方式中,该控制该闹铃关闭,包括:在检测到用户的悬停手势时,控制该闹铃关闭。
在一些可能的实现方式中,该悬停手势为用户的五根手指展开且手掌朝向显示装置的手势。
在一些可能的实现方式中,该控制该闹铃进行延迟提示,包括:在检测到用户的向左侧滑动的手势或者向右侧滑动的手势时,控制该闹铃进行延迟提示。
在一些可能的实现方式中,该用户坐在第一区域的第一座椅上,在检测到第一模式开 启之前,根据用户对该第一座椅角度的提前设置操作或者根据上一次退出第一模式前第一座椅的状态,确定在第一模式启动时控制第一座椅的角度为第一角度;该方法还包括:在检测到第一模式开启时,检测第二座椅上是否存在用户;在该第二座椅上存在用户且将第一座椅的角度调整为第一角度会影响到第二座椅上的用户时,控制该第一座椅的调度调整为第二角度,该第二座椅为位于第一座椅后方且和该第一座椅相邻的座椅,该第二角度小于该第一角度。
本申请实施例中,在第一模式开启时,可以对第一座椅后侧的第二座椅上是否存在用户进行检测。若第二座椅上存在用户且第一座椅的角度调整为第一角度会影响到第二座椅上的用户时,可以控制第一座椅的角度调整为第二角度。这样,避免了进入第一模式后第一座椅的状态对第二座椅上的用户造成的不便,有助于提升座舱内多个用户的驾乘体验,也有助于提升运载工具的智能化程度。
以上第一座椅的角度可以为第一座椅的坐垫与第一座椅的靠背之间所成的角度。
第二方面,提供了一种控制装置,该装置包括:检测单元,用于检测到第一模式开启,该第一模式为与运载工具的座舱内用户休息相关的模式,该座舱内包括座舱设备,该座舱设备包括座椅、香氛、发声装置、灯光装置、空调和显示装置中的至少一种;控制单元,用于控制该座舱设备处于第一状态;获取单元,用于获取人体姿态信息;该控制单元,还用于根据该人体姿态信息,控制该座舱设备从该第一状态调整至第二状态。
结合第二方面,在第二方面的某些实现方式中,该获取单元,还用于获取睡眠舒适度,该睡眠舒适度用于指示用户处于睡眠状态时的舒适程度或者睡眠深度;其中,该控制单元,用于:根据该人体姿态信息和该睡眠舒适度,控制该座舱设备从该第一状态调整至该第二状态。
结合第二方面,在第二方面的某些实现方式中,该获取单元,用于:根据该座舱内的传感器采集的第一数据,确定该睡眠舒适度;或者,接收可穿戴设备发送的第二数据且根据该第二数据确定该睡眠舒适度。
结合第二方面,在第二方面的某些实现方式中,该座舱设备包括空调,处于该第一状态时该空调的温度为第一温度,该控制单元,用于:在该人体姿态信息指示用户处于睡眠状态时,根据该睡眠舒适度,控制该空调的温度从该第一温度调整至第二温度。
结合第二方面,在第二方面的某些实现方式中,该座舱设备包括发声装置,处于该第一状态时该发声装置的音量为第一音量,该控制单元,用于:在该人体姿态信息指示用户处于睡眠状态时,根据该睡眠舒适度,控制该发声装置的音量从该第一音量调整至第二音量,或者,关闭该发声装置,该第二音量小于该第一音量。
结合第二方面,在第二方面的某些实现方式中,该座舱设备包括座椅,该控制单元,用于:根据该人体姿态信息,控制该座椅按摩功能的状态。
结合第二方面,在第二方面的某些实现方式中,该装置还包括:第一提示单元,用于提示用户启动该座椅按摩功能。
结合第二方面,在第二方面的某些实现方式中,该人体姿态信息包括用户的眼睛状态,该座舱设备包括显示装置且处于该第一状态时该显示装置的亮度为第一亮度,该控制单元,用于:在该眼睛状态指示用户处于闭眼时,控制该显示装置的亮度从该第一亮度调整至第二亮度,或者,关闭该显示装置,该第二亮度小于该第一亮度。
结合第二方面,在第二方面的某些实现方式中,该人体姿态信息包括用户的第一手势姿态,该控制单元,用于:根据该第一手势姿态,控制该座舱设备从该第一状态调整至该第二状态。
结合第二方面,在第二方面的某些实现方式中,该座舱包括第一区域,该用户位于该第一区域,该控制单元,用于:根据该第一手势姿态,控制该座舱设备中与该第一区域相关联的设备从该第一状态调整至该第二状态。
结合第二方面,在第二方面的某些实现方式中,该第一模式的持续时长为第一时长,该装置还包括:第二提示单元,用于在该第一时长结束时,通过闹铃提示用户关闭该第一模式;其中,该控制单元,还用于根据用户的第二手势姿态,控制该闹铃关闭,或者,控制该闹铃进行延迟提示。
结合第二方面,在第二方面的某些实现方式中,该第二状态与该人体姿态信息相适应。
结合第二方面,在第二方面的某些实现方式中,该第一模式为小憩模式、睡眠模式、休息模式或者露营模式。
第三方面,提供了一种控制装置,该控制装置包括处理单元和存储单元,其中存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使该控制装置执行第一方面中任一种可能的方法。
第四方面,提供了一种控制系统,该系统包括座舱设备和计算平台,其中,该计算平台包括第二方面或者第三方面中任一种可能的控制装置,该座舱设备包括座椅、香氛、发声装置、灯光装置、空调和显示装置中的至少一种。
在一些可能的实现方式中,该控制系统还包括一个或者多个传感器。
第五方面,提供了一种运载工具,该运载工具包括第二方面中任一种可能的控制装置,或者,包括第三方面所述的控制装置,或者,包括第四方面所述的控制系统。
在一些可能的实现方式中,该运载工具为车辆。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面中任一种可能的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第七方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面中任一种可能的方法。
第八方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行上述第一方面中任一种可能的方法。
结合第八方面,在一种可能的实现方式中,该处理器通过接口与存储器耦合。
结合第八方面,在一种可能的实现方式中,该芯片系统还包括存储器,该存储器中存储有计算机程序或计算机指令。
本申请实施例中,通过人体姿态信息可以自动对第一模式下座舱设备的状态进行调节,有助于提升用户的驾乘体验,也有助于提升运载工具的智能化程度。
通过结合睡眠舒适度对第一模式下座舱设备的状态进行调节,有助于提升处于睡眠状态时用户的睡眠质量。在用户处于睡眠状态时可以根据用户的睡眠舒适度对空调的温度进行调节,有助于提升处于睡眠状态时用户的睡眠质量。
在用户处于睡眠状态时可以根据用户的睡眠舒适度对空调的风速进行调节,可以改善深度睡眠状态下用户的体感热舒适与体表皮肤舒适性,从而提升用户的睡眠质量。
在用户处于睡眠状态时可以根据用户的睡眠舒适度将发声装置的音量降低或者关闭发声装置,避免由于音量过大对用户的打扰,有助于提升用户的睡眠质量,从而有助于提升用户的驾乘体验。
在人体姿态信息指示用户长时间无法进入睡眠状态时,可以自动开启座椅按摩功能,从而帮助用户进行放松,使得用户可以尽快进入睡眠状态。在人体姿态信息指示用户进入睡眠状态时可以关闭座椅按摩功能,或者控制座椅按摩功能的按摩力度降低,有助于避免在进入睡眠状态后座椅按摩对用户的干扰,有助于提升用户的睡眠质量。
通过手势姿态可以对第一模式下座舱设备的状态进行调节,有助于提升用户的驾乘体验,也有助于提升运载工具的智能化程度。
在第一模式下座舱内有多个用户时,可以通过第一区域的用户的手势姿态,来调整座舱设备中与第一区域相关联的设备的状态。这样,可以实现座舱内分区域的精细控制,在第一区域的用户希望调整座舱设备中与第一区域相关联的设备的状态时,避免对位于座舱内第二区域的用户造成困扰。
在第一模式的持续时长结束时,可以通过第二手势姿态关闭该闹铃,或者,通过该第二手势姿态控制该闹铃进行延迟提示,避免了在用户通过显示装置上的点击操作来关闭闹铃或者延迟提示,方便用户及时关闭闹铃或者控制闹铃延迟提示,也使得关闭闹铃或者控制闹铃延迟提示的方式更加人性化。
附图说明
图1是本申请实施例提供的运载工具的功能框图示意。
图2是本申请实施例提供的车辆的功能框图示意。
图3是本申请实施例提供的车辆座舱内显示屏分布的示意图。
图4是本申请实施例提供的控制方法的示意性流程图。
图5是本申请实施例提供的估计用户手势姿态的示意图。
图6是本申请实施例提供的控制方法的另一示意性流程图。
图7是本申请实施例提供的控制方法的另一示意性流程图。
图8是本申请实施例提供了控制装置的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。“至少一种”是指一种或一种以上。例如,“A和B中的至少一种”,类似于“A和/或B”,描述关联对象 的关联关系,表示可以存在三种关系,例如,A和B中的至少一种,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例中采用诸如“第一”、“第二”的前缀词,仅仅为了区分不同的描述对象,对被描述对象的位置、顺序、优先级、数量或内容等没有限定作用。本申请实施例中对序数词等用于区分描述对象的前缀词的使用不对所描述对象构成限制,对所描述对象的陈述参见权利要求或实施例中上下文的描述,不应因为使用这种前缀词而构成多余的限制。此外,在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
图1是本申请实施例提供的运载工具100的一个功能框图示意。运载工具100可以包括感知系统120、座舱设备130和计算平台150,其中,感知系统120可以包括感测关于运载工具100周边的环境的信息的一种或多种传感器。例如,感知系统120可以包括定位系统,定位系统可以是全球定位系统(global positioning system,GPS),也可以是北斗系统或者其他定位系统。感知系统120还可以包括惯性测量单元(inertial measurement unit,IMU)、激光雷达、毫米波雷达、超声雷达、麦克风阵列、温度传感器、光线传感器以及摄像装置中的一种或者多种。本申请实施例中的摄像装置包括但不限于红绿蓝(red green blue,RGB)摄像头、飞行时间(time of flight,TOF)摄像头或者红外线(infrared radiation,IR)摄像头。
运载工具100的部分或所有功能可以由计算平台150控制。计算平台150可包括一个或多个处理器,例如处理器151至15n(n为正整数),处理器是一种具有信号的处理能-力的电路,在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如中央处理单元(central processing unit,CPU)、微处理器、图形处理器(graphics processing unit,GPU)(可以理解为一种微处理器)、或数字信号处理器(digital signal processor,DSP)等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为专用集成电路(application-specific integrated circuit,ASIC)或可编程逻辑器件(programmable logic device,PLD)实现的硬件电路,例如现场可编程门阵列(field programmable gate array,FPGA)。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,处理器还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如神经网络处理单元(neural network processing unit,NPU)、张量处理单元(tensor processing unit,TPU)、深度学习处理单元(deep learning processing unit,DPU)等。此外,计算平台150还可以包括存储器,存储器用于存储指令,处理器151至15n中的部分或全部处理器可以调用存储器中的指令,执行指令,以实现相应的功能。
座舱设备130中可以包括座椅、香氛、发声装置、灯光装置、空调和显示装置中的至少一种。
示例性的,显示装置主要分为两类,第一类是车载显示屏;第二类是投影显示屏,例如抬头显示装置(head up display,HUD)。车载显示屏是一种物理显示屏,是车载信息娱乐系统的重要组成部分,座舱内可以设置有多块显示屏,如数字仪表显示屏,中控屏,副驾驶位上的乘客(也称为前排乘客)面前的显示屏,左侧后排乘客面前的显示屏以及右侧后排乘客面前的显示屏,甚至是车窗也可以作为显示屏进行显示。抬头显示,也称平视 显示系统。主要用于在驾驶员前方的显示设备(例如挡风玻璃)上显示例如时速、导航等驾驶信息。以降低驾驶员视线转移时间,避免因驾驶员视线转移而导致的瞳孔变化,提升行驶安全性和舒适性。HUD例如包括组合型抬头显示(combiner-HUD,C-HUD)系统、风挡型抬头显示(windshield-HUD,W-HUD)系统、增强现实型抬头显示系统(augmented reality HUD,AR-HUD)。应理解,HUD也可以随着技术演进出现其他类型的系统,本申请对此不作限定。
以上显示装置是以车载显示屏和投影显示屏为例进行说明的,本申请实施例并不限于此。例如,该显示装置还可以为光显示屏或者投影幕布。
示例性的,灯光装置可以包括氛围灯、阅读灯等。
本申请实施例中,计算平台150可以接收感知系统120发送的数据,并根据该数据调整座舱设备130的状态。
应理解,以上图1中计算平台150通过连接线连接感知系统120和座舱设备130可以表示计算平台150、感知系统120和座舱设备130之间是通过有线的方式连接,或者,也可以表示计算平台150、感知系统120和座舱设备130之间是通过无线的方式连接。
以运载工具是车辆为例,图2示出了本申请实施例提供的车辆200的一个功能框图示意。车辆200中可以包括麦克风201、座舱内摄像头202、毫米波雷达203、其他座舱传感器204、车机平台205、座椅206、空调207、座舱内显示屏208、音箱209、氛围灯210、车载香氛211等。其中,麦克风201、座舱内摄像头202、毫米波雷达203以及其他座舱传感器204可以位于上述感知系统120中,车机平台205可以位于上述计算平台150中,座椅206、空调207、座舱内显示屏208、音箱209、氛围灯210以及车载香氛211可以位于上述座舱设备130中。
以上其他座舱传感器204可以包括温度传感器、光线传感器等。
车机平台205可以接收麦克风201、座舱内摄像头202、毫米波雷达203和其他座舱传感器204中的一个或者多个传感器采集的数据。车机平台205可以根据该数据,调整座椅206、空调207、座舱内显示屏208、音箱209、氛围灯210和车载香氛211中一个或者多个设备的状态。
示例性的,在小憩模式开启时,车机平台205可以控制空调207的温度为20℃且座舱内显示屏208的亮度为200尼特。车机平台205还可以控制座舱内摄像头202开启并采集座舱内的图像。在车机平台205通过该图像确定座舱内用户进入睡眠状态时,可以将空调207的温度从20℃调高至26℃且将座舱内显示屏208的显示亮度从200尼特降低至100尼特。
图3示出了本申请实施例提供的一种示例性车辆座舱内显示屏分布的示意图。如图3所示,车辆的座舱内可以包括显示屏301(或者,也可以称为中控屏)、显示屏302(或者,也可以称为副驾娱乐屏)、显示屏303(或者,也可以称为二排左侧区域的娱乐屏)、显示屏304(或者,也可以称为二排右侧区域的娱乐屏)以及仪表屏。
应理解,以下实施例中的图形用户界面(graphical user interface,GUI)是以图2所示的5座车辆为例进行说明的,本申请实施例并不限于此。例如,对于7座运动型多用途汽车(sport utility vehicle,SUV),座舱内可以包括中控屏、副驾娱乐屏、二排左侧区域的娱乐屏、二排右侧区域的娱乐屏、三排左侧区域的娱乐屏以及三排右侧区域的娱乐屏。又 例如,对于客车而言,座舱内可以包括前排娱乐屏和后排娱乐屏;或者,座舱内可以包括驾驶区域的显示屏和乘客区域的娱乐屏。在一种实现中,乘客区域的娱乐屏也可以设置在座舱顶部。
如前所述,当前车辆在进入小憩模式后,车辆会根据用于预先手动配置,将设备调整至配置好的状态。当用户需要更改设备的状态时,需要用户通过繁琐的手动调节,这样会对用户的驾乘体验造成影响。
本申请实施例提供了一种控制方法、装置和运载工具,通过人体姿态信息可以自动对第一模式下座舱设备的状态进行调节,有助于提升用户的驾乘体验,也有助于提升运载工具的智能化程度。
图4示出了本申请实施例提供的控制方法400的示意性流程图。该方法400可以由运载工具(例如,车辆)执行,或者,该方法400可以由上述计算平台(例如,车机平台)执行,或者,该方法400可以由计算平台和座舱设备组成的系统执行,或者,该方法400可以由上述计算平台中的片上系统(system-on-a-chip,SoC)执行,或者,该方法400可以由计算平台中的处理器执行。该方法400可以应用于运载工具的座舱,该座舱内包括座舱设备,该座舱设备包括座椅、香氛、发声装置、灯光装置、空调和显示装置中的至少一种,该方法400包括:
S410,在检测到第一模式开启时,控制该座舱设备处于第一状态,该第一模式为与该座舱内用户休息相关的模式。
示例性的,该第一模式包括但不限于小憩模式、睡眠模式、休息模式或者露营模式。
一个实施例中,该检测到第一模式开启,包括:在检测到用户指示开启第一模式的输入时,开启该第一模式。
一个实施例中,在检测到用户指示开启第一模式的输入时,开启该第一模式,包括:在第一模式关闭时检测到用户的第一操作,显示第一模式的显示界面,该显示界面上包括开启第一模式的控件;检测到该用户针对该控件的输入,开启该第一模式。
示例性的,该第一操作为用户从显示装置的上方向下方滑动的操作,该显示界面可以为下拉菜单显示界面,该下拉菜单显示界面上包括开启第一模式的控件。
一个实施例中,在检测到用户指示开启第一模式的输入时,开启该第一模式,包括:在第一模式关闭时获取用户的语音指令,该语音指令用于指示开启该第一模式;根据该语音指令,开启该第一模式。
示例性的,用户位于车辆中的主驾区域。在检测到该用户发出语音指令“开启小憩模式”时,可以通过座舱内的麦克风阵列采集的语音指令确定发出该语音指令的用户所在的区域,例如,可以根据麦克风阵列采集的语音指令确定用户位于主驾区域。从而可以控制主驾区域的座舱设备处于该第一状态。
一个实施例中,该检测到第一模式开启,包括:在检测到用户的休息意图或者睡觉意图时,自动开启该第一模式。
一个实施例中,在检测到用户的休息意图或者睡觉意图时,自动开启该第一模式,包括:在检测到用户打哈欠的表情或者瞌睡的表情时,自动开启该第一模式。
一个实施例中,在检测到用户打哈欠的表情时,自动开启该第一模式,包括:在第一预设时长内检测到用户打哈欠的次数大于或者等于预设次数时,自动开启开第一模式。
示例性的,该第一预设时长为5分钟,该预设次数为5次。
一个实施例中,在检测到用户瞌睡的表情时,自动开启该第一模式,包括:在检测到用户的瞌睡的表情的持续时长大于或者等于第二预设时长时,自动开启第一模式。
示例性的,该第二预设时长为3分钟。
本申请实施例中,在检测到用户打哈欠的表情或者瞌睡的表情时,可以自动开启该第一模式。这样,无需用户手动开启该第一模式,有助于提升用户的体验,也有助于提升运载工具的智能化程度。
一个实施例中,在检测到用户的休息意图或者睡觉意图时,自动开启该第一模式,包括:在检测到非主驾区域的用户的休息意图或者睡觉意图时,控制该非主驾区域的座舱设备处于第一状态。
一个实施例中,在检测到用户的休息意图或者睡觉意图时,自动开启该第一模式,包括:在检测到主驾区域的用户的休息意图或者睡觉意图且当前运载工具处于驻车状态时,控制该主驾区域的座舱设备处于第一状态。
一个实施例中,该运载工具中保存有用户与座舱设备的状态之间的映射关系,该控制该座舱设备处于第一状态,包括:确定第一用户触发该第一模式的开启;根据该第一用户与该映射关系,控制座舱设备处于第一状态。
示例性的,表1示出了一种用户与座舱设备的状态之间的映射关系。
表1
以上表1仅仅是示意性的,本申请实施例并不限于此。例如,该座舱设备的状态中还可以包括空调的风速以及出风方向、香氛的类型(例如,提神醒脑、祛除异味、舒缓放松等)。
以上座椅的角度可以为座椅的坐垫与座椅的靠背之间所成的角度。
一个实施例中,在检测到第一模式开启之前,该方法400还包括:获取用户的设置指令,该设置指令用于指示第一模式开启时座舱设备的状态为该第一状态。
一个实施例中,在检测到第一模式开启之前,该方法400还包括:记录上一次第一模式运行的过程中座舱设备的状态,该座舱设备的状态为该第一状态。
一个实施例中,上一次第一模式运行的过程中包括第一时刻,该第一时刻为退出第一模式的时刻,该记录上一次进入第一模式的过程中座舱设备的状态,包括:记录该第一时刻座舱设备的状态,该座舱设备的状态为该第一状态。
S420,获取人体姿态信息。
一个实施例中,该人体姿态信息包括用户的手势姿态和躯干姿态。
示例性的,以获取用户的手势姿态为例,图4示出了本申请实施例提供的估计用户手势姿态的示意图。如图4所示,在检测到车辆座舱内主驾区域存在用户时,可以将通过RGB摄像头采集的主驾区域的图像数据输入神经网络(neural network,NN)中,从而可 以输出人手2维(2-dimension,2D)结果以及人手模型。通过人手模型可以确定人手关键点的2.5维(2.5-dimension,2.5D)结果。根据人手关键点的2.5D结果和人手2D结果,通过透视N点(perspective-n-point,PNP)算法可以得到整个人手的3D关键点位置。通过将3D关键点位置输入手势姿态估计模块,可以得到主驾区域用户的手势姿态。
同样的,可以参考上述图4所示的过程得到用户的躯干姿态。例如,可以将通过RGB摄像头采集的主驾区域的图像数据输入NN中,从而可以输出躯干2D结果以及躯干模型。通过躯干模型可以确定躯干关键点的2.5D结果。根据躯干关键点的2.5D结果和躯干2D结果,通过PNP算法可以得到躯干的3D关键点位置。通过将躯干的3D关键点位置输入躯干姿态估计模块,可以得到主驾区域用户的躯干姿态。
应理解,以上图4所示的估计手势姿态的过程仅仅是示意性的,本申请实施例并不限于此。还可以通过其他方式确定手势姿态以及躯干姿态。例如,还可以通过卷积姿态机(convolutional pose machine,CPM)算法对手势姿态进行估计。
S430,根据该人体姿态信息,控制该座舱设备从该第一状态调整至第二状态。
可选地,该第二状态与该人体姿态信息相适应。
以上该第二状态与该人体姿态信息相适应也可以理解为座舱设备处于第二状态时座舱内用户的舒适度大于座舱设备处于第一状态时座舱内用户的舒适度。
可选地,该方法400还包括:获取睡眠舒适度,该睡眠舒适度用于指示用户处于睡眠状态时的舒适程度或者睡眠深度;其中,该根据该人体姿态信息,控制该座舱设备从该第一状态调整至第二状态,包括:根据该人体姿态信息和该睡眠舒适度,控制该座舱设备从该第一状态调整至该第二状态。
可选地,该睡眠舒适度可以用于指示用户处于睡眠状态时睡眠深度。例如,该睡眠深度可以包括浅睡眠状态和深度睡眠状态。这样,通过人体姿态信息和睡眠舒适度,可以自动对第一模式下座舱设备的状态进行调节,无需用户进行手动调节,有助于提升用户的驾乘体验,也有助于提升运载工具的智能化程度。同时,通过结合睡眠舒适度对第一模式下座舱设备的状态进行调节,有助于提升处于睡眠状态时用户的睡眠质量。
可选地,获取睡眠舒适度,包括:该人体姿态信息指示该用户处于睡眠状态时,获取该睡眠舒适度。
示例性的,在该人体姿态信息指示用户的眼睛从睁眼状态变为闭眼状态时,可以确定用户处于睡眠状态。
可选地,在座舱内的环境亮度大于或者等于预设环境亮度时,可以根据座舱内RGB传感器和/或IR传感器采集的数据确定用户的眼睛状态;或者,在座舱内的环境亮度小于预设环境亮度时,可以根据座舱内IR传感器和/或毫米波雷达采集的数据确定用户的眼睛状态。
示例性的,该预设环境亮度为100勒克斯(lux)。
示例性的,在该人体姿态信息指示用户的眼睛从睁眼状态变为闭眼状态起的预设时长内,检测到用户的躯干姿态的变化频率小于或者等于第一预设频率,可以确定用户处于睡眠状态。
可选地,该获取睡眠舒适度,包括:根据该座舱内的传感器采集的第一数据,确定该睡眠舒适度;或者,接收可穿戴设备发送的第二数据且根据该第二数据确定该睡眠舒适度。
示例性的,该座舱内的传感器可以包括毫米波雷达。通过毫米波雷达采集的数据可以确定用户的呼吸频率或者心跳频率。从而可以用户的呼吸频率或者心跳频率,确定用户的睡眠舒适度。
示例性的,在根据毫米波雷达采集的数据确定用户的心跳频率在[70次/分钟,100次/分钟]内时,可以确定用户处于浅睡眠状态;或者,在根据毫米波雷达采集的数据确定用户的心跳频率在[50次/分钟,70次/分钟)内时,可以确定用户处于深度睡眠状态。
示例性的,在根据毫米波雷达采集的数据确定用户的呼吸频率在[16次/分钟,20次/分钟]内时,可以确定用户处于浅睡眠状态;或者,在根据毫米波雷达采集的数据确定用户的心跳频率在(12次/分钟,16次/分钟)内时,可以确定用户处于深度睡眠状态。
可选地,还可以结合该第一数据和该第二数据确定该睡眠舒适度。例如,通过座舱内毫米波雷达采集的第一数据确定用户的心跳频率为65次/分钟且通过可穿戴设备发送的第二数据确定用户的心跳频率为71次/分钟。那么可以根据第一数据确定的心跳频率和第二数据确定的心跳频率的平均值(例如,68次/分钟)确定用户处于深度睡眠状态。
可选地,该睡眠舒适度用于指示用户处于睡眠状态时的舒适程度。例如,该用户处于睡眠状态时的舒适程度包括用户在睡眠状态下处于舒适状态或者处于非舒适状态。
示例性的,该座舱内的传感器可以包括摄像头,例如驾驶员监测系统(driver monitor system,DMS)的摄像头或者座舱监测系统(cabin monitor system,CMS)的摄像头。例如,在用户进入睡眠状态后,若用户的躯干姿态的变化频率大于或者等于第二预设频率且小于该第一预设频率,可以确定用户在睡眠状态下处于非舒适状态;或者,若用户的躯干姿态的变化频率小于该第二预设频率,可以确定用户在睡眠状态下处于舒适状态,其中,该第一预设频率大于该第二预设频率。
示例性的,运载工具可以接收智能手表或者智能手环发送的数据且根据该数据确定用户睡眠舒适度。例如,在人体姿态信息指示用户处于睡眠状态时,运载工具可以向智能手表发起连接请求,该连接请求用于请求和智能手表建立连接;智能手表可以根据该连接请求,建立和该运载工具之间的连接。例如,运载工具和智能手表可以通过短距通信技术建立连接,短距通信技术包括但不限于蓝牙(Bluetooth)连接或者Wi-Fi连接。又例如,运载工具和智能手表还可以通过云端服务器建立连接。在运载工具和智能手表建立连接后,智能手表可以周期性得向运载工具发送数据。
又例如,在检测到第一模式开启时,运载工具可以发送广播消息,该广播消息用于请求和用户的可穿戴设备建立连接,该广播消息中可以包括用户的标识信息。智能手表在接收到该广播消息后,可以根据用户的标识信息,建立与该运载工具的连接。
示例性的,该接收智能手表或者智能手环发送的数据,包括:接收智能手表或者智能手环发送的用户的心跳频率、呼吸频率、血液循环速度以及血压信息中的一种或者多种。从而根据心跳频率、呼吸频率、血液循环速度以及血压信息中的一种或者多种,来确定用户的睡眠舒适度。
示例性的,该接收智能手表或者智能手环发送的数据,包括:接收智能手表或者智能手环发送的用于指示用户的睡眠舒适度的信息。
本申请实施例中,可以通过座舱内的传感器采集的数据来确定用户的睡眠舒适度或者可以通过可穿戴设备发送的数据来确定用户的睡眠舒适度。这样,通过结合睡眠舒适度对 第一模式下座舱设备的状态进行调节,有助于提升处于睡眠状态时用户的睡眠质量。
可选地,该座舱设备包括空调,处于该第一状态时该空调的温度为第一温度,该根据该人体姿态信息和该睡眠舒适度,控制该座舱设备从该第一状态调整至该第二状态,包括:在该人体姿态信息指示该用户处于睡眠状态时,根据该睡眠舒适度,控制该空调的温度从该第一温度调整至第二温度。这样,在用户处于睡眠状态时可以根据用户的睡眠舒适度对空调的温度进行调节,有助于提升处于睡眠状态时用户的睡眠质量。例如,在用户进入深度睡眠状态后,其体温也会发生相应的变化。通过调节空调的温度,可以避免用户在深度睡眠状态下被冻醒或者热醒,从而影响用户的睡眠质量。
可选地,根据该睡眠舒适度以及处于睡眠状态的时长,控制该空调的温度从该第一温度调整至第二温度。
示例性的,在T1时刻第一模式开启且该第一模式将在T2时刻结束。检测到在T1时刻和T2时刻之间的T3时刻用户进入睡眠状态,此时可以对T3时刻至T2时刻这一时间段内用户的睡眠状态进行预测,例如预测[T3,T4]这一时间段内用户处于浅睡眠状态且[T4,T2]这一时间段内处于深度睡眠状态。以空调处于制冷状态且处于第一状态下空调的温度为20℃为例,在[T3,T4]这一时间段可以控制空调的温度从20℃逐渐增加至人体舒适的睡眠体感温度(例如,26℃)。如[T3,T4]这一时间段的时长为20分钟,那么可以在[T3,T4]这一时间段内控制空调的温度每分钟上调0.3℃。在[T4,T2]这一时间段内保持空调的温度处于26℃。这样,可以保证用户进入深度睡眠状态时空调的温度处于身体感觉比较舒适的温度。
以上以人体舒适的睡眠体感温度为26°为例进行说明,本申请实施例并不限于此。例如,人体舒适的睡眠体感温度也可以为23°。
以上是以在[T3,T4]这一时间段内控制空调的温度每分钟上调0.3℃为例进行说明的,空调温度的调节方式可以是线性调节,或者也可以是非线性调节。例如,还可以基于人体热舒适度曲线对空调的温度进行调节。
示例性的,若在T4时刻之前的T5时刻确定用户从浅睡眠状态进入深度睡眠状态,可以在T5时刻之后的预设时长内提升空调温度变化的频率。如[T3,T5]这一时间段的时长为10分钟,那么在T5时刻空调的温度上调至23℃。在T5时刻之后每分钟将空调的温度上调0.6℃,直至空调的温度被调整为26℃。这样,在确定用户提前进入深度睡眠状态时,可以提升空调温度变化的速度,使得空调的温度快速变化为适宜用户深度睡眠的温度,有助于提升用户的睡眠质量。
示例性的,若在T4时刻时未检测到用户从浅睡眠状态进入深度睡眠状态,可以在[T4,T2]这一时间段内保持空调的温度处于26℃。
示例性的,在用户从浅睡眠状态进入深度睡眠状态后,运载工具还可以对空调的温度进行调整。例如,由于空调温度和人体热舒适温度不完全重合,运载工具可以通过识别用户的衣物厚度,对空调的温度进行调整,确保用户的体感温度符合人体热舒适性。
一个实施例中,对T3时刻至T2时刻这一时间段内用户的睡眠状态进行预测时,可以参考用户的历史睡眠数据,例如历史睡眠数据包括用户在过去一段时间(例如,一个月内)启动第一模式且进入睡眠状态后,浅睡眠的时长和深度睡眠时长之间的比例。
一个实施例中,可以提前预设浅睡眠状态的占比(例如,占整个睡眠时长的60%)和深度睡眠状态的占比(例如,占整个睡眠时长的40%)。如[T3,T2]这一时间段的时长为30 分钟,则可以预测用户处于浅睡眠状态的时长为18分钟且处于深度睡眠状态的时长为12分钟。
以上以用户的睡眠状态包括浅睡眠状态和深度睡眠状态为例说明,本申请实施例并不限于此。例如,用户在进入睡眠状态后可以先后经历浅睡眠状态、深度睡眠状态和浅睡眠状态。例如预测预测[T3,T4]这一时间段内用户处于浅睡眠状态,(T4,T6]这一时间段内从处于浅睡眠状态切换至处于深度睡眠状态,且(T6,T2]这一时间段内从处于深度睡眠状态切换至处于浅睡眠状态。在(T6,T2]这一时间段内控制空调的温度逐渐恢复至20℃。
可选地,处于该第一状态时该空调的风速为第一风速,该根据该人体姿态信息和该睡眠舒适度,控制该座舱设备从该第一状态调整至该第二状态,包括:在该人体姿态信息指示该用户处于睡眠状态时,根据该睡眠舒适度,控制该空调的风速从该第一风速调整至第二风速。
示例性的,以空调处于制冷状态且处于第一状态下空调的风速为2米每秒(m/s)为例,在[T3,T4]这一时间段可以控制空调的风速从2m/s逐渐下降至1m/s。如[T3,T4]这一时间段的时长为10分钟,那么可以在[T3,T4]这一时间段内控制空调的风速每分钟下降0.1m/s。在[T4,T2]这一时间段内保持空调的温度处于1m/s。这样,可以保证用户进入深度睡眠状态时空调的风速处于身体感觉比较舒适的风速。
示例性的,若在T4时刻之前的T5时刻确定用户从浅睡眠状态进入深度睡眠状态,可以在T5时刻之后的预设时长内提升空调温度变化的频率。如[T3,T5]这一时间段的时长为5分钟,那么在T5时刻空调的风速下降至1.5m/s。在T5时刻之后每分钟将空调的风速下降0.2m/s,直至空调的风速被调整为1m/s。这样,在确定用户提前进入深度睡眠状态时,可以提升空调风速变化的速度,使得空调的风速快速变化为适宜用户深度睡眠的风速,有助于提升用户的睡眠质量。
示例性的,若在T4时刻时未检测到用户从浅睡眠状态进入深度睡眠状态,可以在[T4,T2]这一时间段内保持空调的风速处于1m/s。
本申请实施例中,在用户处于睡眠状态时可以根据用户的睡眠舒适度对空调的风速进行调节,有助于提升处于睡眠状态时用户的睡眠质量。例如,在刚开始进入第一模式时空调的风速较大。在用户进入深度睡眠状态后,较大的风速会影响用户的体感舒适度且会带来较大的噪声。通过调节降低空调的风速,可以提升用户的体感舒适度且降低噪声对用户造成的影响,从而提升用户的睡眠质量。
可选地,处于该第一状态时该空调的出风方向为第一方向,该根据该人体姿态信息和该睡眠舒适度,控制该座舱设备从该第一状态调整至该第二状态,包括:在该人体姿态信息指示该用户处于睡眠状态时,根据该睡眠舒适度,控制该空调的出风方向从该第一方向调整至第二方向。
示例性的,以空调处于制冷状态且处于第一状态下空调的出风方向朝向用户为例,在[T3,T4]这一时间段可以控制空调的出风方向逐渐偏离用户。这样,可以避免在用户进入深度睡眠状态时空调对用户的直吹导致用户的感冒,有助于提升用户的体验。
示例性的,在第一方向朝向用户的核心区域(例如,脸、脖子、心脏或者躯干中部等区域)且用户进入睡眠状态时,可以控制空调的出风方向逐渐偏离用户的核心区域;或者,在第一方向朝向用户的非核心区域且用户进入睡眠状态时,也可以不调整空调的出风方向。
可选地,该座舱设备包括发声装置,处于该第一状态时该发声装置的音量为第一音量,该根据该人体姿态信息和该睡眠舒适度,控制该座舱设备从该第一状态调整至该第二状态,包括:在该人体姿态信息指示该用户处于睡眠状态时,根据该睡眠舒适度,控制该发声装置的音量从该第一音量调整至第二音量,或者,关闭该发声装置,该第二音量小于该第一音量。
示例性的,在第一模式开启时,处于第一状态时座舱内扬声器的音量为70dB。在人体姿态信息指示用户进入睡眠状态时,可以将该座舱内扬声器的音量降低至60dB。在[T3,T4]这一时间段可以控制扬声器的音量从60dB逐渐下降至30dB。如[T3,T4]这一时间段的时长为10分钟,那么可以在[T3,T4]这一时间段内每分钟将扬声器的音量下降3dB。在[T4,T2]这一时间段内保持扬声器的音量处于30dB。这样,可以避免用户进入深度睡眠状态后扬声器的音量过大对用户的睡眠质量造成的影响。
一个实施例中,在第一模式开启时,处于第一状态时座舱内扬声器的音量为70dB。在人体姿态信息指示用户进入睡眠状态时,可以将该座舱内扬声器的音量降低至60dB。在用户进入深度睡眠状态时,可以直接关闭座舱内的扬声器,或者,控制座舱内扬声器的音量为0dB。
本申请实施例中,在用户处于睡眠状态时,当用户的睡眠舒适度较低时,将发声装置的音量降低或者关闭发声装置,避免由于音量过大对用户的打扰,有助于提升用户的睡眠质量,从而有助于提升用户的驾乘体验。
一个实施例中,该座舱设备包括座椅,该根据该人体姿态信息,控制该座舱设备从该第一状态调整至该第二状态,包括:根据该人体姿态信息,控制该座椅按摩功能的状态。
示例性的,在检测到第一模式开启时,可以控制座椅按摩功能处于开启状态;在该人体姿态信息指示用户进入睡眠状态时,可以由车机自主控制该座椅按摩功能从开启状态切换至关闭状态。
示例性的,在检测到第一模式开启时,可以控制座椅按摩功能处于关闭状态;在该人体姿态信息指示用户在预设时长内未进入睡眠状态时,可以由车机自主控制该座椅按摩功能从关闭状态切换至开启状态。
示例性的,在该人体姿态信息指示用户在预设时长内未进入睡眠状态时,可以控制该座椅按摩和功能从关闭状态切换至开启状态,包括:在该人体姿态信息指示用户在预设时长内未进入睡眠状态且在该预设时长内用户的躯干姿态变化的频率大于第一预设频率时,可以控制该座椅按摩功能从关闭状态切换至开启状态。示例性的,该预设时长为第一模式运行时长的40%。例如,该第一模式的运行时长为30分钟,那么该预设时长可以为12分钟。
一个实施例中,该方法400还包括:根据该人体姿态信息,控制该座椅按摩功能的按摩力度。
示例性的,在该人体姿态信息指示用户在预设时长内未进入睡眠状态时,可以控制该座椅按摩功能从关闭状态切换至开启状态且该座椅按摩功能的按摩力度为第一力度;在该人体姿态信息指示用户进入睡眠状态时,可以控制该座椅按摩功能的按摩力度从第一力度降低为第二力度;在检测到用户进入深度睡眠状态时,可以将该座椅按摩功能的按摩力度从第二力度降低为第三力度,或者,关闭该座椅按摩功能。
本申请实施例中,通过人体姿态信息可以自动调整座椅按摩功能的状态。例如,在第一模式启动时座椅按摩功能处于关闭状态。在人体姿态信息指示用户长时间无法进入睡眠状态时,可以自动开启座椅按摩功能,从而帮助用户进行放松,使得用户可以尽快进入睡眠状态。在人体姿态信息指示用户进入睡眠状态时可以关闭座椅按摩功能,或者座椅按摩功能的按摩力度降低,有助于避免在进入睡眠状态后座椅按摩对用户的干扰,有助于提升用户的睡眠质量。
一个实施例中,该方法400还包括:提示该用户启动该座椅按摩功能。这样,在控制该座椅按摩功能的状态启动之前,还可以提示用户启动该座椅按摩功能,这样可以避免自动开启座椅按摩功能对用户的惊扰,有助于提升用户的驾乘体验。
示例性的,在第一模式启动时座椅按摩功能处于关闭状态。在人体姿态信息指示用户长时间无法进入睡眠状态时,可以提示用户启动座椅按摩功能。例如,可以通过语音信息“检测到您不舒适,是否启动座椅按摩功能”提示用户启动座椅按摩功能。在检测到用户指示启动座椅按摩功能的输入(例如,用户发出语音指令“启动座椅按摩功能”)时,可以启动该座椅按摩功能。
一个实施例中,该提示该用户启动该座椅按摩功能,包括:在座舱内有多个用户时,控制该用户所在的座椅的头枕处的发声装置提示用户启动该座椅按摩功能。
例如,以运载工具是车辆为例,车辆座舱内的主驾区域和副驾区域均存在用户。在第主驾区域的用户选择开启第一模式,可以控制主驾区域的座舱设备处于第一状态,处于第一状态时座椅按摩功能处于关闭状态。在主驾区域的用户的人体姿态信息指示主驾区域的用户长时间无法进入睡眠状态时,可以控制主驾区域座椅头枕处的扬声器发出提示音,从而提示主驾区域的用户是否启动该座椅按摩功能。这样,可以避免对副驾区域的用户的干扰。
一个实施例中,提示该用户启动该座椅按摩功能之前,该方法400还包括:在从座舱设备处于第一状态起的预设时长内,确定用户的躯干姿态变化频率大于或者等于预设频率,其中,该提示该用户启动该座椅按摩功能,包括:在该第一模式结束时,提示用户开启座椅按摩功能。这样,可以对从座舱设备处于第一状态起的预设时长内用户的躯干姿态变化频率进行统计。例如,若该预设时长内用户的躯干姿态变化频率过大,可以认为用户处于不舒适的状态。在第一模式结束时可以主动提示用户开启座椅按摩功能,从而帮助用户进行放松,有助于缓解用户的不舒适感。
一个实施例中,该人体姿态信息包括用户的眼睛状态,该座舱设备包括显示装置且处于该第一状态时该显示装置的亮度为第一亮度,该根据该人体姿态信息,控制该座舱设备从该第一状态调整至第二状态,包括:在该眼睛状态指示该用户处于闭眼时,控制该显示装置的亮度从该第一亮度调整至第二亮度,或者,关闭该显示装置,该第二亮度小于该第一亮度。这样,在用户处于闭眼,可以将显示装置的亮度降低或者关闭显示装置。通过降低显示装置的亮度,有助于促进用户的睡眠,从而有助于提升用户的驾乘体验。
一个实施例中,该方法400还包括:在检测到第一模式开启之前,控制该显示装置的亮度为第三亮度,其中,该第三亮度高于该第一亮度;在检测到第一模式开启时,控制该显示装置的亮度从该第三亮度调整为该第一亮度;在该人体姿态信息指示用户处于睡眠状态时,控制该显示装置的亮度从该第一亮度调整至第二亮度。
示例性的,在该眼睛状态指示该用户处于闭眼时,由车机主动控制该显示装置的亮度从该第一亮度调整至第二亮度,或者,关闭该显示装置,包括:在用户的眼睛从睁眼状态变为闭眼状态时,控制该显示装置的亮度从该第一亮度调整至第二亮度,或者,关闭该显示装置。
一个实施例中,在该眼睛状态指示该用户处于闭眼时,控制该显示装置的亮度从该第一亮度调整至第二亮度,包括:根据环境的亮度,控制该显示装置的亮度从该第一亮度调整至第二亮度。
示例性的,在该眼睛状态指示该用户处于闭眼时,若环境的亮度小于50lux,可以控制显示装置的亮度从200尼特降低至0尼特;或者,若环境的亮度大于或者等于50lux且小于100lux,可以控制显示装置的亮度从200尼特降低至150尼特;或者,若环境的亮度大于或者等于100lux,可以控制显示装置的亮度从200尼特降低至180尼特。
一个实施例中,该人体姿态信息包括用户的第一手势姿态,该根据该人体姿态信息,控制该座舱设备从该第一状态调整至第二状态,包括:根据该第一手势姿态,控制该座舱设备从该第一状态调整至该第二状态。这样,手势姿态中可以具有指示信息,用于对第一模式下座舱设备的状态进行调节,有助于提升用户的驾乘体验,也有助于提升运载工具的智能化程度。例如,在第一模式下用户的座椅角度被调整为躺平状态,如果此时用户需要将发声装置的音量调低,无需用户起身对显示装置进行操作来调低音量,而是可以直接在躺平状态下通过手势姿态调低音量,从而使得调低音量的方式更加人性化。
一个实施例中,该运载工具中保存有手势姿态和座舱设备的状态调整的映射关系。
示例性的,表2示出了一种手势姿态和座舱设备的状态调整的映射关系。
表2
以上表2所示的映射关系仅仅是示意性的,本申请实施例对此不作具体限定。
示例性的,在第一模式开启时,处于第一状态时空调的温度为20℃。在检测到用户从下侧向上侧挥手时,可以控制空调的温度从20℃调高至21℃;在检测到用户再一次从下侧向上侧挥手时,可以控制空调的温度从21℃调高至22℃。
示例性的,在第一模式开启时,处于第一状态时空调的温度为20℃。在检测到用户从下侧向上侧挥手时,可以根据从下侧向上侧移动的距离,控制空调的温度调高。例如,在用户的手从下侧向上侧移动的距离小于第一预设距离时,可以控制空调的温度从20℃调高至21℃;或者,在用户的手从下侧向上侧移动的距离大于或者等于该第一预设距离时,可以控制空调的温度从20℃调高至22℃。
示例性的,在第一模式开启时,处于第一状态时空调的温度为20℃。在检测到用户从下侧向上侧挥手时,可以根据从下侧向上侧移动的速度,控制空调的温度调高。例如, 在用户的手从下侧向上侧移动的速度小于第一预设速度时,可以控制空调的温度从20℃调高至21℃;或者,在用户的手从下侧向上侧移动的速度大于或者等于该第一预设速度时,可以控制空调的温度从20℃调高至22℃。
一个实施例中,该座舱包括第一区域,该用户位于该第一区域,该根据该第一手势姿态,控制该座舱设备从该第一状态调整至该第二状态,包括:根据该第一手势姿态,控制该座舱设备中与该第一区域相关联的设备从该第一状态调整至该第二状态。在第一模式下座舱内有多个用户时,可以通过第一区域的用户的手势姿态,来调整座舱设备中与第一区域相关联的设备的状态。这样,可以实现座舱内分区域的精细控制,在第一区域的用户希望调整座舱设备中与第一区域相关联的设备的状态时,不会对位于座舱内其他区域的用户造成困扰,有助于提升座舱内多个用户的驾乘体验,也有助于提升运载工具的智能化程度。
一个实施例中,该第一模式的持续时长为第一时长,该方法还包括:在该第一时长结束时,通过闹铃提示该用户关闭该第一模式;根据该用户的第二手势姿态,控制该闹铃关闭,或者,控制该闹铃进行延迟提示。
用户在被闹铃闹醒时,情绪和意识处于不清晰状态,如果此时让用户在显示装置上进行操作来关闭闹铃,会给用户带来不便且不人性化。本申请实施例中,在第一模式的持续时长结束时,可以通过第二手势姿态关闭该闹铃,或者,通过该第二手势姿态控制该闹铃进行延迟提示,避免了在用户通过显示装置上的点击操作关闭闹铃或者延迟提示,方便用户及时关闭闹铃或者控制闹铃延迟提示,也使得关闭闹铃或者控制闹铃延迟提示的方式更加人性化。
一个实施例中,该方法400还包括:在该闹铃关闭时,退出该第一模式。
以上退出第一模式可以包括:将座舱设备的状态恢复至第一模式开启前的状态。
例如,在第一模式开启之前,座舱内的座椅的角度为100°,空调处于关闭状态且座舱内的显示屏的亮度为200尼特。在检测到用户的第二手势姿态之前,座舱内的座椅的角度为170°,空调的温度为26℃且显示屏的亮度为100尼特。在通过该第二手势姿态关闭该闹铃时,可以控制座舱内的座椅的角度从170°调整为100°,控制空调关闭且控制显示屏的亮度从100尼特调整为200尼特。
一个实施例中,该控制该闹铃关闭,包括:在检测到用户的悬停手势时,控制该闹铃关闭。
示例性的,该悬停手势为用户的五根手指展开且手掌朝向显示装置的手势。
一个实施例中,该控制该闹铃进行延迟提示,包括:在检测到用户向左侧滑动的手势或者向右侧滑动的手势时,控制该闹铃进行延迟提示。
一个实施例中,该用户坐在第一区域的第一座椅上,在检测到第一模式开启之前,根据用户对该第一座椅角度的提前设置操作或者根据上一次退出第一模式之前第一座椅的状态,确定在第一模式启动时控制第一座椅的角度为第一角度;该方法还包括:在检测到第一模式开启时,检测第二座椅上是否存在用户;在该第二座椅上存在用户且将第一座椅的角度调整为第一角度会影响到第二座椅上的用户时,控制该第一座椅的调度调整为第二角度,该第二座椅为位于第一座椅后方且和该第一座椅相邻的座椅,该第二角度小于该第一角度。这样,在第一模式开启时,可以对第一座椅后侧的第二座椅上是否存在用户进行检测。若第二座椅上存在用户且第一座椅的角度调整为第一角度会影响到第二座椅上的用 户时,可以控制第一座椅的角度调整为第二角度。这样,避免了进入第一模式后第一座椅的状态会第二座椅上的用户造成的不便,有助于提升座舱内多个用户的驾乘体验,也有助于提升运载工具的智能化程度。
本申请实施例中,通过人体姿态信息可以自动对第一模式下座舱设备的状态进行调节,无需用户进行手动调节,有助于提升用户的驾乘体验,也有助于提升运载工具的智能化程度。同时,通过人体姿态信息对座舱设备的调节,也可以提升对座舱设备调节的准确性,使得座舱设备始终处于用户舒适的状态。
图6示出了本申请实施例提供的控制方法600的示意性流程图。如图6所示,该方法600可以由运载工具(例如,车辆)执行,或者,该方法600可以由上述计算平台(例如,车机平台)执行,或者,该方法600可以由计算平台和座舱设备组成的系统执行,或者,该方法600可以由上述计算平台中的SoC执行,或者,该方法600可以由计算平台中的处理器执行。该方法600包括:
S601,在检测到第一模式开启时,控制该座舱设备处于第一状态。
以上S601的实现过程可以参考上述S410,此处不再赘述。
S602,控制座舱内传感器开启。
示例性的,该座舱内的传感器包括摄像头、毫米波雷达等。
示例性的,可以通过座舱内的摄像头采集的数据确定座舱内的用户为用户A,控制该座舱设备处于第一状态,包括:根据上述表1所示的用户与座舱设备的状态之间的映射关系,控制中控屏的亮度为200尼特、扬声器的音量为60分贝、灯带的颜色为蓝色、空调的温度为23℃、座椅按摩功能开启以及座椅的角度为160°。
S603,根据座舱内传感器采集的数据进行人体多目标检测、人体关键点检测以及毫米波人体检测。
以上人体多目标检测和人体关键点检测的过程可以参考上述图4所示的实现过程。例如,该人体多目标检测结果可以为上述人手2D结果或者躯干2D结果,以上人体关键点检测结果可以为上述人手的3D关键点或者躯干的3D关键点。
以上毫米波人体检测可以理解为通过毫米波雷达采集的数据确定用户的睡眠舒适度。
S604,根据人体多目标检测结果、人体关键点检测结果以及毫米波人体检测结果确定用户的睡眠状态以及睡眠舒适度。
例如,可以根据躯干2D结果和躯干的3D关键点确定用户的脸部姿态。通过对该脸部姿态进行分析得到用户的眼睛状态。在该眼睛状态为睁眼状态时,可以确定用户未进入睡眠状态;或者,在该眼睛状态为闭眼状态时,可以确定用户进入了睡眠状态。
例如,在根据毫米波雷达采集的数据确定用户的心跳频率在[70次/分钟,100次/分钟]内时,可以确定用户处于浅睡眠状态;或者,在根据毫米波雷达采集的数据确定用户的心跳频率在[50次/分钟,70次/分钟)内时,可以确定用户处于深度睡眠状态。
S605,根据用户的睡眠状态以及睡眠舒适度,调整座舱内的空调、座椅和发声装置中至少一个设备的状态。
示例性的,在确定用户A进入睡眠状态且用户A处于浅睡眠状态时,可以控制扬声器的音量从60分贝降低至40分贝,座椅按摩功能从开启状态切换至关闭状态,空调的温度从23℃提升至24℃。
示例性的,在确定用户A处于深度睡眠状态时,可以控制扬声器的音量从40分贝降低至20分贝,空调的温度从24℃提升至26℃。
S606,判断座舱内环境亮度。
示例性的,在座舱内环境亮度大于或者等于预设环境亮度时,可以执行S607;否则,执行S608。
例如,该预设环境亮度为100lux。
S607,在座舱内环境亮度大于或者等于预设环境亮度时,根据RGB摄像头和/或IR摄像头采集的数据确定用户的眼睛状态。
示例性的,可以以RGB摄像头采集的数据为主且IR摄像头采集的数据为辅确定用户的眼睛状态。
S608,在座舱内环境亮度小于预设环境亮度时,根据IR摄像头和/或毫米波雷达采集的数据确定用户的眼睛状态。
示例性的,可以以IR摄像头采集的数据为主且以毫米波雷达采集的数据为辅确定用户的眼睛状态。
S609,判断用户是否处于睁眼状态。
示例性的,若用户处于睁眼状态,则执行S610;否则,执行S611。
S610,在用户处于睁眼状态时,保持座舱内显示屏的亮度不变。
示例性的,在用户A处于睁眼状态时,可以保持座舱内显示屏的亮度为200尼特。
S611,在用户处于闭眼状态时,降低座舱内显示屏的亮度。
一个实施例中,在用户处于闭眼状态时,降低座舱内显示屏的亮度,包括:在用户处于闭眼状态的持续时长大于或者等于预设时长时,降低显示屏的亮度。例如,该预设时长为10秒(second,s)。
示例性的,在用户A处于闭眼状态时,可以控制显示屏的亮度从200尼特降低至100尼特。
一个实施例中,该降低座舱内显示屏的亮度,包括:根据用户的睡眠舒适度,降低座舱内显示屏的亮度。
例如,在用户A处于浅睡眠状态时,可以控制显示屏的亮度从200尼特降低至100尼特。
又例如,在用户A从浅睡眠状态进入深度睡眠状态时,可以控制显示屏的亮度从100尼特降低至50尼特,或者,关闭该显示屏。
以上结合图6所示的控制方法介绍了根据用户的睡眠状态和睡眠舒适度,调整座舱设备的状态的过程。下面结合图7所示的控制方法介绍根据用户的手势姿态,调整座舱设备的状态、延迟闹铃响铃或者关闭闹铃的过程。
图7示出了本申请实施例提供的控制方法700的示意性流程图。如图7所示,该方法700可以由运载工具(例如,车辆)执行,或者,该方法700可以由上述计算平台(例如,车机平台)执行,或者,该方法700可以由计算平台和座舱设备组成的系统执行,或者,该方法700可以由上述计算平台中的SoC执行,或者,该方法700可以由计算平台中的处理器执行。该方法700包括:
S701,在检测到第一模式开启时,控制该座舱设备处于第一状态。
S702,控制座舱内传感器开启。
以上S701-S702可以参考上述S601-S602的描述,此处不再赘述。
S703,根据座舱内传感器采集的数据进行人体多目标检测和人体关键点检测。
以上进行人体多目标检测和人体关键点检测的过程可以参考上述S603的描述,此处不再赘述。
S704,根据人体多目标检测结果和人体关键点检测结果,确定用户的手势姿态。
以上确定用户的手势姿态的过程可以参考上述图4中的描述,此处不再赘述。
S705,根据用户的手势姿态,对座舱设备的状态进行调整。
示例性的,如上述表2所示,在检测到用户从下侧向上侧挥手时,可以调高空调的温度。
示例性的,在检测到用户比出OK手势时,可以开启座椅按摩功能。
S706,判断闹铃是否响铃。
示例性的,在第一模式的持续时长达到预设时长时,可以控制闹铃响铃;否则,保持闹铃处于关闭状态。
S707,在闹铃响铃时,判断用户是否有挥手动作。
S708,在检测到用户的挥手动作时,控制闹铃延迟响铃。
示例性的,在检测到用户从左侧向右侧挥手或者从右侧向左侧挥手时,可以控制闹铃延迟响铃。
S709,在未检测到用户的挥手动作时,继续保持闹铃响铃。
一个实施例中,在闹铃响铃时,还可以判断用户是否有悬停手势。在检测到用户的悬停手势时,可以控制闹铃关闭;否则,继续保持闹铃响铃。
图8示出了本申请实施例提供了控制装置800的示意性框图。如图8所示,该装置800包括:检测单元810,用于检测到第一模式开启,该第一模式为与运载工具的座舱内用户休息相关的模式,该座舱内包括座舱设备,该座舱设备包括座椅、香氛、发声装置、灯光装置、空调和显示装置中的至少一种;控制单元820,用于控制该座舱设备处于第一状态;获取单元830,用于获取人体姿态信息;该控制单元820,还用于根据该人体姿态信息,控制该座舱设备从该第一状态调整至第二状态。
可选地,该获取单元830,还用于获取睡眠舒适度,该睡眠舒适度用于指示用户处于睡眠状态时的舒适程度或者睡眠深度;其中,该控制单元820,用于:根据该人体姿态信息和该睡眠舒适度,控制该座舱设备从该第一状态调整至该第二状态。
可选地,该获取单元830,用于:根据该座舱内的传感器采集的第一数据,确定该睡眠舒适度;或者,接收可穿戴设备发送的第二数据且根据该第二数据确定该睡眠舒适度。
可选地,该座舱设备包括空调,处于该第一状态时该空调的温度为第一温度,该控制单元820,用于:在该人体姿态信息指示用户处于睡眠状态时,根据该睡眠舒适度,控制该空调的温度从该第一温度调整至第二温度。
可选地,该座舱设备包括发声装置,处于该第一状态时该发声装置的音量为第一音量,该控制单元820,用于:在该人体姿态信息指示用户处于睡眠状态时,根据该睡眠舒适度,控制该发声装置的音量从该第一音量调整至第二音量,或者,关闭该发声装置,该第二音量小于该第一音量。
可选地,该座舱设备包括座椅,该控制单元820,用于:根据该人体姿态信息,控制该座椅按摩功能的状态。
可选地,该装置800还包括:第一提示单元,用于提示用户启动该座椅按摩功能。
可选地,该人体姿态信息包括用户的眼睛状态,该座舱设备包括显示装置且处于该第一状态时该显示装置的亮度为第一亮度,该控制单元820,用于:在该眼睛状态指示用户处于闭眼时,控制该显示装置的亮度从该第一亮度调整至第二亮度,或者,关闭该显示装置,该第二亮度小于该第一亮度。
可选地,该人体姿态信息包括用户的第一手势姿态,该控制单元820,用于:根据该第一手势姿态,控制该座舱设备从该第一状态调整至该第二状态。
可选地,该座舱包括第一区域,该用户位于该第一区域,该控制单元820,用于:根据该第一手势姿态,控制该座舱设备中与该第一区域相关联的设备从该第一状态调整至该第二状态。
可选地,该第一模式的持续时长为第一时长,该装置800还包括:第二提示单元,用于在该第一时长结束时,通过闹铃提示用户关闭该第一模式;其中,该控制单元820,还用于根据用户的第二手势姿态,控制该闹铃关闭,或者,控制该闹铃进行延迟提示。
可选地,该第二状态与该人体姿态信息相适应。
可选地,该第一模式为小憩模式、睡眠模式、休息模式或者露营模式。
例如,该检测单元810可以是图1中的计算平台或者计算平台中的处理电路、处理器或者控制器。以检测单元810为计算平台中的处理器151为例,处理器151可以获取座舱内摄像头和触摸传感器采集的数据。处理器151可以根据座舱内摄像头和触摸传感器采集的数据,确定主驾区域的用户开启了第一模式。
又例如,控制单元820可以是图1中的计算平台或者计算平台中的处理电路、处理器或者控制器。以控制单元820为计算平台中的处理器152为例,处理器152可以在处理器151确定主驾区域的用户开启第一模式时,控制座舱内的座舱设备处于第一状态。
又例如,获取单元830可以是图1中的计算平台或者计算平台中的处理电路、处理器或者控制器。以获取单元830为计算平台中的处理器153为例,处理器153可以在处理器152控制座舱设备处于第一状态时,根据座舱内传感器采集的数据确定主驾区域的用户的人体姿态信息。
处理器152还可以根据处理器153确定的主驾区域的用户的人体姿态信息,将座舱设备的状态从第一状态调整至第二状态。
以上检测单元810所实现的功能、控制单元820所实现的功能和获取单元830所实现的功能可以由不同的处理器实现,或者,也可以是部分功能由相同的处理器实现,或者,还可以全部功能均由相同的处理器实现,本申请实施例对此不作限定。
应理解以上装置中各单元的划分仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。此外,装置中的单元可以以处理器调用软件的形式实现;例如装置包括处理器,处理器与存储器连接,存储器中存储有指令,处理器调用存储器中存储的指令,以实现以上任一种方法或实现该装置各单元的功能,其中处理器例如为通用处理器,例如CPU或微处理器,存储器为装置内的存储器或装置外的存储器。或者,装置中的单元可以以硬件电路的形式实现,可以通过对硬件电路的设计实现 部分或全部单元的功能,该硬件电路可以理解为一个或多个处理器;例如,在一种实现中,该硬件电路为ASIC,通过对电路内元件逻辑关系的设计,实现以上部分或全部单元的功能;再如,在另一种实现中,该硬件电路为可以通过PLD实现,以FPGA为例,其可以包括大量逻辑门电路,通过配置文件来配置逻辑门电路之间的连接关系,从而实现以上部分或全部单元的功能。以上装置的所有单元可以全部通过处理器调用软件的形式实现,或全部通过硬件电路的形式实现,或部分通过处理器调用软件的形式实现,剩余部分通过硬件电路的形式实现。
在本申请实施例中,处理器是一种具有信号的处理能力的电路,在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如CPU、微处理器、GPU、或DSP等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为ASIC或PLD实现的硬件电路,例如FPGA。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如NPU、TPU、DPU等。
可见,以上装置中的各单元可以是被配置成实施以上方法的一个或多个处理器(或处理电路),例如:CPU、GPU、NPU、TPU、DPU、微处理器、DSP、ASIC、FPGA,或这些处理器形式中至少两种的组合。
此外,以上装置中的各单元可以全部或部分可以集成在一起,或者可以独立实现。在一种实现中,这些单元集成在一起,以SoC的形式实现。该SoC中可以包括至少一个处理器,用于实现以上任一种方法或实现该装置各单元的功能,该至少一个处理器的种类可以不同,例如包括CPU和FPGA,CPU和人工智能处理器,CPU和GPU等。
本申请实施例还提供了一种控制装置,该装置包括处理单元和存储单元,其中存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使该装置执行上述实施例执行的控制方法。
可选地,若该装置位于运载工具中,上述处理单元可以是图1所示的处理器151-15n。
本申请实施例还提供了一种控制系统,该控制系统可以包括计算平台和座舱设备,该计算平台可以包括上述控制装置800。
示例性的,该座舱设备可以包括显示装置,该显示装置可以包括车载显示屏,如上述图3中的显示屏301、显示屏302、显示屏303或者显示屏304中的一个或者多个。
可选地,该控制系统还包括一个或者多个传感器。
本申请实施例还提供了一种运载工具,该运载工具可以包括上述控制装置800或者控制系统。
可选地,该运载工具可以为车辆。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述实施例中的控制方法。
本申请实施例还提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述实施例中的控制方法。
本申请实施例还提供了一种芯片,所述芯片包括电路,所述电路用于执行上述实施例 中的控制方法。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者上电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本申请实施例中,该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟 悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖。在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种控制方法,其特征在于,应用于运载工具的座舱,所述座舱内包括座舱设备,所述座舱设备包括座椅、香氛、发声装置、灯光装置、空调和显示装置中的至少一种,所述方法包括:
    在检测到第一模式开启时,控制所述座舱设备处于第一状态,所述第一模式为与所述座舱内用户休息相关的模式;
    获取人体姿态信息;
    根据所述人体姿态信息,控制所述座舱设备从所述第一状态调整至第二状态。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    获取睡眠舒适度,所述睡眠舒适度用于指示用户处于睡眠状态时的舒适程度或者睡眠深度;
    其中,所述根据所述人体姿态信息,控制所述座舱设备从所述第一状态调整至第二状态,包括:
    根据所述人体姿态信息和所述睡眠舒适度,控制所述座舱设备从所述第一状态调整至所述第二状态。
  3. 如权利要求2所述的方法,其特征在于,所述获取睡眠舒适度,包括:
    根据所述座舱内的传感器采集的第一数据,确定所述睡眠舒适度;或者,
    接收可穿戴设备发送的第二数据且根据所述第二数据确定所述睡眠舒适度。
  4. 如权利要求2或3所述的方法,其特征在于,所述座舱设备包括空调,处于所述第一状态时所述空调的温度为第一温度,所述根据所述人体姿态信息和所述睡眠舒适度,控制所述座舱设备从所述第一状态调整至所述第二状态,包括:
    在所述人体姿态信息指示用户处于睡眠状态时,根据所述睡眠舒适度,控制所述空调的温度从所述第一温度调整至第二温度。
  5. 如权利要求2或3所述的方法,其特征在于,所述座舱设备包括发声装置,处于所述第一状态时所述发声装置的音量为第一音量,所述根据所述人体姿态信息和所述睡眠舒适度,控制所述座舱设备从所述第一状态调整至所述第二状态,包括:
    在所述人体姿态信息指示用户处于睡眠状态时,根据所述睡眠舒适度,控制所述发声装置的音量从所述第一音量调整至第二音量,或者,关闭所述发声装置,所述第二音量小于所述第一音量。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述座舱设备包括座椅,所述根据所述人体姿态信息,控制所述座舱设备从所述第一状态调整至所述第二状态,包括:
    根据所述人体姿态信息,控制所述座椅按摩功能的状态。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    提示用户启动所述座椅按摩功能。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述人体姿态信息包括用户的眼睛状态,所述座舱设备包括显示装置且处于所述第一状态时所述显示装置的亮度为 第一亮度,所述根据所述人体姿态信息,控制所述座舱设备从所述第一状态调整至第二状态,包括:
    在所述眼睛状态指示用户处于闭眼时,控制所述显示装置的亮度从所述第一亮度调整至第二亮度,或者,关闭所述显示装置,所述第二亮度小于所述第一亮度。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,所述人体姿态信息包括用户的第一手势姿态,所述根据所述人体姿态信息,控制所述座舱设备从所述第一状态调整至第二状态,包括:
    根据所述第一手势姿态,控制所述座舱设备从所述第一状态调整至所述第二状态。
  10. 如权利要求9所述的方法,其特征在于,所述座舱包括第一区域,所述用户位于所述第一区域,所述根据所述第一手势姿态,控制所述座舱设备从所述第一状态调整至所述第二状态,包括:
    根据所述第一手势姿态,控制所述座舱设备中与所述第一区域相关联的设备从所述第一状态调整至所述第二状态。
  11. 如权利要求1至10中任一项所述的方法,其特征在于,所述第一模式的持续时长为第一时长,所述方法还包括:
    在所述第一时长结束时,通过闹铃提示用户关闭所述第一模式;
    根据用户的第二手势姿态,控制所述闹铃关闭,或者,控制所述闹铃进行延迟提示。
  12. 如权利要求1至11中任一项所述的方法,其特征在于,所述第二状态与所述人体姿态信息相适应。
  13. 如权利要求1至12中任一项所述的方法,其特征在于,所述第一模式为小憩模式、睡眠模式、休息模式或者露营模式。
  14. 一种控制装置,其特征在于,包括:
    检测单元,用于检测到第一模式开启,所述第一模式为与运载工具的座舱内用户休息相关的模式,所述座舱内包括座舱设备,所述座舱设备包括座椅、香氛、发声装置、灯光装置、空调和显示装置中的至少一种;
    控制单元,用于控制所述座舱设备处于第一状态;
    获取单元,用于获取人体姿态信息;
    所述控制单元,还用于根据所述人体姿态信息,控制所述座舱设备从所述第一状态调整至第二状态。
  15. 如权利要求14所述的装置,其特征在于,所述获取单元,还用于获取睡眠舒适度,所述睡眠舒适度用于指示用户处于睡眠状态时的舒适程度或者睡眠深度;
    其中,所述控制单元,用于:根据所述人体姿态信息和所述睡眠舒适度,控制所述座舱设备从所述第一状态调整至所述第二状态。
  16. 如权利要求15所述的装置,其特征在于,所述获取单元,用于:
    根据所述座舱内的传感器采集的第一数据,确定所述睡眠舒适度;或者,
    接收可穿戴设备发送的第二数据且根据所述第二数据确定所述睡眠舒适度。
  17. 如权利要求15或16所述的装置,其特征在于,所述座舱设备包括空调,处于所述第一状态时所述空调的温度为第一温度,所述控制单元,用于:
    在所述人体姿态信息指示用户处于睡眠状态时,根据所述睡眠舒适度,控制所述空调 的温度从所述第一温度调整至第二温度。
  18. 如权利要求15或16所述的装置,其特征在于,所述座舱设备包括发声装置,处于所述第一状态时所述发声装置的音量为第一音量,所述控制单元,用于:
    在所述人体姿态信息指示用户处于睡眠状态时,根据所述睡眠舒适度,控制所述发声装置的音量从所述第一音量调整至第二音量,或者,关闭所述发声装置,所述第二音量小于所述第一音量。
  19. 如权利要求14至18中任一项所述的装置,其特征在于,所述座舱设备包括座椅,所述控制单元,用于:
    根据所述人体姿态信息,控制所述座椅按摩功能的状态。
  20. 如权利要求19所述的装置,其特征在于,所述装置还包括:
    第一提示单元,用于提示用户启动所述座椅按摩功能。
  21. 如权利要求14至20中任一项所述的装置,其特征在于,所述人体姿态信息包括用户的眼睛状态,所述座舱设备包括显示装置且处于所述第一状态时所述显示装置的亮度为第一亮度,所述控制单元,用于:
    在所述眼睛状态指示用户处于闭眼时,控制所述显示装置的亮度从所述第一亮度调整至第二亮度,或者,关闭所述显示装置,所述第二亮度小于所述第一亮度。
  22. 如权利要求14至21中任一项所述的装置,其特征在于,所述人体姿态信息包括用户的第一手势姿态,所述控制单元,用于:
    根据所述第一手势姿态,控制所述座舱设备从所述第一状态调整至所述第二状态。
  23. 如权利要求22所述的装置,其特征在于,所述座舱包括第一区域,所述用户位于所述第一区域,所述控制单元,用于:
    根据所述第一手势姿态,控制所述座舱设备中与所述第一区域相关联的设备从所述第一状态调整至所述第二状态。
  24. 如权利要求14至23中任一项所述的装置,其特征在于,所述第一模式的持续时长为第一时长,所述装置还包括:
    第二提示单元,用于在所述第一时长结束时,通过闹铃提示用户关闭所述第一模式;
    其中,所述控制单元,还用于根据用户的第二手势姿态,控制所述闹铃关闭,或者,控制所述闹铃进行延迟提示。
  25. 如权利要求14至24中任一项所述的装置,其特征在于,所述第二状态与所述人体姿态信息相适应。
  26. 如权利要求14至25中任一项所述的装置,其特征在于,所述第一模式为小憩模式、睡眠模式、休息模式或者露营模式。
  27. 一种控制装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至13中任一项所述的控制方法。
  28. 一种控制系统,其特征在于,包括座舱设备和计算平台,其中,所述计算平台包括如权利要求14至27中任一项所述的装置,所述座舱设备包括座椅、香氛、发声装置、灯光装置、空调和显示装置中的至少一种。
  29. 一种运载工具,其特征在于,包括如权利要求14至27中任一项的控制装置,或者,包括如权利要求28所述的控制系统。
  30. 根据权利要求29所述的运载工具,其特征在于,所述运载工具为车辆。
  31. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时,以使得实现如权利要求1至13中任一项所述的控制方法。
  32. 一种芯片,其特征在于,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,以执行如权利要求1至13中任一项所述的控制方法。
PCT/CN2023/073532 2023-01-28 2023-01-28 一种控制方法、装置和运载工具 WO2024156092A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/073532 WO2024156092A1 (zh) 2023-01-28 2023-01-28 一种控制方法、装置和运载工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/073532 WO2024156092A1 (zh) 2023-01-28 2023-01-28 一种控制方法、装置和运载工具

Publications (1)

Publication Number Publication Date
WO2024156092A1 true WO2024156092A1 (zh) 2024-08-02

Family

ID=91969842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073532 WO2024156092A1 (zh) 2023-01-28 2023-01-28 一种控制方法、装置和运载工具

Country Status (1)

Country Link
WO (1) WO2024156092A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019122414A1 (en) * 2017-12-22 2019-06-27 Resmed Sensor Technologies Limited Apparatus, system, and method for physiological sensing in vehicles
CN111391858A (zh) * 2020-02-18 2020-07-10 吉利汽车研究院(宁波)有限公司 一种智能座舱系统控制方法、系统及汽车
KR20210033594A (ko) * 2019-09-18 2021-03-29 현대자동차주식회사 차량 및 그 제어 방법
CN113276732A (zh) * 2021-06-28 2021-08-20 广州小鹏智慧出行科技有限公司 一种车辆座舱的控制方法和装置
CN113858915A (zh) * 2021-10-18 2021-12-31 浙江吉利控股集团有限公司 一种车辆座舱空调的控制方法、系统、设备及存储介质
CN115586648A (zh) * 2022-09-05 2023-01-10 华为技术有限公司 一种调节方法、装置和运载工具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019122414A1 (en) * 2017-12-22 2019-06-27 Resmed Sensor Technologies Limited Apparatus, system, and method for physiological sensing in vehicles
KR20210033594A (ko) * 2019-09-18 2021-03-29 현대자동차주식회사 차량 및 그 제어 방법
CN111391858A (zh) * 2020-02-18 2020-07-10 吉利汽车研究院(宁波)有限公司 一种智能座舱系统控制方法、系统及汽车
CN113276732A (zh) * 2021-06-28 2021-08-20 广州小鹏智慧出行科技有限公司 一种车辆座舱的控制方法和装置
CN113525191A (zh) * 2021-06-28 2021-10-22 广州小鹏智慧出行科技有限公司 基于车辆座舱的智能空间的控制方法和装置
CN113858915A (zh) * 2021-10-18 2021-12-31 浙江吉利控股集团有限公司 一种车辆座舱空调的控制方法、系统、设备及存储介质
CN115586648A (zh) * 2022-09-05 2023-01-10 华为技术有限公司 一种调节方法、装置和运载工具

Similar Documents

Publication Publication Date Title
CN108430818B (zh) 用于操作机动车辆的方法,驾驶员辅助系统和机动车辆
US10850693B1 (en) Determining comfort settings in vehicles using computer vision
US10173667B2 (en) Occupant based vehicle control
CN105015445B (zh) 用于对车辆的驾驶员进行与人相关的辅助的方法和系统
US10635101B2 (en) Methods and systems for preventing an autonomous vehicle from transitioning from an autonomous driving mode to a manual driving mode based on a risk model
EP3067827B1 (en) Driver distraction detection system
US9463805B2 (en) System and method for dynamic vehicle control affecting sleep states of vehicle occupants
US11498500B1 (en) Determining comfort settings in vehicles using computer vision
US20180312168A1 (en) Vehicle control system based on face recognition
JP7099485B2 (ja) 乳幼児快適性監視システムおよび乳幼児快適性監視方法
US20190209100A1 (en) In-vehicle user health platform systems and methods
CN110774996B (zh) 车内环境的调节方法、装置和系统
JP2010068941A (ja) 入眠装置および入眠方法
JP2024536145A (ja) 車両及び画像撮影方法、その装置、機器、記憶媒体並びにコンピュータプログラム製品
WO2024051691A1 (zh) 一种调节方法、装置和运载工具
WO2024156092A1 (zh) 一种控制方法、装置和运载工具
JP7087286B2 (ja) 覚醒維持装置
US11564073B2 (en) System and method for emotion detection and inter-vehicle communication
CN115009113B (zh) 座椅调节方法、装置及存储介质
WO2021020449A1 (ja) 車両用表示制御装置
JP2021020671A (ja) 車両用表示制御装置
JP2020100351A (ja) 制御装置、およびデバイス設定変更システム
KR102613180B1 (ko) 차량 및 그 제어방법
WO2020110781A1 (ja) 状態制御装置、状態制御システム、及び、状態制御方法
CN115503435A (zh) 车载空调控制方法、装置、车辆及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23918099

Country of ref document: EP

Kind code of ref document: A1